初中数学(人教版)二元一次方程,精华内容

合集下载

初中数学人教版《二元一次方程组》_1

初中数学人教版《二元一次方程组》_1

3×16x=2×10y.
答:分配40人生产螺栓,50人生产螺帽才能使每天生产的螺栓
已知有23人在甲处劳动,17人在乙处劳动.现共调20人去帮忙,要使在甲处劳动的人数是在乙处劳动的人数的2倍,应调往甲、乙两处各多少人?
C. x+y=22, D. x+y=22, B.
已知有23人在甲处劳动,17人在乙处劳动.现共调20人去帮忙,要使在甲处劳动的人数是在乙处劳动的人数的2倍,应调往甲、乙两处各多少人?
3x=2×5y
2×5x=3y
B组 6. 一方桌由一个桌面和四条桌腿组成,已知1 m3木料可制成 桌面50个或制成桌腿300条.现有5 m3木料,请你设计一下,用 多少木料做桌面,用多少木料做桌腿,恰好能把方桌配成套?
解:设用x m3木料做桌面,用y m3木料做桌腿,恰好能把方桌配
成套.
由题意,得
x+5=2(y-5).
解:设甲组原来有x人,乙组原来有y人.
x+y=22, x+y=22, D. A. B. 某种仪器由2个A部件和1个B部件配套构成.每个工人每天可以加工A部件100个或者加工B部件60个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?设 5x=2×3y 2×3x=5y 安排x个人生产A部件,安排y个人生产B部件,则列出二元一次方程组为
谢 谢 答3×:16分x=配24×01人0y生. 产螺栓,50人生产螺帽才能使每天生产的螺栓
)
__________________________.
100x=2×60y
某种仪器由2个A部件和1个B部件配套构成.每个工人每天可以加工A部件100个或者加工B部件60个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?设

第八章 二元一次方程组 课件3(数学人教版七年级下册)

第八章 二元一次方程组 课件3(数学人教版七年级下册)
(3)x+y=0; (5)3x-y=2z;
(2)xy=3;
(4)x2+x=1; (6)0.3x+0.5y=1.
2.已知二元一次方程4x-7y=3.用关于x的代数 式表示y,则y= ;用关于y的代数式表
示x,则x=
.
3.已知

x=2
是方程mx+3y=1
Y =- 3
的一个解,,3x+y)与点Q(-1,-5)关于X轴对 3 称,则x+y=______.
4.二元一次方程组的解:
使二元一次方程组的两个方程左、右两边的 值都相等的两个未知数的值,叫做二元一次方 程组的解.
三、方程组的解法
基本思想或思路——消元 常用方法————代入法和加减法 根据方程未知数的系数特征确定 用哪一种解法.
1 3
1.下列方程中,哪些是二元一次方程?
(1)2x-2y=5;
5.已知代数式x2+bx+c,当x=1时,它的值 是2;当x=-1时,它的值是8,则b,c的值 分别是( B )
(A) b=3,c=-4. (C) b=2,c=-5. (B) b=-3,c=4. (D) b=-2,c=5.
6.若方程组 {
3x+5y=6
6x+15y=16 3x+ky=10的解,则k的值是(
的解也是方程 )
7.解下列方程组: (1) x=3y-2
{Y=2x-y
(2)
{ 4y=2x+1
2x=3y-1
你算对了吗?
(1) x=1 (2) x=-1/2
{y=1
{ y=0
四、达标测评
1.下列方程是二元一次方程的是____
A.xy+8=0 B.

七年级数学8.2消元——解二元一次方程组

七年级数学8.2消元——解二元一次方程组
8.2 消元——解二元一次方程组
初中数学人教版 七年级下册
教师用书
8.2 消元——解二元一次方程组
知识点一 代入消元法解二元一次方程组
定义 具体内容
消元 将未知数的个数由多化少,逐一解 多个未知数 一个未知数;二元一次方程组 一元一次方 思想 决的思想,叫做消元思想. 代入 把二元一次方程组中一个方程的 消元 一个未知数用含有另一个未知数 程. (1)变形:选定一个系数比较简单的方程进行变形,变成y=ax+b( 或x=cy+d)的形式.
)
A.①×4-②×2 B.①×2-②
17 x -8 ,再代入② 2 13 x 10 D.由②得y= ,再代入① 4
C.由①得y=
答案 B 因为两个方程中未知数的系数都不是1或-1,所以用代入消元 法较烦琐,故可选择加减消元法,又方程①中y的系数是方程②中y的系数 的一半,故选择①×2-②最简单,所以选B.
解析 (1)把①代入②,得6x+2x=8,所以x=1,
把x=1代入①,得y=2.
x 1, 所以原方程组的解为 y 2.
(2)由②得x=2y-1.③ 将③代入①中,得4y-2+3y=12. 解得y=2.
将y=2代入③,得x=3.
所以原方程组的解为
x 3, y 2.
3 2 3 x , 所以原方程组的解为 2 y 1.
把y=1代入①可得x= .
点拨
根据方程组中未知数的系数的特点灵活选择方法是解题的关键.
8.2 消元——解二元一次方程组
题型三 确定方程组中的待定系数 例3 的值. 解析 依题意有
2 x 5 y -6, ① 3 x-5 y 16,② 2 x 5 y -6, 3x-5 y 16, 已知方程组 和方程组 的解相同,求(2a+b)2 016 ax -by -4 bx ay -8

人教版初中数学七年级下册8.1二元一次方程

人教版初中数学七年级下册8.1二元一次方程
的是( B )
A.
x0 y1
2
B.
x y
1 1
C.
x y
1 0
D.
x y
1 1
针对练习
2.判断
x y
9 -1
是不是二元一次方程组
x y 8 x y 10
的解.
解:
把 yx
9 代入方程 -1

