位似图形(一)2课时导学案
八年级数学下册《27.3 课题 位似》导学案(1) 新人教版
八年级数学下册《27.3 课题位似》导学案(1)新人教版1、了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形质、2、掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小、二、重点、难点1、重点:位似图形的有关概念、性质与作图、2、难点:利用位似将一个图形放大或缩小、学习过程:(学习方法指导)(1)掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;④位似比就是相似比、利用位似图形的定义可判断两个图形是否位似、(2)位似图形首先是相似图形,所以它具有相似图形的一切性质、位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比)、(3)两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行、(4)利用位似,可以将一个图形放大或缩小,其步骤见下面例题、作图时要注意:①首先确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形、一、自主学习预习导学1、自学课本59602、什么是位似图形?和位似中心?二、问题探究探究1例1:已知:如图,多边形ABCD,把它放大为原来的2倍,即新图与原图的相似比为2、应该怎样做?你能说出画相似图形的一种方法吗?例2、把图1中的四边形ABCD缩小到原来的、用三种方法(1)在四边形外、(2)在四边形内,(3)在它的反向延长线上三、达标应用、如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心、分析:位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可、反思与评价:二、问题探究教师“复备”栏或学生笔记栏。
《位似图形》导学案1
师:2008 年,第 生: 讲文明、 讲礼貌, 29 届奥运会在我 互相帮助,从小事做 国举办。 起。 师:我们要努力 学习,为奥运出 份力添份彩。 “ 你 爱 数 学 吗?” 展示投影。 “你爱数学吗” 每个字后面都有 一 个 简 单 的 问 生:选字答题 题。选一个字, 将会弹出一个问 题。学生答对老 师奖励。 “你”字 题让学生回顾小 结。 “爱”字题对 学生进行爱国教 育。
(2)正确
(3) 不正确, 有可能 是缩小后的图形。
回顾小结
你:通过上面的学习你有什么收获? 爱:爱家乡爱祖国,作为社会主义接 班人,你打算为奥运做些什么? 数: △ABC 和△DEF 是位似图形, 且位似比为 2∶5, 则面积比是多少? 学:如图,△ABC 在平面直角坐标系 中,以原点 O 为位似中心,将△ABC 放大到原来的 2 倍得到△DEF,那么 落在第四象限的点 D 的坐标是 A y B C O x
D E
2。思考 3。步骤: (1) 确定位似中心 P (2) 在原图形上找几 个关键点。 (3) 把关键点与点 P 分别连结起来,据位 似比找到原图上的关 键点在新图形上的对 应点。 4。 把对应点依次连结 起来。
突破难点 升华新知
对于上面例题,你还有其他方法吗?
A
A P B C D
G C F E
吗: 如图, △ABC 和△DEF 是位似图
形,能找出位似中心吗? A C D E F
B
最后以一首歌结束上课。 板书设计
三角形的顶点坐标分别是 A(2,2) , B(4,2) ,C(6,4) ,试将 △ ABC 缩 小 , 使 缩 小 后 的 △DEF 与 △ ABC 的对应边的比为 1∶2
我们知道将图形 放大,肯定知道 将图形缩小。展 示课件,师生分 析,交流方法。
《位似》导学案
《位似》导学案1教学目的1、了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2、掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.重点、难点1、重点:位似图形的有关概念、性质与作图.2、难点:利用位似将一个图形放大或缩小.教学过程一、自主探究:活动1 :生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.(教材P59页思考)观察图27.3-2图中有多边形相似吗?如果有,那么这种相似什么共同的特征?图27.3-2通过观察了解到图形,除具备相似的所有性质外,还有其特性:如果两个图形不仅是相似图形,而且是每组对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形. 这个点叫做位似中心.这时的相似比又称为相似比.(位似中心可在形上、形外、形内.) 每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.二、自主活动:可以将一个图形放大或缩小活动2 (教材P60例题))把图1中的四边形ABCD 缩小到原来的21.分析:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′。
问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA , OB , OC ,OD ;(3)分别在射线OA , OB , OC , OD 的反向延长线上取点A ′、B ′、C ′、D ′,使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,作法三:(1)在四边形ABCD 内任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′.三、当堂达标:画出三角形ABC 的位似图形,使其扩大到原来的2倍。
位似图形导学案
位似图形导学案第一篇:位似图形导学案23.5位似图形导学案教学目标:1.了解位似图形及其有关概念。
2.掌握位似图形的性质。
3.利用图形的位似解决一些简单的实际问题。
教学重点:探索并掌握位似图形的定义和性质。
教学难点:运用定义和性质解决简单的位似图形问题。
教学过程:一、自主学习1.预习课本80页,将下面的三角形ABC放大到2倍,也就是使所得的三角形与原三角形的相似比为。
画出图形并写出步骤。
2.预习课本81页,画三角形ABC的相似图形,使得原图形与所画图形的相似比为1:2,且位于位似中心的两侧。
二、合作探究1.用刻度尺和量角器量一量,上边两个三角形是否相似?2.你能否用演绎推理的说明它们是否相似?如果可以,能否写出步骤?3.通过课本的预习,你还有其他的画法吗?4.观察你所画的位似图形,你能找到它们的对应边吗?它们的对应边之间有什么关系?三、展示点拨小组讨论,展示讨论结果,补充下面填空。
1.位似图形的定义:如果两个多边形不仅,而且对应顶点的连线,像这样的相似叫做位似。
位似图形中,对应顶点连线的交点叫,这时的相似比又叫做。
2.位似图形的性质有哪些?3.位似中心可以取在多边形的哪里?四、达标检测1.关于对位似图形的表述,下列命题正确的是。
(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比。
2.用作位似形的方法,可以将一个图形放大或缩小,位似中心()A.只能选在原图形的外部; B.只能选在原图形的内部; C.只能选在原图形的边上; D.可以选择任意位置。
3.如图,△ABC与△A′B′C′是位似图形,且位似比是1︰2,若AB =2cm,则A′B′是 cm,并在图中画出位似中心O。
B′ CA C ′A ′B 4.已知五边形ABCDE和点O,请你以O为位似中心画五边形ABCDE的位的图形1AB1=A′B′C′D′E′,使得相似比=,即2A'B'25.已知:E(-4,2),F(-1,-1),以O为位似中心,按比例尺1∶2,把△EOF缩小,则点E的对应点E′的坐标为()A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,-4)五、反思总结这节课你有什么收获?第二篇:图形的位似说课稿《图形的位似》说课稿各位老师,下午好,今天我说课的课题是《图形的位似》。
位似1导学案
位似1主备人:李江华 审核人:叶天明 柯琼英 时间:2011-3-____一、学习目标1、能理解位似是一种特殊的相似变换,位似图形的性质;2、能运用位似变换将一个图形放大或缩小。
二、重点难点学习重点:位似的定义及其性质的掌握 学习难点:利用位似变换将一个图形放大或缩小三、前置学习1、位似变换是一种特殊的相似变换如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,对应边互相平行,那么这样的两个图形叫做位似图形(如右下图)。
这个点叫做位似中心,这时的相似比又称为位似比。
从定义可以看出,位似图形一定是相似图形,但相似图形不一定是位似图形2、位似图形的性质位似图形上的任意一对对应点到位似中心的距离之比等于位似比,这样,除了图形本身的对应线段成比例之外,位似图形与一般 的相似图形相比,有了更多的成比例线段。
