准晶材料的发现和进展

合集下载

准晶体的发现及应用

准晶体的发现及应用

准晶体的发现及应用一.准晶体的定义准晶体是一种介于晶体和非晶体之间的固体。

物质的构成由其原子排列特点而定。

原子呈周期性排列的固体物质叫做晶体,原子呈无序排列的叫做非晶体,介于这两者之间的叫做准晶体。

20世纪80年代初以前,科学界对固态物质的认识仅限于晶体与非晶体,而随着以色列人达尼埃尔·谢赫特曼的一次偶然发现,固体物质中一种“反常”的原子排列方式跳入科学家的眼界。

从此,这种徘徊在晶体与非晶体之间的“另类”物质闯入了固体家族,并被命名为准晶体。

二.准晶体的结构银铝准晶体的原子模型物质的构成由其原子排列特点而定。

晶体是指原子呈周期性排列的固体物质,单晶体都具有有规则的几何形状,像食盐晶体是立方体、冰雪晶体为六角形。

而原子呈无序排列的则叫做非晶体,非晶体没有一定的外形,介于这两者之间的叫做准晶体。

也就是说,准晶体具有完全有序的结构,然而又不具有晶体所应有的空间周期性。

人们普遍认为,准晶体存在偏离了晶体的三维周期性结构,因为单调的周期性结构不可能出现五重轴,但准晶体的结构仍有规律,不像非晶态物质那样的近距无序,仍是某种近距有序结构。

尽管有关准晶体的组成与结构规律尚未完全阐明,它的发现在理论上已对经典晶体学产生很大冲击,以致国际晶体学联合会建议把晶体定义为衍射图谱呈现明确图案的固体(any solid having an essentially discrete diffraction diagram)来代替原先的微观空间呈现周期性结构的定义。

三.准晶体的发展历程准晶体的发现,是20世纪80年代晶体学研究中的一次突破。

1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无平移周期性的合金像,在晶体学及相关的学术界引起了很大的震动。

不久,这种无平移同期性但有位置序的晶体就被称为准晶体。

准晶体是1982年发现的,具有凸多面体规则外形的,但不同于晶体的固态物质,它们具有晶体物质不具有的五重轴。

准晶体_精品文档

准晶体_精品文档

准晶体摘要:准晶体是一种具有有序但不具备传统晶体完全周期性重复结构的材料。

本文将介绍准晶体的基本概念、发现历史、晶体学特征、结构特点以及其在材料科学领域的应用等方面。

通过对准晶体的深入研究,我们可以更好地了解这种材料的特殊性质,从而为今后的材料设计与合成提供更多可能性。

1. 引言准晶体是一种介于晶体和非晶体之间的特殊材料,其结构既具有一定的有序性,又存在非晶体所特有的无规则局部结构。

准晶体的发现给传统晶体学观念带来了很大的冲击,使得人们重新审视晶体结构的多样性和复杂性。

2. 发现历史准晶体的发现可以追溯到20世纪70年代初。

当时,关于准晶体存在的猜测和研究已经逐渐增多,但直到1975年才有科学家首次成功合成出了一种具有五重旋转对称性的准晶体。

这个发现引起了极大的轰动,并引发了整个科学界对准晶体的深入研究。

3. 晶体学特征准晶体的晶体学特征与传统晶体存在一定的差别。

准晶体的晶胞通常具有五重旋转对称性,而不是晶胞中心对称或其他常见的对称性。

此外,准晶体的点阵常数通常不是整数,这也是准晶体与普通晶体的一个显著区别。

4. 结构特点准晶体的结构特点是其与传统晶体最大的不同之处。

准晶体的结构在宏观上呈现出高度有序的态势,但在微观上却存在着一些局部无规则的结构。

这种具有非晶体特点的局部结构是准晶体与普通晶体的本质区别。

5. 应用与前景准晶体具有独特的结构和性质,将为材料科学领域带来许多新的应用与前景。

准晶体在催化剂、材料增强、信息存储、光学器件等方面都有着广泛的应用。

未来,通过对准晶体的深入研究,我们可以更好地利用准晶体的特性,实现更高效、更可靠的新型材料的开发与制备。

6. 结论准晶体作为一种介于晶体与非晶体之间的特殊材料,其结构和性质的研究具有重要的科学意义和应用价值。

通过对准晶体的深入研究,我们可以更深入地了解准晶体的结构特点,为今后的材料设计与合成提供更多的可能性。

相信在不久的将来,准晶体将在材料科学领域发挥着重要的作用。

2011年诺贝尔化学奖---准晶体的发现和研究

2011年诺贝尔化学奖---准晶体的发现和研究
2011年诺贝尔化学奖
----达尼埃尔· 谢赫特曼(Danielle.Shechtman )
① 达尼埃尔·谢赫特曼 (个人履历)
1941年,出生于以色列的特拉维夫,以色列人。理论 物理学家,现为以色列工学院工程材料系教授。
1972年,从位于以色列海法的以色列工学院获得博士 学位,随后在美国俄亥俄州赖特-帕特森空军基地航空 航天研究实验室从事了3年钛铝化合物研究。 1975年,谢赫特曼进入以色列工学院材料工程系工作。 1981年至1983年,谢赫特曼利用假期赴美国约翰 斯·霍普金斯大学从事合金研究并在此期间发现准晶体。
③ 达尼埃尔·谢赫特曼的科研态度
谢赫特曼说: “必须成为某个领域的 专家,这是第一位的。 当发现某个新事物的时 候,首先要确定它确实 是新事物,然后再试着 解释所看到的。如果相 信自己的话,就可以听 取他人的意见,但不要 被他们误导,不要放弃。 对我来说,我知道我是 对的。”
④ 成功的历程
谢赫特曼的发现在当时引起极大争议。因执意 坚持自己的观点,曾被要求离开他的研究小组。 “我被赶出了自己所在的研究团队,同事们说 我的研究让他们蒙羞。”谢赫特曼回忆说,“对 此,我并不在意,我深信自己是对的,他们是错 的。” 美国化学协会主席纳西· 杰克逊采访时表示: “因为他们认为这违反了自然‘规则’。” “他(鲍林)公开说:达尼埃尔· 谢赫特曼在胡 言乱语,根本没有什么准晶体,只有‘准科学 家’。”谢赫特曼回忆说。
2011年10月5日,获得诺贝尔化学奖,一人独享1000万瑞典 克朗(约合146万美元)奖金。 自1986年起,谢赫特曼已获 来自物理、化学等领域共计10余个奖项。
② 达尼埃尔·谢赫特曼的成就贡献
谢赫特曼发现了准晶体,这种材料具有的奇特 结构,推翻了晶体学已建立的概念。从根本上改 变了化学家们看待固体物质的方式。

