EDA实验报告

合集下载

EDA实验报告

EDA实验报告

目录第一部分实验开发系统概述及使用说明.............................................................. 1第一章EDA实验系统 ....................................................................................... 1第二章EDA/SOPC实验系统 ............................................................................ 7第二部分实验部分............................................................................................ 10实验一EDA工具基本操作与应用 ........................................................... 10实验二计数器设计..................................................................................... 24实验三串入/并出移位寄存器实现 ........................................................... 26实验四四人抢答器设计............................................................................. 28实验五序列检测器设计............................................................................. 29实验六DDS信号源的设计........................................................................ 30实验七交通灯控制器设计......................................................................... 31实验八数字钟设计..................................................................................... 32实验九出租车计费器设计......................................................................... 33实验十频率计的实现................................................................................. 34附录——FPGA接口对照表 ............................................................................ 35第一部分实验开发系统概述及使用说明第一章EDA实验系统一、实验系统概述此系列实验系统针对数字电路设计CPLD/FPGA及模拟电路设计技术有一总体上的概念。

EDA实验报告

EDA实验报告

7段数码显示译码器设计实验报告******班级:09级计科六班学号:*************一、实验目的1. 用QuartusII 完成基本组合电路的设计;2. 学习7段数码显示译码器设计;3.学习VHDL 的CASE 语句应用及多层次设计方法。

二、 实验原理1. 7段数码是纯组合电路,通常的小规模专用IC ,如74或4000系列的器件只能作十进制BCD 码译码,然而数字系统中的数据处理和运算都是二进制的,所以输出表达式都是十六进制的。

为了满足十六进制的译码显示,最方便的方法就是利用译码程序在FPGA/CPLD 中来实现。

2. 对于7段译码器,输出信号LED7S 的7位分别接如图1所示数码管的7个段,高位在左,低位在右。

例如当LED7S 输出为“1101101”时,数码管的7个段:g 、f 、e 、d 、c 、b 、a 分别接1、1、0、1、1、0、1;接有高电平的段发亮,于是数码管显示“5”。

3. 4位译码选择信号A 、7位输出信号LED7S 与、数码管显示三者间的关系如表1所示。

图1 共阴数码管及其电路表1 7段数码管输入输出真值表 这里没有考虑表示小数点的发光管,如果要考虑,需要增加段h ,后述程序中的LED7S:OUT STD_LOGIC_VECTOR(6 DOWNTO 0) 应改为 (7 DOWNTO 0) , 即输出信号由7位改为8位。

4位选择 信号A 7位输出信号LED7S数码管显示 0000 0111111 0 0001 0000110 1 0010 1011011 2 0011 1001111 3 0100 1100110 4 0101 1101101 5 0110 1111101 6 0111 0000111 7 1000 1111111 8 1001 1101111 9 1010 1110111 A 10111111100 B 11000111001 C 11011011110 D 11101111001 E 1111 1110001 F三、实验仪器1.PC机一台2.Quartus II 软件3.EDA实验箱四、实验内容1、实验内容一:说明例6-18中各语句的含义,以及该例的整体功能。

EDA实验报告

EDA实验报告

EDA实验报告班级:姓名:目录实验一:七段数码显示译码器设计 (1)摘要 (1)实验原理 (1)实验方案及仿真 (1)引脚下载 (2)实验结果与分析 (3)附录 (3)实验二:序列检测器设计 (6)摘要 (6)实验原理 (6)实现方案及仿真 (6)引脚下载 (7)实验结果与分析 (8)实验三:数控分频器的设计 (11)摘要 (11)实验原理 (11)方案的实现与仿真 (11)引脚下载 (12)实验结果及总结 (12)附录 (12)实验四:正弦信号发生器 (14)摘要 (14)实验原理 (14)实现方案与仿真 (14)嵌入式逻辑分析及管脚下载 (16)实验结果与分析 (17)附录 (18)实验一:七段数码显示译码器设计摘要:七段译码器是一种简单的组合电路,利用QuartusII的VHDL语言十分方便的设计出七段数码显示译码器。

将其生成原理图,再与四位二进制计数器组合而成的一个用数码管显示的十六位计数器。

整个设计过程完整的学习了QuartusII的整个设计流程。

实验原理:七段数码是纯组合电路,通常的小规模专用IC,如74或4000系列的器件只能作十进制BCD码译码,然而数字系统中的数据处理和运算都是2进制的,所以输出表达都是16进制的,为了满足16进制数的译码显示,最方便的方法就是利用译码程序在FPGA\CPLD中来实现。

本实验作为7段译码器,输出信号LED7S的7位分别是g、f、e、d、c、b、a,高位在左,低位在右。

例如当LED7S 输出为“1101101”时,数码管的7个段g、f、e、d、c、b、a分别为1、1、0、1、1、1、0、1。

接有高电平段发亮,于是数码管显示“5”。

实验方案及仿真:I、七段数码显示管的设计实现利用VHDL描述语言进行FPGA上的编译实现七段数码显示译码器的设计。

运行QuartusII在G:\QuartusII\LED7S\下新建一个工程文件。

新建一个vhdl语言编译文件,编写七段数码显示管的程序见附录1-1。

EDA-实验报告

EDA-实验报告

实验一五人表决器设计一、实验目的1 加深对电路理论概念的理解3 加深计算机辅助分析及设计的概念4 了解及初步掌握对电路进行计算机辅助分析的过程二、实验要求制作一个五人表决器,共五个输入信号,一个输出信号。

若输入信号高电平数目多于低电平数目,则输出为高,否则为低。

三、实验原理根据设计要求可知,输入信号共有2^5=32种可能,然而输出为高则有15种可能。

对于本设计,只需一个模块就能完成任务,并采用列写真值表是最简单易懂的方法。

四、计算机辅助设计设A,B,C,D,E引脚为输入引脚,F为输出引脚。

则原理图如1所示图1.1 五人表决器原理图实验程序清单如下:MODULE VOTEA,B,C,D,E PIN;F PIN ISTYPE 'COM';TRUTH_TABLE([A,B,C,D,E]->[F])[0,0,1,1,1]->[1];[0,1,1,1,0]->[1];[0,1,0,1,1]->[1];[0,1,1,0,1]->[1];[1,0,1,1,1]->[1];[1,1,0,1,1]->[1];[1,1,1,0,1]->[1];[1,1,1,1,0]->[1];[1,1,1,0,0]->[1];[1,1,0,1,0]->[1];[1,1,1,1,1]->[1];[1,1,0,0,1]->[1];[1,0,0,1,1]->[1];[1,0,1,0,1]->[1];[1,0,1,1,0]->[1];END五、实验测试与仿真根据题目要求,可设输入分别为:0,0,0,0,0;1,1,1,1,1;1,0,1,0,0;0,1,0,1,1。