根据右图,请写出线段的比例式:________________________________________ ________________________________________由上述学习,我们可以得出位似图形的性质有:位似图形是_______图形(填“全等”或“相似”)位似图形每组对应点所在直线都经过____________(填“旋转中心”或“位似中心”) 位似图形对应边所在直线要么重合,要么__________(填“垂直”或“平行”)四、展示交流如图1,点O 是△ABC 外的一点,分别在射线OA 、OB 、OC 上取一点D 、E 、F ,使得3===OCOF OB OE OA OD ,连接DE 、EF 、FD ,所得△DEF 与△ABC 是否相似?证明你的结论。
五、合作探究画一个三角形,使它与已知△ABC 相似,且原三角形与所画三角形的相似比为2:1。
方法一: 方法二:CC六、达标拓展1、如果正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若AB :FG=2:3,则下列结论正确的是( ) A 、2DE=3MN B 、3DE=2MN C 、3∠A=2∠F D 、2∠A=3∠F2、用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可选在( )A 、原图形的外部B 、原图形的内部C 、原图形的边上D 、任意位置3、如图2,△ABC 与是位似图形,位似比为2:3,已知AB=4,则DE 的长等于( ) A 、6 B 、5 C 、9 D 、8/34、如果四边形ABCD 与四边形EFGH 是位似图形, 且位似比为a ,下列说法正确的是______________ ○1 △ABC ∽△EFG ; ○2 a FH BD EG AC == ; ○3 a HE GH FG EF DA CD BC AB =++++++ ; ○4 2a EGH ACD =∆∆面积面积 。
冀教版九年级数学上册导学案 位似图形
相关资料位似图形学习目标:1、知道位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2、握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小. 重点:位似图形的有关概念、性质与作图.难点:利用位似将一个图形放大或缩小.一、自主预习1.观察下图中有多边形相似吗?如果有,那么这种相似什么共同的特征?2.把四边形ABCD 缩小到原来的. 21分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与21原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A′、B′、C′、D′, 使得; 21OD D O OC C O OB B O OA A O ='='='='(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.二、合作探究问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA , OB , OC ,OD ;(3)分别在射线OA , OB , OC , OD 的反向延长线上取点A′、B′、C′、D′,使得; 21OD D O OC C O OB B O OA A O ='='='='(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图3.作法三:(1)在四边形ABCD 内任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A′、B′、C′、D′, 使得; 21OD D O OC C O OB B O OA A O ='='='='(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.四、归纳反思谈谈你这节课学习的收获五、达标测评1.已知:四边形ABCD 及点O ,试以O 点为位似中心,将四边形放大为原来的两倍.(1) (2)(3) (4)。
§27.3位似(1)导学案
九年级数学◆导学案 主备:马建兴 审阅:- 1 -今天有进步,如果天天坚持这样,你一定是最棒的!§27.3位似(1)导学案1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.一、课前准备教师活动:提出问题:生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的. 思考:观察图27.3-1图中有多边形相似吗?如果有,那么这种相似什么共同的特征?二、新课导学【活动探究】教师活动:提出问题: 把图1中的四边形ABCD 缩小到原来的21.分析:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′,使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A′B′C ′D ′,如图2.学年下学期◆九年级 第27章 相似 班级: 姓名:今天有进步,如果天天坚持这样,你一定是最棒的! - 2 - 问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA , OB , OC ,OD ;(3)分别在射线OA , OB , OC , OD 的反向延长线上取点A ′、B ′、C ′、D ′,使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图3.作法三:(1)在四边形ABCD 内任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图4.(当点O 在四边形ABCD 的一条边上或在四边形ABCD 的一个顶点上时,作法略——学生自己完成)三、学习自测1、四边形ABCD 和四边形A 1B 1C 1D 1是位似图形,位似中心是点O ,则它们的对应点的连线一定经过____________。
九年级数学上册 25.7 第2课时 位似图形导学案 (新版)
25.7 相似多边形和图形的位似第2课时位似图形学习目标:1.理解并掌握位似图形的相关概念.2..学习并掌握位似图形的性质并能够运用其解决问题.学习重点:位似图形的性质.学习难点:运用位似图形的性质解决问题.一、知识链接1.已知△ABC,请作一个△A'B'C',使它们的相似比为1:2.二、新知预习2.如图,是日常生活中常见的一些图形.请观察,图中有相似图形吗?如果有,这种相似有什么特征?3.如图,点O在四边形ABCD的内部,在其外部作一个四边形A'B'C'D',使得四边形ABCD∽四边形A'B'C'D',且相似比为1:2.,请仿照作法作出另一个相似比为1:3的四边形A''B''C''D'',观察这两个图形有何特点.【归纳】像这样的图形,它们不仅相似,而且经过每对对应点的直线______,对应边互相____行(或在_______).我们把这样的图形称为位似图形.三、自学自测.观察下图中的多边形,判断它们是不是位似图形,再经过计算后验证你的结论.自主学习四、我的疑惑____________________________________________________________________________________________________________________一、要点探究探究点1:位似图形的概念及性质例1:如图所示,指出下列各图中两个图形是否是位似图形?若是,请指出位似中心.【归纳总结】解决此类题的关键是首先要判断两个图形是不是相似图形,然后再找出对应点,作出几对对应点所在的直线,观察是否经过同一个点.若两个图形是相似图形,且所作的直线经过同一个点,则这两个图形是位似图形.下面说法:(1)相似图形一定是位似图形(2)位似图形一定是相似的图形(3)同一底片时底片上的图形和银幕上的图形是位似图形,其中正确的说法有()A、1个B、2个C、3个D、4个探究点2:位似图形的画法例2:(1)如图①,在位似中心点O的异侧,作出已知四边形ABCD的位似图形A′B′C′D′,使四边形A′B′C′D′与四边形ABCD的相似比为2:3;(2)如图②,已知五边形ABCDE,在位似中心点O的同侧作五边形ABCDE的位似图形A′B′C′D′E′,使五边形A′B′C′D′E′与五边形ABCDE的相似比为1:3;合作探究【归纳总结】画位似图形时,要注意相似比,即分清楚是已知原图与新图的相似比,还是新图与原图的相似比.画位似图形的关键是画出图形中顶点的对应点.画图的方法大致有两种:一是每对对应点都在位似中心的同侧;二是每对对应点都在位似中心的两侧.如图,已知六边形ABCDEF,位似中心点O在AB边上,在点O的另一侧作位似图形A′B′C′D′E′F′,使六边形A′B′C′D′E′F′与六边形ABCDEF的相似比为1:2.探究点三:坐标系中的位似【问题1】在平面直角坐标系中有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,如何得到线段A′B′?(1)在方法一中,A′的坐标是_____,B′的坐标是______,对应点坐标之比是______; (2)在方法二中,A′′的坐标是______,B′′的坐标是______,对应点坐标之比是_________.