准晶材料的发展历程及其研究现状

准晶材料的发展历程及其研究现状

准晶材料的发展历程及其研究现状摘要:本文介绍了准晶的定义、分类,并阐述了准晶材料的发展历程。

简要概括了准晶材料的国内外研究现状。

最后,概括《热处理对含有十二面体准晶相的Ti1.4V0.6Ni合金电极的电化学性质的影响》大意。

关键词:准晶材料;定义;发展历程1 准晶材料的定义自第一个具有突破传统晶体学范畴的5次旋转对称合金相问世以来,至今人们已相继发现了具有8次、10次和12次旋转对称的合金相,这些合金的电子衍射花样特征表现出不同于晶体的5次对称和高于6次、8次、10次、12次对称,这些差异表明准晶代表了一种新的固态结构。

但5次及6次以上对称在传统晶体中是不允许存在的,因为不能仅仅用这样的几何单元来堆垛成无空隙的空间。

所以这些合金相既不能称为晶体(没有周期平移对称性),又不能称为非晶体(具有长程有序)。

人们把这种违反传统晶体学理论的合金相命名为准周期晶体(Quasi-periodic Crystal),简称准晶(Quasicrystal)。

由此可以得到准晶的定义为:准晶是同时具有长程准周期性平移序和非晶体学旋转对称性的固态有序相。

相对于晶体可以用一种单胞在空间中的无限重复来描述,准晶体也可以定义为:准晶是由两种(或两种以上)“原胞”在空间无限重复构成的,这些“原胞”的排列具有长程的准周期平移序和长程指向序。

2 准晶材料的发展1984年,美国科学家D.shechtman等[1]在研究用急冷凝固方法使较多的Cr、Mn和Fe等合金元素固溶于Al中,以期得到高强度铝合金时,在急冷Al-Mn合金中发现了一种奇特的具有金属性质的相。

这种相具有相当明锐的电子衍射斑点,但不能标定成任何一种布拉维点阵,其电子衍射花样明显地显示出传统晶体结构所不允许的5次旋转对称性。

DShechtman在美国《物理评论快报》上发表的“具有长程取向序而无平移对称序的金属相”一文中首次报道了发现一种具有包括5次旋转对称轴在内的二十面体点群对称合金相,并称之为二十面体相(Icosahedral phase)。

准晶体的发现与应用

准晶体的发现与应用

准晶体的发现与应用周宸材料科学与工程2009051005 2011-12-132011年的诺贝尔化学奖公布之后,科学界“天本地裂”。

来自以色列的科学家丹尼尔·舍特曼因发现准晶体而获奖。

准晶体颠覆了常年来的权威,打破了晶体学固有的格局。

所以,我对准晶体很感兴趣,于是查找了许多文献资料。

准晶体的定义是,物质的构成由其原子排列特点而定。

原子呈周期性排列的固体物质叫做晶体,原子呈无序排列的叫做非晶体,准晶是一种介于晶体和非晶体之间的固体。

准晶具有完全有序的结构,然而又不具有晶体所应有的平移对称性,因而可以具有晶体所不允许的宏观对称性。

1982年,海法市以色列理工学院的丹尼尔•谢赫特曼(Daniel Shechtman)发现,一种铝锰合金好像具有五重对称性,也就是说,当其中的原子形成的图案旋转五分之一周(72度)时,图案看起来基本上是相同的。

其他研究人员都嘲笑该发现,因为当时这种排列被认为在数学上是不可能做到的。

然而,科学家们最终认识到,通过自身的排列,图案达到几乎重复但永远也不能重复时,固体中的原子可以得到这样的对称,变成“准晶体”。

先来讲一下为什么准晶体一直不被认为存在。

就像孩子们的简单游戏所证明的那样,该解释对晶体可能拥有的对称性提出了限制。

假如你想通过排列一模一样的瓷砖来铺盖桌面,利用重复的三角形瓷砖可以完成这项含有技巧的任务,所以有可能制造出具有三重对称性的晶体;利用四边形和六边形瓷砖也可以完成这项任务,因此也可以制造出四重和六重对称性的晶体。

