高考数学(文科)考试大纲的说明(广东卷

合集下载

广东省高考数学考试大纲解析

广东省高考数学考试大纲解析

广东省高考数学考试大纲解析从2021年开始,广东高考数学采用全国卷全国卷均指全国课标卷已毫无悬念,为了应对2021届的高考数学备考,以下作一些初步分析。

一、全国卷与广东卷的异同点1.题型结构与满分相同试题都是由“选择题、填空题、解答题”构成;满分均为150分。

2.题量与赋分不同广东卷总题量为21题考生解答20题,其中选做题为2选1,客观题占70分,解答题占80分。

全国卷总题量为24题考生解答22题,其中选做题为3选1,客观题占80分,解答题占70分。

3.试题分布不同广东卷理科选择题8道,填空题7做6,解答题6道;文科选择题10道,填空题5做4,解答题6道。

全国卷文、理科选择题12道,填空题4道,解答题6道选做题3选1。

广东卷选做题为填空题2选1,满分5分。

全国卷选做题为解答题3选1,满分10分在解答题中,广东卷为6道必做题,全国卷为5道必做题和1道选做题。

4.试题难度顺序不同2021—2021年广东卷理科解答题顺序:2021—2021年广东卷文科解答题顺序完全相同:三角—概率与统计——立体几何——数列——解析几何——函数与导数2021—2021年全国卷Ⅰ理科解答题顺序:2021—2021年全国卷Ⅰ文科解答题顺序:二、2021年高考数学备考建议1.明确“考纲”要求,加强“双基”训练。

《考试大纲》既是高考命题的重要依据,又是指导考生备考的重要文件,作为教师要了解考试大纲的变化,因此要细读《考试大纲》。

在复习备考时,要以课本知识为本,对课本上的例题、知识点加以概括、提高和延伸,使之起到举一反三,逐类旁通的效果。

在复习时,要充分挖掘教材例、习题的功能,深刻理解教材实质,挖掘教材内涵,利于课本辐射整体,实现“由内到外”的突破。

在每年的高考数学试卷中都有部分试题源于教材,高于教材,特别是选择题与填空题,绝大多数是教材上的例、习题改编的,在解答题中也不乏有教材上试题的影子或直接用教材上的定理或公式。

由于全国卷无论是客观题还是解答题,整体要求较广东卷高,更应注重对“双基”的综合训练。

2014年广东省高考数学试卷(文科)答案与解析

2014年广东省高考数学试卷(文科)答案与解析

2014年广东省高考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)z==3+4i3.(5分)(2014•广东)已知向量=(1,2),=(3,1),则﹣=()解:∵向量=,﹣=4.(5分)(2014•广东)若变量x,y满足约束条件,则z=2x+y的最大值等于(),由于﹣6.(5分)(2014•广东)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取7.(5分)(2014•广东)在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“sinA≤sinB”解:由正弦定理可知⇒,8.(5分)(2014•广东)若实数k满足0<k<5,则曲线﹣=1与﹣=1的﹣=1﹣=19.(5分)(2014•广东)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,10.(5分)(2014•广东)对任意复数ω1,ω2,定义ω1*ω2=ω12,其中2是ω2的共轭复数,对任意复数z1,z2,z3有如下命题:①(z1+z2)*z3=(z1*z3)+(z2*z3)②z1*(z2+z3)=(z1*z2)+(z1*z3)③(z1*z2)*z3=z1*(z2*z3);④z1*z2=z2*z1122)12=()1+z1=1,21z1,2,等式不成立,故错误;二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11-13题)11.(5分)(2014•广东)曲线y=﹣5e x+3在点(0,﹣2)处的切线方程为5x+y+2=0..12.(5分)(2014•广东)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为0.4.中任取两个不同字母,共有=10=4=0.413.(5分)(2014•广东)等比数列{a n}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=5.(二)(14-15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)(2014•广东)在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为(1,2).,解得:.【几何证明选讲选做题】15.(2014•广东)如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=3..=四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)(2014•广东)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).x+)=,)﹣x+))()=Asin))﹣))﹣(cos=3sin,﹣).名工人年龄数据如下表:(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.=30[18.(13分)(2014•广东)如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如图2折叠;折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M﹣CDE的体积.CD=;=,即=,,∴PE=CD;MD=,S MD=××=.19.(14分)(2014•广东)设各项均为正数的数列{a n}的前n项和为S n满足S n2﹣(n2+n﹣3)S n﹣3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有++…+<.得:,即.)由.,.)可知=,=<(时,显然有=<时,+﹣•<,有20.(14分)(2014•广东)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P 的轨迹方程.)依题意知+=1++21.(14分)(2014•广东)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈(0,)∪(,1),使得f(x0)=f().)转化为(的两根为)时,,)∵∴若存在∪,使得在的两根为,∴依题意有,且,且.∪时,存在唯一的∪,使得∪}∪,使得。

