大数据关联分析模型
工业大数据概念、架构、分析模型
一工业大数据的发展背景当前,以大数据、云计算、移动物联网等为代表的新一轮科技革命席卷全球,正在构筑信息互通、资源共享、能力协同、开放合作的制造业新体系,极大扩展了制造业创新与发展空间。
新一代信息通信技术的发展驱动制造业迈向转型升级的新阶段——工业大数据驱动的新阶段,这是在新技术条件下制造业生产全流程、全产业链、产品全生命周期数据可获取、可分析、可执行的必然结果。
大数据(Big Data)指的是大容量的、复杂的、不断增长的、具有多个自主来源的数据集。
工业大数据是工业互联网的核心要素。
《中国制造2025》规划中明确指出,工业大数据是我国制造业转型升级的重要战略资源,需要针对我国工业自己的特点有效利用工业大数据推动工业升级。
一方面,我国是世界工厂,实体制造比重大,但技术含量低、劳动密集、高资源消耗制造的比重也大,实体工厂和实体制造升级迫在眉睫;另一方面,我国互联网产业发展具有领先优势,过去十多年消费互联网的高速发展使互联网技术得到长足发展,互联网思维深入人心,需要充分发挥这一优势,并将其与制造业紧密结合,促进制造业升级和生产性服务业的发展。
二工业大数据的内涵工业大数据即工业数据的总和,其来源主要包括企业信息化数据、工业物联网数据、“跨界”数据。
企业信息系统存储了高价值密度的核心业务数据,积累的产品研发数据、生产制造数据、供应链数据以及客户服务数据存在于企业或产业链内部,是工业领域传统数据资产。
近年来,物联网技术快速发展,工业物联网成为工业大数据新的、增长最快的来源之一,它能实时自动采集设备和装备运行状态数据,并对它们实施远程实时监控。
互联网也促进了工业与经济社会各个领域的深度融合,人们开始关注气候变化、生态约束、政治事件、自然灾害、市场变化等因素对企业经营产生的影响,因此外部跨界数据已成为工业大数据不可忽视的来源。
人和机器是产生工业大数据的主体。
人产生的数据是指由人输入计算机中的数据,例如设计数据、业务数据等;机器数据是指由传感器、仪器仪表和智能终端等采集的数据。
大数据分析师如何进行数据挖掘和关联分析
大数据分析师如何进行数据挖掘和关联分析一. 数据挖掘的概念和流程数据挖掘是通过运用统计分析、机器学习和模式识别等技术,从大量的数据中发现有用的模式、规律和知识。
数据挖掘的过程通常包括数据收集、数据预处理、特征选择、模型构建、模型评估和模型应用等步骤。
1. 数据收集数据挖掘的第一步是收集相关的数据。
数据可以来自各种来源,如数据库、文本文件、传感器、社交媒体等。
大数据分析师需要了解业务需求,确定需要收集的数据类型和来源,并采用合适的方法获取数据。
2. 数据预处理数据预处理是数据挖掘中非常重要的一步,它包括数据清洗、数据集成、数据转换和数据规约。
数据清洗是指去除数据中的噪声和异常值,确保数据的质量和准确性。
数据集成是将多个数据源的数据整合到一起,方便后续分析。
数据转换是对数据进行规范化和变换,以适应挖掘算法的需要。
数据规约是对数据进行简化和压缩,减少数据存储和计算的开销。
3. 特征选择特征选择是从大量的特征中选择出最具有代表性和区分性的特征。
通过特征选择可以减少数据维度,提高模型的训练和预测效率。
大数据分析师需要运用统计方法、信息论和机器学习等技术,对特征进行评估和选择。
4. 模型构建模型构建是数据挖掘的核心步骤,它根据业务需求选择合适的挖掘算法和模型。
常用的挖掘算法包括关联规则挖掘、分类和回归分析、聚类分析和时序分析等。
大数据分析师需要根据业务场景和数据特点选择合适的算法,并对模型进行建立和调优。
5. 模型评估模型评估是对挖掘模型进行性能评估和验证。
通过评估可以判断模型的准确性、稳定性和可信度。
评估方法包括交叉验证、混淆矩阵、ROC曲线等。
大数据分析师需要对模型进行评估,识别潜在的问题和改善的方向。
6. 模型应用模型应用是将挖掘模型应用到实际业务中,为决策提供支持和指导。
大数据分析师需要将挖掘结果进行解释和可视化,以便业务人员理解和接受,并根据反馈信息对模型进行迭代和优化。
二. 关联分析的方法和应用关联分析是一种常见的数据挖掘方法,它用于发现数据中的相关性和依赖关系。
大数据分析中关联分析技术的使用教程