【问题2】如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(3,1),以O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?位似变换后,A,B,C的对应点坐标为:A′_______,B′______,C′_______.【归纳】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于__________.例3:如图,在平面直角坐标系中,A (1,2),B (2,4),C (4,5),D (3,1)围成四边形ABCD ,作出一个四边形ABCD 的位似图形,使得新图形与原图形对应线段的比为2:1,位似中心是坐标原点.【归纳总结】画以原点为位似中心的位似图形的方法:将一个多边形各点的横坐标与纵坐标都乘±k (或除以±k ),可得新多边形各顶点的坐标,描出这些点并顺次连接这些点即可. 【针对训练】在平面直角坐标系中,已知点A (6,4),B (4,-2),以原点O 为位似中心,相似比为12把△ABO 缩小,则点A 的对应点A ′的坐标是( )A.(3,2)B.(12,8)C.(12,8)或(-12,-8)D.(3,2)或(-3,-2) 内容基本图形概念它们不仅相似,而且经过每对对应点的直线______,对应边互相____行(或在_______).我们把这样的图形称为位似图形.作法如图1.七边形ABCDEFG 位似于七边形1111111A B C D E FG ,它们的位似比比为2:3,已知位似中心O 到A 的距离为6,那么O 到1A 的距离为( ) A 、13.5 B 、12 C 、18 D 、92.已知:如图,E (-4,2),F (-1,-1),以O 为位似中心,按比例尺1∶2,把△EFO 缩小,则点E 的对应点E′的坐标为( ). A .(2,-1)或(-2,1); B .(8,-4)或(-8,4); C .(2,-1); D .(8,-4).3..如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是多少?3、在平面直角坐标系里有四个点:A (0,1),B (4,1),C (5,4),D (1,4).(1)顺次连结点A 、B 、C 、D ,得到一个怎样的四边形?(2)将各点的横、纵坐标都乘以2,得到点A’、B’、C’、D’,那么四边形A’B’C’D’是什么图形,它与四边形ABCD 有何关系?当堂检测参考答案:当堂检测yxFEO1.D2.A3.(0,9)4.图略。
九年级数学 位似图形的概念及画法(教案、导学案)
27.3位似第1课时位似图形的概念及画法教学目标【知识与技能】1. 掌握位似图形的定义、性质及画法.2. 掌握位似图形与相似图形的区别和练习.【过程与方法】经历观察、思考及动手操作等过程,锻炼学生的分析问题,解决问题的能力.【情感态度】通过对位似图片的观察,欣赏,可激发学生的学习兴趣,增强审美意识.【教学重点】理解并掌握位似图形的定义,性质及画法.【教学难点】位似图形的多种画法.教学过程一、情境导入,初步认识问题在日常生活中,我们经常看到下面这些相似的图形,它们有什么特征呢?【教学说明】通过所展示的几幅美丽图片的观察,既可以激发学生的学习兴趣和求知欲望,增强审美意识,又能通过相似图形的这种特殊位置关系初步感受位似图形教学时,教师应着重引导学生观察这些相似图形所具有的特殊位置关系,可逐个进行剖析.二、思考探究,获取新知问题如图,图中有多边形相似吗?如果有,那么这些图形有什么特征?【教学说明】让学生相互交流,共同发现,然后选取代表发表自己的观点,认识位似图形.【归纳结论】位似图形:如果两个图形的对应顶点相交于一点,对应边互相平行,这样的两个图形叫做位似图形.位似图形的特征:(1)位似图形必定是相似图形(反过来就不一定成立);(2)位似图形的对应顶点连线(或延长线)必相交于同一点,对应边互相平行;(3) 位似图形的对应边的比称为位似比,对应顶点连线(或延长线)相交的那个交点称为位似中心.)利用位似,可以将一个图形放大或缩小.三、典例精析,掌握新知例1如图,指出各组图形中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.【教学说明】教师应引导学生掌握怎样判别两个图形是位似图形的方法,然后由学生自主探究,相互交流获得结论.显然(1)、(2)、(3) 中的两个图形都是位似图形,其位似中心分别为A,A,P,而(4)中两个正方形就不是位似图形,因为对应点的连线不能相交于同一点,即点O并不是对应点连线的交点.通过本例的处理可加深学生对位似图形及其性质的理解.解答过程略.例2 如图所示的是一个四边形ABCD,请将它缩小为原图的.【分析】将一个图形缩小的原图的,即是要新图形各个顶点到位似中心的距离与原图中各对应顶点到位似中心的距离之比为1:2,因而只要在同一平面内确定了某一点为位似中心的话,就一定能得到缩小后的四边形.而选取某一点为位似中心时,这点可在两个图形的外部,中间或它们的内部几种不同情形,我们不妨按三种不同情形来进行画图,试试看.解作法一:(1)在四边形ABCD的外面任取一点0(如图①所示)(2) 过点O分别作射线OA、OB、OC、OD;(3) 分别在OA、OB、OC、OD上截取点A',B’,C’,D’,使得====;(4) 顺次连接A’,B’,C’,D’,所得的四边形A’B' C’D’就是将四边形ABCD缩小后的图形,且其位似比为作法二:(1)在四边形ABCD外任取一点O (如图②)(2)作射线OA 、OB 、OC 、OD ;(3)分别在射线OA ,OB ,OC ,OD 的反向延长线上取点 A’ ,B’ ,C’,D’ , 使====;(4)顺次连接A’,B’,C’,D’,则四边形A’B’C’D’ 也是四边形ABCD 缩小的图形.作法三:(1)在四边形ABCD 的内部任取一点O (如图③) (2)连OA 、OB 、OC 、OD ;(3)分别在OA ,OB ,OC ,OD 上截取点 A’ ,B’ ,C’,D’ , 使====;(4)顺次连接A’,B’,C’,D’,则四边形A’B’C’D’ 是将四边形ABCD 缩小的图形.【教学说明】对上述三种作图方法,教师可选讲其中一种,另两种方法在稍作提示后应留给学生完成,让学生积极参与,动手实践,在实践中增长知识,获取技能.四、运用新知,深化理解1. 如图,△OAB 和△OCD 是位似图形,AB / /CD 吗?为什么?2. 如图,以O为位似中心,画出将△ABC放大为原来的两倍的图形.【教学说明】这两道小题让学生独立完成后,相互交流.教师巡视,适时参与讨论,设计,进一步加深学生理解和掌握位似图形的定义和性质.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1. 位似图形和相似图形的联系和区别是什么?请说说看;2. 将一个图形放大或缩小,可以利用位似得到. 你认为画出一个图形的位似图形的关键是什么?通常有几种可能?【教学说明】师生共同回顾,对所学过知识进行反复梳理,加深认识.1.布置作业:从教材P51习题27.3中选取.2.完成创优作业中本课时的“课时作业”部分.教学反思本课时教学通过创设'清境让学生感受了位似的概念,接着通过实际操作,让学生体会了位似图形的作法.在教学时,应注意加强与学生的互动与交流,并让学生动手操作,提高学生的自主学习能力.27.3 位似第1课时位似图形的概念及画法一、新课导入1.课题导入观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征呢?这就是这节课要研究的问题.(板书课题)2.学习目标(1)知道位似图形以及相似与位似的关系,能说出位似图形的性质.(2)能按要求作一个图形的位似图形,会利用位似作图将一个图形放大或缩小.3.学习重、难点重点:位似图形的概念、性质和位似作图.难点:利用作位似图形的方法将一个图形按一定的比例放大或缩小.二、分层学习1.自学指导(1)自学内容:教材P47.(2)自学时间:6分钟.(3)自学方法:观察、交流和归纳,并完成自学参考提纲.(4)自学参考提纲:①观察:下列各组图形中的两个图形,它们有什么特征?特点:两个图形相似;对应点所在的直线交于一点.②如果两个相似图形的对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个交点叫做位似中心,这时我们说这两个图形关于这点位似.③在各图形中,位似图形的位似中心与这两个图形有什么位置关系?位似中心可在两个图形之间或之外. 在各图形中,任取一对对应点,度量这两个点到位似中心的距离,计算这两个距离的比与这两个相似图形的相似比有何关系?相等.④如图,△OAB和△OCD是位似图形,AB与CD平行吗?为什么?如果AB∥CD, 那么△OAB和△OCD是位似图形吗? 为什么?AB∥CD,因为AB、CD是两个位似图形的对应边.如果AB∥CD,则△OAB与△OCD是位似图形.因为AB∥CD,则△OAB∽△OCD,又因为对应点连接交于O点,所以△OAB与△OCD是位似图形.2.自学:参考自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生对位似图形定义的两个要素的把握情况.