方程左边 x y 9 (1) 8 右边,
所以yx91是方程 ①的解。
把 yx
x+y=10
①与方程②的公共解,记作
x
y
6 4
知识点三:二元一次方程的解
追问3 你是如何理解“公共解”的? 一般地,组成二元一次方程组的两个方程的公共解,叫做二
元一次方程组的解.
追问4 章引言中问题的解是什么? 这个队在10场比赛中胜6场、负4场.
针对练习
1. 二元一次方程x-2y=1有无数组解,下列四组值中不是该方程的解
胜的场数的分数+负的场数的分数=总分数
解:设胜x场,则负(10-x)场. 2x+(10-x)=16.
知识点一:二元一次方程
章引言:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一 场得1分.某队在10场比赛中得到16分,那么这个队胜负分别是多少场?
问题2 能不能根据题意直接设两个未知数,使列方程变的容易呢?
写成
x y 10 2x y 16
,就组成了一个方程组.这个方程组含有几个未知
数?含有未知数的项的次数是多少?
含有两个未知数,每个未知数的项的次数都是1,并且一 共有两个方程,像这样的方程组叫做二元一次方程组.
针对练习
下列方程组中,是二元一次方程组的有((2)、(5) )

初一数学下册(人教版)第八章二元一次方程8.1组知识点总结含同步练习题及答案

初一数学下册(人教版)第八章二元一次方程8.1组知识点总结含同步练习题及答案

2. 已知 { x = 2, 是方程 kx − y = 3 的解,那么 k 值是 (
y=1
)
D.−1
A.2
答案: A
B.−2
C.1
3. 若方程组 { 3x + y = k + 1, 的解 x = −3 , y = 2 ,则 k 的取值是 (
x + 3y = 3
)
D.−6
A.−4
答案: C
B.−5
C.−8
初一数学下册(人教版)知识点总结含同步练习题及答案
第八章 二元一次方程组 8.1 二元一次方程组
Hale Waihona Puke 一、学习任务 1. 掌握二元一次方程、二元一次方程组和它的解的概念. 2. 会判定所给的未知数的值是不是方程或方程组的解. 3. 提高逻辑思维和分析解决问题的能力. 二、知识清单
二元一次方程(组)
三、知识讲解
解:A.
{
B. { x = 6,
y=1 D. { x = 2, y=3
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 下列各式中是二元一次方程的是 ( A.3x − 2y = 9
答案: A
)
C.
B.2x + y = 6z
1 + 2 = 3y x
D.x − 3 = 4y 2
1.二元一次方程(组) 描述: 二元一次方程 含有两个未知数,含有未知数的项的次数都是 1 ,并且等号两边都是整式的方程叫做二元一次方 程(linear equation in two unknowns).其一般形式是 ax + by + c = 0(a ≠ 0,b ≠ 0 ). 方程组 两个或两个以上的方程的组合叫做方程组.能同时满足方程组中每个方程的未知数的值,称为方 程组的解.求出它所有解的过程称为解方程组. 二元一次方程组 有两个未知数,含有每个未知数的项的次数都是 1 ,等号两边都是整式,并且一共有两个方程, 像这样的方程组叫做二元一次方程组(system of linear equations in two unknowns). 例题: 下列方程中,是二元一次方程的是( A. xy + 4x = 7 解:C. 下列方程组中,是二元一次方程组的是( A. { xy = 1, B. π + x = 7 ) C. x + 3y = 2 D.

人教版数学七年级下册知识重点与单元测-第八章8-2二元一次方程(组)的解法Ⅰ-代入法(能力提升)

人教版数学七年级下册知识重点与单元测-第八章8-2二元一次方程(组)的解法Ⅰ-代入法(能力提升)