2011年高考数学(文科)考试大纲的说明(广东卷)

2011年高考数学(文科)考试大纲的说明(广东卷)

2010年高考数学(文科)考试大纲的说明(广东卷)I.考试范围与要求(一)必考内容与要求1. 集合(1)集合的含义与表示① 了解集合的含义、元素与集合的“属于”关系。

② 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

(2)集合间的基本关系① 理解集合之间包含于相等的含义,能识别给定集合的子集。

② 在具体情境中,了解全集与空集的含义。

(3)集合的基本运算① 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

② 理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

③ 能使用韦恩(Venn )图表达集合的关系及运算。

2.函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数) (1)函数① 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

② 在实际情境中,会根据不同的需要选择适当的方法(如图像法、列表法、解析法)表示函数。

③ 了解简单的分段函数,并能简单应用。

④ 理解函数的单调性、最大(小)值以及几何意义;结合具体函数,了解函数奇偶性的含义。

⑤ 会运用函数图象理解和研究函数的性质。

(2)指数函数① 了解指数函数模型的实际背景。

② 理解有理数指数幂的含义,了解实数幂的意义,掌握幂的运算。

③ 理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。

(3)对数函数① 理解对数函数的概念以及运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

② 理解对数函数的概念;理解对数函数的单调性,掌握对数函数图像通过的特殊点。

③了解指数函数x a y =与对数函数x y a log =互为反函数(1,0≠>a a )(4)幂函数① 了解幂函数的概念。

② 结合函数2132,1,,,x y xy x y x y x y =====的图像,了解它们的变化情况。

(5)函数与方程① 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。

2014广东高考文科数学试卷及答案解析(word版)

2014广东高考文科数学试卷及答案解析(word版)

2014年普通高等学校招生全国统一考试(广东卷)数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.xx212-B.x x sin 3C.1cos 2+xD.xx 22+ 答案:A111:()2,(),()22(),222(),A .x xxx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且5()122f π=(1) 求A 的值;(2)若()()(0,)2f f πθθθ--=∈,求()6f πθ-553:(1)()sin()sin 3.121234(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 3sin (0,),2f A A A f xx f f πππππππθθθθππππθθθθπθθπθθ=+==∴===+∴--=+--+=+--+-===∴=∈解由得又cos ()3sin()3sin()3cos 36632f θππππθθθθ∴=∴-=-+=-===17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为(2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2112,,2211.33CDE M CDE CDE CF DE PE S CD DE P CP MD V S MD ∆-∆=∴=∴==⋅=====∴=⋅=={}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案2222002222220.:1(0)(1);(2)(,),,.:(1)3,954,1.94(2),,4x yC a ba bCP x y C P C Pcc e a b a cax yCx y+=>>====∴==-=-=∴+=已知椭圆的一个焦点为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x xx yy k x x yk x k y kx x y kxk y kx y kx k y kx-±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即2222200000122220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.kyx k x y k y k kxx yP x y+=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a Rf xa x f x f=+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,0,,01,7x x a x f x f x x a a a a x x +++∴∈=+++=<∴∆=-+=->=>∴<<<若存在使得必须在上有解方程的两根为依题意即0000025711,492148121,,1212155,,,,24425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a x a a x f x f a x f x ∴<-<-<<-=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,10,()3,11,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,1,(1,5111),()(0,),(,1),422a i a f x x f x f ii a f x a f x <∴-≤--∈-<<-+-+=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,11,,(14212525255(1)()0,0,,;222412124513)0,01,,(0,1421775(0)()0,0,,2224124x a x x a f f a a x a x x a f f a -<<-<-∈-+->+>>--<<--<<<-+∈-+->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。