但是,利用五边形瓷砖无法完成这项任务,因为瓷砖之间总会有空隙。

于是,不可能存在具有可重复排列的五重对称性晶体。

因此,准晶体难以存在。

但是,科学家可以这样做。

1982年4月8日上午,在马里兰州盖瑟斯堡市国家标准与技术研究院工作期间,谢赫特曼取了铝锰合金样品,为了防止结晶,他事先将样品速冻,并向其中发射了电子束。

如果这种材料中存在有序排列的原子,电子就会通过原子的表面衍射出来,并且以特定的角度显现出探测器可以辨认的图案。

准晶的发现

准晶的发现

准晶的发现石贵华刻Girih瓷砖是中世纪中东建筑物的传统装饰图案。

这种图案的基本元素为多重对称的星形和多边形,以华美繁复、炫目瑰丽著称。

令人意想不到的是,这一装饰艺术形式,竟然蕴含着复杂的数学原理,并启发了科学家们,使他们发现了准晶。

一般认为,固体的形态分为两种,即晶体和非晶体。

晶体的结构有序并且拥有平移周期性,非晶体则没有这些特性。

而所谓准晶,恰恰介于这两者之间。

说它是非晶体,可它结构有序;说它是晶体,它又不能平移重复。

准晶独特的结构引人入胜,也让化学家们伤透了脑筋。

准晶结构是由以色列科学家舍特曼于1982年发现的。

他尝试使用急速降温的办法制造金属合金,得到一种全新结构的锰-铝合金。

当舍特曼把新材料放到电子显微镜下观察微观结构时,他惊讶地发现,自己制造的“晶体”完完全全颠覆了传统的晶体学范式——以一个圆点为中心,周围彼此距离相同的十个亮点形成一个更大的圆形。

舍特曼的惊讶是有原因的。

在那个年代,传统的晶体学对称理论在科学家心中早已根深蒂固。

当实验结果与基础理论背道而驰,绝大多数人选择墨守成规、囿于范式,舍特曼却选择相信实验结果。

因此,他提出的准晶结构饱受质疑,凝聚心血的论文被学术期刊拒稿,他甚至被供职的研究所扫地出门。

但是舍特曼依然没有放弃,他又向晶体学权威格雷希斯请教。

格雷希斯深入了解了他的研究之后深表赞同,毅然加入支持准晶的阵营,向晶体学理论宣战。

1984年,他们联名向知名学刊《物理评论快报》投了一篇论文。

话分两头,20世纪60年代,数学家们即开始思考是否能用有限数量的花砖堆放成一种图案不可重复的镶嵌物,即制造出所谓的非周期性的镶嵌物。

到了1974年,英国科学家彭罗斯在观察Girih瓷砖时得到启发,首次构造出有五次对称轴的非周期性的二维镶嵌平面(如图)。

这时人们才发现,早在中世纪阿拉伯艺术家就用花砖拼出了非周期性的对称图案,其中还有五次和十次对称轴的存在。

后来,晶体学家麦凯在彭罗斯镶嵌的结构上放置原子模拟晶体结构,并进行了衍射实验,这一理论结果与舍特曼的实验图像相符。

准晶体的研究及其进展

准晶体的研究及其进展

准晶体的研究及其进展准晶体是指在既不具备完全长程周期性,又不具备完全无序性的晶体结构。

自从准晶体被发现以来,其研究在材料科学和固态物理领域引起了广泛的兴趣。

本文将介绍准晶体的研究历程,以及在不同领域中的应用进展。

准晶体的研究历程可以追溯到20世纪60年代末,当时瑞士的丹尼尔·谢菲勒(Daniel Shechtman)在一次电子显微镜下观察到了铝合金中的一种新奇晶体结构。

他发现这种结构具有五重旋转对称性,在晶体学中是不被允许的。

因此,谢菲勒最初的观察被其他科学家认为是错误的。

然而,谢菲勒坚持验证了自己的观察,最终于1982年发表了他的研究成果,证明了准晶体的存在。

准晶体的发现对晶体学领域产生了巨大的冲击,因为它违背了传统晶体学中对晶体的定义和理解。

过去,晶体被认为是具有完美的时间和空间周期性的结构,而准晶体则打破了这种传统的观念。

准晶体的进一步研究揭示了其独特的结构特征。

准晶体结构由于其非传统的周期性,具有多重旋转对称性。

这种多重旋转对称性导致了准晶体表面上出现五边形、八边形和十边形等特殊的几何形状。

这些几何形状在传统晶体中是不被允许的,但在准晶体中却是常见的。

准晶体的应用也在不断发展。

在材料科学领域,准晶体具有多孔性和较低的密度,因此被广泛应用于陶瓷、合金和涂层材料等领域。

准晶体陶瓷具有优异的耐高温性能和高硬度,因此被用于制造高温环境下的零件和陶瓷刀具等。

准晶体合金具有良好的抗腐蚀性能和机械强度,因此被用于航空、汽车和医疗器械等领域。

此外,准晶体的光学性质也使其广泛应用于光学镜片、激光器和光学纤维等领域。

准晶体的研究进展也涉及到理论模拟和计算机模拟等方面。

随着计算机技术的发展,科学家能够通过模拟和计算来研究准晶体的结构和性质。

通过模拟和计算,科学家能够预测准晶体的稳定性、机械性能和光学性质等。

这些理论模拟和计算结果可以指导实验设计和材料制备,加快准晶体材料的研发和应用。

总之,准晶体是一种独特的晶体结构,其研究自发现以来一直在不断发展。

准晶体的发现与研究

准晶体的发现与研究



准晶体的发现 是近年来凝聚态物理学的一个重要突破, 现已发现准晶态广泛地存在于许许多多合金之中。 现在,在一些Al-Li-Cui、Al-Cu-Fe和Al-Cu-Co等合金系中 已发现了大量热力学稳定的准晶
Al-Cu-Co十次对称棱柱状准晶