第八章二元一次方程(组)8.2 二元一次方程(组)的解法Ⅰ——代入法(能力提升)【要点梳理】知识点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组例1.用代入法解方程组:237 338x yx y+=⎧⎨-=⎩①②【思路点拨】比较两个方程未知数的系数,发现①中x的系数较小,所以先把方程①中x用y表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得732yx-=③将③代入②733382yy-⨯-=,解得13y=.将13y=代入③,得x=3所以原方程组的解为313 xy=⎧⎪⎨=⎪⎩.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.举一反三:【变式】m取什么数值时,方程组的解(1)是正数;(2)当m取什么整数时,方程组的解是正整数?并求它的所有正整数解.【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.例2.对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为请用同样的方法解方程组:.【思路点拨】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,则方程组的解为【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.举一反三:【变式1】解方程组2320, 2352y9.7x yx y--=⎧⎪-+⎨+=⎪⎩【答案】解:232235297x yx yy-=⎧⎪⎨-++=⎪⎩①②将①代入②:2529 7y++=,得 y=4,将y=4代入①:2x-12=2得 x=7,∴原方程组的解是74 xy=⎧⎨=⎩.(2)45:4:3x yx y-=⎧⎨=⎩①②解:由②,设x=4k,y=3k 代入①:4k-4·3k=5 4k-12k=5-8k=558k=-∴542x k==-,1538y k==-,∴原方程组的解为52158 xy⎧=-⎪⎪⎨⎪=-⎪⎩.类型二、方程组解的应用例3.如果方程组的解是方程3x+my=8的一个解,则m=()A.1 B.2 C.3 D.4【思路点拨】求出方程组的解得到x与y的值,代入已知方程即可求出m的值.【答案】B.【解析】解:,由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.例4.已知2564x yax by+=-⎧⎨-=-⎩①②和方程组35168x ybx ay-=⎧⎨+=-⎩③④的解相同,求2011(2)a b+的值.【思路点拨】两个方程组有相同的解,这个解是2x+5y=-6和3x-5y=16的解.由于这两个方程的系数都已知,故可联立在一起,求出x、y的值.再将x、y的值代入ax-by=-4,bx+ay=-8中建立关于a、b的方程组即可求出a、b的值.【答案与解析】解:依题意联立方程组256 3516①x yx y+=-⎧⎨-=⎩③①+③得5x=10,解得x=2.把x=2代入①得:2×2+5y=-6,解得y=-2,所以22 xy=⎧⎨=-⎩,又联立方程组48ax bybx ay-=-⎧⎨+=-⎩,则有224228a ba b+=-⎧⎨-+=-⎩,解得13 ab=⎧⎨=-⎩.所以(2a+b)2011=-1.【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.举一反三:【变式】小明和小文解一个二元一次组小明正确解得小文因抄错了c,解得已知小文除抄错了c外没有发生其他错误,求a+b+c的值.【答案】解:把代入cx﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【巩固练习】一、选择题1.解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( ).A .由①得743n m +=再代入②B .由②得25109n m +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①2. 若二元一次方程式组的解为x=a ,y=b ,则a+b 等于( )A .B .C .D .3.关于x ,y 的方程y kx b =+,k 比b 大1,且当12x =时,12y =-,则k ,b 的值分别是( ).A .13,23- B .2,1 C .-2,1 D .-1,0 4.已知24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩都是方程y =ax+b 的解,则( ).A .125a b ⎧=⎪⎨⎪=⎩B .123a b ⎧=-⎪⎨⎪=⎩C .121a b ⎧=⎪⎨⎪=-⎩D .121a b ⎧=-⎪⎨⎪=-⎩5.如果二元一次方程组4x y a x y a +=⎧⎨-=⎩的解是二元一次方程3x-5y-30=0的一个解,那么a 的值是( ).A .3B .2C .7D .66.一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x 海里/时,水流速度为y 海里/时,则下列方程组中正确的是( ).A .33903.6 3.690x y x y +=⎧⎨+=⎩B .3 3.6903.6390x y y x +=⎧⎨+=⎩C .3()903()90x y x y +=⎧⎨-=⎩D .33903.6 3.690x y x y +=⎧⎨-=⎩二、填空题7.已知51,62x t y t =+=-,用含y 的式子表示x ,其结果是_______.8.若方程组的解为,则点P (a ,b )在第 象限.9.方程组的解是 . 10.若532y x a b +与2244x y a b --是同类项,则x = ________,y = ________.11.已知方程组3524x y ax y -=⎧⎨-=⎩的解也是方程 47135x y x by -=⎧⎨-=⎩的解,则a = _____,b = ____ . 12.关于,x y 的二元一次方程组1353x y m x y m +=-⎧⎨-=+⎩中,m 与方程组的解中的x y 或相等,则m 的值为 .三、解答题13.用代入法解方程组:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩ (2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩14.研究下列方程组的解的个数:(1)21243x y x y -=⎧⎨-=⎩; (2)2123x y x y -=⎧⎨-=⎩; (3)21242x y x y -=⎧⎨-=⎩.你发现了什么规律?15.若方程组的解是,求(a+b)2﹣(a﹣b)(a+b).16.甲、乙两位同学一起解方程组,甲正确地解得,乙仅因抄错了题中的c,解得,求原方程组中a、b、c的值.【答案与解析】一、选择题1. 【答案】C;2.【答案】A.【解析】把x=a,y=b代入方程组得:,将b=15a 代入5a-b=5,解得:,∴a+b=. 3. 【答案】A ;【解析】将12x =时,12y =-代入y kx b =+得1122k b -=+ ①,再由k 比b 大1得1k b -= ②,①②联立解得13k =,23b =-. 4. 【答案】B ;【解析】将24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩分别代入方程y =ax+b 得二元一次方程组:2441a b a b -+=⎧⎨+=⎩,解得1,32a b =-=. 5. 【答案】B ;【解析】由方程组可得,代入方程,即可求得. 6. 【答案】D.二、填空题7. 【答案】151x y =-+;8.【答案】四.【解析】将x=2,y=1代入方程组得:,解得:a=2,b=﹣3, 则P (2,﹣3)在第四象限.9.【答案】;【解析】解:解方程组, 由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y )+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.10.【答案】2, -1;【解析】由同类项的定义得方程组,解之便得答案.11.【答案】3, 1;【解析】由题意得:35471x y x y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,代入 2435ax y x by -=⎧⎨-=⎩,得关于a 、b 的方程组22465a b -=⎧⎨-=⎩,解得31a b =⎧⎨=⎩12. 【答案】12-2或; 【解析】解:解关于x,y 的方程组得21x y m =⎧⎨=--⎩,当x m =时,2m =;当y m =时,12m =-. 三、解答题13.【解析】解:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩①②将②代入①得,0.50.30.6 1.2y y +-=,得94y =, 将94y =代入①得,38x =-, 所以原方程组的解是3894x y ⎧=-⎪⎪⎨⎪=⎪⎩ .(2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩①② 把3x+2y 看作整体,直接将①代入②得,2(52)117x x +=+,解得3x =-, 将3x =-代入①得,2y =-所以原方程组的解是32x y =-⎧⎨=-⎩. 14.【解析】解:(1)无解;(2)唯一一组解;(3)无数组解.规律:当两个一次方程对应项系数不成比例时,方程组有唯一一组解,如(2);当两个一次方程对应项系数成比例时,方程组有无数组解,如(3);当两个一次方程对应项系数成比例,但比值不等于两个常数项对应的比时,方程组无解,如(1).15.【答案】解:将代入得,解得:.∵(a+b)2﹣(a+b)(a﹣b)=2b(a+b),∴当a=,b=时,原式=2b(a+b)=2×=6.16.【解析】解:把代入到原方程组中,得可求得c=﹣5,乙仅因抄错了c而求得,但它仍是方程ax+by=2的解,所以把代入到ax+by=2中得2a﹣6b=2,即a﹣3b=1.把a﹣3b=1与a﹣b=2组成一个二元一次方程组,解得.故a=,b=,c=﹣5.。