其测试程序如下所示:MODULE fivevoteA,B,C,D,E,F PIN;X=.X.;TEST_VECTORS([A,B,C,D,E]->[F])[0,0,0,0,0]->[X];[1,1,1,1,1]->[X];[1,0,1,0,0]->[X];[0,1,0,1,1]->[X];END测试仿真结果如图1.2所示:图1.2 五人表决器设计仿真图可知,设计基本符合题目要求。

EDA实验 报告范文

EDA实验 报告范文

实验一:五人表决器一、程序清单library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity vote5 isport(v_in:in std_logic_vector(4 downto 0);lock,clr:in std_logic;v_over:out std_logic_vector(2 downto 0);num_agr,num_opp:out std_logic_vector(3 downto 0);v_out:out std_logic_vector(4 downto 0);led_agr,led_opp:out std_logic);end entity vote5;architecture one of vote5 isbeginprocess(clr,v_in,lock)variable agr,opp: std_logic_vector(3 downto 0);beginif(clr='1')thenled_agr<='0';led_opp<='0';agr:="0000";opp:="0000";if agr="0000" thennum_agr<="0000";end if;if opp="0000"thennum_opp<="0000";end if;v_out<="00000";v_over<="000";elsif(lock'event and lock='1')thenv_out<=v_in;v_over<="111";agr:="0000";opp:="0000";for i in 0 to 4 loopif (v_in(i)<='0') then opp:=opp+1;end if;agr:=5-opp;end loop;num_agr<=agr;num_opp<=opp;if(agr>opp)thenled_agr<='1';led_opp<='0';elseled_agr<='0';led_opp<='1';end if;end if;end process;end architecture one;三.仿真1. 功能仿真波形2.时序仿真波形实验二:九九乘法表系统的设计一、程序清单library ieee;use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all;entity multiply is --构造体描述4位乘法器port( clk:in std_logic;a,b:in std_logic_vector(3 downto 0);led_data:out std_logic_vector(7 downto 0);seg_sel:out std_logic_vector(2 downto 0) );end multiply;architecture rtl of multiply issignal led_data2,led_data1,led_data0: std_logic_vector(7 downto 0);--LED显示代码,寄存十位个位的数signal displayclk: std_logic;beginprocess(a,b)variable s: std_logic_vector(7 downto 0);--乘积variable bai,shiwei,gewei: std_logic_vector(3 downto 0);--乘积的十位个位begins(7 downto 0):=a(3 downto 0)*b(3 downto 0);if s>="11001000" then bai:="0010";s:=s-"11001000";elsif s>="01100100" then bai:="0001";s:=s-"01100100";else bai:="0000";end if;if s>="01011010" then shiwei:="1001";s:=s-"01011010";gewei:=s(3 downto 0);--90以上 elsif s>="01010000" then shiwei:="1000";s:=s-"01010000";gewei:=s(3 downto 0);--80以上 elsif s>="01000110" then shiwei:="0111";s:=s-"01000110";gewei:=s(3 downto 0); --70以上 elsif s>="00111100" then shiwei:="0110";s:=s-"00111100";gewei:=s(3 downto 0);--60以上 elsif s>="00110010" then shiwei:="0101";s:=s-"00110010";gewei:=s(3 downto 0);--50以上 elsif s>="00101000" then shiwei:="0100";s:=s-"00101000";gewei:=s(3 downto 0);--40以上 elsif s>="00011110" then shiwei:="0011";s:=s-"00011110";gewei:=s(3 downto 0);--30以上 elsif s>="00010100" then shiwei:="0010";s:=s-"00010100";gewei:=s(3 downto 0);--20以上 elsif s>="00001010" then shiwei:="0001";s:=s-"00001010";gewei:=s(3 downto 0);--10以上 else gewei:=s(3 downto 0);shiwei:="0000";end if;case bai iswhen "0001" => led_data2<="11111001";when "0010" => led_data2<="10100100";when others => led_data2<="11111111";end case;case shiwei iswhen "0000" => led_data1<="11000000";when "0001" => led_data1<="11111001";when "0010" => led_data1<="10100100";when "0011" => led_data1<="10110000";when "0100" => led_data1<="10011001";when "0101" => led_data1<="10010010";when "0110" => led_data1<="10000010";when "0111" => led_data1<="11111000";when "1000" => led_data1<="10000000";when "1001" => led_data1<="10010000";when others => led_data1<="11111111";end case;case gewei iswhen "0000" => led_data0<="11000000";when "0001" => led_data0<="11111001";when "0010" => led_data0<="10100100";when "0011" => led_data0<="10110000";when "0100" => led_data0<="10011001";when "0101" => led_data0<="10010010";when "0110" => led_data0<="10000010";when "0111" => led_data0<="11111000";when "1000" => led_data0<="10000000";when "1001" => led_data0<="10010000";when others => led_data0<="11111111";end case;end process;process(clk)variable cnt:integer range 0 to 20000; --1KHZ扫描显示时钟 beginif clk'event and clk='1' then cnt:=cnt+1;if cnt<10000 then displayclk<='1';elsif cnt<20000 then displayclk<='0';else cnt:=0;displayclk<='0';end if;end if;end process;process (displayclk) --显示两位variable cnt2: std_logic_vector(1 downto 0);beginif displayclk'event and displayclk='1' then cnt2:=cnt2+1;if cnt2="01" then seg_sel<="001";led_data<=led_data0;elsif cnt2="010" then seg_sel<="010";led_data<=led_data1;elsif cnt2="11" then cnt2:="00"; seg_sel<="100";led_data<=led_data2;end if;end if;end process;end rtl;二、仿真设计输入文件经maxplus软件开发系统编译、处理,由功能仿真器进行模拟,获得仿真波形如图6所示。

EDA实验报告正文

EDA实验报告正文

实验一单级放大电路的设计与仿真一、实验目的1.掌握放大电路静态工作点的调整与测试方法;2.掌握放大电路动态参数的测试方法;3.观察动态工作点的选择对输出波形及放大倍数的影响。

二、实验要求1.设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(峰值10mV) ,负载电阻5.1kΩ,电压增益大于50。