人们发现组成为铝-铜-铁-铬的准晶体具有低摩擦系 数、高硬度、低表面能以及低传热性,正被开发为炒菜 锅的镀层。 Al65Cu23Fe12十分耐磨,被开发为高温电弧喷嘴的镀 层。 瑞典一家公司也在一种耐用性最强的钢中发现了准晶体, 这种钢目前被用于剃须刀片和眼科手术用的手术针中。 在生物学中,Bernal 和 Fankuchen (1937) 对纯化的 TMV(烟草花叶病毒)制剂应用了X射线分析法。他们 获得了病毒(粒体)杆宽度的准确估值,而且表明用盐 使病毒沉淀产生的、有规则地进行二维排列的针形体应 为准晶体(paracrystal)而非真晶体。
1987年
•法国和日本科学家成功地在实验室中制造出了准晶体结构。
2009年
•科学家们在俄罗斯东部哈泰尔卡湖获取的矿物样本中发现了天然准晶体的“芳踪”,这种 名为icosahedrite的新矿物质由铝、铜和铁组成;瑞典一家公司也在一种耐用性最强的钢中 发现了准晶体,这种钢目前被用于剃须刀片和眼科手术用的手术针中。
背景介绍 准晶体概述 发展历程及研究现状 准晶体的应用
2011诺贝尔化学奖得主:Daniel Shechtman




“我被赶出了自己所在的研究团队,同事们说我的研 究让他们蒙羞。对此,我并不在意,我深信自己是对的, 他们是错的。” ——Daniel Shechtman 1982年4月8日,41岁的Shechtman正在美国霍普金 斯大学从事研究工作,他发现的“准晶体”原子结构打 破了传统晶体内原子结构必须具有重复性这一黄金法则, 在科学界引起轩然大波。来自主流科学界、权威人物的 质疑和嘲笑不断向他涌来。 包括著名化学家、两届诺贝尔奖得主莱纳斯·鲍林在内 的一些化学界权威纷纷质疑谢赫特曼的发现。即便如此, 谢赫特曼也并未动摇自己的信念。 1987年,法、日科学家成功地在实验室中制造出了大 到足以被X射线观察到的准晶体结构,证实了 Shechtman的发现。

准晶体的发现及意义

准晶体的发现及意义

准晶体的发现及意义准晶体是一种介于晶体和非晶体之间的材料,它具有部分有序的结构。

准晶体的发现对材料科学和材料工程领域有着重要的意义。

本文将从准晶体的发现历史、准晶体的结构和性质、准晶体的应用等方面进行探讨,并阐述准晶体的意义。

一、准晶体的发现历史准晶体的发现可以追溯到20世纪70年代末80年代初,当时石英晶体的研究者通过电子显微镜观察到了一些有着五角或十边形对称的结构,但其结构却不遵循晶格对称性规律。

这些结构在当时被称为“假晶体”或“错误晶体”,直到1984年,丹尼斯·格拉迪赛夫和保罗·施泰因哈特在对一种金银合金的研究中发现了具有五角对称性的结构,他们将其命名为“准晶体”,并详细描述了其结构和性质。

二、准晶体的结构和性质准晶体的结构既不是完全有序的晶体结构,也不是完全无序的非晶体结构,而是介于两者之间的部分有序的结构。

准晶体的结构特点是具有非常复杂和多样性,它包含了晶体和非晶体中常见的一些几何元素,如孔隙、晶胞、聚集体等。

准晶体的结构有时还会出现五角对称、十边形对称或其他非晶体无法呈现的对称性。

这种特殊的结构赋予了准晶体独特的物理和化学性质。

准晶体具有许多独特的性质,例如低摩擦系数、低导热系数、高抗腐蚀性、高硬度等。

这些性质使得准晶体在材料科学和工程领域具有广泛的应用前景。

三、准晶体的应用1.复合材料领域:准晶体可以被用作增强材料的填充剂,提高复合材料的力学性能。

它的高硬度和高抗腐蚀性使其成为一种理想的增强材料。

2.表面涂层技术:准晶体可以通过物理气相沉积、磁控溅射等技术制备成涂层,提高材料的表面硬度和抗磨损性能。

3.催化剂和储氢材料:准晶体也可以作为催化剂的载体,提高催化剂的效率和稳定性。

此外,准晶体内部的孔隙结构可以用来储存氢气,有望应用于氢能源储存领域。

4.电子器件领域:准晶体具有比晶体更低的导热系数,可用于制备热导率较低的电子器件,降低热电偶效应。

此外,准晶体还在纳米技术、强化材料的设计等领域有着广泛的应用前景。

准晶简介-精品文档

准晶简介-精品文档

04
准晶的未来展望
准晶的未来展望
• 准晶是一种特殊的固体物质,其结构表现出长程有序但缺乏 平移对称性的特点。自从准晶被发现以来,其独特的物理性 质和潜在的应用价值一直吸引着科学家的关注。为了进一步 推动准晶领域的发展,我们有必要对准晶的未来展望进行探 讨。
THANKS
感谢观看
• 准晶是一种特殊的固体物质,它们具有长程有序的结构,但缺 乏平移对称性。这意味着准晶呈现出一种介于晶体和非晶体之 间的特性。下面将详细介绍准晶的形成机制、发现历程以及在 自然界和实验室的分布。
03
准晶的研究与应用
准晶的科学研究
晶体结构研究
准晶作为一种非周期性晶体,其独特的晶体结构一直是科学研究的重点。通过 对准晶的结构进行深入的研究,有助于我们更好地理解晶体生长的规律和机制 。
耐腐蚀材料
准晶具有良好的耐腐蚀性,可应用于 化工、海洋工程等领域。在恶劣环境 下,准晶材料能够保持较好的稳定性 和耐腐蚀性。
准晶在其他领域的应用前景
生物医学领域
准晶材料在生物医学领域具有潜 在的应用价值。其生物相容性和 独特的物理性质有望用于药物载 体、生物成像等方面。
光学领域
准晶具有独特的光学性质,如非 线性光学效应。这些性质使得准 晶在光学器件、光子晶体等领域 具有一定的应用前景。
物理性质研究
准晶表现出许多独特的物理性质,如导电性、热传导性、光学性质等。这些性 质与准晶的结构密切相关,通过对这些性质的研究,可以进一步揭示准晶的内 在特性。
准晶在材料科学中的应用
超硬材料
准晶具有高的硬度和耐磨性,可以作 为超硬材料应用于切削工具、轴承等 领域。其优异的力学性能可以提高工 具的使用寿命和性能。
准晶简介