第八章 二元一次方程组(复习课件)年级数学下册(人教版)

第八章 二元一次方程组(复习课件)年级数学下册(人教版)
(1)
(2)
3 + = 1②
3 − 2 = 3②
3 − 4 − 2 = 5①
(3)
解:(1)把①代入②,得3(1-y)+y=1.
(2)①×2+②,得11x=33.
− 2 = 1

解这个方程,得y=1.
解这个方程,得x=3.
把y=1代入①,得x=0.
把x=3代入①,得12+y=15,y=3.
的解为

=1
− = 1
a+2b的值.
2 + = 3
=1
解:把
代入

=1
− = 1

2 + = 3①
− =1 ②
由①-②,得a+2b=2.
高频考点
高频考点二 二元一次方程的特殊解
例2. 活动课上,王老师把班级里40名学生分成若干个小组,每个小组只能
是3人或4人,则分组方案共有( C )
=2
= −1
x=6.
把x=6代入①,得18+4y=16,
1
y=- .
2
=6
所以这个方程组的解为 = − 1
2
迁移应用
【3-4】解下列方程组:
− =3

(1)
3 − 8 = 14②
3 + 4 = 16 ①
(2)
5 − 6 = 33 ②
4 + = 5 ①
(3)整理,得
A.2种
B.3种
C.4种
D.5种
解析:设3人小组有x个,4人小组有y个.
4
根据题意,得3x+4y=40,所以y=10- x.

七年级数学下册第八章二元一次方程组知识点总结素材新版新人教版(含参考答案)

七年级数学下册第八章二元一次方程组知识点总结素材新版新人教版(含参考答案)

七年级数学下册知识点总结素材:
二元一次方程组
一.知识结构图
二、知识概念
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。

方程,一般形式是 ax+by=c(a≠0,b≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法. 重点:二元一次方程组的解法,列二元一次方程组解决实际问题. 难点:二元一次方程组解决实际问题
1。

人教版《二元一次方程组》》完美版初中数学1

人教版《二元一次方程组》》完美版初中数学1
由①×3-②再,得2v=由4. ③+④,得17x=51,即x=3.
把x=3代入①,得12+3y=3,即y=-3. ∴方程组的解为 x=3,
y=-3.
知识点3: 解较复杂的二元一次方程组
=-2,
【例3】解方程组:
再由③________④,得________________________. 由①×2,得2x+4y=0.
续表
1. 请消去方程组 3x+4y=16, ① 中的未知数x. 5x-6y=33 ②
5
15x+20y=80
解: 由①×3 ________,得_1_5_x_-_1_8_y_=_9_9___________. ③ 由②×____-____,得______3_8_y_=_-_1_9____________.④
x=2,
解:(1)∵甲把字母a看错了得到方程组的解为 y=
x=2, 则把
代入bx-4y=1,得2b+7=1,即b=-3.
y=
∵乙把字母b看错了得到方程组的解为 x=2, 则把 x=2,
y=-1,
y=-1
代入ax+3y=1,得2a-3=1,即a=2.
∴a=2,b=-3.
2x+3y=1, (2)由(1)得原方程组为
由①×3-②,得2v=4.
解得v=2.
把v=2代入①,得8u+18=6.
解得u= u=
∴原方程组的解为 v=2.
10. 甲、乙两位同学在解方程组 ax+3y=1,① 时,甲把字 bx-4y=1②
x=2, 母a看错了,得到方程组的解为
y=
乙把字母b看错了,
得到方程组的解为 x=2, y=-1.

人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)

人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)
第八章 二元一次方程组
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.


合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】

人教版数学七年级下册8.1二元一次方程组-拔高版(教案)

人教版数学七年级下册8.1二元一次方程组-拔高版(教案)
举例:通过具体的方程组,讨论何时方程组有唯一解,何时无解(如平行线),以及何时有多解(如重合直线)。
-难点四:将实际问题转化为方程组的能力。学生可能在实际问题的抽象过程中遇到困难,需要教师引导。
举例:如何从问题描述中提取信息,建立正确的方程组,特别是涉及两个未知数的情况。
四、教学流程
(一)导入ቤተ መጻሕፍቲ ባይዱ课(用时5分钟)
同学们,今天我们将要学习的是《二元一次方程组-拔高版》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要同时解决两个问题的情况?”(例如:两个朋友同时出发,速度不同,问何时能相遇。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二元一次方程组的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二元一次方程组在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版数学七年级下册8.1二元一次方程组-拔高版(教案)
一、教学内容
人教版数学七年级下册8.1节“二元一次方程组-拔高版”,本节课将围绕以下内容展开:
1.二元一次方程组的定义及其构成;
2.二元一次方程组的解法,包括代入法、消元法;
3.举例说明二元一次方程组在实际问题中的应用;
4.探索二元一次方程组解的性质,如唯一性、无解情况;
3.培养学生的空间想象力和几何直观,通过线性方程组的图像解法,让学生在解决方程组问题时能够运用数形结合的思想;