2.调节电路静态工作点(调节偏置电阻),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。

3.调节电路静态工作点(调节偏置电阻),使电路输出信号不失真,并且幅度最大。

在此状态下测试:①电路静态工作点值;r、ce r值;②三极管的输入、输出特性曲线和 、be③电路的输入电阻、输出电阻和电压增益;f、H f值。

④电路的频率响应曲线和L三、实验步骤1.单级放大电路的原理图:2.a.电路的饱和失真:静态工作点参数:图表3 饱和失真时静态工作点参数数据分析:Ib=12.90259uA Ic=2.07754mA Uce=0.20717V此时电位器为0%,基极静态电流过大而导致三极管达到饱和,使得电路出现失真。

b.电路的截止失真:图表4 截止失真时输出电压波形图静态工作点参数:图表5 截止失真时静态工作点参数数据分析:Ib=3.87579uA Ic=834.27745uA Uce=6.07513V此时电位器为100%,使得基极电位减小,三极管截止导致电路出现失真。

c.电路的最大不失真输出:图表6 最大不失真时输出电压波形图静态工作点参数:图表7 最大不失真时输出时静态工作点参数数据分析:Ube=0.64415V IC=1.87602mA IB=9.05731uA Uce=1.23723V β=207 此时电位器为20%3.a.三极管的输入特性:图表8 输入特性测试电路图表9 最大不失真时输入特性曲线从上图数据可以得出rbe=2.8353kΩb.三极管的输出特性:电路图及曲线:图表10 输出特性测试电路图表11 最大不失真时输出特性曲线从上图数据可以得出rce=10.793kΩ4.输入电阻的测量:图表12 输入电阻测量电路及数据从上图数据可以得出测试输入电流i=3.864uA 电阻Ri=2.588kΩ理论输入电阻Ri=2.483 kΩ误差4.1%5.输出电阻的测量:图表13 输出电阻测量电路及数据从上图数据可以得出测试输出电阻Ro=2.097kΩ理论输出电阻Ro=2.030 kΩ误差3.2%6.电压增益:图表14 电压增益测量电路及数据Au=110.557.电路的频率特性:图表15 波特图及数据最大输出增益41.25dB图表15 波特图及数据fL=229Hz fH=14.470MHz四、实验小结从以上测量的数据与理论计算值比较可以发现存在一定的误差,误差产生的原因可能包括:a.本次试验中的器件均选用实际器件,它们自身存在随机误差,例如:实验所用三极管的输出特性曲线放大区并非理想的水平平行线,而是发散的,只就导致正常放大的波形出现不对称行,仿佛截止失真。

EDA实验报告

EDA实验报告

实验一:不同设计输入方式比较1、实验目的(1) 学习MAX+plus II软件的基本使用方法。

(2) 学习EDA实验开发系统的基本使用方法。

(3) 掌握VHDL程序的原理图和文本输入方式。

2、实验内容(1) 原理图输入(mux21.vhd) 方式的2选1多路选择器的设计(2) 文本编辑输入(mux41.vhd) 方式的4选1多路选择器的设计3、实验要求(1) MAX+plus II软件画出系统的原理框图,说明系统中各主要组成部分的功能。

(2) 编写VHDL源程序。

(3) 在MAX+plus II工具下编译、综合、适配、仿真、实验板上的硬件测试。

(4) 根据EDA实验开发装置编好用于硬件验证的管脚锁定文件。

(5) 记录系统仿真、硬件验证结果。

(6) 记录实验过程中出现的问题及解决办法。

4:实验步骤:程序编译过程:新建text文件→输入程序并保存其中保存名为实体名,并以vhd类型结尾→点击file下的project设定为current file点击maxplus 中的compiler按钮→显示无误后→点击新建按钮建立wave 文件→点击node 按钮添加管脚→保存并按text 的步骤检验wave 文件。

(1):用原理图法实现二选一多路选择器。

二选一选择器原理图其中B端为控制端,A,C为控制端(2):用文本输入法实现四选一多路选择器。

其文本程序如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY MUX41 ISPORT(INPUT:IN STD_LOGIC_VECTOR(3 DOWNTO 0);A,B:IN STD_LOGIC;Y:OUT STD_LOGIC);END MUX41;ARCHITECTURE BE_MUX41 OF MUX41 ISSIGNAL SEL:STD_LOGIC_VECTOR(1 DOWNTO 0); BEGINSEL<=A&B;PROCESS(INPUT,SEL)BEGINIF(SEL="00")THENY<=INPUT(0);ELSIF(SEL="01")THENY<=INPUT(1);ELSIF(SEL="10")THENY<=INPUT(2);ELSEY<=INPUT(3);END IF;END PROCESS;END BE_MUX41;实验二:VHDL语言编程—组合逻辑电路设计1、实验目的(1) 学习VHDL三种描述风格;(2) 学习元件例化语句的使用方法;(3) 学习VHDL程序层次化设计方法2、实验内容用元件例化语句方法和原理图方法设计四位全加器。

eda仿真实验报告

eda仿真实验报告

eda仿真实验报告EDA仿真实验报告一、引言EDA(Electronic Design Automation)是电子设计自动化的缩写,是指利用计算机技术对电子设计进行辅助、自动化的过程。