准晶体的研究及其进展

准晶体的研究及其进展

六、总结
1、准晶是一种特殊结构的晶体,原子的排列没有周期性, 但是长程有序,因此在TEM和XRD中都表现出明锐的亮点 但是长程有序,因此在TEM和XRD中都表现出明锐的亮点 或者峰。很多人认为准晶是介于晶体和非晶的一种物质, 因此XRD的峰应该比较宽,这个想法是错的,高质量的准 因此XRD的峰应该比较宽,这个想法是错的,高质量的准 晶单晶的峰很窄,跟Silicon差不多。准晶单晶看起来也 晶单晶的峰很窄,跟Silicon差不多。准晶单晶看起来也 跟普通的晶体没有什么区别,断面跟silicon晶体的断面类 跟普通的晶体没有什么区别,断面跟silicon晶体的断面类 似,非常的亮。 2、准晶的结构非常复杂,很难通过常规的方法解析。准 晶没有周期性,所以没有晶胞的概念,从另一个角度也可 以说准晶的晶胞是无穷大的。 3、准晶有稳定的也有亚稳态的。
三、准晶的结构模型
3、三维准晶模型-三维彭罗斯拼砌模型 、三维准晶模型美国物理学家D.Levine等进一步研究了三维彭罗斯拼图 美国物理学家D.Levine等进一步研究了三维彭罗斯拼图 和它的衍射花样。
四、准晶体的性能及应用
(一)准晶的性能 1、密度:准晶的密度比经过退火后得到的相同成分晶态相的密度约 低2%。 2%。 2、导电性:电阻率高、负的温度系数(温度升高电阻率反而升高)、 样品质量越差电阻率越低、很强的各向异性。 3、导热性:低导热率、负温度系数,接近陶瓷的隔热性能,与普通 合金截然不同。 4、磁性能:至今没有发现准晶所独有的磁性能。 5、力学性能:室温下与普通金属化合物类似,硬而脆。准晶的硬度 与陶瓷相仿,远高于高强铝合金,而韧性较低,脆性较大,是陶瓷的 4倍。 6、摩擦性能:准晶薄膜具有较好的耐磨性。 7、表面抗氧化及不粘性。 8、储氢特性。 9、弥散强化特性。

准晶体 简介

准晶体 简介
准晶体
1984年底,D.Shechtman等人宣布,他们在急 冷凝固的Al-Mn合金中发现了具有五重旋转对称但 并无平移周期性的合金相,这种长程有序但无平移 对称性的结构被称为准晶体。 1985年初,郭可信等人在Ti-V-Ni合金中发现了 二十面体准晶体。 当时人们普遍认为 ,自然界中不可能存在具有 谢赫特曼发现的那种原子排列方式的晶体。 1987年,法、日科学家成功地在实验室中制造 出了大到足以被X射线观察到的准晶体结构,证实了 谢赫特曼的发现。 2009年,科学家在俄罗斯的矿物中发现了准晶体, 瑞典一家公司在一种耐用性最强的钢中发现了准晶体, 这种钢目前被用于剃须刀片和眼科手术用的手术针中。
准晶的组成与结构
组成:
从组成上看,至今发现的准晶绝大多数由金属组成。
结构:
从结构上看,准晶长程有序但无平移对称性。 介于玻璃(短程有序,长程无序)和晶体(长程有序,且 有平移对称性)。
金属玻璃 金属准晶体 金属晶体
准晶体立体模型 天准晶矿物 准晶体原子结构模型
准晶体平面堆砌图
彭罗斯贴砖图 铝锰合金形成的准晶体
准晶体的分类
准晶没有平移周期性,但具有准周期性,准周期性是 质点的排列具有长程有序,但不体现周期重复。 根据在三维物理空间中材料呈现准周期性的维数, 可以把准晶分为三维准晶、二维准晶和一维准晶。 三维准晶:有二十面体准晶和立方准晶两大类。 二维准晶:有十次准晶、十二次准晶、八次准晶和五 次准晶四类。 一维准晶:原子在二维上是周期分布的,另外一维是 准周期分布的。 根据准晶在热力学上的稳定性,可将其分为稳定准晶 和亚稳定准晶两大类。至今发现的近200种准晶中,有七 十多种是热力学稳定的。
合成制备:
含Mn、Fe、Cr 10-14%的Al金属熔体急冷, 一步转化成为介稳的固体。 生成过程包括成核和长大两个过程。