人教版数学七年级下册第8章二元一次方程组复习

人教版数学七年级下册第8章二元一次方程组复习
2.A、B两地相距36千米,甲从A地步行到B地, 乙从B地步行到A地,两人同时相向出发,4小时 后两人相遇,6小时后,甲剩余的路程是乙剩余 路程的2倍,求二人的速度?
练一练:
1. 某市现有42万人口,计划一年后城镇人口增 加0.8%,农村人口增加1.1%,这样全市人口将增 加1%,求这个市一年后预计的城镇人口和农村人 口是多少?
关于定义
1%,这样全市人口将增加1%,求这个市一年后预计的城镇人口和农村人口是多少?
二元一次方程是整式方程.
二元一次方程组里一共含有两个 ⒈ 使相同未知数的系数相同或相反(若不同 a .
二元一次方程组里一共含有两个未知数,而不是每个方程一定要含有两个未知数. 9、方程组 的解是
未知数,而不是每个方程一定要含有 就不是二元一次方程,因为
3、阅读小故事,列出满足题意的二元一次方程组:(杨损 问题)唐朝时,有一位懂数学的尚书叫杨损,他曾主持一场 考试,其中有一道题是:"有一天,几个盗贼正在商议怎样分 配偷来的布匹,贼首说,每人分六匹布,还剩下五匹布;每人 分七匹布还少了八匹布.这些话被躲在暗处的衙役听到 了,他飞快地跑回官府,报告了知府,但知府不知道有多少 盗贼,不知派多少人去抓捕他们.请问:有盗贼几人,布匹多 少?列出二元一次方程组,并根据问题的实际意义找出 问题的解。
x + y = -5的一个解.
关于解法
1、解二元一次方程组你有几种方法? 两种:代入法和加减法
2、代入法和加减法解方程组,“代入”与“加 减”的目的是什么?
消元:把二元一次方程转化为一元一次方程
3、解二元一次方程组的步骤是什么?
代入消元法的步骤
⒈将其中一个方程化为用含一个未知数的代数式表示另一个未知数的形式,如:y=ax+b的形式

人教版初中数学二元一次方程组_精品课件1

人教版初中数学二元一次方程组_精品课件1

【答案】
x5 y 1
人 教 版 初 中 数学二 元一次 方程组 _精品课 件1
人 教 版 初 中 数学二 元一次 方程组 _精品课 件1
4.(泉州·中考)已知x,y满足方程组
2x x 2
y y
5, 4,
则x-y的值为
.
【解2x析x+】2yy==54,,②①
方程①-②得x-y=1.
【答案】 1
①左边 + ② 左边 = ① 右边 + ②右边
人 教 版 初 中 数学二 元一次 方程组 _精品课 件1
典例分析: 解方程组:
2x 5y 15 2x 5y 5
①人教版初中数学二元一次方程组_精品课件1 ②
解:①+②得:4x=20
x=5
把x=5代入①得: 2×5+5y=15
y=1
x 5
∴原方程组的解是
y=1
∴原方程组的解是
x y
5
1∴原方程组的解是
x y
5 1
系数 相同
减法
系数 相反
加法
人 教 版 初 中 数学二 元一次 方程组 _精品课 件1
第八章 二元一次方程组
8.2
人 教 版 初 中 数学二 元一次 方程组 _精品课 件1
消元(二)
加减消元法的概念
两个二元一次方程中同一未知数的系 数相反或相等时,将两个方程的两边分别 相加或相减,就能消去这个未知数,得到 一个一元一次方程,这种方法叫做加减消 元法,简称加减法(addition-subtraction method)。
y
1
人 教 版 初 中 数学二 元一次 方程组 _精品课 件1
人 教 版 初 中 数学二 元一次 方程组 _精品课 件1

人教版数学七年级下册知识重点与单元测-第八章8-6《二元一次方程组》章末复习(能力提升)

人教版数学七年级下册知识重点与单元测-第八章8-6《二元一次方程组》章末复习(能力提升)

第八章 二元一次方程(组)8.6 《二元一次方程组》章末复习(能力提升)【要点梳理】知识点一、二元一次方程组的相关概念1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程.要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a ==y x 的形式. 3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零). (2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个. 要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法(1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;⑤将两个未知数的值用“ ”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组. 要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法.(2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解.3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z)表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;(4)解这个方程组,求出未知数的值;(5)写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、二元一次方程组的相关概念例1.在下列方程中,只有一个解的是( )A . 1330x y x y +=⎧⎨+=⎩B . 1332x y x y +=⎧⎨+=-⎩C . 1334x y x y +=⎧⎨-=⎩D . 1333x y x y +=⎧⎨+=⎩ 【答案】C .【解析】选项A 、B 、D 中,将方程1x y +=,两边同乘以3得333x y +=,从而可以判断A 、B 选项中的两个二元一次方程矛盾,所以无解;而D 中两个方程实际是一个二元一次方程,所以有无数组解,排除法得正确答案为C.【总结升华】在111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 均不为零), (1)当121222a a c a b c =≠时,方程组无解;(2)当121222a a c abc ==,方程组有无数组解; (3)当1222a a a b ≠,方程组有唯一解. 举一反三:【变式1】若关于x 、y 的方程()12m m x y++=是二元一次方程,则m = .【答案】1.【变式2】已知方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解,则a 、b 的值等于 .【答案】a =﹣3,b =﹣14. 类型二、二元一次方程组的解法例2. 解方程组2()5335()322x y y x y y ⎧-+=⎪⎪⎨⎪--=-⎪⎩①②【答案与解析】解:由①×9得:6(x -y )+9y =45 ③②×4得:6(x -y )-10y =-12 ④③-④得:19y =57,解得y =3.把y =3代入①,得x =6.所以原方程组的解是63x y =⎧⎨=⎩. 举一反三: 【变式】(换元思想)解方程组16105610x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=⎪⎩ 【答案】 解:设6x y m +=,10x y n -=. 则原方程组可化为15m n m n +=⎧⎨-=⎩,解得32m n =⎧⎨=-⎩.所以36210x y x y +⎧=⎪⎪⎨-⎪=-⎪⎩ 即1820x y x y +=⎧⎨-=-⎩. ∴ 119x y =-⎧⎨=⎩.例3.小明和小文解一个二元一次组小明正确解得小文因抄错了c ,解得已知小文除抄错了c 外没有发生其他错误,求a+b+c 的值.【答案与解析】 解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5, 把与分别代入ax+by=2,得, 解得:,则a+b+c=2+﹣5=3﹣5=﹣2.举一反三: 【变式】已知二元一次方程组⎪⎪⎩⎪⎪⎨⎧=+=+175194y x y x 的解为a x =,b y =, 则=-b a .【答案】11.类型三、实际问题与二元一次方程组例4.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.60cm【答案与解析】解:设每块地砖的长为xc m 与宽为ycm ,根据题意得:6023x y x x y+=⎧⎨=+⎩,解得:4515x y =⎧⎨=⎩ 答:每块地砖长为45cm ,宽为15cm举一反三:【变式】如图,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积.【答案】解:设每个小长方形的长为x ,宽为y ,根据题意得:422(2)37x y x y y +=⎧⎨+-=⎩,解得103x y =⎧⎨=⎩所以阴影部分的面积为:22(73)922(79)910382y xy +-=+-⨯⨯=.答:图中阴影部分的面积为82.例5. 甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。