大数据分析中关联分析技术的使用教程大数据分析已经成为当今信息时代的重中之重,企业和组织通过对数据进行深入分析,能够获得有价值的洞察,为业务决策提供有力支持。
而在大数据分析中,关联分析技术被广泛用于揭示数据之间的关联关系,发现隐藏在数据背后的规律和潜在的相关性。
在本篇文章中,我们将为您介绍关联分析技术的基本概念、常用算法以及实际应用。
一、关联分析概述关联分析是一种从大规模数据集中寻找有趣关系、相互依赖的任务。
它通过发现项目集中的频繁模式来完成,频繁模式指的是在数据集中经常出现的物品组合。
关联分析被广泛应用于市场篮子分析、商品推荐、交叉销售等领域。
二、关联分析算法1. Apriori算法Apriori算法是关联分析中最常用的算法之一,它基于频繁模式的性质。
Apriori算法通过扫描数据集多次来找到频繁项集,利用逐层递加的方式来发现频繁项集的超集,直到无法找到更多频繁项集为止。
Apriori算法的核心思想是:如果一个物品组合是频繁的,那么它的子集也一定是频繁的。
2. FP-Growth算法FP-Growth算法是一种高效的关联分析算法,通过构造FP树(频繁模式树)来实现快速的频繁模式挖掘。
与Apriori算法相比,FP-Growth算法避免了多次扫描事务数据库的操作,通过构造FP树和利用后缀路径来发现频繁模式。
FP-Growth算法适合处理包含大量事务和高维度特征的数据集。
3. Eclat算法Eclat算法也是一种经典的关联分析算法,它通过交集来计算频繁模式。
Eclat算法首先构建一个频繁项集的垂直格式数据结构,然后利用递归的方式来生成频繁项集。
与Apriori算法和FP-Growth算法相比,Eclat算法更适用于处理稀疏数据集。
三、关联分析的实际应用1. 市场篮子分析市场篮子分析是关联分析的经典应用之一,它通过挖掘购物篮中的频繁模式,从而揭示商品之间的关联关系。
利用市场篮子分析,商户可以了解消费者购买习惯,进行商品陈列、促销策略的优化,提高销售额和客户满意度。
大数据挖掘导论与案例课件:关联分析概念与方法
根据数据的抽象层次,关联规则可以分为单层关联规则和多层关联规则。在单层关联
规则中,没有考虑现实数据的多层次性。多层关联规则是指在规则挖掘中,对数据的
多层性进行了充分考虑。
6.2
关联分析的方法
6.2.1 先验原理
大数据挖掘导论与案例
由此可见,在生成规则的过程中,一旦有低置信度的规则出现,就可以利用它进行剪枝,
此过程称为基于置信度的剪枝(confidence-based pruning),如下图所示。
采用剪枝策略可有效降低关联规则生成的计算复杂度。
6.2.3 Apriori算法生成关联规则
基于置信度的剪枝
大数据挖掘导论与案例
6.2.4 Apriori算法效率提升
任何具有反单调性的度量都能够直接结合到挖掘算法中,对候选项集的指数搜索空间有
效地进行剪枝,以降低生成频繁项集的计算代价。
6.2.2 Apriori算法产生频繁项集
大数据挖掘导论与案例
Apriori算法是关联规则挖掘的经典算法,它开创性地使用了基于支持度的剪枝技术来控
制候选项集的指数增长。此处以下表所示的事务数据集为例,展示Apriori算法挖掘频繁
大数据挖掘导论与案例
在对购物篮数据进行关联分析时,需要处理两个关键问题:第一,计算复杂度问题。从
大型事务数据集中发现有意义的规则在计算上要付出很高的代价;第二,规则的筛选问
题。所发现的某些规则可能是虚假的或不令人感兴趣的,因为它们可能是偶然发生的或
者是已经被研究者所熟知的。
除了购物篮分析外,关联分析也被应用于公共管理、生物信息学、医疗诊断、网页挖掘
和推荐系统等领域。
BDS大数据安全平台产品介绍
不兼容的也可以通过日志格式说明和样例,2天实现编译支持
非我司出口设备场景:BDS与SAM联动收集ip与账户对应信息,并与第三方出口设备日志关联实现实名制留存和查询
超级日志版——实现实名制日志
我司出口设备场景:出口设备(RSR77、NGFW、EG、UAC等)与SAM联动实现实名制原始日志,并发送实名日志给BDS解析和标准化实现实名留存和查询
Hadoop
PB级以上数据,BDS使用Hadoop集群部署
描述
关系型数据库
分布式索引和存储引擎
分布式文件系统(HDFS)和分布式数据库(HBASE)
说明
1.严格遵循ACID特性,能保证数据很强的一致性