2008高考广东数学文科试卷含详细解答(全word版)

2008高考广东数学文科试卷含详细解答(全word版)

2008年普通高等学校招生全国统一考试(广东卷)(文科)全解析广东佛山南海区南海中学 钱耀周一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求。

1.第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A ={参加北京奥运会比赛的运动员},集合B ={参加北京奥运会比赛的男运动员}。

集合C ={参加北京奥运会比赛的女运动员},则下列关系正确的是A.A ⊆BB.B ⊆CC.A ∩B =CD.B ∪C =A 【解析】送分题呀!答案为D.2.已知0<a <2,复数z a i =+(i 是虚数单位),则|z |的取值范围是B. (1,C.(1,3)D.(1,5) 【解析】12+=a z ,而20<<a ,即5112<+<a ,51<<∴z ,选B.3.已知平面向量(1,2)a = ,(2,)b m =-,且a //b ,则23a b + =( )A 、(5,10)--B 、(4,8)--C 、(3,6)--D 、(2,4)-- 【解析】排除法:横坐标为2(6)4+-=-,选B.4.记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )A 、2B 、3C 、6D 、7 【解析】4224123S S S d d --==⇒=,选B.5.已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数【解析】222211cos 4()(1cos 2)sin 2cos sin sin 224x f x x x x x x -=+===,选D.6.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( ) A 、10x y ++= B 、10x y +-= C 、10x y -+= D 、10x y --=【解析】易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b =,故待求的直线的方程为10x y -+=,选C.(或由图形快速排除得正确答案.)7.将正三棱柱截去三个角(如图1所示A 、B 、C 分 别是GHI ∆三边的中点)得到的几何体如图2,则 该几何体按图2所示方向的侧视图(或称左视图)为【解析】解题时在图2的右边放扇墙(心中有墙),可得答案A.8. 命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是( )A 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数B 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数C 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数D 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数 【解析】考查逆否命题,易得答案A.9、设a R ∈,若函数xy e ax =+,x R ∈,有大于零的极值点,则( ) A 、1a <- B 、1a >- C 、1a e <- D 、1a e>-【解析】题意即0xe a +=有大于0的实根,数形结合令12,xy e y a ==-,则两曲线交点在第一象限,结合图像易得11a a ->⇒<-,选A.10、设,a b R ∈,若||0a b ->,则下列不等式中正确的是( ) A 、0b a -> B 、330a b +< C 、220a b -< D 、0b a +>【解析】利用赋值法:令1,0a b ==排除A,B,C,选D. 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11-13题)11.为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85,[)85,95由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)55,75的人数是 .【解析】20(0.06510)13⨯⨯=,故答案为13.12.若变量x ,y 满足240,250,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则z =3x +2y 的最大 值是________。

广东省高考数学考试大纲研读

广东省高考数学考试大纲研读

广东省高考文科数学考试大纲研读高三数学陈永雄一、新课程标准高考广东省数学考试范围⒈必考内容⑴文科的必考内容包括:集合(集合的含义与表示,集合间的基本关系,集合的基本运算);函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数);立体几何初步(空间几何体,点、直线、平面之间的位置关系);平面解析几何初步(直线与方程、圆与方程、空间直角坐标系);算法初步(算法的含义、程序框图,基本算法语句);统计;概率;基本初等函数II(三角函数);平面向量;三角恒等变换;解三角形;数列;不等式;常用逻辑用语;圆锥曲线与方程;导数及其运用;统计案例;推理与证明;数系的扩充与复数的引入;框图。