在现代电子设计中,EDA仿真是不可或缺的一环,它可以帮助工程师验证电路设计的正确性、性能和可靠性。

本篇报告将介绍我在EDA仿真实验中的经验和收获。

二、实验背景本次实验的目标是对一个数字电路进行仿真,该电路是一个4位加法器,用于将两个4位二进制数相加。

通过仿真,我们可以验证电路设计的正确性,并观察其在不同输入情况下的输出结果。

三、实验步骤1. 电路设计:首先,我们根据给定的要求和电路原理图进行电路设计。

在设计过程中,我们需要考虑电路的逻辑关系、时序要求以及输入输出端口的定义等。

2. 仿真环境搭建:接下来,我们需要选择合适的EDA仿真工具,并搭建仿真环境。

在本次实验中,我选择了Xilinx ISE Design Suite作为仿真工具,并创建了一个仿真项目。

3. 仿真测试向量生成:为了对电路进行全面的测试,我们需要生成一组合适的仿真测试向量。

这些测试向量应该覆盖了电路的所有可能输入情况,以验证电路的正确性。

4. 仿真运行:在仿真环境搭建完成后,我们可以开始进行仿真运行了。

通过加载测试向量,并观察仿真结果,我们可以判断电路在不同输入情况下的输出是否符合预期。

5. 仿真结果分析:仿真运行结束后,我们需要对仿真结果进行分析。

通过对比仿真输出和预期结果,可以判断电路设计的正确性。

如果有不符合预期的情况,我们还可以通过仿真波形分析,找出问题所在。

四、实验结果与讨论在本次实验中,我成功完成了4位加法器的仿真。

通过对比仿真输出和预期结果,我发现电路设计的正确性得到了验证。

无论是正常情况下的加法运算,还是特殊情况下的进位和溢出,电路都能够正确地输出结果。

在实验过程中,我还发现了一些有趣的现象。

例如,在输入两个相同的4位二进制数时,电路的输出结果与输入完全一致。

EDA实验报告含结果图

EDA实验报告含结果图

EDA电子课程实验报告专业:班级:姓名:学号:实验一四人表决器一实验目的1、熟悉Quartus II软件的使用。

2、熟悉EDA-IV实验箱。

3、熟悉EDA开发的基本流程。

二硬件需求1、RC-EDA-IV型实验箱一台;2、RC-EDA-IV型实验箱配套USB-Blaster下载器一个;3、PC机一台。

三实验原理所谓表决器就是对于一个行为,由多个人投票,如果同意的票数过半,就认为此行为可行;否则如果否决的票数过半,则认为此行为无效。

四人表决器顾名思义就是由四个人来投票,当同意的票数大于或者等于3人时,则认为同意;反之,当否决的票数大于或者等于2人时,则认为不同意。

实验中用4个拨挡开关来表示4个人,当对应的拨挡开关输入为‘1’时,表示此人同意;否则若拨挡开关输入为‘0’时,则表示此人反对。

表决的结果用一个LED表示,若表决的结果为同意,则LED被点亮;否则,如果表决的结果为反对,则LED不会被点亮。

四实验内容VHDL程序:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_arith.all;use ieee.std_logic_unsigned.all;--------------------------------------------------------------------entity EXP3 isport(k1,K2,K3,K4 : in std_logic;ledag : out std_logic_vector(3 downto 0);m_Result : out std_logic);end EXP3;--------------------------------------------------------------------architecture behave of EXP3 issignal K_Num : std_logic_vector(2 downto 0); signal K1_Num,K2_Num: std_logic_vector(2 downto 0); signal K3_Num,K4_Num: std_logic_vector(2 downto 0);beginprocess(K1,K2,K3,K4)beginK1_Num<='0'&'0'&K1;K2_Num<='0'&'0'&K2;K3_Num<='0'&'0'&K3;K4_Num<='0'&'0'&K4;end process;process(K1_Num,K2_Num,K3_Num,K4_Num,)beginK_Num<=K1_Num+K2_Num+K3_Num+K4_Num;end process;process(K_Num) beginif(K_Num>2) thenm_Result<='1';elsem_Result<='0';end if;end process;end behave;实验电路实验二格雷码转换一实验目的1、了解格雷码变换的原理。

EDA实验报告

EDA实验报告

EDA实验报告岳代兵 200800120265电信工二班实验一 4选1数据选择器的设计一、实验目的学习EDA软件的基本操作;学习使用原理图进行设计输入;初步掌握器件设计输入、编译、仿真和编程过程;学习实验开发系统的使用方法。

二、实验原理图通过查阅数字电路课本,得知四选一数据选择器电路如下图。

三、仿真波形功能仿真更容易辨别电路的功能实现与否,故采用功能仿真。

注意功能仿真前,要先生成网络表,Process—>Generate Functional Simulation Netlist。

四、引脚分配A1—SW[0] (PIN_N25)A0—SW[1] (PIN_N26)D0—SW[2] (PIN_P25)D1—SW[3] (PIN_AE14)D2—SW[4] (PIN_AF14)D3—SW[5] (PIN_AD13)Y—LEDR[0] (PIN_AE23)实验二四位比较器一、实验目的设计四位二进制码比较器,并在实验开发板系统上验证;学习层次化设计方法。

二、实验源程序library ieee;use ieee.std_logic_1164.all;entity bijiaoqi isport( a:in std_logic_vector(3 downto 0);b:in std_logic_vector(3 downto 0);g,m,l:out std_logic);end bijiaoqi;architecture behave of bijiaoqi isbeginprocess(a,b)beginif(a>b) then g<='1';m<='0';l<='0';elsif(a<b) then g<='0';m<='0';l<='1';elsif(a=b) then g<='0';m<='1';l<='0';end if;end process;end behave;三、仿真波形(功能仿真)四、引脚分配a[0]—SW[0] (PIN_N25)a[1]—SW[1] (PIN_N26)a[2]—SW[2] (PIN_P25)a[3]—SW[3] (PIN_AE14)b[0]—SW[4] (PIN_AF14)b[1]—SW[5] (PIN_AD13)b[2]—SW[6] (PIN_AC13)b[3]—SW[7] (PIN_C13)l—LEDR[15] (PIN_AE13)m—LEDR[16] (PIN_AE12)g—LEDR[17] (PIN_AD12)实验三并行加法器设计一、实验目的设计一个4位加法器;体会用HDL经行描述的优点。

EDA实验报告

EDA实验报告

实验三: 二位比较器的设计与实现一.实验简介:这个实验将指导你通过使用ISE软件进行简单的二位比较器的设计与实现。

二.实验目的:•使用ISE软件设计并仿真。

•学会程序下载。

三.实验原理:1.ISE软件是一个支持数字系统设计的开发2.用ISE软件进行设计开发时基于相应器件型号的。

注意:软件设计时选择的器件型号是与实际下载板上的器件型号相同。

3.图2-1所示为二位比较器的真值表,本实验中用Verilog语句来描述。

b[1] b[0] a[1] d[0]0 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 0 11 0 1 01 0 1 11 1 0 01 1 0 11 1 1 01 1 1 1a_eq_b a_gt_b a_lt_b1 0 00 1 00 1 00 1 00 0 11 0 00 1 00 1 00 0 10 0 11 0 00 1 00 0 10 0 10 0 11 0 0四.实验步骤:1.新建工程(1)双击桌面上“”图标,启动ISE软件(也可从开始菜单启动)。

每次打开ISE都会默认恢复到最近使用过的工程界面。

当第一次使用时,由于还没有历史工程记录,所以工程管理区显示空白。

选择File—New Project选项,在弹出的对话框中输入工程名称并指定工程路径。

(2)点击Next按钮进入下一页,选择所使用的芯片及综合、仿真工具。

计算机上安装的所有用于仿真和综合的第三方EDA工具都可以在下拉菜单中找到。

在图中我们选用了Spartan6 XC6SLX16芯片,采用CSG324封装,这是NEXYS3开发板所用的芯片。

另外,我们选择Verilog作为默认的硬件描述语言。

(3)再点击Next按钮进入下一页,这里显示了新建工程的信息,确认无误后,点击Finish 就可以建立一个完整的工程了。

(1)在工程管理区任意位置单击鼠标右键,在弹出的菜单中选择New Source命令,选择Verilog Module输入,并输入Verilog文件名。

EDA原理及应用 实验报告

EDA原理及应用 实验报告

一.基础部分1.整体框架采用自顶向下的层次化设计思路,将实现功能的各模块放入单独的文件内完成,最后通过top文件例化各个模块实现整体功能,再根据引脚约束与硬件对应。

在本例的基础部分主要分为计数频率5hz的分频,七段数码管的驱动,七段数码管扫描的频率,计数模块,16进制到10进制转换模块。

下面逐项介绍:2.计数频率5HZ分频a.设计思路由上一个实验,我们知道1HZ的分频需要计数到49999999,因此本例的5HZ应该计数到上次计数值的五分之一:9999999,也就是十六进制下的98967f,将分频后的时钟div_clk_098作为输出。