②差异指导:根据学情进行指导.(2)生助生:小组交流、研讨.4.强化(1)判断位似图形两要看:一要看这两个图形是否相似,二要看对应点的连线是否都经过同一点.(2)点学生口答自学参考提纲第④题,并点评.1.自学指导(1)自学内容:教材P47~P48练习之前的内容.(2)自学时间:8分钟.(3)自学要求:完成探究提纲.(4)探究提纲:①把四边形ABCD 放大到原来的2倍.作法一:a.在四边形ABCD 外 任取一点O ,过点O 分别作射线 OA 、OB 、OC 、OD ;b.分别在射线 OA 、OB 、OC 、OD 上取点 A′、B′、C′、D ′,使得2OA OB OC OD OA OB OC OD''''====. c.顺次连接 A′、B′、C′、D′ ,得到所要画的四边形A′B′C′D′.作法二:自己独立完成.a.在四边形ABCD 外任取一点O ,过点O 分别作射线AO 、BO 、CO 、DO;b.分别在射线AO 、BO 、CO 、DO 上取点A′、B′、C′、D′,使得2OA OB OC OD OA OB OC OD''''====. c.顺次连接A′、B′、C′、D′,得到所要画的四边形A′B′C′D′.②把四边形ABCD 缩小到原来的12. 作法同上,使12OA OB OC OD OA OB OC OD ''''====. ③如图,以点O 为位似中心,把△ABC 放大为原来的3倍.如图所示.2.自学:参考自学指导,体会学习方法指导,展开自学.3.助学(1)师助生:①明了学情:明了学生能否掌握位似图形的画图方法.②差异指导:根据学情进行指导.(2)生助生:小组交流、研讨.4.强化(1)位似图形的画法.(2)点几名学生展示探究提纲第③题,并点评.三、评价1.学生学习的自我评价:这节课你学到了些什么?还有哪些疑虑?2.教师对学生的评价:(1)表现性评价;从学生参与到学习活动中的积极性、小组交流与合作等方面进行评价;(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时通过创设情境让学生感受了什么是位似图形,接着通过实际操作让学生体会了位似图形的作法.学生之间相互交流讨论,明白位似图形是一种特殊的相似图形,所以它具有相似图形的一切性质,又具有特殊的性质.应用知识的迁移,引导学生快速掌握位似图形的性质.同时学会利用位似,可以将一个图形放大或缩小.一、基础巩固(70分)1.(10分)下列说法不正确的是(D)A.位似图形一定是相似图形B.相似图形不一定是位似图形C.位似图形上任意一对对应点到位似中心的距离之比等于相似比D.位似图形中每组对应点所在的直线必相互平行2.(10分)用作位似图形的方法,可以将一个图形放大或缩小,位似中心(D)A.只能选在原图形的外部B.只能选在原图形的内部C.只能选在原图形的边上D.可以选择任意位置3.(10分)如图, △ABC与△DEF是位似图形, 相似比为2∶3, 已知AB=4, 则DE的长等于(A)A.6B.5C.9D.8 3第3题图第4题图4.(10分)如图, 点O是等边△PQR的中心, P′,Q′,R′分别是OP,OQ,OR的中点, 此时, △P′Q′R′与△PQR是位似三角形, 则相似比、位似中心分别是(D)A.2,点PB.12,点PC.2,点OD.12,点O5.(10分)如图, 火焰的光线穿过小孔O, 在竖直的屏幕上形成倒立的实像, 像的高度BD=2 cm, OA=60 cm, OB=15 cm, 则火焰的高度为8 cm .6.(10分)如图,如果虚线图形与实线图形是位似图形,求它们的相似比并找出位似中心.解:(1)相似比为2∶1,位似中心为点A;(2)相似比为2∶1,位似中心为点B;(3)相似比为4∶1,位似中心为点C.7.(10分)如图,以点P为位似中心,将五角星缩小为原来的12.解:如图所示.二、综合应用(20分)8.(20分)如图,正方形EFGH,IJKL都是正方形ABCD的位似图形,点P是位似中心.(1)如果相似比为3,正方形ABCD的位似图形是哪一个?(2)正方形IJKL是正方形EFGH的位似图形吗?如果是,求相似比;(3)如果由正方形EFGH得到它的位似图形正方形ABCD,求相似比.解:(1)正方形IJKL.(2)是;3∶2.(3)1∶2.三、拓展延伸(10分)9.(10分)如图, △ABC与△A′B′C′是位似图形, 点A, B, A′, B′,O共线, 点O 为位似中心.(1)AC与A′C′平行吗? 请说明理由;(2)若AB=2A′B′, OC′=5, 求CC′的长.解:(1)AC∥A′C′.∵△ABC与△A′B′C′是位似图形,∴∠A=∠B′A′C′,∴AC ∥A′C′.(2)∵△ABC 与△A′B′C′位似, ∴△ABC ∽△A′B′C′, ∴2OC AB OC A B ==''', ∴OC=10,∴CC′=OC -OC′=5.。
图形的位似(第一课时)导学案
图形的位似(第一课时)导学案年级:学科:数学主备人:审核:内容:图形的位似(第一课时)课型:新授备课时间:班:组长:号:姓名:教学目标:知识与技能:.位似图形的定义与性质. 及它们的简单运用过程与方法:.学生通过交流、归纳,位似图形的定义与性质,能够用作位似图形的方法将图形的放大与缩小情感态度价值观:增强学生对知识的应用意识.培养学生动手操作的良好习惯重点:位似图形的定义与性质.难点:位似图形的定义与性质的简单运用教学过程:.一、学前准备1.相等,成比例的两个多边形叫做相似多边形.2.相似多边形性质1:相似三角形的比、的比和的比都等于相似比.3. 相似多边形性质2:相似多边形的比等于相似比.相似多边形的比等于 .4.已知一个三角形的周长扩大为原来的12倍,若其形状不变,则面积扩大为原来的倍5.如图,测量小玻璃管口径的量具ABC,AB的长为10cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是多少?6. 在ΔABC中,AB=12㎝,BC=18㎝,AC=24㎝,ΔABC∽ΔA'B'C',且ΔA'B'C'的周长为81㎝,求ΔA'B'C'的各边的长二、1、自主学习,解决问题自学书113图4-36和图4-37,思考下列问题:(1)它们是相似图形吗?(2)图形位置间有什么关系?你能寻找出一些规律吗三、合作探究:1、大家刚才观察到的一组特殊的相似图形,叫做位似图形位似图形指 .位似图形必须同时满足的条件是:;这个点叫做,.这时的相似比叫做 ..2、课堂练习:(1)做教材113例1。
(2)请在下图中任取一对对应点,度量这两个点到位似中心的距离,它们的比与位似比有关系吗?(1)(2)由此可以得到位似图形的性质:位似图形等于位似比.(3)图(1)(2)中的两个不同的三角形可以用橡皮筋放大图形的方法相互得到.你能做到吗?四、当堂测验1.在一张比例尺为1:1000的地图上,12cm 的面积表示实际面积是 ( ) A. 10002cm B. 1002m C. 102m D. 100002cm2.一个三角形的面积扩大为原料的9倍,那么它的三边的长都扩大了原来的( ) A. 9倍 B. 6倍 C. 3倍 D. 2倍3.如下图,ΔABC 与ΔDEF 是位似图形,且D 是OA 的中点,则=BCEF( )A. 21B. 31C. 41D. 324..如果四边形ABCD 与四边形A ′B ′C ′D ′是位似图形,且位似比为k ,则下列等式中成立的有( )① k D B BDC A AC =='''' ② ΔBCD ∽ΔB ′C ′D ′③2'''1kS S C B A ABC =三角形三角形 ④k D C B A ABCD 1''''=的周长四边形的周长四边形 A. 1个 B. 2个 C. 3个 D. 4个5.若两个图形位似,则下列叙述不正确的是( )A.每对对应点所在的直线相交于同一点;B. 两个图形的对应线段之比等于位似比;C. 两个图形的对应线段必平行;D. 两个图形的面积比等于位似比的平方;6.如图所示,ΔABO 与ΔCDO 是位似图形,则()()()ABBOAO==五:学习体会:(1)本节课我的收获是: (2)本节课我的的疑惑是: (3)你对老师关于本课的教学有什么建议六.课后拓展训练:1.按如图1方法将ΔABC 的三边缩小为原来的21,如图任取一点O ,连接AO,BO,CO,并取它们的中点D,E,F,得到ΔDEF ,则下列说法正确的有 ( )①. ΔABC 与ΔDEF 是位似图形 ②. ΔABC 与ΔDEF 是相似图形 ③.ΔABC 与ΔDEF 的周长比为2:1 ④. ΔABC 与ΔDEF 的面积比为4:1 A. 1个 B. 2个 C. 3个 D. 4个图1 图22.如图2,正方形ABCD 的边长为2,AE=EB,MN=1,线段MN 的两端在BC 、CD 上,若△AED 与以M 、N 、C 为顶点的三角形相似,求CM 的长.七、课后反思:BCDMNEA。
北师大版九年级数学上册导学案图形的位似 (1)
A DBC E(2) 北师大版九年级数学上册导学案年级九班级学科 数学课题 4.8图形的位似(1) 第 1 课时 总 课时编制人审核人使用时间第 周星期使用者课堂流程 具 体 内 容学习 目标 1.理解位似多边形的定义及相关性质。
2.能利用图形的位似将一个图形放大或缩小.学法指导温故 知新1. 相似多边形的定义是什么?2. 相似三角形的定义是什么?(3分钟) 1.课前自己独立完成,学科长检查。