2.读写性能最慢
1.查询速度最快,特别是边写入边查询
2.集群部署最简易
1.支持最大量的数据
2.支持最广泛的分析方法
大数据安全平台解决之道——“看见”安全
大数据安全平台解决之道——兼容开放,看见“八方”
全网日志统一收集兼容第三方厂商
将原始日志标准化统一格式
STEP 1 统一收集并标准化海量数据,构建安全大数据仓库
大数据安全平台解决之道——大数据关联分析 “看见关键”风险
海量原始事件、漏洞进行大数据关联分析,直击要害问题
法律生效:2017年6月1日开始实施日志留存:“出口日志60天” 变为“整网日志6个月“适用对象:在中华人民共和国境内建设、运营、维护和使用网络,以及网络安全的监督管理,适用本法
政策变化——网络安全法
未按规定留存日志就是违法,属于行政案件重庆公安局网安总队已成功查出未留存日志的违法行为
政务行业政务大数据分析与决策支持方案
政务行业政务大数据分析与决策支持方案第一章政务大数据概述 (2)1.1 政务大数据的定义与特点 (2)1.1.1 政务大数据的定义 (2)1.1.2 政务大数据的特点 (2)1.2 政务大数据的应用价值 (3)1.2.1 提高治理能力 (3)1.2.2 优化公共服务 (3)1.2.3 促进经济社会发展 (3)1.2.4 增强国家安全和社会稳定 (3)1.2.5 推动科技创新 (3)第二章政务大数据采集与整合 (3)2.1 政务数据采集策略 (3)2.2 政务数据整合方法 (4)2.3 政务数据质量保障 (4)第三章政务大数据存储与管理 (5)3.1 政务大数据存储技术 (5)3.1.1 分布式存储 (5)3.1.2 云存储 (5)3.1.3 内存数据库 (5)3.2 政务大数据管理策略 (5)3.2.1 数据清洗与转换 (5)3.2.2 数据集成与融合 (5)3.2.3 数据质量管理 (5)3.3 数据安全与隐私保护 (5)3.3.1 数据加密 (6)3.3.2 访问控制 (6)3.3.3 隐私保护 (6)第四章政务大数据分析与挖掘 (6)4.1 政务大数据分析方法 (6)4.2 政务大数据挖掘技术 (6)4.3 政务大数据可视化 (7)第五章政务大数据决策支持系统构建 (7)5.1 决策支持系统架构 (7)5.2 政务大数据决策模型 (8)5.3 决策支持系统应用案例 (8)第六章政务大数据应用场景 (8)6.1 公共安全与应急指挥 (8)6.1.1 火灾预警与防控 (9)6.1.2 突发事件应对 (9)6.2 城市管理与智慧城市建设 (9)6.2.1 城市交通管理 (9)6.2.2 环境保护与治理 (9)6.3 社会保障与民生服务 (9)6.3.1 社会保障 (9)6.3.2 民生服务 (10)第七章政务大数据政策法规与标准 (10)7.1 政务大数据政策法规概述 (10)7.2 政务大数据标准制定 (10)7.3 政务大数据监管与评估 (10)第八章政务大数据人才培养与培训 (11)8.1 政务大数据人才培养策略 (11)8.2 政务大数据培训体系 (11)8.3 政务大数据人才评价 (12)第九章政务大数据国际合作与交流 (12)9.1 国际政务大数据发展现状 (12)9.2 政务大数据国际合作机制 (12)9.3 政务大数据交流平台建设 (13)第十章政务大数据未来发展展望 (13)10.1 政务大数据发展趋势 (13)10.2 政务大数据创新应用 (14)10.3 政务大数据发展挑战与对策 (14)第一章政务大数据概述1.1 政务大数据的定义与特点1.1.1 政务大数据的定义政务大数据是指在管理和公共服务过程中产生的,涉及政治、经济、社会、文化等多个领域的大量数据。
大数据分析工具常用的数据分析模型
大数据分析工具常用的数据分析模型随着大数据时代的到来,大数据分析已经成为了企业决策和发展的关键因素之一。
然而,要从大量的数据中获得有价值的信息和洞察力并不容易。
为此,大数据分析工具应运而生,帮助企业更轻松地掌握数据并进行深入分析。
在这些工具中,数据分析模型则起到了至关重要的作用。
本文将介绍一些大数据分析工具中常用的数据分析模型。
1. 关联分析模型关联分析模型用于发现数据集合中的项与项之间的关联性。
其中最为著名的算法是Apriori算法,它可以通过对数据进行频繁项集的挖掘,从而找到不同项之间的相关性。