为了最终的顶层设计具有清零功能,因此对每一个子模块也加入清零引脚。

b.源代码module divclk_2_098(input clk_098,input rst_098,output reg div_clk_098);reg[31:0]counter_098;always@(posedge clk_098 or posedge rst_098)beginif(rst_098)counter_098<=32'h00000000;elseif(counter_098==32'h0098967f)//5hz分频begincounter_098<=32'h00000000;div_clk_098<=~div_clk_098;endelsecounter_098<=counter_098+1;endendmodule3.数码管刷新频率分频a.设计思路根据人眼的视觉暂留效应,当数码管的刷新频率很快的时候,看上去会像多个数码管通识导通。

但原有100MHZ的主频太快,以此刷新并不能实现效果,查阅资料并实际测试,让其计数到60000左右可以完成任务,最终选取了61567,即16进制下的f07f,将输出scan_clk_098作为顶层文件中的七段数码管的时钟进行驱动刷新。

EDA的实验报告

EDA的实验报告

杭州电子科技大学实验报告实验课程名称实实班姓学指导教验验序内号容级名号师eda技术 1 分频器与频率计设计 123 吕文 123 黄某二○一四年 4月 18 日一、实验的目的与要求实验名称:分频器与频率计设计实验目的:1、初识verilog hdl语言熟练verilog 的语法2、学习quartus调用modelsim进行仿真3、掌握用fpga实现简易的分频器与频率计的原理与方法实验要求:1、设计一个可控分频器,输入20mhz或 12mhz 时钟(可选择其中一种),输出100hz~10khz,输出100hz ~ 10khz,输出频率数控可调(按键或者使用in-system sources and probes),输出波形占空比为50%,接蜂鸣器;2、设计一个简易频率计,输入为方波,测量频率的范围100hz ~ 9999hz ,测量精度&lt;1%,频率计输出可以接数码管或者使用in-system sources and probes观察3、分频器输出接频率计的输入二、实验原理分频器的原理:把输入的信号作为计数脉冲,由于计数器的输出端口是按一定规律输出脉冲的,所以对不同的端口输出的信号脉冲,就可以看作是对输入信号的”分频“。

频率计是对信号的频率进行测量并显示测量结果。

原理就是在1秒钟内对时钟计数,得到的数字就是频率大小。

频率计的设计是用一个标准的时钟20mhz来做参照,以1s钟为周期,为20000000个周期,同时定义一个计数的变量q ,当输入的端口出现上升沿的时候,变量加1,那么在一秒钟内cout的数值即为,该波形的频率。

最后将分频器的输出端口接入频率计的输入端口,用频率计来测量波形的频率大小,通过比较实际的频率fre1与测出来的频率大小fre2,就知道了该频率计的误差。

三、实验内容实验步骤 1、大概的把框架建起来,把思路想好2、先设计一个符合要求的分频器3、进行仿真,看效果3、再设计一个符合要求的频率计4、用modelsim进行仿真5、把这两部分连接起来,最后进行仿真得到结果6、得到频率计的测频误差本实验分频器的时钟是20mhz,分频出来的是100hz~10khz的波形,那么就定义一个变量当做分频比[17:0] div ,可以用按键来控制div的大小,继而实现分频出来的大小。

EDA实验设计报告

EDA实验设计报告

EDA实验设计报告一、实验名称基于FPGA的数字时钟二、实验目的初步掌握EDA设计环节,通过设计一个数字时钟,加深FPGA的工作原理和开发流程,加强硬件描述语言V erilog的编程能力,为后续学习和竞赛打好基础。

通过设计扩展部分,进一步提高FPGA的设计能力,同时了解软硬件接口的设计,建立起系统设计的概念。

三、实验内容1、数字时钟(1)基本要求用同步时序电路设计实现时、分、秒计数的数字钟,并在数码管上正确显示。

(2)扩展要求1、可以按键清。

;2、支持年月日显示功能,用按键进行年月日和时分秒间显示切换。

3、可对显示内容进行修改,用按键键值代替显示内容,按键键值可自行定义。

2、秒表设计内容:利用5个数码管完成秒表显示功能。

要求:1、精度达100ms;2、可以清零;3、可暂停;4、最大计时为999.9s。

3、跑马灯设计实现8个发光二极管以不同频率(2Hz,1Hz,0.5Hz)循环进行左滚动、右滚动、向中间滚动、向两边滚动、闪动等效果,不同频率显示用按键进行切换。

4、VGA显示设计1、分辨率为1024*768/60Hz、1024*768/75Hz、800*600/60Hz三种。

2、红绿蓝单色、彩色棋盘格、圆等图形以1Hz的速率切换显示;3、8级灰度呈条状递增显示。

四、实验仪器Altera公司:Cyclone II EP2C20Q240 FPGA 及实验箱USB-BLASTER 下载线Quartus II 11.0 开发环境外围电路五、实验内容1、硬件系统图学校实验箱系统图:自制显示电路图:4段数码管X2 74LS138VGA接口电路数码管电路led灯电路2、软件部分顶层设计文件bdf原理图输出模块组成。

控制模块:控制功能模块的开启和关闭,同时控制系统选择输出输出相应模块的信号。

系统选择输出模块:因为实验箱数码管和led灯共用8个端口,由三片锁存器控制,所以该模块可根据控制模块的信号选择开启相应模块的输出和锁存控制端。

EDA实验报告

EDA实验报告

EDA课程实践感悟EDA是电子设计自动化(Electronic Design Automation)的英文缩写,是随着集成电路和计算机技术飞速发展应运而生的一种快速、有效、高级的电子设计自动化工具。

这次学校为我们安排的EDA 课程包括了课堂讲授、课后自修以及课程实验三个环节,从这次课程当中我学习到了很多关于电子设计自动化的基础知识,锻炼提高了多方面的综合能力。

一自己对EDA的了解通过课堂老师的讲述和课后对书本的自习,我初步了解了EDA的特征和优势,目标和流程并知道了一些EDA公司和工具,并学习了可编程逻辑器件基础。

1 EDA的特征和优势在现代电子设计中,几乎所有的设计工作都需要在计算机上进行。

,设计者只需完成对系统功能的描述,就可以由计算机软件进行处理得到设计结果。

EDA以硬件描述语言(Hardware Description Language)为系统逻辑描述手段完成的设计文件可以自动完成逻辑编译、逻辑化简、逻辑分割、逻辑综合、布局布线和仿真测试,直至实现既定的电子线路系统功能。

飞速发展EDA 技术使得“自定而下”的设计方法被广泛使用。

在这种新的设计方法中,由用户也对整个系统进行方案设计和功能划分,系统的关键电路用一片或几片专用集成电路ASIC来实现。

用户首先从系统级设计入手,在顶层进行功能方框图的划分和结构设计;在方框图以及进行仿真、纠错看,并用硬件描述语言对高层次的系统行为进行描述;用逻辑综合优化工具生成具体的门级逻辑电路的网表,其对应的物理实现可以是印制电路板或专用集成电路。