教 学知识点1:位似多边形(阅读书上P113内容)1.如果两个相似多边形每组对应点所在的直线都经过同一个点,那么这样的两个多边形叫做 。
这个点叫做 。
例1:指出下图中的图形是否是位似图形?若是,指出位似中心。
位似中心为位似中心为注意:位似多边满足两个条件:(1)是相似多边形;(2)两多边形每组对应点所在的直线都经过同一点。
2.自学书上P113-P114例11)在这道例题中,=DE AB ,DF AC = ,=EFBC. 你发现了什么?(8分钟) 2.自己阅读课本,把看不明白得用红笔画出来,然后对子之间相互交流。
(10分钟)3.自己独立完成,完成有困难的与本组成员合作完成。
(10分钟)4.学科长带领本组成员审题并分析该题的解题思路,达到共同完成得目的。
P (1)A CB 2)在这道例题中,满足条件的△DEF 可以在以点O 的另一侧吗?你如果可以,你能试着画一下吗?如图:知识点2:位似多边形的画法 一般步骤为:(1)确定位似中心; (2)确定原图形的关键点,通常是多边形的顶点;(3)确定位似比; (4)找出新多边形的对应关键点。
3.总结自己的发现:我的收获及存在的问题:(4分钟)5.老师提问:每组抽查两名同学回答。
流 程课堂检测1. 关于对位似图形的表述,下列命题正确的是_________ .(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.2.如图,五边形ABCDE和五边形A1B1C1D1E1是位似图形,点A和点A1是一对对应点,P是位似中心,且2 PA=3 PA1,则五边形ABCDE和五边形A1B1C1D1E1的相似比等于 ( )A、32.B、23.C、53.D、35.(10分钟)6.学生独立完成,老师巡查,学科长负责批阅。
北师大版九年级数学上册导学案图形的位似
北师大版九年级数学上册导学案年级九班级学科数学课题图形的位似(2)第 2 课时总课时编制人审核人使用时间第周星期使用者课堂流程具体内容学习目标1、在直角坐标系中,感受以O为位似中心的多边形的坐标变化与相似比之间的关系.2、经历以O为位似中心的多边形的坐标变化与相似比之间关系的探索过程,发展形象思维能力和数形结合意识。
3、通过实例进一步理解位似图形及相关概念和性质。
学法指导温故知新1、什么是位似图形?2、如何判断两个图形是否位似?3、怎样求两个位似图形的相似比?(3分钟)1.课前自己独立完成,学科长检查。
教学预习提示:(阅读P115-P116内容)知识点:位似多边形的性质1.按要求完成下列问题:(1)将点O,A,B的横、纵坐标都乘以2,得到三个点O′(),A′(),B′(),请你在书上P116图4-40的坐标系中找到这三个点。
(2)以这三个点为顶点的三角形与△OAB位似吗?(3)如果位似,指出位似中心为,相似比等于。
(4)如果将点O,A,B的横、纵坐标都乘以-2,得到三个点O′(),A′(),B′(),请你在坐标系中找到这三个点。
总结:将△OAB的横、纵坐标分别乘2和-2,得到的两个不同的三角形都是△OA B的图形,位似中心都是,相似比都是,它们关于原点成对称。
2.做一做:(1)将点A,B,C,D的横、纵坐标都乘以21,得到四个点A′(),B′(),(8分钟)2.自己阅读课本,把看不明白得用红笔画出来,然后对子之间相互交流。
(10分钟)3.自己独立完成,完成有困难得与本组成员合作完成。
(10分钟)4.学科长带领本组成员审题并分析该题的解题思路,达课堂检测1.如右图,以O为位似中心,作出四边形AB CD的位似图形,使新图形与原图形的相似比为2:1,并以O为原点,写出新图形各点的坐标.2.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.(10分钟)6.学生独立完成,老师巡查,学科长负责批阅。
人教版九年级数学下册同步备课系列27.3 位似(第一课时)(导学案)
27.3 位似(第一课时) 导学案1 了解位似图形及其相关概念,会识别位似图形,确定位似中心.2 理解位似图形的性质,能利用位似作图的方法将一个图形放大或缩小.★知识点1:位似图形的概念:如果两个图形的对应顶点的连线都经过同一点,且这点与对应顶点所连线段成比例,那么这两个图形叫做位似图形.★知识点2:位似图形的性质:1)位似图形是一种特殊的相似图形,它具有相似图形的所有性质,即对应角相等,对应边的比相等.2)位似图形上任意一对对应点到位似中心的距离之比等于相似比.(位似图形的相似比也叫做位似比)3)对应线段平行或者在一条直线上.一、位似图形的概念:如果两个图形的____________都经过同一点,且这点与对应顶点所连线段______________,那么这两个图形叫做位似图形.二、位似图形的性质:1)位似图形是一种特殊的_______________图形,它具有_____________图形的所有性质,即_________相等,________________相等.2)位似图形上任意一对对应点到位似中心的距离之比等于______________.(位似图形的相似比也叫做______________________)3)对应线段___________或者_______________.【提问一】我们学过哪些图形变化形式?【提问二】什么叫相似图形?相似与全等有什么区别与联系?新知探究【情景导入】在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?【问题一】观察下列图形,这些图形相似吗?【问题二】除了相似,还有其它共同特征吗?【问题三】简述位似图形的概念?【问题四】如果△ADE和△ABC是位似图形,DE和BC平行吗?为什么?【问题五】简述位似图形的性质?【问题六】类比位似图形的概念,尝试归纳位似多边形的概念?例1 下列各组图形中不是位似图形的是()【针对训练】1. 下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相比.其中正确的序号是( ) A.②B.①② C.③④ D.②③④2.下图所示的四种画法中,能使得△DEF是△ABC位似图形的有()A.①② B.③④ C.①③④D.①②③④【问题七】如图,已知△ABC,以点O为位似中心画△DEF,使其与△ABC位似,且位似比为2.【问题八】由此你发现了什么?【问题九】简述位似多边形的画法?例2 已知点O在△ABC内,以点O为位似中心画一个三角形,使它与△ABC位似,且位似比为1:2.例3.如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则ABCD=____.【针对训练】1.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若S△DECS△ABC =49,AC=3,则DC=_____.2. 如图,△ABC与△DEF位似,点O是它们的位似中心,且位似比为1∶2,则△ABC与△DEF的周长之比是()A.1∶2 B.1∶4 C.1∶3 D.1∶93.如图,△ABC与△DEF位似,点O为位似中心.已知OA∶OD=1∶2,则△ABC与△DEF的面积比为()A.1∶2 B.1∶3 C.1∶4 D.1∶54.如图,以点O为位似中心,作四边形ABCD的位似图形A′B′C′D′,已知OAOA′=13,若四边形ABCD的面积是2,则四边形A′B′C′D′的面积是()A.4 B.6 C.16D.18例4 图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点OC.点M D.点N【针对训练】1.如图,正方形网格图中的△ABC与△A′B′C′是位似关系图,则位似中心是()A.点O B.点P C.点Q D.点R1.(2023·辽宁阜新真题)如图,△ABC与△DEF是以点O为位似中心的位似图形,若OA:OD=2:3,则△ABC 与△DEF的面积比是.2.(2023·吉林长春真题)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为.1.通过本节课的学习,你学会了哪些知识?2.简述位似图形的概念和性质?3. 简述位似多边形的画法?【参考答案】【情景导入】在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.摄影师通过照相机,把人物的影像缩小在底片上.这样的放大或缩小,没有改变图形的形状,经过放大或缩小的图形,与原图形是相似的,因此,我们可以得到真实的图片和照片.【问题一】观察下列图形,这些图形相似吗?相似【问题二】除了相似,还有其它共同特征吗?1)这些相似图形对应顶点的连线都经过点O;2)点O与对应顶点所连线段成比例;【问题三】简述位似图形的概念?如果两个图形的对应顶点的连线都经过同一点,且这点与对应顶点所连线段成比例,那么这两个图形叫做位似图形.点O是位似中心.【问题四】如果△ADE和△ABC是位似图形,DE和BC平行吗?为什么?相似∵△ADE和△ABC是位似图形∴ADAB =AEAC=DEBC∴△ADE∽△ABC∴∠ADE=∠ABC∴ DE‖BC【问题五】简述位似图形的性质?1)位似图形是一种特殊的相似图形,它具有相似图形的所有性质,即对应角相等,对应边的比相等.2)位似图形上任意一对对应点到位似中心的距离之比等于相似比.(位似图形的相似比也叫做位似比)3)对应线段平行或者在一条直线上.