通过关联分析模型,企业可以发现某些特定产品或服务之间的关联关系,从而提供更精准的推荐系统或者交叉销售策略。
2. 聚类分析模型聚类分析模型用于将数据集合中的对象或样本划分为不同的组,使得同一组内的对象具有相似性,而不同组之间的对象具有明显差异性。
聚类分析模型的一个典型算法是k-means算法,它通过计算数据样本之间的距离和相似性,将样本划分为若干个聚类。
企业可以利用聚类分析模型来实现客户细分,发现不同群体的需求和行为特征,从而提供个性化的产品和服务。
3. 预测分析模型预测分析模型用于通过对历史数据进行分析和建模,预测未来的趋势和模式。
其中最为常用的预测算法包括线性回归、时间序列分析等。
企业可以利用预测分析模型来预测销售额、市场需求、客户流失率等指标,从而制定相应的营销策略和业务计划。
4. 分类分析模型分类分析模型通过对已知的数据集合进行学习和分类建模,然后对未知的数据进行分类。
其中最为常用的算法包括决策树、支持向量机、朴素贝叶斯等。
分类分析模型可以用于客户分类、欺诈检测、舆情分析等场景,帮助企业更好地了解和管理数据。
5. 文本分析模型。
ai大数据模型种类
ai大数据模型种类AI大数据模型种类随着人工智能和大数据技术的快速发展,各种类型的AI大数据模型也应运而生。
这些模型在不同的领域和应用中发挥着重要的作用。
本文将介绍几种常见的AI大数据模型,并分别阐述它们的特点和应用。
一、监督学习模型监督学习模型是一种常见的AI大数据模型,其基本原理是通过已有的带标签数据进行训练,从而使模型能够识别和分类新的输入数据。
其中,最常见的监督学习模型包括决策树、支持向量机和神经网络等。
决策树是一种以树形结构表示决策规则的模型。
它通过对数据进行分类和划分,最终生成一棵决策树,从而实现对新数据的分类。
决策树模型适用于分类和回归问题,并且具有易于理解和解释的特点。
支持向量机是一种二分类模型,其目标是找到一个最优的超平面,将两类数据分开。
支持向量机模型具有较强的泛化能力和较高的准确率,在文本分类、图像识别等领域得到了广泛应用。
神经网络是一种模拟人脑神经元网络的模型。
它通过多层神经元之间的连接和权重调整,实现对输入数据的学习和处理。
神经网络具有较强的非线性建模能力,适用于复杂的分类和回归问题。
二、无监督学习模型无监督学习模型是一种不需要事先标记数据的模型,通过对数据的自动聚类和关联分析,发现数据中的隐藏模式和结构。
常见的无监督学习模型包括聚类分析、关联规则和主成分分析等。
聚类分析是一种将相似的数据样本自动分组的方法。
它通过计算数据之间的相似度或距离,将数据划分为不同的簇。
聚类分析在市场细分、图像分割等领域具有广泛的应用。
关联规则是一种用于发现数据中的关联性的方法。
它通过挖掘数据中的频繁项集和关联规则,揭示不同项之间的关联关系。
关联规则在市场篮子分析、推荐系统等领域有着重要的应用价值。
主成分分析是一种通过线性变换将原始数据转换为新的变量的方法。
它可以降低数据的维度,减少数据的冗余信息,从而提取出数据中的主要特征。
主成分分析在数据压缩和特征提取等方面具有广泛的应用。
三、深度学习模型深度学习模型是一种基于神经网络的AI大数据模型,其特点是具有多层隐藏层和大量的参数。
大数据分析模型
目录
1 大数据分析模型建立方法
2 基本统计量
3 推断统计
推断统计
统计方法
描述统计
推断统计
参数估计
假设检验
推断统计
参数估计
实际问题中,所研究的总体分布类型往往
是已知的,但是要依赖于一个或者几个未知的
参数。这时,求总体分布的问题就归结成了求
一个或者几个未知参数的问题,这就是所谓的
参数估计。
推断统计
1
Ƹ = σ=1 =
推断统计
参数估计:点估计的评价
• 对于同一个总体的同一个参数,可能得到不同的点估计。
• 有下面三个标准对其进行评价
መ
– 无偏性:若Eመ = ,则称是的无偏估计;
– 有效性:对于的两个无偏估计መ1 , መ2 ,如果 መ1 ≤ (መ2 ),则
– 情形1: 2 已知,估计。枢纽量
– 情形2: 2 未知,估计。枢纽量
– 情形3: 已知,估计 2 。枢纽量
– 情形4: 未知,估计 2 。枢纽量
推断统计
假设检验
• 假设检验
– 根据一定假设条件由样本推断总体的一种方法
• 假设检验的流程
1.