⑵理科的必考内容在全国考试大纲规定的必考内容的基础上,将选修系列4中的“不等式选讲”也列为理科的必考内容,但其中的柯西不等式第③种形式(通常称为平面三角不等式)、用参数配方法讨论柯西不等式的一般形式、用向量递归方法讨论排序不等式不作考试要求。

这意味着选修系列4中的“不等式选讲”将成为理科学生人人必学的内容。

⒉选考内容⑴文科的选考内容为选修系列4中的“几何证明选讲”,“坐标系与参数方程”两个专题,其中“几何证明选讲”只考⑴~⑸的内容,⑹、⑺、⑻的内容不作考试要求。

⑵理科的选考内容也是选修系列4中的“几何证明选讲”,“坐标系与参数方程”两个专题,但其中“几何证明选讲”要考⑴~⑺的内容,⑻的内容不作考试要求。

⒊试卷结构⑴文科试卷结构每年基本年相同,共20小题,其中10道选择题,每题5分,均为四选一型的单项选择题;4道填空题,每题5分,每题有一个或两个空;6道解答题,共80分,6道大题,共70分。

⑵理科试卷8道选择题,每题5分,均为四选一型的单项选择题;6道填空题,每题5分,每题有一个或两个空;6道解答题,共80分,6道大题,共70分。

⑶填空题分必做题和选做题。

必做题考查必学内容,选做题考查选学内容。

选做题共两小题,均为填空题,考生只需在两道选做题中选择其中一道作答,分值为5分。

2009年广东省高考数学试卷(文科)【word版本、可编辑、附详细答案和解释】

2009年广东省高考数学试卷(文科)【word版本、可编辑、附详细答案和解释】

2009年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1.已知全集U =R ,则正确表示集合M ={−1, 0, 1}和N ={x|x 2+x =0}关系的韦恩(Venn)图是( )A.B.C.D.2. 下列n 的取值中,使i n =1(i 是虚数单位)的是( ) A.n =2B.n =3C.n =4D.n =53. 已知平面向量a →=(x, 1),b →=(−x, x 2),则向量a →+b →( ) A.平行于x 轴B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线 4. 若函数y =f(x)是函数y =a x−a(a >0,且a ≠1)的反函数,且f(12)=1,则函数y =( ) A.log 2xB.12xC.log 12xD.2x−25. 已知等比数列{a n }的公比为正数,且a 3⋅a 9=2a 52,a 2=1,则a 1=( )A.12B.√22C.√2D.26. 给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( ) A.①和②B.②和③C.③和④D.②和④7. 已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c .若a =c =√6+√2,且∠A =75∘,则b =( ) A.2B.4+2√3C.4−2√3D.√6−√28. 函数f(x)=(x −3)e x 的单调递增区间是( )A.(−∞, 2)B.(0, 3)C.(1, 4)D.(2, +∞)9. 函数y =2cos 2(x −π4)−1是( ) A.最小正周期为π的奇函数 B.最小正周期为π的偶函数 C.最小正周期为π2的奇函数D.最小正周期为π2的偶函数10. 广州2010年亚运会火炬传递在A ,B ,C ,D ,E 五个城市之间进行,各城市之间的距离(单位:百公里)见表.若以A 为起点,E 为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是( )C.22D.23二、填空题(共5小题,每小题5分,第14-15题,属选做题,满分25分) 11. 某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:框应填________,输出的s=________.(注:框图中的赋值符号“=”也可以写成“←”或“:=”)12. 某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1∼200编号,并按编号顺序平均分为40组(1∼5号,6∼10号,…,196∼200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.13. 以点(2, −1)为圆心且与直线x+y=6相切的圆的方程是________.14. 选做题:若直线y=2+3t.x=1−2t,(t为参数)与直线4x+ky=1垂直,则常数k=________.15. 选做题:如图,点A、B、C是圆O上的点,且AB=4,∠ACB=30∘,则圆O的面积等于________.三、解答题(共6小题,满分80分)16. 已知向量a→=(sinθ,−2)与b→=(1,cosθ)互相垂直,其中θ∈(0,π2).(1)求sinθ和cosθ的值;(2)若sin(θ−φ)=√1010,0<φ<π2,求cosφ的值.17. 某高速公路收费站入口处的安全标识墩如图(1)所示.墩的上半部分是正四棱锥P−EFGH,下半部分是长方体ABCD−EFGH.图(2)、图(3)分别是该标识墩的正(主)视图和俯视图.(1)请画出该安全标识墩的侧(左)视图;(2)求该安全标识墩的体积;(3)证明:直线BD⊥平面PEG.。