准晶及准晶材料概览

准晶及准晶材料概览

准晶及准晶材料概览准晶及准晶材料是一类具有独特结构和性质的材料。

它们的结构介于晶体和非晶体之间,具有有序周期结构,但缺少长程周期性。

准晶材料是独特的,因为它们在原子层中存在着一种五倍旋转对称性,这与传统的晶体对称性不同。

本文将对准晶及准晶材料进行概览。

准晶材料是由国际准晶学会(IUCr)于1982年首次定义的。

根据IUCr的定义,准晶材料是一种具有不具备平移对称性的有序周期结构的材料。

准晶材料的结构单位称为“集晶”(cluster),它是准晶材料中具有原子或分子固定结构的最小重复单元。

准晶材料的特点是它们的结构中存在二次、五次、十次乃至更高的旋转对称性,这与传统的晶体仅具有两次三次等对称性是不同的。

准晶材料的发现是在20世纪60年代末70年代初。

当时,日本化学家铃木敬三首次在金铝合金中观察到了准晶结构。

此后,准晶材料的研究逐渐扩展到其他合金体系和无机材料中。

准晶材料的研究进展证明,它们具有许多独特的物理、化学和机械性质,使得它们在各个领域都引起了广泛的兴趣。

准晶材料的丰富性质是由于它们的特殊结构所决定的。

准晶材料的结构单位可以是单原子、分子或者离子,它们以一种特定的方式排列形成不同的集晶。

每个集晶都具有一定的对称性,如五重旋转对称性,这使得整个准晶材料具有高度的非周期性和对称性。

准晶材料的原子或分子之间的相对位置和角度是固定的,这使得准晶材料具有较好的稳定性和机械性能。

与传统的晶体材料相比,准晶材料具有较高的硬度、耐磨性、耐腐蚀性和热稳定性。

准晶材料在材料科学和工程中具有广泛的应用。

例如,准晶材料可以用于制备高强度和高耐磨性的涂层材料,还可以用于制备高性能的电子器件和光学元件。

准晶材料还可以用于制备高效的催化剂和吸附剂,被广泛应用于化学工业和环境保护领域。

此外,准晶材料还可以用于制备新型的复合材料和纳米材料,具有潜在的应用前景。

总之,准晶及准晶材料是一类具有独特结构和性质的材料。

准晶材料具有有序周期结构,但缺少长程周期性,其结构单位为集晶,具有二次、五次、十次乃至更高的旋转对称性。

准晶材料的研究进展

准晶材料的研究进展

合金相 , 并称之为二十面体相 , 由此揭 开了准 晶研究 的序幕。准
晶的发现在固体科 学界 产生 了很大的震动 。 科学周刊报道此发
() 2深过冷技术。深过冷技术是通过各种有效 的净 化 方法 ,
最 大限度地避免或消除熔体壁和熔体 中异质形核作用 , 即从热
力学方面抑制晶体相的形成 , 使合金液获得在常规凝 固条件下
包裹 、 熔盐 净化与循环过热相结合等多种方法。 () 3机械合金化。 机械合金化是通过钢球 的撞 击使合金粉末
观察到 的合金相解释为具有长Leabharlann 准周期平移序 的合金相 , 这并
没有违背 “ 周期性 晶体不可能具有五次或七次 以上旋 转对称 ”
的法 则 。 18 首 次 关 于 准 晶 的报 告 发 表 后 , 即在 国 际 上掀 9 4年 立
构越完整电阻率越高 。②负的温度系数 , 温度升商 电阻率反而
提供 有利 条件 。现在 的制备方法主要有 : () 1急冷凝 固。 急冷 凝 技术是通过各种急速冷却的方法冷
下 降。③电阻率对合金成分和准晶的结构完整度 十分敏感 , 样 品质量越差则电阻率越小 。 少量的掺杂都会使准晶的电 阻率成
的方 法 。
准晶是 18 由 S ehm n 人首先于急冷 A 一 n合金 9 4年 hct a 等 1M 中发现的。 h et a S ehm n等在一篇题为《 具有长程取 向序而无平移 对称序 的金属相 》 的论 文中 , 报道 了他们在 急冷凝 固的 A 一 n 1M 合金 中发现一 种包括 五重旋转轴在 内的二十面体 点群对称 的
【 中图分类号】 G 3 . 63 3 2 【 文献标识代码】 A 【 文章编号】 17 — 4 720 ) — 6— 2 6 2 0 0 {0 9 1 04 0 0

准晶体的发现、研究及应用前景

准晶体的发现、研究及应用前景

准晶体的发现、研究及应用前景王一贺31200001701984年,舍特曼在美国霍普金斯大学工作时发现了准晶,其实自然界早已经有准晶体的踪影。

2009年,在意大利佛罗伦萨自然科学史博物馆的一块古老岩石中,意大利和美国科学家发现了天然准晶体化合物的“芳踪”,如图2所示,他们把这种由铝、铜和铁三元合金系组成的新矿物质命名为Icosahedrite(取自正二十面体)。

而这种天然准晶体似乎来自45亿年前的一块陨石,它可能是一种最古老的矿物质,形成于太阳系的诞生。

这种新的结构因为缺少空间周期性而不是晶体,但又不像非晶体,准晶展现了完美的长程有序,这个事实给晶体学界带来了巨大的冲击,它对长程有序与周期性等价的基本概念提出了挑战。