【问题六】类比位似图形的概念,尝试归纳位似多边形的概念?对于两个多边形,如果它们的对应顶点的连线都经过同一点,且这点与对应顶点所连线段成比例,那么这两个多边形就是位似多边形.典例分析例1 下列各组图形中不是位似图形的是(D G)【针对训练】1. 下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相比.其中正确的序号是( A ) A.②B.①② C.③④ D.②③④2.下图所示的四种画法中,能使得△DEF是△ABC位似图形的有( D )A.①② B.③④ C.①③④D.①②③④新知探究【问题七】如图,已知△ABC,以点O为位似中心画△DEF,使其与△ABC位似,且位似比为2.【问题八】由此你发现了什么?位似中心的位置由两个图形的位置决定,可能在两个图形的同侧、异侧、图形的内部、边上或顶点上. 【问题九】简述位似多边形的画法?1) 确定位似中心.2) 确定原图形的关键点(每对对应点都在位似中心的同侧或在位似中心的异侧).3) 确定位似比.4) 根据对应点所在直线经过位似中心且到位似中心的距离之比等于位似比,作出关键点的对应点,再按照原图的顺序连接各点.例2 已知点O在△ABC内,以点O为位似中心画一个三角形,使它与△ABC位似,且位似比为1:2.例3.如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则ABCD =__25__.【针对训练】1.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若S△DECS△ABC =49,AC=3,则DC=___2__.2. 如图,△ABC与△DEF位似,点O是它们的位似中心,且位似比为1∶2,则△ABC与△DEF的周长之比是( A )A.1∶2 B.1∶4 C.1∶3 D.1∶93.如图,△ABC与△DEF位似,点O为位似中心.已知OA∶OD=1∶2,则△ABC与△DEF的面积比为( C )A.1∶2 B.1∶3 C.1∶4 D.1∶54.如图,以点O为位似中心,作四边形ABCD的位似图形A′B′C′D′,已知OAOA′=13,若四边形ABCD的面积是2,则四边形A′B′C′D′的面积是( D )A.4 B.6 C.16D.18例4 图中的两个三角形是位似图形,它们的位似中心是( A)A.点P B.点OC.点M D.点N【针对训练】1.如图,正方形网格图中的△ABC与△A′B′C′是位似关系图,则位似中心是( A )A.点O B.点P C.点Q D.点R1.(2023·辽宁阜新真题)如图,△ABC与△DEF是以点O为位似中心的位似图形,若OA:OD=2:3,则△ABC 与△DEF的面积比是4:9.2.(2023·吉林长春真题)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为1:3.。
冀教版-数学-九年级上册-25.7第2课时 位似图形 导学案
位似图形学习目标:1.理解并掌握位似图形的相关概念.2..学习并掌握位似图形的性质并能够运用其解决问题.学习重点:位似图形的性质.学习难点:运用位似图形的性质解决问题.教学过程一、知识链接1.已知△ABC,请作一个△A'B'C',使它们的相似比为1:2.二、新知预习2.如图,是日常生活中常见的一些图形.请观察,图中有相似图形吗?如果有,这种相似有什么特征?3.如图,点O在四边形ABCD的内部,在其外部作一个四边形A'B'C'D',使得四边形ABCD ∽四边形A'B'C'D',且相似比为1:2.,请仿照作法作出另一个相似比为1:3的四边形A''B''C''D'',观察这两个图形有何特点.【归纳】像这样的图形,它们不仅相似,而且经过每对对应点的直线______,对应边互相____行(或在_______).我们把这样的图形称为位似图形.三、自学自测.观察下图中的多边形,判断它们是不是位似图形,再经过计算后验证你的结论.四、我的疑惑_____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________一、要点探究探究点1:位似图形的概念及性质例1:如图所示,指出下列各图中两个图形是否是位似图形?若是,请指出位似中心.【归纳总结】解决此类题的关键是首先要判断两个图形是不是相似图形,然后再找出对应点,作出几对对应点所在的直线,观察是否经过同一个点.若两个图形是相似图形,且所作的直线经过同一个点,则这两个图形是位似图形.下面说法:(1)相似图形一定是位似图形(2)位似图形一定是相似的图形(3)同一底片时底片上的图形和银幕上的图形是位似图形,其中正确的说法有()A.1个B.2个C.3个D.4个探究点2:位似图形的画法例2:(1)如图①,在位似中心点O的异侧,作出已知四边形ABCD的位似图形A′B′C′D′,使四边形A′B′C′D′与四边形ABCD的相似比为2:3;(2)如图②,已知五边形ABCDE,在位似中心点O的同侧作五边形ABCDE的位似图形A′B′C′D′E′,使五边形A′B′C′D′E′与五边形ABCDE的相似比为1:3;【归纳总结】画位似图形时,要注意相似比,即分清楚是已知原图与新图的相似比,还是新图与原图的相似比.画位似图形的关键是画出图形中顶点的对应点.画图的方法大致有两种:一是每对对应点都在位似中心的同侧;二是每对对应点都在位似中心的两侧.如图,已知六边形ABCDEF,位似中心点O在AB边上,在点O的另一侧作位似图形A′B′C′D′E′F′,使六边形A′B′C′D′E′F′与六边形ABCDEF的相似比为1:2.探究点三:坐标系中的位似【问题1】在平面直角坐标系中有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,如何得到线段A′B′?(1)在方法一中,A′的坐标是_____,B′的坐标是______,对应点坐标之比是______; (2)在方法二中,A′′的坐标是______,B′′的坐标是______,对应点坐标之比是_________.【问题2】如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(3,1),以O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?位似变换后,A,B,C的对应点坐标为:A′_______,B′______,C′_______.【归纳】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于__________.例3:如图,在平面直角坐标系中,A(1,2),B(2,4),C(4,5),D(3,1)围成四边形ABCD,作出一个四边形ABCD的位似图形,使得新图形与原图形对应线段的比为2:1,位似中心是坐标原点.【归纳总结】画以原点为位似中心的位似图形的方法:将一个多边形各点的横坐标与纵坐标都乘±k (或除以±k ),可得新多边形各顶点的坐标,描出这些点并顺次连接这些点即可. 在平面直角坐标系中,已知点A (6,4),B (4,-2),以原点O 为位似中心,相似比为12把△ABO 缩小,则点A 的对应点A ′的坐标是( )A.(3,2)B.(12,8)C.(12,8)或(-12,-8)D.(3,2)或(-3,-2) 二、课堂小结 内容基本图形概念它们不仅相似,而且经过每对对应点的直线______,对应边互相____行(或在_______).我们把这样的图形称为位似图形.作法如图当堂检测1.七边形ABCDEFG 位似于七边形1111111A B C D E FG ,它们的位似比比为2:3,已知位似中心O 到A 的距离为6,那么O 到1A 的距离为( ) A.13.5 B.12 C.18 D.92.已知:如图,E (-4,2),F (-1,-1),以O 为位似中心,按比例尺1∶2,把△EFO 缩小,则点E 的对应点E′的坐标为( ). A .(2,-1)或(-2,1); B .(8,-4)或(-8,4); C .(2,-1); D .(8,-4).3..如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是多少?yxFEO3、在平面直角坐标系里有四个点:A(0,1),B(4,1),C(5,4),D(1,4).(1)顺次连结点A.B.C.D,得到一个怎样的四边形?(2)将各点的横、纵坐标都乘以2,得到点A’、B’、C’、D’,那么四边形A’B’C’D’是什么图形,它与四边形ABCD有何关系?当堂检测参考答案:1.D2.A3.(0,9)4.图略。
人教版9年级下册数学 平面直角坐标系中的位似(导学案)