2013年高考数学广东卷(文科)试题+详细解析+试卷分析

2013年高考数学广东卷(文科)试题+详细解析+试卷分析

图 21俯视图侧视图正视图212013广东文普宁二中 杜林生 整理发布,仅供参考1. 2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-2.函数lg(1)()1x f x x +=-的定义域是 A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞ D .[1,1)(1,)-+∞ 3.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是A .2B .3C .4D .54.已知51sin()25πα+=,那么cos α= A .25- B .15- C .15 D .255.执行如图1所示的程序框图,若输入n 的值为3,则输出s 的值是A .1B .2C .4D .76.某三棱锥的三视图如图2所示,则该三棱锥的体积是 A .16 B .13 C .23D .1 7.垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是A .20x y +-=B .10x y ++=C .10x y +-=D .20x y ++= 8.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥9.已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是 A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 10.设 a 是已知的平面向量且≠0 a ,关于向量 a 的分解,有如下命题,这四个命题中的向量 b , c 和 a 在同一平面内且两两不共线,则真命题的个数是:①给定向量 b ,总存在向量 c ,使=+a b c ;②给定向量 b 和 c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量 b 和正数μ,总存在单位向量 c 和实数λ,使λμ=+a b c ;④给定正数λ和μ,总存在单位向量 b 和单位向量 c ,使λμ=+a b c ;图 1是否结束输出s i=i +1i ≤ ni=1, s=1输入n 开始s=s+(i -1)A .1B .2C .3D .411.设数列{}n a 是首项为1,公比为2-的等比数列,则1234||||a a a a +++= 12.若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a = .13.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥≤≤-≥+-11103y x y x ,则z x y =+的最大值是.14.(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为 .15.(几何证明选讲选做题)如图3,在矩形ABCD 中,3,AB =3BC =,BE AC ⊥,垂足为E ,则ED = .16.(12分)()2cos ,12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值;(2) 若33cos ,,252πθθπ⎛⎫=∈⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.17.(12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量) [80,85) [85,90) [90,95) [95,100) 频数(个)5 10 20 15(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个? (3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.图 3ECBDA图 4G E FAB C D 图 5D GBF CAE18.(14分)如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中22BC =.(1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ;(3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.19.(14分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈ 且2514,,a a a 构成等比数列. (1) 证明:2145a a =+;(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++< .20.(14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为322. 设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (1) 求抛物线C 的方程;(2) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (3) 当点P 在直线l 上移动时,求AF BF ⋅的最小值. 21.