EDA技术便利了复杂系统的设计,为用户提供了强大的系统建模和电路仿真功能,全方位地利用计算机和自动设计、仿真和测试技术,降低了设计者的硬件知识和硬件经验的要求。

2 EDA的设计流程一个典型的EDA 设计流程主要包括设计准备,设计输入、设计处理、器件变成和设计验证等五个基本步骤。

设计输入有多种方式,包括采用硬件描述语言进行设计的文本输入方式、图形输入方式和波形输入方式,或者采用文本、图形两者混合的设计输入方式,也可以采用“自顶向下”的层次设计方法,将多个输入和并为一个设计文件。

EDA实验报告(包含多个实验)

EDA实验报告(包含多个实验)

海南大学EDA实验报告学院:信息科学与技术学院专业班级:09理科实验班课程:EDA任课教师:***姓名:***学号:**************实验一 MAX –plusII及开发系统使用一、实验目的1、熟悉利用MAX-plusⅡ的原理图输入方法设计简单的组合电路2、掌握层次化设计的方法3、熟悉DXT-BⅢ型EDA试验开发系统的使用二、主要实验设备PC 机一台(中档以上配置),DXT-B3 EDA实验系统一台。

三、实验原理数字系统设计系列实验是建立在数字电路基础上的一个更高层次的设计性实验。

它是借助可编程逻辑器件(PLD),采用在系统可编程技术(ISP),利用电子设计自动化软件(EDA),在计算机(PC)平台上进行的。

4位全加器设计一个4位全加器可以由4个1位全加器构成,如图1.1所示,1位的全加器串行联接可以实现4位的二进制全加器。

图1.1 4位全加器电路原理图1位全加器可以由两个半加器和一个或门构成,如图1.2所示。

图1.2 全加器电路原理图1位半加器可以由与、或、非等基本门构成,如图1.3所示。

图1.3 半加器电路原理图根据实验原理中,采用层次法设计一个4位全加器。

四、实验步骤1、如图1.3所示,利用MAX-plusⅡ中的图形编辑器设计一半加器,进行编译、仿真,并将其设置成为一元件(可根据需要对元件符号进行调整)。

注意:编译之前必须将文件设为当前文件。

2、建立一个更高得原理图设计层次,如图1.2所示,利用前面生成的半加器元件设计一全加器,进行编译、仿真,并将其设置成为一元件(可根据需要对元件符号进行调整)。

3、再建立一个更高得原理图设计层次,如图1.1所示,利用前面生成的半加器元件设计一全加器,进行编译、仿真。

五、实验报告要求:详细描述4位全加器的设计过程,给出各层的电路原理图、元件图(原理图)以及对应的仿真波形;给出加法器的延时情况;最后给出硬件测试的流程和结果。

1)半加器图半加器仿真图2)全加器图全加器仿真图3)四位全加器仿真图实验二十进制计数器一、实验目的学习时序电路的设计、仿真和硬件测试,进一步熟悉VHDL设计技术。

EDA实验报告

EDA实验报告

EDA实验报告一、实验目的本次 EDA 实验的主要目的是熟悉电子设计自动化(EDA)软件的使用,掌握数字电路的设计、仿真和实现流程,提高对数字逻辑电路的理解和设计能力。

二、实验设备与环境1、计算机一台2、 EDA 软件(如 Quartus II 等)三、实验原理1、数字逻辑基础数字电路中的基本逻辑门包括与门、或门、非门、与非门、或非门等。

通过这些基本逻辑门的组合,可以实现各种复杂的数字逻辑功能。

2、组合逻辑电路组合逻辑电路的输出仅取决于当前的输入,不存在存储单元。

常见的组合逻辑电路有加法器、编码器、译码器等。

3、时序逻辑电路时序逻辑电路的输出不仅取决于当前的输入,还与电路的过去状态有关。

常见的时序逻辑电路有计数器、寄存器等。

四、实验内容1、设计一个简单的加法器使用基本逻辑门设计一个两位加法器,输入为两个两位的二进制数A 和 B,输出为它们的和 S 以及进位 C。

2、设计一个 4 位计数器实现一个 4 位的计数器,能够在时钟信号的上升沿进行计数,计数范围为 0 到 15。

3、设计一个数码管显示译码器将输入的 4 位二进制数转换为数码管的 7 段显示编码,实现数字 0 到 9 的显示。

五、实验步骤1、加法器设计(1)打开 EDA 软件,创建一个新的项目。

(2)使用原理图输入方式,绘制出加法器的逻辑电路图,包括两个半加器和一个或门。

(3)对设计进行编译,检查是否存在语法错误。

(4)创建仿真文件,设置输入信号的激励,进行功能仿真,观察输出结果是否符合预期。

2、计数器设计(1)在项目中新建一个模块,使用 Verilog HDL 语言描述计数器的功能。

(2)编写测试代码,对计数器进行仿真验证。

(3)将计数器下载到硬件开发板上,通过观察实际的输出结果验证其功能。

3、数码管显示译码器设计(1)同样使用原理图输入方式,设计数码管显示译码器的逻辑电路。

(2)进行编译和仿真,确保译码器的功能正确。

(3)将译码器与计数器连接起来,实现数码管的动态显示。

EDA实验报告

EDA实验报告

微波电路EDA 实验报告实验一微带天线一、设计要求设计一个微带缝隙天线,工作频率3.75GHz,基片的介电常数为2.33,厚度为30mil。

天线采用内部端口馈电,开放边界条件(即基片处于空气中)。

要求画出天线的电磁结构图,设计匹配网络,使天线取得最大辐射功率。

对天线进行电磁仿真分析,观察二维及三维的电流分布情况。

记录微带天线的结构图、匹配电路,以及最终的匹配结果。

二、实验仪器硬件:PC机软件:Microwave Office软件三、设计步骤简要的写明主要设计步骤,计算的参数,创建的电路图、测量图。

具体的软件操作步骤不用写。

1、创建新工程。

并将单位设为:GHz,mil。

2、设置边界条件在Enclosure标签页,设单位:mil;X-Dimension=3000,X-Divisions=60,Y-Dimension=3000,X-Dvisions=60;定义介质层:Layer1,Thickness项设为300,er设为1;Layer2,Thickness项设为30,er设为2.33;Layer3,Thickness项设为300,er设为1,其余不变;设置边界属性:选择Boundaries标签页,Enclosure Top及Bottom均选Approximate open项。

a天线的结构尺寸图 b 实验绘制电路图一3、绘制缝隙天线天线的结构尺寸如图1所示。

在Layer2层画缝隙天线,绘制时分为4部分,上、下各一个不规则矩形,中间2个小矩形,在上方小矩形的下边缘添加Internal Port(内置端口)。

图二原理图三维视图4、设置工作频率在工程浏览页,双击Project Options项,设置工作频率范围:1~8GHz,阶长0.01GHz;再选择EM Structure\Slot Antenna项,点右键,选Options项,在Frequency V alues页去掉Use project frequency项前的选钩,设置非线性仿真频率:1~8GHz,阶长0.5GHz;再选择Mesh标签页,去掉Use project frequency项前的选钩,设网格密度为Low,单元大小限制依次为10、10、4、4。