人教版七年级数学下册精品教学课件 第八章 二元一次方程组 实际问题与二元一次方程组 第2课时

人教版七年级数学下册精品教学课件 第八章 二元一次方程组 实际问题与二元一次方程组 第2课时
x=300,
解方程组得 y=400.
8 000x-1 000y-15 000-97 200
=8000×300-1 000×400-15 000-97 200 =1 887 800(元)
答:这批产品的销售款比原料费与运输费的和多
1887800元.
实际问题
设未知数、找等量关系、列方程(组)
数学问题 [方程(组)]
运费表
单位:(元/台)
起点
终点
北京 上海
武汉
400 300
重庆
800 500
运费表
起点
终点
北京
上海
单位:(元 /台)
武汉
重庆
400
800
300
500
解:设从北京运往武汉x台,则运往重庆(10-x)台, 设从上海运往武汉y台,则运往重庆(4-y)台, x+ y=6,
400x+ 300y+800(10-x)+ 500(4-y)=8000. 解方程组得 x=4,
当堂检测
1.某出租车起步价所包含的路程为0~2km,超过2km的部分按每 千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘 坐这种出租车走了13km,付了28元.设这种出租车的起步价为x
元,超过2km后每千米收费y元,则下列方程正确的是( D )
x 7 y 16 A.x 13y 28
3.要注意的是,处理实际问题的方法往往是多种多样的,应根 据具体问题灵活选用.
知识点二 列二元一次方程组解答利润问题 例2 某村18位农民筹集5万元资金,承包了一些低产田地.根据市 场调查,他们计划对种植作物的品种进行调整,改种蔬菜和荞麦. 种这两种作物每公顷所需的人数和需投入的资金如下表:

人教版七年级数学下册8.1二元一次方程(教案)

人教版七年级数学下册8.1二元一次方程(教案)
人教版七年级数学下册8.1二元一次方程(教案)
一、教学内容
人教版七年级数学下册8.1节,本节课主要围绕二元一次方程展开,内容包括:
1.理解二元一次方程的概念,能够识别方程中的未知数和常数。
2.学会使用代入法解决简单的二元一次方程问题。
3.学会使用消元法解决简单的二元一次方程问题。
4.能够根据实际问题列出二元一次方程,并解决实际问题。
2.逻辑推理:通过代入法、消元法等解方程的方法,培养学生的逻辑思维能力,学会运用数学语言进行逻辑推理。
3.数学建模:引导学生从实际情境中建立二元一次方程模型,体会数学在解决实际问题中的应用,提高学生的数学建模能力。
4.数学运算:通过具体的例题和练习,让学生掌握二元一次方程的运算方法和技巧,提高学生的数学运算能力。
-熟练进行代入和消元的运算过程。
举例说明:
(1)代入法与消元法的应用场景:让学生通过对比不同类型的题目,理解何时使用代入法,何时使用消元法更为合适。例如,当方程组中有一个方程已经表示出一个未知数时,使用代入法较为简便。
(2)实际问题抽象:指导学生从实际问题中抓住关键信息,如两个变量的关系,列出方程。如火车行程问题,要让学生理解速度和时间的关系,并将其抽象为方程。
在学生小组讨论环节,ቤተ መጻሕፍቲ ባይዱ发现同学们对于二元一次方程在实际生活中的应用有很多自己的想法。但在引导和启发学生思考方面,我觉得自己还有待提高。今后,我将更加关注学生的个体差异,针对不同学生的需求,提出更有针对性的问题,激发他们的思维。
总之,这节课的教学让我深刻认识到,作为一名教师,要时刻关注学生的学习情况,及时调整教学方法和策略。在今后的教学中,我将努力改进,力求让每个学生都能学好二元一次方程,为他们的数学学习打下坚实的基础。

初中数学人教七年级下册第八章二元一次方程组-二元一次方程组

初中数学人教七年级下册第八章二元一次方程组-二元一次方程组

知识拓展
二元一次方程组的概念是一个描述性 定义,两个未知数不是两个方程中每个方程 都含有两个未知数,可以是一个方程中含有 一个未知数,也可以是两个方程中含有不同 的两个未知数.
例:(补充)下列方程组中,是二元一次方程组的为( C )
A.
x + 3y=5 2x - 3z=3
B.
mnm++nn==56C.
知识拓展
二元一次方程组的解是一对数,要将 这对数代入方程组中的每一个方程进行检 验,这对数只有满足方程组中的每一个方 程,才能是这个方程组的解,而一元一次方 程的解是一个数,这是它们之间的区别.
课堂小结
1.含有两个未知数,并且含有未知数的项的次数 都是1的方程,叫做二元一次方程.
2.一般地,使二元一次方程两边的值相等的两个 未知数的值,叫做二元一次方程的解.
算法展示:
(1)算数方法: 把兔子和鸡的脚数看成“相等”,则 多出94- 35×2=24只脚,每只兔子比鸡多 出两只脚,由此可先求出兔子有 24÷2=12(只),随后可算出鸡有35- 12=23( 只). 类似地也可以先求鸡的数量: 35×4- 94=46(只),46÷2=23(只).
(2)列一元一次方程:
m+ 3n=1
m 6
+
2n 3
D.
=1
2x - 3y=10
1 x
-
5y=6
解析: 本题主要考查二元一次方程组的定义.A选项共含 有三个未知数;B选项中的未知数的最高次数是2;D选项中 不全是整式方程,故都不是二元一次方程组.故选C.
问题1 下面哪些解既适合方程x+y=10,又符合问题 的实际意义?
3.一般地,二元一次方程组的两个方程的公共 解,叫做二元一次方程组的解.