根据问题的需要对所研究总体做出某种假设,记作H0 。方差为 2 = σ=1( − )2 = σ=1 x2 − x
– 标准差为
– 不足:计算繁琐,且单位与原数据单位不一致。
• 例如
– 数据集{9、8、10、7、6},其极差为4,方差为2。
基本统计量
皮尔森相关系数
• 两个属性之间的关联关系
– 属性X增大的同时,属性Y增大,则它们为正相关
– 则称[ , ]为未知参数的置信区间,概率1 − 为置信水平。
基于大数据的商业智能分析与决策模型构建
基于大数据的商业智能分析与决策模型构建商业智能分析是企业在大数据时代中必不可少的重要手段,通过对海量数据进行收集、加工和分析,帮助企业发现趋势、洞察市场,提供有效的决策支持,从而实现商业目标的达成。
本文将探讨基于大数据的商业智能分析与决策模型的构建,从理论到实践,为企业的决策者提供指导。
一、商业智能分析的基本理论商业智能分析的基本理论主要包括数据仓库、数据挖掘和决策支持。
数据仓库是商业智能分析的基础,它通过集成、清洗和存储数据,提供充足的数据支持;数据挖掘则是通过模型和算法对数据进行分析,发现隐藏在数据背后的规律和趋势;而决策支持则是将数据挖掘的结果与业务需求相结合,为决策者提供有效的决策支持工具。
二、基于大数据的商业智能分析模型1.预测模型预测模型是商业智能分析中常用的决策模型之一,通过对历史数据进行分析和预测,预测模型能够帮助企业做出准确的未来预测。
在大数据时代,预测模型可以利用更多的数据,包括社交媒体数据、传感器数据等,提高预测的准确性。
企业可以借助预测模型制定销售计划、库存控制、市场营销等决策,从而提高运营效率和市场竞争力。
2.关联模型关联模型是商业智能分析中用于发现数据之间关联关系的模型。
通过分析大数据中的关联规则,企业可以发现消费者的购买习惯、产品之间的交叉销售等信息。
基于关联模型的分析结果,企业可以制定个性化的推荐策略、定向广告等,提升消费者体验和销售额。
3.分类模型分类模型是商业智能分析中常用的决策模型之一,通过对数据进行分类,帮助企业理解不同类别和群体的特征,为企业提供市场细分和产品定位的决策支持。
在大数据时代,分类模型可以通过分析海量数据中的特征和行为,识别潜在客户、预测用户流失等,帮助企业进行精准营销和客户关系管理。
三、基于大数据的商业智能分析与决策模型构建的实践案例1.零售业的销售预测零售业是一个典型的需要大数据支持的行业,通过分析历史销售数据、天气数据、促销数据等,可以构建销售预测模型,准确预测未来的销售情况。
大数据相关性分析:找出数据之间的关联与规律
大数据相关性分析:找出数据之间的关联与规律引言在当今数字化时代,大数据已经成为我们社会生活中日益重要的组成部分。
大数据的产生和积累已经达到了前所未有的规模,然而,如何从这些海量的数据中发现有价值的信息却成为了一个挑战。
本文将介绍一种强有力的工具——相关性分析,它可以帮助我们从大数据中找出数据之间的关联与规律。
相关性分析的定义相关性分析是一种统计分析方法,用于确定两个或多个变量之间的关联。
通过计算相关系数,我们可以量化和衡量变量之间的关系强度和方向。
相关系数的定义相关系数是一个介于-1和1之间的值,用于表示变量之间的相关性。
当相关系数接近1时,表示变量之间存在强正相关关系;当相关系数接近-1时,表示变量之间存在强负相关关系;当相关系数接近0时,表示变量之间不存在线性关系。
相关性分析的应用领域相关性分析有广泛的应用领域,包括金融、市场营销、医疗研究等。
下面将介绍一些具体的应用案例。
金融领域在金融领域,相关性分析可以用于分析股票之间的关联关系。
通过计算股票之间的相关系数,投资者可以了解不同股票之间的相关性,从而进行投资组合的优化。
市场营销在市场营销中,相关性分析可以用于确定市场营销活动和销售业绩之间的关系。