准晶体没有周期性,但具有准周期性。

准周期是指质点的排列具有长程有序,但不体现周期重复。

根据三维物理空间中材料呈现的维数,可以把准晶体分为三维准晶体、二维准晶体和一维准晶体。

准晶体的各项性质,取决于其本身的化学组成和内部结构。

一切准晶体的内部结构都共同遵循准晶体的空间准周期格子规律,并由此可以导出一切准晶体所共有的性质。

由于准晶体结构中缺陷极为普遍,准晶体颗粒又十分细小(微米级),而且还具有一些向晶态、玻璃态过渡的现象,因此准晶体的性质常常偏离理想状态。

理论上的准晶体应有下述一些性质:均一性、各向异性、对称性、自限性、最小内能性、稳定性。

准晶体的性能主要包含以下三方面内容。

第一,导电性能。

与金属的导电性质相比,准晶体显示出一种迥然不同的性质。

准晶体一般有比较大的电阻。

当温度不太高时,准晶体的电阻随温度的增加而减少。

准晶体的电阻与其组分浓度有关。

实验发现,准晶体的导电性能随样品质量的改善反而降低。

准晶体异常的导电性能反映准周期结构对物理性能的影响。

第二,磁性能。

对高电阻的准晶的磁阻,当温度不高时,准晶体磁致电阻情况很复杂,但若温度大于100K时,磁阻将随外场的增加而减少。

这时的Kohler规律不在适用。

准晶及准晶材料概览

准晶及准晶材料概览
• Pentaplexity具有分形结构,可以证明不具有平移周期。 • 类似的还存在“一维Pentaplexity”,其节点距离满足以
下Fibonacci数列,同样具有自相似性。
化学与分子工程学院
二维Pentaplexity
化学与分子工程学院
是否具有“三维Penrose”拼图?
答案似乎是显然的,但并非二维 Penrose拼图在第三维上的简单拓展, 而是寻找一个全新的结构来填充整 个空间。
化学与分子工程学院准晶体及Leabharlann 晶体材料概览化学与分子工程学院
摘 要:准晶体翻开了晶体学新的一页,同时也在材料领
域开拓了新的研究方向。2011年诺贝尔化学奖授予以色列 科学家丹尼尔·谢赫特曼,以表彰他发现准晶体。可以说, 准晶体带来了材料化学、结构化学的革命;本报告通过对 准晶体的发现历史、结构、特性,应用等方面的讨论,增 加同学们对晶体学知识的了解,激发同学们对化学新兴领 域的兴趣。
• 数学上已经证明,具有平移性的晶体不存在5及6 以上旋转轴。
化学与分子工程学院
化学与分子工程学院
数学家在准晶发现之前已经从理论上对准晶的存在给出了 预言。1974年 R.Penrose发现一种非周期可填满整个空 间的图形结构Pentaplexity
化学与分子工程学院
Pentaplexity分形结构
化学与分子工程学院
一些比较重要的准晶组成、结构。发现年代简表
化学与分子工程学院
化学与分子工程学院
化学与分子工程学院
化学与分子工程学院
化学与分子工程学院
化学与分子工程学院
两个现在比较热门的 研究焦点
1.分子准晶 这一分子准晶是以具有十则对称的10,5-Coronene为核心的分 子为结构基元在Penrose tiling(由一胖一瘦两种菱形组成的准 对称构形)上“拼” 成。

准晶体的发展及其应用

准晶体的发展及其应用

03
Part three
准晶体的性质和性能
准晶体与晶体的对比
晶体的定义:晶体是内部质点在三维空间呈周期性重复排列的固
体;或者说,晶体是具有周期平移格子构造的固体。
二者对比:
准晶体结构虽然不具备经典晶体学意义上的平移周期,但它却 有自相似性准周期。 准晶体是具有准周期平移格子构造的固体。准晶体结构具有数 学上严格的自相似性准周期及统计意义上的无规则自相似准周期。 准晶体不具有传统晶体的周期性,却在长程上有序。
钬-镁-锌十二面体准晶
Penrose拼图。可以看到平面中仅由 宽窄两种菱形构成,中间的球也由这 两种菱形构成
The end,thank you!
均一性 即准晶体在其任一部位上都具有相同性质。 各向异性 即准晶体的性质因(如外形上的相同晶面、晶棱,内部结构中 的相同网面。行列或原子离子等),能够在不同的方向或位置上有规律地重 复出现。
自限性:即晶体、准晶体都能自发地形成封闭的几何多面体外形。 最小内能性:即晶体、准晶体在相同热力条件下,较之于同种化学成分的气 体、液体及非晶质体而言,准晶体内能较小,晶体内能最小。 稳定性:对于化学组成相同,但处于不同物态下的固体物质一晶体最为稳定, 准晶体稳定性次之。(准晶体不可能自发地转变为其他物态)
准晶体的发展及其应用
目录
1 2 3 4 5 “反常晶体”的发现 什么是准晶体 准晶体的性质和性能 准晶体的制备 准晶体的应用
01
Part One
“反常晶体”的发现
“反常晶体”的发现
准晶体被发现的真正实验证据是1982年以色列科学家谢赫特曼采用急速冷凝 法研究Al-Mn 合金时,在电子显微镜下观察到的一幅违反自然“规则”的图画。 这幅图画竟然出现10次对称性,而其正空间中可以对应于5次对称性。