人教版数学七年级下册知识重点与单元测-第八章8-1二元一次方程(组)的相关概念(能力提升)

人教版数学七年级下册知识重点与单元测-第八章8-1二元一次方程(组)的相关概念(能力提升)

第八章 二元一次方程(组)8.1 二元一次方程(组)的相关概念(能力提升)【要点梳理】知识点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x ay b=⎧⎨=⎩的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个.【典型例题】 类型一、二元一次方程例1.已知方程(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,求m 、n 的值.【答案与解析】解:∵(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,∴n ﹣1=1,|m ﹣1|=1, 解得:n=2,m=0或2,若m=2,方程为2y=2,不合题意,舍去, 则m=0,n=2. 举一反三:【变式1】已知方程3241252m nx y +--=是二元一次方程,则m= ,n= . 【答案】-2,14【变式2】方程(1)(1)0a x a y ++-=,当______a a ≠=时,它是二元一次方程,当时,它是一元一次方程.【答案】1±;11-或 类型二、二元一次方程的解 例2.已知是方程2x ﹣6my+8=0的一组解,求m 的值.【答案与解析】 解:∵是方程2x ﹣6my+8=0的一组解,∴2×2﹣6m ×(﹣1)+8=0,解得m=﹣2. 举一反三:【变式】已知方程2x-y+m-3=0的一个解是11x m y m =-⎧⎨=+⎩,求m 的值.【答案】 解:将11x m y m =-⎧⎨=+⎩代入方程2x-y+m-3=0得2(1)(1)30m m m --++-=,解得3m =.答:m 的值为3.例3.写出二元一次方程204=+y x 的所有正整数解. 【答案与解析】解:由原方程得x y 420-=,因为y x 、都是正整数, 所以当4321, , , =x 时,481216, , , =y . 所以方程204=+y x 的所有正整数解为:⎩⎨⎧==161y x , ⎩⎨⎧==122y x , ⎩⎨⎧==83y x , ⎩⎨⎧==44y x .举一反三: 【变式1】已知是关于x 、y 的二元一次方程ax ﹣(2a ﹣3)y=7的解,求a 的值.【答案】 解:把代入方程ax ﹣(2a ﹣3)y=7,可得:2a+3(2a ﹣3)=7, 解得:a=2.【变式2】在方程0243=-+y x 中,若y 分别取2、41、0、-1、-4,求相应的x 的值.【答案】将0243=-+y x 变形得342yx -=. 把已知y 值依次代入方程的右边,计算相应值,如下表:类型三、二元一次方程组及解 例4.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩.乙看错了方程②中的b .得到方程组的解为54x y =⎧⎨=⎩.试计算:20112010110a b ⎛⎫+- ⎪⎝⎭的值.【答案与解析】 解:把31x y =-⎧⎨=-⎩代入②,得-12+b =-2,所以b =10.把54x y =⎧⎨=⎩代入①,得5a+20=15,所以a =-1, 所以201120112010201011(1)101(1)01010ab ⎛⎫⎛⎫+-=-+-⨯=+-= ⎪ ⎪⎝⎭⎝⎭.举一反三:【变式】已知关于,x y 的二元一次方程组41323x ay x by x y +==⎧⎧⎨⎨+==-⎩⎩的解是 , 求的值a b +. 【答案】解:将13x y =⎧⎨=-⎩代入原方程组得:134332a b -=⎧⎨-+=⎩ ,解得113a b =-⎧⎪⎨=⎪⎩,所以23a b +=-.【巩固练习】一、选择题1.一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) A .5 个 B. 6 个 C.7 个 D.8 个2.方程2x ﹣=0,3x+y=0,2x+xy=1,3x+y ﹣2x=0,x 2﹣x+1=0中,二元一次方程的个数是( )A .5个B .4个C .3个D .2个3.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m 的值为( ) A .4B .﹣4C .D .﹣4.若5x -6y =0,且xy ≠0,则的值等于( )A .23 B. 32C.1D. -1 5.若x 、y 均为非负数,则方程6x=-7y 的解的情况是( ) A .无解 B.有唯一一个解 C.有无数多个解 D.不能确定6.在早餐店里,王伯伯买5个馒头,3个包子,老板少拿2元,只要50元.李太太买了11个馒头,5个包子,老板以售价的九折优待,只要90元.若馒头每个x 元,包子每个y 元,则下列哪一个二元一次联立方程式可表示题目中的数量关系? ( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩ D .53502115900.9x y x y +=-⎧⎨+=÷⎩二、填空题 7.已知方程3241252m nxy +--=是二元一次方程,则m =________,n =_________. 8.若方程组的解为,则点P (a ,b )在第象限.9.在13,72x y ⎧=⎪⎪⎨⎪=⎪⎩ 04x y =⎧⎨=⎩,21x y =⎧⎨=⎩,33x y =⎧⎨=⎩这四对数值中,是二元一次方程组32823x y x y +=⎧⎨-=⎩的解的是________ .10. 方程2x+3y=10 中,当3x-6=0 时,y=_________; 11. 方程|a |+|b |=2 的自然数解是_____________; 12.若二元一次方程组的解中,则等于____________.三、解答题13.请你写出一个二元一次方程组,使它的解是.14.甲、乙二人共同解方程组2623mx y x ny +=-⎧⎨-=-⎩①②由于看错了方程①中的m 值,得到方程组的解为32x y =-⎧⎨=-⎩;乙看错了方程②中的n 的值,得到方程组的解为52x y =-⎧⎨=⎩,试求代数式22m n m n ++的值.15.某球迷协会组织36名球迷租乘汽车赴比赛场地,为中国国家男子足球队呐喊助威,可租用的汽车有两种:一种是每辆车可乘8人,另一种是每辆车可乘4人.要求租用的车子不留空座,也不超载.(1)请你给出三种不同的租车方案;(2)若8个座位的车子租金是300元/天,4个座位的车子租金是200元/天,请你设计费用最少的租车方案,并简述你的理由.【答案与解析】一、选择题1. 【答案】B;2. 【答案】D;【解析】解:2x ﹣=0是分式方程,不是二元一次方程;3x+y=0是二元次方程;2x+xy=1不是二元一次方程;3x+y﹣2x=0是二元一次方程;x2﹣x+1=0不是二元一次方程.故选:D.3.【答案】【解析】把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.4. 【答案】A;【解析】将5x=6y代入后面的代数式化简即得答案.5. 【答案】B;【解析】76x y=-可知:,x y异号或均为0,所以不可能同时为正,只能同时为0.6. 【答案】B;【解析】根据题意知,x,y同时满足两个相等关系:①老板少拿2元,只要50元;②老板以售价的九折优待,只要90元,故选B.二、填空题7. 【答案】-2,14;【解析】由二元一次方程的定义可得:31241mn+=⎧⎨-=⎩,所以214mn=-⎧⎪⎨=⎪⎩8.【答案】四【解析】:将x=2,y=1代入方程组得:,解得:a=2,b=﹣3,则P(2,﹣3)在第四象限.9. 【答案】21 xy=⎧⎨=⎩;【解析】把4组解分别代入方程组验证即可.10.【答案】2;【解析】将2x=代入2x+3y=10中可得y值.11.【答案】;12.【答案】-3∶4;【解析】将代入中,得,即;将代入,得,即,即.三、解答题13.【解析】解:答案不唯一,例如:∵,∴x+y=5, x-y=-1,∴所求的二元一次方程组可以是.14.【解析】解:将32xy=-⎧⎨=-⎩代入②中2(3)23n⨯-+=-,32n=.将52xy=-⎧⎨=⎩代入①中-5m+4=-6,m=2.∴229374344 m n mn++=++=.15.【解析】解:(1)设8个座位的车租x辆,4个座位的车租y辆.则8x+4y=36,即2x+y=9.∵ x,y必须都为非负整数,∴ x可取0,1,2,3,4,∴ y的对应值分别为9,7,5,3,1.因此租车方案有5种,任取三种即可.(2)因为8个座位的车座位多,相对日租金较少,所以要使费用最少,必须尽量多租8个座位的车.所以符合要求的租车方案为8个座位的车租4辆.4个座位的车租1辆,此时租车费用为4×300+1×200=1400(元).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学(人教版)二元一次方程,精华内容
二元一次方程组的有关概念
含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。