27.3 位似杭信一中何逸冬第2课时平面直角坐标系中的位似一、新课导入1.课题导入我们曾经学习过运用直角坐标系来研究平移、轴对称和旋转(中心对称)等变换,那么,如果运用直角坐标系来研究图形的位似变换,又会有哪些规律呢?本节课就来学习平面直角坐标系中的位似.2.学习目标(1)进一步熟悉位似的作图.(2)会用坐标的变化来表示图形的位似变换.(3)会根据位似图形上的点的坐标变化的规律,在坐标系中画一个图形以原点为位似中心的位似图形.3.学习重、难点重点:位似图形的点的坐标变化规律.难点:以原点为位似中心的位似作图.二、分层学习1.自学指导(1)自学内容:教材P48~P49例题上面的内容.(2)自学时间:8分钟.(3)自学要求:完成探究提纲.(4)探究提纲:①在图1中,画出线段AB,其中A(6,3),B(6,0).再以原点为位似中心,相似比为13,把线段AB缩小.在图2中,△AOC的三个顶点的坐标分别为A(4,4),O(0,0),C(5,0).以点O为位似中心,相似比为2,将△AOC放大.②当两图形位于原点同侧时,图1中,点A(6,3)的对应点A′的坐标为(2,1),点B(6,0)的对应点B′的坐标为(2,0);图2中,点A(4,4)的对应点A′的坐标为(8,8),点O(0,0)的对应点O′的坐标为(0,0),点C(5,0)的对应点C′的坐标为(10,0) .规律:在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k,那么当两图形位于原点同侧时,与原图形上的点(x,y)对应的位似图形上的点的坐标是(kx,ky) .③当两图形位于原点异侧时,图1中,点A(6,3)的对应点A″的坐标为 (-2,-1) ,点B(6,0)的对应点B″的坐标为(-2,0);图2中,点A(4,4)的对应点A″的坐标为(-8,-8),点O(0,0)的对应点O″的坐标为(0,0),点C(5,0)的对应点C″的坐标为(-10,0).规律:在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k,那么当两图形位于原点异侧时,与原图形上的点(x,y)对应的位似图形上的点的坐标(-kx,-ky).④在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标是(kx,ky)或(-kx,-ky).2.自学:参考自学指导,体会学习方法,展开自学.3.助学(1)师助生:①明了学情:明了学生探究提纲的完成情况(能否画出相应图形,求出坐标,并找出规律).②差异指导:根据学情进行指导.(2)生助生:小组交流协作,共同学习.4.强化:在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k那么与原图形上的点(x,y)对应的位似图形上的点的坐标是(kx,ky)或(-kx,-ky).1.自学指导(1)自学内容:教材P49~P50例题.(2)自学时间:5分钟.(3)自学要求:弄清作图要求,体会解题思路,动手计算和画图.(4)自学参考提纲:①在直角坐标系中,作一个图形的位似图形的方法有哪些?②课本例题中确定的对应点坐标是唯一的吗?你还可以得到其他图形吗?请试一试!③你能在课本P50图27.3-5中找到哪些变换?(平移、轴对称、旋转、位似)④如图1,把△AOB缩小后得到△CO,求△COD与△AOB的相似比.(2∶5)⑤如图2,△ABO三个顶点的坐标分别为A(4,-5),B(6,0),O(0,0).以原点O为位似中心,把这个三角形放大为原来的2倍,得到△A′B′O′.写出△A′B′O′三个顶点的坐标.A′(8,-10),B′(2,0),O′(0,)或A′(-8,10),B′(-12,0),O′(0,0).2.自学:参考例题的分析,自己探究作图的方法.3.助学(1)师助生:①明了学情:关注学生是否明了作图的关键和方法.②差异指导:指导学生完成另一个位似作图.(2)生助生:小组交流协作.4.强化:在平面直角坐标系中,作一个以原点为位似中心的位似图形有两种方法.三、评价1.学生学习的我评价:这节课你学到了什么?还有什么疑惑?2.教师对学生的评价:(1)表现性评价:从学生动手参与的程度、小组交流协作的状况等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时可类比上一课时的教学方式进行,只不过本课时涉及到了平面直角坐标系,教学时教师应让学生充分参与,体会平面直角坐标系的位似变换,以培养学生的动手操作能力和用位似变换解决实际问题的能力.本课的难点是用图形的坐标变化来表示图形的位似变换的变化规律,教师可让学生以小组为单位进行讨论,争取让学生自己发现规律,教师再予以适当点拨,以培养学生的探究能力.一、基础巩固(70分)1.(10分)某学习小组在讨论“变化的鱼”时, 知道大鱼与小鱼是位似图形(如图所示), 则小鱼上的点(a, b)对应大鱼上的点(A)A.(-2a, -2b)B.(-a, -2b)C.(-2b, -2a)D.(-2a, -b)第1题图第3题图2.(10分)△ABC三个顶点坐标分别为A(-2,-2),B(-4,-2),C(-6,-4),以原点为位似中心,将△ABC放大后得到的△DEF与△ABC的相似比为2∶1,这时△DEF中点D的坐标是 (-4,-4)或(4,4).3.(10分)如图, 正方形OEFG和正方形ABCD是位似图形, 点F 的坐标为(1,1) , 点C的坐标为(4,2) , 则这两个正方形位似中心的坐标是(-2,0).4.(20分)△ABC的三个顶点坐标分别是A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小, 使缩小后的△DEF与△ABC对应边的比为1∶2.求△DEF 各顶点的坐标.解:如果△DEF与△ABC在原点同侧,则D(1,1),E(2,1),F(3,2);如果△DEF与△ABC在原点异侧,则D(-1,-1),E(-2,-1),F(-3,-2).5.(20分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-1,1),B(2,3),C(0,3).现要以坐标原点O为位似中心,相似比为32,在原点同侧作△ABC的位似图形△A′B′C′,则它的顶点坐标各是多少?解:3399302222,,,,A B C⎛⎫⎛⎫⎛⎫'-'⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.二、综合应用(20分)6.(20分)如图所示, 图中的小方格都是边长为1的正方形, △ABC与△A′B′C′是以O为位似中心的位似图形, 它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的相似比;(3)以位似中心O为坐标原点, 以格线所在直线为坐标轴建立平面直角坐标系, 画出△A′B′C′关于点O 中心对称的△A″B″C″, 并直接写出△A″B″C″各顶点的坐标.解:(1)位似中心点O如图所示.(2)相似比为2∶1.(3)A″(6,0),B″(3,-2),C″(4,-4).三、拓展延伸(10分)7.(10分)如图,画出矩形MNPQ以点Q为位似中心,相似比为0.75的位似图形.解:作出矩形M′N′P′Q和矩形M″N″P″Q如图所示.【素材积累】1、成都,是一个微笑的城市,宁静而美丽。
位似(1)导学案
27.3位似(一)姓名_____________________学号_____________学习目标:1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.活动一.情境引入生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.如右图:你能说出它们的共同特征吗?活动二.探究新知观察下面的四个图,图中有相似图形吗?如果有,你发现这种相似有什么特征?请你说一说你的发现。
通过以上图片的观察,我知道了(似图形的概念):如果两个多边形不仅 ,而且对应顶点的连线 ,对应边 或 ,那么这样的两个图形叫做位似图形,这个点叫做 (位似中心可在形___、形___、形___.),这时的相似比又称为 .我还知道了位似图形的性质:1.每对位似对应点与位似中心_____;不经过位似中心的对应线段________.2. 利用位似,可以将一个图形________或_________。
活动三.运用新知 请你利用位似的特性把图1中的四边形ABCD缩小到原来的.(你有几种作法,说说你的思路)活动四.巩固练习如图,以O为位似中心,将放大为原来的两倍。
.o活动五.拓展延伸如图,点O是△ABC外的一点,分别在射线OA、OB、OC上取一点D、E、F,使得,连接DE、EF、FD,所得△DEF与△ABC是否相似?证明你的结论。
BCAOEFD活动六.课外测试1、四边形ABCD和四边形A1B1C1D1是位似图形,位似中心是点O,则它们的对应点的连线一定经过____________。
2、四边形ABCD和四边形A1B1C1D1是位似图形,点O是位似中心。
如果OA:OA1=1:3,那么AB:A1B1=____________3、如果四边形ABCD与四边形EFGH是位似图形,且位似比为,下列说法正确的是________。
①△ABC∽△EFG ②③。
北师大版-数学-九年级上册- 图形的位似(1) 导学案
我的疑问
2、已知△ABC,求作△DEF,使它与△ABC位似,并且相似比为2。(小组合作探究,画出图形,归纳位似图形的作法)
【训练案】
1、下列说法中正确的是( )
A.位似图形可以通过平移而相互得到; 位似图形的对应边平行且相点的距离之比都相等。
(2)任意一对对应点和位似中心在___________,它们到位似中心的距离之比等于__________
【合作探究】1、如图,已知在△ABC,以点0为位似中心画△DEF,使它与△ABC位似,且相似比为2.
2、如图4,五边形 与五边形 是位似图形,点 为位似中心, ,则 : =___________.