准晶体的发展及其应用

准晶体的发展及其应用

准晶体的发展及其应用准晶体是一种非晶体和晶体之间的结晶态结构,具有部分晶体和部分非晶体的特性。

准晶体的发展始于20世纪70年代,当时人们开始对金属合金的统计构造进行研究。

准晶体的发展受益于X射线衍射实验技术的进展,研究人员发现了很多金属合金的准晶体结构。

准晶体的应用范围非常广泛,涉及到材料科学、化学、物理学等多个领域。

准晶体的发展史可以追溯到1980年代初,当时法国科学家Daniel Shechtman发现了一种自旋切变准晶体。

这项发现被认为是科学界一个重大突破,随后被授予了诺贝尔化学奖。

自那以后,准晶体的研究得到了广泛的关注和深入的探索。

准晶体的结构特点主要包括五角星、六角星等复杂的几何图形。

正因为这种特殊的结构,准晶体具有一些独特的性质和应用价值。

例如,准晶体具有低的导热系数和低的电导率,这使得准晶体在热障涂层材料和隔热材料中有广泛的应用。

此外,准晶体具有良好的抗磨损和耐腐蚀性能,可以用于生产高硬度的刀具和耐腐蚀的材料。

除了上述应用外,准晶体还在光学领域中有着重要的应用。

由于准晶体的特殊结构,它们显示出一些特殊的光学效应,如布拉格散射和布拉奇光学效应。

这些光学效应为准晶体在光学通信、光学调制和激光技术等领域的应用提供了潜在的可能。

准晶体还可以用于电子封装材料和光电子封装材料中。

准晶体的非晶态结构使其在电子封装中具有优良的导热性能和机械性能,能够有效地降低温度应力和热膨胀系数不匹配引起的热疲劳问题。

此外,准晶体还可以用于合金材料的增强。

通过将准晶体引入到合金中,能够显著提高合金的强度和硬度,并且减少晶界的存在,提高合金的抗腐蚀性能。

准晶体的应用还在不断扩展,例如在能源存储领域中,准晶体材料可以作为电池材料和储氢材料。

此外,在生物医学领域中,准晶体也被用于制备生物传感器和人工骨骼等器械。

总的来说,准晶体作为一种新型的结晶态结构,具有独特的物理性质和广泛的应用前景。

随着准晶体研究的不断深入和技术的不断进步,相信准晶体将会在材料科学和工程领域发挥更重要的作用。

准晶结构采掘与新型无机材料的制备研究

准晶结构采掘与新型无机材料的制备研究

准晶结构采掘与新型无机材料的制备研究随着人们对于物质结构的不断深入了解,人类发现了新的一种晶体结构——准晶结构。

这种由周期性元素排列规律脱离而形成的结晶状态,不仅能够提供新的学术领域和理论研究方向,而且也具有重要的应用价值。

本文将着重探讨准晶结构在采矿和无机材料领域的应用和研究进展。

一、准晶结构在采矿领域中的应用采矿是准晶结构在工业领域的一个重要应用方向。

因为准晶结构在形态和成分上存在着独特的特点,这种结构在矿物学和矿物研究领域得到了广泛的应用。

1. 准晶结构在矿物研究中的应用利用准晶结构的特点,人们可以更好地理解和探究一些复杂的矿物系统,如矿物晶体学、矿物物理学、矿物化学等方面。

同时,准晶结构也为矿物学家提供了一个独特的研究领域,使得他们能够掌握和研究更多元、更复杂的矿物精华,从而推动矿物科学的发展。

2. 准晶结构在金属矿物加工中的应用在金属矿物加工中,人们常常需要利用化学反应将矿物中的有价金属进行分离和提取,并将其用于工业生产。

采用准晶结构,可以加速金属矿物加工的过程,提高加工效率,并优化加工流程。

而且,采用准晶结构加工的金属矿物,其加工产物质量更好,成分更稳定,并且更具有经济性。

二、准晶结构在无机材料领域中的应用近十几年来,准晶结构在无机材料领域中迅猛发展,不断拓展着其应用领域。

在这个领域中,准晶结构的应用主要涉及到新型无机材料的设计、合成、改性和性能研究等方面。

1. 准晶结构在新型无机材料设计中的应用随着科技的不断进步,人们对于新型无机材料的需求越来越大。

而准晶结构的独特性质和结构特征,为研制新型无机材料提供了更加广泛和有力的基础。

例如,人们可以通过嵌入准晶结构并调整其中的元素,来设计出具有双亲性的无机材料,从而在液态分离等方面的应用中具有更高的实用价值。

2. 准晶结构在新型无机材料合成中的应用准晶结构作为一种新型无机材料,其合成方法也需要与众不同。

目前,人们已经成功地采用了多种方法来制备准晶结构材料,如气相法、化学气相沉积、溶液浸渍法、固相法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

准晶材料的发现和进展
准晶材料是介于晶体和非晶体之间的一类特殊材料,具有无规则的原
子排列规律,但却具备晶体材料的一些性质,如高强度和较好的耐磨性。

准晶材料的发现和进展对于材料科学和工程领域具有重要的意义。

下面将
从准晶材料的发现、性质以及应用等方面对其进展进行详细介绍。

准晶材料的发现可以追溯到上世纪50年代,当时科学家对于金属结
构的研究中发现了一些非晶态相,这些非晶态相具有一定的长程有序性。

到了上世纪70年代,丹麦科学家彼得·汀斯马克(Peter Z. Tien)在对
于铝镓合金的研究中发现了第一个具有准晶结构的合金,这个合金的晶格
结构具有五角旋转对称性,因此被命名为“五角型准晶体”。

此后,科学
家们又陆续发现了其他具有准晶结构的合金,如铝铁硅合金、铝镍钴合金等。

准晶材料具有一些特殊的性质,首先是高硬度和高强度。

准晶材料的
原子排列具备无规则的规律,因此具有较高的抗变形能力,可用于制造高
强度的结构材料。

其次,准晶材料具有优异的耐磨性。

由于准晶材料的原
子排列无规则,使得其表面的摩擦系数较小,能有效抵抗磨损和摩擦。

此外,准晶材料的热导率较低,抗氧化性较好,并且具有较高的化学稳定性,可以应用于高温和腐蚀环境下的材料。

准晶材料的进展为材料科学和工程领域带来了许多重要的应用。

首先,准晶材料被广泛应用于合金材料中。

通过调控合金中的元素比例,可以制
备出具备特定准晶结构的合金,这些合金在航空航天、汽车制造等领域具
有广泛的应用。

其次,准晶材料还可以用于制备高效的催化剂。

由于准晶
材料具有丰富的表面活性位点和独特的电子结构,使得其在催化反应中表
现出良好的催化活性和选择性,对于环境保护和能源开发具有重要意义。

此外,准晶材料还可以应用于摩擦学、电子器件等领域。

总之,准晶材料的发现和进展对于材料科学和工程领域具有重要的意义。

它们的独特结构和性质使得其在高强度结构材料、催化剂以及其他领域中得到了广泛应用。

随着对准晶材料的进一步研究和理解,相信准晶材料在更多领域中将发挥更大的作用。

相关文档
最新文档