在初中数学中,二元一次方程组是一个非常重要的知识内容。

在进行初中二元一次方程组的学习过程中,想要学好二元一次方程,就必须能够依据具体问题的数量关系列出相应的方程或者是方程组,然后再对其进行求解,从而得到相应的未知参数的具体值。

实质上,初中二元一次方程组学习过程中的重点和难点就在于对于化归思想的培养——化归思想是指将一个问题由难化易,由繁化简,由复杂化简单的过程称为化归,它是转化和归结的简称。

二元一次方程学习的难点在哪里
1、方程及未知数量增加
在初中数学二元一次方程组的学习过程中,方程数量以及未知数数量的增多往往是一个学习的难点,因为在学习二元一次方程组的相关知识之前,学生都是接触的一元一次方程中,方程的数量只有一个,未知数的数量也只有一个,这样整个方程的数量关系就较为明确。

许多学生在初学二元-次方程组时,往往不能够明确各个数量之间的关系,因此也就不能够有效地进行求解。

2、方法选择不当
在进行二元一次方程组求解的过程中,常用的方法有带入消元法、加减消元法以及整体带入法等方法,但是许多学生在进行二元一次方程组求解的过程中,往往不能够合理地选择相应的方法,虽然每一种方法都能够求解同一个二元一次方程组,但是不同的方法所消耗的时间是有所不同的,所以如何选择最合适的解法也是二元一次方程组学习过程中的一个难点。

许多初中学生在初次接触二元一次方程组时,由于对于解题思路以及解题方法不熟悉,所以往往不能够灵活地选择解题方式,因此也就给二元一次方程组学习带来了较大的困难。

3、不能够有效地分析具体问题
在初中阶段进行二元一次方程组学习的过程中,还需要学习将二元一次方程组应用于实际问题的能力,但是这也是一个难点,许多初中学生往往只能够死板地用消元法来解答给出的二元一次方程组,但是要让其从具体的问题中来找出数量关系并且列出二元一次方程组却较为困难。

而在初中阶段之所以要进行二元一次方程组的学习,其主要目的就在于培养学生的应用能力,所以学生不能够有效地分析具体问题也是初中二元一次方程组学习过程中的一个难点。

二元一次方程组的应用及方法
对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多。

列方程组解应用问题有以下几个步骤:
(1)选定几个未知数;
(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;
(3)解方程组,得到方程组的解;
(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解。

相关文档
最新文档