通过计算相关系数,我们可以了解不同市场营销活动对销售业绩的影响,从而优化市场营销策略。
医疗研究在医疗研究中,相关性分析可以用于寻找疾病和风险因素之间的关联关系。
通过计算相关系数,我们可以了解不同风险因素对疾病发展的影响,从而帮助预防和治疗疾病。
相关性分析的步骤下面将介绍相关性分析的基本步骤。
收集数据首先,我们需要收集相关的数据。
这些数据可以来自于不同的来源,例如数据库、问卷调查、传感器等。
数据清洗和准备在进行相关性分析之前,我们需要对数据进行清洗和准备。
这包括去除重复值、处理缺失值、转换数据类型等。
计算相关系数在计算相关系数之前,我们需要选择一个合适的统计方法。
常用的方法包括皮尔逊相关系数、斯皮尔曼相关系数和切比雪夫相关系数等。
常见的大数据分析方法有哪些
常见的大数据分析方法有哪些大数据分析是指对大规模、复杂、高维度数据进行整理、解析和识别的过程。
在现代社会中,大数据分析已经成为企业决策、市场研究和科学研究等领域的核心工具。
本文将介绍一些常见的大数据分析方法。
一、关联规则挖掘关联规则挖掘是指通过大数据分析方法,发现数据中的隐含关联和规律。
例如,在零售行业中,可以通过关联规则挖掘,找到一些常一起购买的商品,从而优化产品摆放和促销策略。
二、聚类分析聚类分析是将数据按照相似性进行分组的一种方法。
通过聚类分析,可以发现数据中的内在结构和模式。
例如,在市场细分中,可以将消费者按照其购买行为进行聚类,从而制定针对性的营销策略。
三、分类分析分类分析是根据已有数据的特征,构建分类模型来预测未知数据的类别。
例如,在信用卡行业中,可以通过分类分析,判断某个客户是否存在违约风险,从而为风险管理提供依据。
四、回归分析回归分析是通过建立变量之间的函数关系,对未知数据进行预测和解释的方法。
例如,在销售预测中,可以使用回归分析来估计销售量与各个因素的关系,从而帮助企业制定合理的销售策略。
五、文本挖掘文本挖掘是从大规模文本数据中发现结构化信息的一种方法。
通过文本挖掘,可以实现情感分析、主题提取和舆情监测等应用。
例如,在社交媒体分析中,可以通过文本挖掘来了解用户对某个产品或事件的态度和观点。
六、时间序列分析时间序列分析是对时间序列数据进行建模和预测的方法。
通过时间序列分析,可以发现数据中的趋势、周期和季节性等规律。
例如,在经济领域中,可以使用时间序列分析来预测未来的销售额和股价等指标。
七、网络分析网络分析是研究网络结构、节点关系和网络动态演化的方法。
通过网络分析,可以了解网络中的关键节点和网络拓扑结构。
例如,在社交网络中,可以使用网络分析来发现影响力用户和社群结构。
八、机器学习机器学习是一种通过训练模型从数据中学习和提取知识的方法。
通过机器学习,可以实现大规模数据的分类、预测和优化等任务。
智慧消防大数据分析模型
智慧消防大数据分析模型一、电气火灾风险评估分析模型电气火灾风险评估分析模型基于剩余电流、线缆温度和故障电弧等电气火灾直接特征参数,电流、电压、功率等用电功率特征参数,谐波、浪涌、功率因素等电能质量特征参数,以及大功率电气用电指纹特征,通过边缘特征智能分析识别和云端多参数统筹分析相结合,研判电气火灾发生风险并提供针对性预警,并初步确定承灾体、致灾因子,用于指导电气火灾隐患排查治理。
拟采用业内相对成熟完善的分析模型,根据智慧消防建设对智能化应用的实际需求,与相关科研院所和厂商共同发展相关算法。
在此基础上,实现智能分析应用服务的构建,包括:1、分析算法模型的微服务移植封装根据微服务开发框架和业务支撑应用技术规范要求,在算法模型基础上进行移植和微服务封装,使之符合SOA架构与SpringClOUd框架,能够在微服务集群中发布、部署、注册、运行,可被其他应用服务及任务调度机制调用,并被统一监测和管理。