【课堂小结】
通过本节课学习,你有哪些收获
【课后记】
家长签字:
【学习目标】
熟记位似图形的概念及性质;知道利用位似的性质可以将一个图形放大或缩小。
【学习重难点】
重点:利用位似图形的定义能判断两个图形是否是位似图形及位似图形的性质的运用。
难点:判断位似图形。
【使用说明与学法指导】用8分钟左右的时间认真阅读课本p113-114、自主探究;认真完成导学案的问题,并把自己的疑问写出来,最后小组交流并解决。
【自主学习】
一、旧知链接
1、相似多边形:、的两个多边形叫做相似多边形;
2、相似多边形的性质:。
3、位似图的性质:(1)对应线段______。
初中数学【位似(共2课时)】教案
教学时间课题27. 3 位似(一)课型新授课教学目标知识和能力1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.过程和方法情感态度价值观教学重点位似图形的有关概念、性质与作图.教学难点利用位似将一个图形放大或缩小.教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、课堂引入1.观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?2.问:已知:如图,多边形ABCDE ,把它放大为原来的2倍,即新图与原图的相似比为2.应该怎样做?你能说出画相似图形的一种方法吗?二、例题讲解例1(补充)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.分析:位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可.解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P 和图(4)中的点O .(图(3)中的点O 不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)例2(教材P61例题)把图1中的四边形ABCD 缩小到原来的. 分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;2121(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′,使得; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图2.问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA , OB , OC ,OD ;(3)分别在射线OA , OB , OC , OD 的反向延长线上取点A ′、B ′、C ′、D ′,使得; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图3.作法三:(1)在四边形ABCD 内任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′,使得; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图4.(当点O 在四边形ABCD 的一条边上或在四边形ABCD 的一个顶点上时,作法略——可以让学生自己完成)三、课堂练习1.教材P60.1、221OD D O OC C O OB B O OA A O ='='='='21OD D O OC C O OB B O OA A O ='='='='21OD D O OC C O OB B O OA A O ='='='='2.画出所给图中的位似中心.1.把右图中的五边形ABCDE扩大到原来的2倍.作业设计必做教科书P64:1、2选做教科书P64:4、7教学反思一、课堂引入 1.如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1、B 1、C 1三点的坐标;(2)写出△ABC 关于x 轴对称的△A 2B 2C 2三个顶点A 2、B 2、C 2的坐标;(3)将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3、B 3、C 3三点的坐标.2.在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.3.探究:(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O 为位似中心,相似比为,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现? (2)如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .二、例题讲解例1(教材P62的例题)分析:略(见教材P62的例题分析)解:略(见教材P62的例题解答)问:你还可以得到其他图形吗?请你自己试一试!31解法二:点A的对应点A′′的坐标为(-6×,6×),即A′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)例2(教材P63)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形,…….解:答案不惟一,略.三、课堂练习1.教材P62.1、22.△ABO的定点坐标分别为A(-1,4),B(3,2),O(0,0),试将△ABO放大为△EFO,使△EFO与△ABO的相似比为2.5∶1,求点E和点F的坐标.3.如图,△AOB缩小后得到△COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比.作业设计必做教科书P64:3选做教科书P65:6、8教学反思)21(-)21(-。
相似第3节《位似(1)》导学案
课题:27.3 位似(1)学习目标:1、知道位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2、握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小. 重点:位似图形的有关概念、性质与作图. 难点:利用位似将一个图形放大或缩小. 一、自主预习1.(教材P47页思考)观察图27.3-1图中有多边形相似吗?如果有,那么这种相似什么共同的特征?2.(P47页)把图27.3-2中的四边形ABCD 缩小到原来的21.分析:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 . 作法一:(1)在四边形ABCD 外任取一点O ; (2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A′、B′、C′、D′, 使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.二、合作探究问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD 外任取一点O ; (2)过点O 分别作射线OA , OB , OC ,OD ;(3)分别在射线OA , OB , OC , OD 的反向延长线上取点A′、B′、C′、D′,使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图3.作法三:(1)在四边形ABCD 内任取一点O ; (2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A′、B′、C′、D′, 使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.四、归纳反思谈谈你这节课学习的收获五、达标测评1.已知:四边形ABCD 及点O ,试以O 点为位似中心,将四边形放大为原来的两倍.(1) (2)(3) (4)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A ’
B ’
C ’
D ’ D C B A A B C D
A B C D
A B C D A B C D 初三数学 《位似图形(一)》导学案
【学习目标】
1、了解位似图形及其有关概念,并能依据概念准确地进行判断说明。
2、理解位似图形上任意一对对应点到位似中心的距离之比等于位似比,并能够运用这一性质将图形放大或缩小。
3、在学习过程中发展自己的动手操作能力和数学应用知识。
【重点难点】
学习重点:位似的定义及其性质的掌握
学习难点:利用位似变换将一个图形放大或缩小 【学法指导】
理解位似图形上任意一对对应点到位似中心的距离之比等于位似比,并能够运用这一性质将图形放大或缩小,并培养学生数学学习能力。
【知识链接】
⒈如果两个_____________图形的__________________________,那么这样的两个图形叫做位似图形;这个点叫做---------------。
⒉两个位似图形的位似比也就是指他们的______________比。
【学习过程】
一、1、分别连接下列图形中的对应点,观察对应点的连线有什么特征?(四边形ABCD ∽四边形
A ’
B ’
C ’
D ’)
二、2、什么是位似图形?位似中心?位似比? 3.观察上面的图形,回答:
(1) 位似图形的位似中心与这两个图形有什么位置关系?
(2) 在各图形中,任取一对对应点,度量这两个点到位似中心的距离,他们的比与位似比有
什么关系?
4.由上面的学习,请总结位似图形有什么性质?
5.想一想:
在前面五个图中,位似图形的对应线段AB 与A ’B ’是否平行?BC 与B ’C ’,CD 与C ’D ’, AD 与A ’D ’是否平行?为什么? 三、应用新知:
课本59页练习1、2题。
【归纳小结】 [我学会了]:
[我的不足之处]: [今后我努力的方向]: 【当堂测评】
1.若两个图形位似,则下列叙述不正确的是( )
A 每对对应点所在的直线相交于同一点。
B 两个图形上的对应线段的比等于位似比。
C 两个图形上对应线段平行。
D 两个图形的面积比等于位似比平方。
2、如果正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若AB :FG=2:3,则下列结论正确的是( ) A 、2DE=3MN B 、3DE=2MN C 、3∠A=2∠F D 、2∠A=3∠F
3、用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可选在( ) A 、原图形的外部 B 、原图形的内部 C 、原图形的边上 D 、任意位置
4、如图2,△ABC 与是位似图形,位似比为2:3,已知AB=4,则DE 的长等于( ) A 、6 B 、5 C 、9 D 、8/3
5、如果四边形ABCD 与四边形EFGH 是位似图形,
且位似比为a ,下列说法正确的是______________
○1 △ABC ∽△EFG ; ○2 a FH
BD EG AC == ; ○
3 a HE GH FG EF DA CD BC AB =++++++ ; ○
4 2a EGH ACD =∆∆面积
面积。
【学习反思】
E
初三数学 《位似图形(二)》导学案
【学习目标】
1.复习位似图形定义
2.能利用图形的位似将一个图形放大或缩小. 【重点难点】
学习重点:1、利用位似将一个图形放大或缩小.
学习难点:比较放大或缩小后的图形与原图形,归纳位似放大或缩小图形的规律. 【学法指导】
本节主要是让学生在实际应用中了解位似的概念,教材是通过画一个多边形的相似图形的方法引入位似的概念,让学生掌握用位似把一个多边形放大或缩小的几种方法,教学时可以让学生按照教材中的步骤自己画图。
【知识链接】
自主探究: 1.如图OA ′OA =OB ′OB =32,那么A ′B ′
AB =?为什么?
2.已知线段AB ,画一线段A ′B ′,使A ′B ′=1.5AB ,如何画呢? 画法有2:①延长AB 至B ′,使BB ′=1
2AB ,②仿①直线外任取一点O ,做
射线OA ,取AA ′=1
2
AO 。
【学习过程】 一、讲授新课
请同学们观察下图,要作出一个新图形,使新图形与原图形对应线段的比为2∶1,同学们在小
组间互相交流,看一看有几种方法?
请同学们阅读课本,按要求作出新的图形.并归纳作图步骤.
新图形与原图形是位似图形,位似比为2∶1.那么总结上述作法,请同学们归纳出“利用位似将图形放大或缩小的作图步骤.”
第一步:在原图上选取关键点若干个,并在原图外任取一点P. 第二步:以点P 为端点向各关键点作射线.
第三步:分别在射线上取关键点的对应点,满足放缩比例. 第四步:顺次连接截取点. 即可得到符合要求的新图形.
简记方法: 1.选点2.作射线3.定对应点4.连线
二、三角形的顶点坐标分别是A (2,2),B (4,2),C (6,4),试将△ABC 缩小,使缩小后的△DEF 与△ABC 对应边比为1∶2.
解:将A (2,2),B (4,2),C (6,4)三点的横坐标、纵坐标都缩小为原来的
2
1
得D ( ), E ( ),F ( )后,顺次连结D,E,F,D,即可得到缩小后的△DEF.如图所示. 三、利用位似的方法,可以把一个多边形放大或缩小。
合作交流:
位似中心也可以取在多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法。
【归纳小结】 [我学会了]: [我的不足之处]:
[今后我努力的方向]:
【当堂测评】 1、用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可选在( )
A 、原图形的外部
B 、原图形的内部
C 、原图形的边上
D 、任意位置 2、(2010辽宁省丹东市)如图,ABC △与A B C '''△是位似图形,且位似比 是1:2,若AB =2cm ,则A B ''= cm ,并在图中画出位似中心O . 【学习反思】
′ A
B C A
B C
′
′。