(14分)设函数x kx x x f +-=23)( ()R k ∈. (1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M .2013广东文参考答案1A 2C 3D 4C 5C 6B 7A 8B 9D 10C6B 解:由三视图判断底面为等腰直角三角形,三棱锥的高为2,则111=112=323V ⋅⋅⋅⋅ 7A 解:圆心到直线的距离等于1r =,排除B 、C ;相切于第一象限排除D ,选A.直接法可设所求的直线方程为:()0y x k k =-+>,再利用圆心到直线的距离等于1r =,求得2k =.10B 解:考查平面向量的基本定理和向量加法的三角形法则.利用向量加法的三角形法则,易的①是对的;利用平面向量的基本定理,易的②是对的;以a 的终点作长度为μ的圆,这个圆必须和向量λb 有交点,这个不一定能满足,③是错的;利用向量加法的三角形法则,结合三角形两边的和大于第三边,即必须=+λμλμ+≥b c a ,所以④是假命题.11. 1512. 12考查切线方程、方程的思想.依题意 ''1112,210,2x y ax y a a x ==-=-=∴=13. 5 画出可行域如图,最优解为()1,414解:1cos ()sin 为参数θθθ=+⎧⎨=⎩x y ,本题考了备考弱点.讲参数方程的时候,参数的意义要理解清楚.先化成直角坐标方程()2211x y -+=,再化成参数方程15解:212 由3,AB =3BC =,可知60BAC ∠= ,从而3,302AE CAD =∠= ,22212cos302DE AE AD AE AD =+-⋅⋅= . 16解:(1)2cos 2cos 133124f ππππ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,24sin 1cos 5θθ=--=-,1=2cos 2cos cos sin sin 64445f ππππθθθθ⎛⎫⎛⎫⎛⎫∴--=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【注意】两角差的余弦公式不要记错了. 17解:(1)苹果的重量在[)95,90的频率为20=0.450; (2)重量在[)85,80的有54=15+15⋅个; (3)设这4个苹果中[)85,80分段的为1,[)100,95分段的为2、3、4,从中任取两个,可能的情况有: (1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种;设任取2个,重量在[)85,80和[)100,95中各有1个的事件为A ,则事件A 包含有(1,2)(1,3)(1,4)共3种,所以31(A)62P ==.【注意】注意格式!18解:(1)在等边三角形ABC 中,AD AE =AD AEDB EC ∴=,在折叠后的三棱锥A BCF -中也成立, //DE BC ∴ ,DE ⊄ 平面BCF ,BC ⊂平面BCF , //DE ∴平面BCF ; (2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,12BF CF ==. 在三棱锥A BCF -中,22BC =,222BC BF CF CF BF ∴=+∴⊥②BF CF F CF ABF ⋂=∴⊥ 平面;(3)由(1)可知//GE CF ,结合(2)可得GE DFG ⊥平面.11111131332323323324F DEG E DFG V V DG FG GF --⎛⎫∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎪ ⎪⎝⎭【品题】考查了平行线分线段成比例这个平面几何的内容.19解:(1)当1n =时,22122145,45a a a a =-=+,21045n a a a >∴=+(2)当2n ≥时,()214411n n S a n -=---,22114444n n n n n a S S a a -+=-=--()2221442n n n n a a a a +=++=+,102n n n a a a +>∴=+∴当2n ≥时,{}n a 是公差2d =的等差数列.2514,,a a a 构成等比数列,25214a a a ∴=⋅,()()2222824a a a +=⋅+,解得23a =, 由(1)可知,212145=4,1a a a =-∴=21312a a -=-= ∴ {}n a 是首项11a =,公差2d =的等差数列.∴数列{}n a 的通项公式为21n a n =-. (3)()()1223111111111335572121n n a a a a a a n n ++++=++++⋅⋅⋅-+ 11111111123355721211111.2212n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤=⋅-<⎢⎥+⎣⎦ 【品题】本题考查很常规,第(1)(2)两问是已知n S 求n a ,{}n a 是等差数列,第(3)问只需裂项求和即可,估计不少学生猜出通项公式,跳过第(2)问,作出第(3)问.