2、分析计算所需专题库数据集构建根据数据中台整体架构,需将分析算法所依赖的数据集作为库表纳入数据资源池专题库,其建立方式符合专题库设计规范,并确定专题库数据订阅、更新方式。
当需要实时分析时,需在专题库建立基于数据变化的触发机制,发起对算法服务的调用,以随时产生分析结果。
3、分析算法模型效用的追踪与持续演进行比对,依靠算法内部或外部偏差度分析机制对算法结果质量进行分析,并根据算法运行性能日志和异常日志,形成算法效用评估结果,作为算法进一步改进的依据。
二、消防水资源健康度评估分析模型水资源健康度评估分析模型基于消防水资源历史运行状态数据、巡查巡检数据、监测维保数据等,通过构建评估体系、确定指标权重、收集指标数据、计算风险得分,并根据故障、维修等事件对体系及权重进行动态调整,并以水系统健康度为输出。
拟采用业内相对成熟完善的分析模型,根据智慧消防建设对智能化应用的实际需求,与相关科研院所和厂商共同发展相关算法。
在此基础上,实现智能分析应用服务的构建,包括:1、分析算法模型的微服务移植封装根据微服务开发框架和业务支撑应用技术规范要求,在算法模型基础上进行移植和微服务封装,使之符合SOA架构与SpringCIOUd框架,能够在微服务集群中发布、部署、注册、运行,可被其他应用服务及任务调度机制调用,并被统一监测和管理。
时空大数据分析模型构建及有关应用
时空大数据分析模型构建及有关应用随着大数据时代的到来,时空大数据的收集和分析成为了许多领域中的重要任务。
时空大数据分析模型的构建和应用可以帮助我们揭示数据之间的关联关系,并为实际问题的解决提供有效的支持。
本文将介绍时空大数据分析模型的构建过程,并探讨其在各个领域中的应用。
首先,时空大数据分析模型的构建需要从数据的收集和清洗开始。
时空大数据可以来自于各种传感器、移动设备、社交媒体等渠道,其中涉及到的数据类型多样、规模庞大。
在构建模型之前,需要对数据进行预处理,包括数据清洗、去噪、归一化等操作,以确保数据的准确性和一致性。
其次,时空大数据分析模型的构建涉及到特征选择和特征工程的环节。
特征选择是指从大量的特征中选择出对目标变量具有重要影响的特征,以避免模型过于复杂和冗余。
特征工程是指对原始特征进行变换、组合和衍生,以生成更具表达能力的特征。
特征选择和特征工程的目的是提高模型的泛化能力和预测准确性。
接下来是选择适当的时空大数据分析模型进行训练和预测。
时空大数据分析模型可以是传统的机器学习模型,如线性回归、决策树、支持向量机等,也可以是深度学习模型,如神经网络、卷积神经网络、循环神经网络等。
选择模型需要考虑数据的特点、问题的复杂度以及模型和算法的可解释性和可解释性等因素。
在模型训练的过程中,需要采用合适的算法和策略进行参数优化和模型选择。
参数优化是指通过调整模型的参数,使得模型在训练数据上能够得到较好的拟合效果和泛化能力。
模型选择是指从多种模型中选择效果最好的模型,以提高模型的预测准确性和稳定性。
在参数优化和模型选择过程中,可以采用交叉验证、网格搜索等方法来进行模型评估和选择。
完成模型的训练后,对模型进行验证和测试,以评估模型的性能和可靠性。
验证是指使用独立的数据集对模型进行测试,以验证模型在新数据上的泛化能力。
测试是指在实际应用场景中对模型进行测试,以评估模型的效果和预测能力。
验证和测试过程中可以采用多种评估指标,如准确率、精确率、召回率、F1值等,以全面评估模型的性能。
大数据常见的9种数据分析手段
大数据常见的9种数据分析手段在当今数字化的时代,数据如同石油一样珍贵。
而要从海量的数据中挖掘出有价值的信息,就需要运用各种数据分析手段。
下面就为您介绍大数据常见的 9 种数据分析手段。