EDA技术实验报告

EDA技术实验报告

EDA技术实验报告实验⼀利⽤原理图输⼊法设计4位全加器⼀、实验⽬的:掌握利⽤原理图输⼊法设计简单组合电路的⽅法,掌握MAX+plusII 的层次化设计⽅法。

通过⼀个4位全加器的设计,熟悉⽤EDA 软件进⾏电路设计的详细流程。

⼆、实验原理:⼀个4位全加器可以由4个⼀位全加器构成,全加器的进位以串⾏⽅式实现,即将低位加法器的进位输出cout 与相邻的⾼位加法器的低位进位输⼊信号cin 相接。

1位全加器f-adder 由2个半加器h-adder 和⼀个或门按照下列电路来实现。

半加器h-adder 由与门、同或门和⾮门构成。

四位加法器由4个全加器构成三、实验内容:1. 熟悉QuartusII 软件界⾯,掌握利⽤原理图进⾏电路模块设计的⽅法。

QuartusII 设计流程见教材第五章:QuartusII 应⽤向导。

2.设计1位全加器原理图(1)⽣成⼀个新的图形⽂件(file->new->graphic editor )(2)按照给定的原理图输⼊逻辑门(symbol ->enter symbol)COCO 1S 2S 3S 4(4)为管脚和节点命名:在管脚上的PIN_NAME处双击⿏标左键,然后输⼊名字;选中需命名的线,然后输⼊名字。

(5)创建缺省(Default)符号:在File菜单中选择Create Symbol Files for Current File项,即可创建⼀个设计的符号,该符号可被⾼层设计调⽤。

3.利⽤层次化原理图⽅法设计4位全加器(1)⽣成新的空⽩原理图,作为4位全加器设计输⼊(2)利⽤已经⽣成的1位全加器的缺省符号作为电路单元,设计4位全加器的原理图.4.新建波形⽂件(file->new->Other Files->Vector Waveform File),保存后进⾏仿真(Processing ->Start Simulation),对4位全加器进⾏时序仿真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 单级放大电路的设计与仿真一、实验目的1)掌握单级放大电路在仿真软件中的设计。

1)掌握放大电路与静态工作点的调整和测试方法。

2)掌握放大电路的动态参数的测试方法。

3)观察静态工作点的选择对输出波形及电压放大倍数的影响。

二、实验要求1.设计一个分压偏置的单管电压放大电路,要求信号源频率10kHz(峰值1mV) ,负载电阻3.9kΩ,电压增益大于70。

2.调节电路静态工作点(调节偏置电阻),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。

3.调节电路静态工作点(调节偏置电阻),使电路输出信号不失真,并且幅度最大。

在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和 、 rbe 、rce 值;③电路的输入电阻、输出电阻和电压增益;4.电路的频率响应曲线和L f 、H f 值。

三、实验步骤1.单级放大电路的原理图及原理图1.1单级放大电路原理图放大电路的原理图如上,该电路为一个分压偏置单级共射放大电路,其中信号源为10kHz (峰值为5mV ),该电路的负载为8k Ω。

输入输出信号都是通过耦合电容连接信号源和负载的,这样做可以使得静态工作点不受负载和信号源的影响。

该电路利用R4和R5从而稳定住三极管基极的电压值。

引进了的电容C3对三极管的静态工作点没有影响,而在三极管的动态分析时可以将R2的作用忽略,使得小信号分析更加的简便。

分压偏置的电路中引入了一个电位器R6,目的是为了在实验中便于修改三极管的静态工作点。

2.电路的截止失真和饱和失真(1)电路的饱和失真调节电位器R6,可以改变三极管的静态工作点,当R6值为1%时(0.7k Ω)在虚拟示波器中可以观察到输出波形明显的出现了饱和失真的现象,输出波形如图1.2所示。

利用Multisim 的“直流工作点分析”功能可以测出三极管的静态工作点。

由于软件本身的限制,无法直接读取三极管的Vce 值。

为了解决这个问题,实验中添加表达式测量项b e V V (本实验电路中的表达式为“V(3)-V(2)”)来表示Vce ,测量结果如图1.3所示。

图1.2输入波形和饱和失真的输出波形图1.3饱和失真时三极管的静态工作点值电路输出波形发生饱和失真的原因是由于三极管进入了饱和区。

当输入信号正半周的部分波形进入晶体管的饱和区,三极管的放大能力不够使得波形出现了失真。

并且共射电路输入和输出信号存在着180°的相位差,所以从图上我们可以看到波形的失真发生在输出波形的负半周。

如果画出负载线图形就会发现饱和失真时,静态工作点Q过高,为了解决饱和失真,可以降低Q点,即减小Vb或者增大Vc(在本实验中调节电位器R6就是采用调节Vb的方法)。

(2)电路的截止失真调节电位器R6,当R6的值为74%时(51.8 kΩ)输出波形发生了截止失真,如图1.4,截止失真的静态工作点值如图1.5。

由于通过观察输出波形无法判断是否发生了截止失真,因此采用以下两种方法来判断输出信号是否发生了截止失真。

①观察Vce的直流电压值,当电压值接近Vcc时(本实验指12V)电路发生了截止失真。

②观察输出信号的交流电压值,当输出电压小于等于输入信号的交流电压值时,输出信号发生了截止失真。

图1.4输出信号发生截止失真时的波形图图1.5电路发生截止失真时的静态工作点值因为三极管进入了截止区工作,从而引起了输出波形的截止失真。

若用图解法分析,晶体管的静态工作点Q设置较低时,由于输入信号的叠加有可能使叠加后的波形一部分进入截止区,这样就会出现截止失真,NPN型三极管共射极放大电路的截止失真的表现是输出电压的顶部出现削波,PNP型三极管的共射放大电路的截止失真是底部失真(本实验中理论上应出现顶部削波但是现象并不明显)。

三极管的输出和输入正好是反过来的,即反相输出。

假设输入的是正弦波,静态工作点正好合适,即静态工作点电压是正弦波电压峰峰值的一半,那么当输入的波形是正半周时,输出电压波形正好和负半周期波形是一样的;当输入的波形是负半周时,输出电压波形正好和正半周期波形是一样的。