1、数据挖掘数据挖掘是从大量的数据中,通过算法搜索隐藏于其中的信息的过程。
它就像是在一堆沙子中寻找金子,运用关联规则、分类、聚类等技术,发现数据中的模式和规律。
比如,电商平台通过数据挖掘,可以了解哪些商品经常被一起购买,从而进行更精准的推荐;银行可以通过数据挖掘,识别出可能存在风险的交易模式,防范欺诈行为。
2、数据可视化俗话说“一图胜千言”,数据可视化就是将复杂的数据以直观的图表形式呈现出来。
柱状图、折线图、饼图、地图等各种可视化工具,能让人们快速理解数据的分布、趋势和关系。
例如,通过地图可视化,可以清晰地看到不同地区的销售业绩情况;利用折线图能够直观地展示某个指标随时间的变化趋势。
3、描述性统计分析这是对数据的基本特征进行描述和总结,包括均值、中位数、众数、方差、标准差等。
通过这些统计量,我们可以了解数据的集中趋势、离散程度和分布形态。
比如,在分析学生的考试成绩时,我们可以计算平均分来了解整体水平,通过标准差判断成绩的离散程度。
4、回归分析回归分析用于研究变量之间的关系,确定一个因变量与一个或多个自变量之间的定量关系。
常见的线性回归、逻辑回归等模型,可以帮助我们预测未来的趋势和结果。
例如,通过建立房价与面积、地段等因素的回归模型,预测房价走势;利用销售数据和市场因素的回归分析,预测产品的销售量。
5、聚类分析聚类分析将数据对象分组,使得同一组内的对象相似度较高,而不同组之间的对象相似度较低。
它可以帮助我们发现数据中的自然分组或类别。
比如,在市场细分中,将消费者按照购买行为和偏好进行聚类,以便制定更有针对性的营销策略。
6、关联分析关联分析主要用于发现数据中不同项之间的关联关系。
经典的“啤酒与尿布”案例就是关联分析的应用,通过分析发现购买啤酒的顾客往往也会购买尿布。
基于大数据技术识别围标串标行为的几点建议
基于大数据技术识别围标串标行为的几点建议随着互联网和金融科技的发展,围标串标行为在投融资领域变得越来越普遍。
围标指的是几家企业联合投标,以虚假竞争来提高中标概率;而串标则是指同一投资人或同一公司通过不同身份进行重复融资。
这些行为不仅对市场竞争的公平性和透明度带来了极大的威胁,也对投资者的利益构成了严重的伤害。
基于大数据技术的应用可以帮助识别围标串标行为,并加强对这些行为的监控和制约。
下面是几点建议。
一、建立完善的数据源要识别围标串标行为,首先需要建立起一个完善的数据源。
这包括企业的基本信息、融资记录、联合投标记录等,以及投资人的身份信息、投资记录等。
这些数据可以通过公开渠道获取,如政府部门的企业登记信息、公司年报、媒体报道等,也可以通过大数据爬虫技术获取网站上的相关信息。
建立起完善的数据源,将为后续的数据分析提供基础。
二、构建数据模型构建一个合理的数据模型是识别围标串标行为的关键。
数据模型应综合考虑多个维度的数据特征,如企业的规模、所在行业、历史融资情况、联合投标的企业关系等,投资人的身份、历史投资情况等。
通过分析这些数据特征,可以建立起一个适应围标串标行为识别的分类模型。
在构建数据模型的过程中,可以借鉴机器学习、数据挖掘等领域的相关方法和算法,如决策树、支持向量机、神经网络等。
三、建立关联分析模型围标串标行为的识别除了需要分别对企业和投资人进行分析,还需要建立起企业和投资人之间的关联分析模型。
这样可以更加准确地判断某些企业是否存在串标行为。
关联分析模型可以通过挖掘企业的投资关系网络来建立。
可以分析企业之间的持股关系、合作关系,找出可能通过虚假联合投标来串标的企业。
四、利用机器学习技术进行模型优化围标串标行为的判断通常会存在一定的误判率。
为了提高准确性,可以利用机器学习技术对模型进行优化。
可以利用已知的围标串标案例作为训练数据,通过机器学习算法学习到一种模式,从而更准确地判断未知案例是否存在围标串标行为。