如果静态工作点电压大于输入波形的峰峰值的一半,那么当输入的波形是正半周时,快到峰值时,三极管就会处于饱和状态,那么此时的输出就不再随输入变化了,出现了饱和失真;即输出得到的负半周正弦波波形就没有谷底了.反之,当输入的波形是负半周时,快到谷值时,三极管就会处于截止状态,那么此时的输出就不再随输入变化了,出现了截止失真;即输出得到的正半周正弦波波形就没有峰值了,我们称之为截止失真。

Q点设置过低造成的截止失真属于输入端失真,所以只能从输入端解决。

解决方法有增大Vb(本实验中采用减小电位器R6值)。

(3)电路最大不失真①电路的输出波形与静态工作点当R6的值为5%时(3.5kΩ)电路出现最大不失真状态,输出信号的波形如图1.6所示,静态工作点值如图1.7所示。

图1.6最大不失真时输出信号的波形图1.7最大不失真时静态工作点值②静态工作点下β,rbe,rce值的求解用实验的三极管重新设计两个电路用以测量β,rce,rbe的值如图1.8和图1.9所示。

图1.8输入特性曲线分析电路图1.9输出特性曲线分析电路利用Multisim的“直流扫描”功能,可以分别画出三极管的输入/输出特性曲线图。

从而求出β,rce,rbe。

现在画出输入特性曲线如图1.10。

图1.10输入特性曲线为了测量rbe的值,选取静态工作点附近的两个曲线上的点,测量出rbe的值,如下图。

图1.11曲线静态工作点附近测量 图1.12静态工作点附近的测量值 下面计算rbe 的值:570.3896| 1.4047406.0659BE be Q B v V r k i nAμ∆==≈Ω∆ 利用输出特性曲线可以计算β和rce 的值。

曲线图及计算过程如下:图1.13不同ib 时的输出特性曲线图1.14曲线的测量值下面计算β:4.8632 1.4235|171.98520C Q B i mV mV i Aβμ∆-===∆ 利用输出特性曲线在静态工作点Q 附近的值,可以算出rce ,如下图。

图1.15输出特性曲线 图1.16输出特性曲线 下面计算rce 的值:570.3896| 1.4047406.0659BE be Q B v V r k i nAμ∆==≈Ω∆ ③放大倍数的求解测量输入信号和输出信号的电压值,求出实验电路的电压增益如下:304.1||||86.03.535out v in V mV A V mV==≈ 下面计算理论上电压增益的值:13(||R ||r )87.3276ce v be R A r β=-≈-理论误差分析如下:v ||||||100% 1.52%v v A A e A -=⨯=理论理论④输入输出电阻的测量与求解测量输入电阻时,用万用表交流档,分别测量输入电压和输入电流,就可以测量出输入电阻的阻值。

计算过程如下:3.535782.9464.515i mV R Aμ==Ω 下面计算理论上的输入电阻值:546||(0.75)||r 884.5be i R R R R =+≈Ω理论图1.17输入电阻测量电路在测量输出电阻时,应该先对电路加以处理,即将电压源置零,负载断开,在输出端口加以激励。

测量输出端的电压电流值,便可以求得输出电阻的值。

计算过程如下:3.535805.14.391o mV R Aμ=≈Ω 下面计算输出电阻的理论值:3||r 783.1ce o R R =≈Ω理论计算理论值与实际值的误差有:o o e ||100% 2.809%o R R R -=⨯≈理论理论 ⑤电路的幅频相频曲线利用Multisim 的“交流分析”的功能,能够仿真出电路的幅频曲线图和相频曲线图,如图1.18所示。

图1.18电路幅频和相频曲线 图1.19曲线的测量值 由于放大电路中电容、电感及半导体器件结电容等电抗元件的存在,在输入信号频率较低或较高时,放大倍数的数值会下降并产生相移。

通常情况下,放大电路只适用于放大某一个特定频率范围内的信号。

因此在设计电路中必须确定上下限的截止频率和通频带。

由图1.18中仿真曲线的可以看出,电压增益下降到0.7倍(3dB )时,可以看做是上下限截止频率。

由图1.19可以看出上限频率为36.1610H f MHz = ,下限截止频率为 1.5691L f kHz = 。

求解通频带宽:33.7819H L BW f f MHz =-=四、实验小结通过本次实验,可以看出利用Multisim 软件仿真出来的结果与理论计算上得出的结论相差并不大。

理论计算与仿真结果的误差可能是由于在理论计算时,对电路进行了化简。

而在仿真软件中元器件参数存在温度系数等差别,也造成了与理论值不符合的现象。

其次,试验中求解rbe ,rce 时,用的是图解法,那么在测量曲线的斜率的时候采取的是用割线代替切线的做法,不能避免的引入了误差。

但是,在现实中搭建电路时,可能与理论值或者实际值存在更大的差别。

因为实际电路中的元件的参数是离散的,厂家给出的仅仅是原件参数的一个平均值。

并且模拟电路容易受到温度的影响,在不同温度下做出的结果也会存在差异。

因此对于模拟电路的设计,在理论计算和仿真之后的电路符合设计标准时,仍然需要在面包板或者实验板上搭建电路进行测试。

在本次实验的过程中,在求解三极管静态工作点的时候,由于软件本身不具备求解三极管Vce 的选项,因此采取了求解表达式“Vc-Ve ”的方法间接求取Vbe 的值。

在调节电路到截止失真时,通过示波器并不能观察出理论上截止失真时应该出现的顶端削波的情形。

为了解决这个问题,本实验中采取了在输出端加入一个万用表,通过观察万用表的交流电压值是否小于或等于输入信号电压值,来判断电路是否发生了截止失真的情况。

本实验通过调节电位器R6来控制波形的输出,但是R6的最小调节单位为1%,有时可能会正好调节过电路所需要的最佳工作点。

因此,实验中在R6下面加入了一个电阻R4,用以控制电路的最佳工作点。

作为推广,在电路需要某个最佳工作点时,也可以将R4变为大阻值电阻,R6的变化范围减小,这样可以用R4将工作点设置在最佳点附近,而用R6进行微调,从而得到最佳工作点。

实验二 差动放大电路的设计与仿真一、实验目的1.掌握长尾差动放大电路的设计方法。

2.掌握长尾差动放大电路的静态工作点的调试方法。

3.掌握长尾差动放大电路的差模电压放大倍数、输入电阻、输出电阻的测试方法。

了解差模电压放大倍数的频率特性,观察交流参数的特点。

二、实验要求(1)设计一个长尾式差动放大电路,给定阻值为100k Ω的射极公共电阻,要求空载时的VD A 大于20。

(2)测试电路每个三极管的静态工作点值和 、 rbe 、rce 值。

(3)空载下给电路分别输入差模和共模交流小信号,分别测试电路的双端输出的差模增益VD A ,单端输出的差模增益1VD A ,双端输出的共模增益VC A 以及单端输出的共模增益1VC A 值。

相关文档
最新文档