本题易错点在分成1n =,2n ≥来做后,不会求1a ,没有证明1a 也满足通项公式.20解:(1)依题意023222c d --==,解得1c =(负根舍去) ∴抛物线C 的方程为24x y =; (2)设点11(,)A x y ,22(,)B x y ,),(00y x P ,由24x y =,即214y x ,=得y '=12x . ∴抛物线C 在点A 处的切线PA 的方程为)(2111x x xy y -=-,即2111212x y x x y -+=. ∵21141x y =, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① 同理, 20202y x x y -=. ② 综合①、②得,点1122(,),(,)A x y B x y 的坐标都满足方程 y x xy -=002. ∵经过1122(,),(,)A x y B x y 两点的直线是唯一的,∴直线AB 的方程为y x xy -=002,即00220x x y y --=; (3)由抛物线的定义可知121,1AF y BF y =+=+,所以()()121212111AF BF y y y y y y ⋅=++=+++联立2004220x y x x y y ⎧=⎨--=⎩,消去x 得()22200020y y x y y +-+=, 2212001202,y y x y y y y ∴+=-= 0020x y --=()22220000021=221AF BF y y x y y y ∴⋅=-++-+++2200019=22+5=2+22y y y ⎛⎫++ ⎪⎝⎭ ∴当012y =-时,AF BF ⋅取得最小值为9221解:()'2321fx x kx =-+(1)当1k =时()'2321,41280f x x x =-+∆=-=-< ()'0f x ∴>,()f x 在R 上单调递增.(2)当0k <时,()'2321fx x kx =-+,其开口向上,对称轴3kx =,且过()01,(i )当()()24124330k k k ∆=-=+-≤,即30k -≤<时,()'0f x ≥,()f x 在[],k k -上单调递增, 从而当x k =时,()f x 取得最小值()m f k k == ,当x k =-时,()f x 取得最大值()3332M f k k k k k k =-=---=--.(ii )当()()24124330k k k ∆=-=+->,即3k <-时,令()'23210fx xkx =-+=解得:221233,33k k k k x x +---==,注意到210k x x <<<,(注:可用韦达定理判断1213x x ⋅=,1223kx x k +=>,从而210k x x <<<;或者由对称结合图像判断) -kk 3k x =()(){}()(){}12min ,,max ,m f k f x M f k f x ∴==-()()()()32211111110f x f k x kx x k x k x -=-+-=-+>()f x ∴的最小值()m f k k ==,()()()()()232322222222=[1]0f x f k x kx x k k k k x k x k k --=-+---⋅-+-++<()f x ∴的最大值()32M f k k k =-=--综上所述,当0k <时,()f x 的最小值()m f k k ==,最大值()32M f k k k =-=--解法2(2)当0k <时,对[],x k k ∀∈-,都有32332()()(1)()0f x f k x kx x k k k x x k -=-+-+-=+-≥,故()()f x f k ≥32332222()()()(221)()[()1]0f x f k x kx x k k k x k x kx k x k x k k --=-++++=+-++=+-++≤故()()f x f k ≤-,而 ()0f k k =<,3()20f k k k -=-->所以 3max ()()2f x f k k k =-=--,min ()()f x f k k ==【品题】常规解法完成后,结合图像感知x k = 时最小,x k =-时最大,只需证()()()f k f x f k ≤≤-即可,避免分类讨论.本题第二问关键在求最大值,需要因式分解比较深的功力,这也正符合了2012年高考年报的“对中学教学的要求——重视高一教学与初中课堂衔接课”.2013年广东高考数学试卷遵循《2013年普通高等学校招生全国统一考试(广东卷)数学大纲》的规定:贯彻了有利于中学数学教学与有利于高校选拔人才相结合的原则,贯彻了“总体保持稳定,深化能力立意,积极改革创新”的指导思想.试卷立足现行高中教材,在注重对基础知识和基本方法全面考查的同时,又突出了对数学思想、数学核心能力的综合考查.试卷具有以下鲜明特点:1.题型稳定,保持风格2013年高考数学试卷和2012年高考数学试卷犹如双胞胎,其考查的知识内容、题型和整体难易程度与2012年基本一致, 打破了试题难度大小年的规律。

高考数学(文科)考试大纲

高考数学(文科)考试大纲

高考数学(文科)考试大纲以下是高考数学(文科)考试大纲:一、考试内容本科目考试内容分为数与式、函数与方程、三角函数与解三角形、解析几何、数列与数学归纳法、概率与统计和数学思想方法等七个部分。

二、考试形式本科目考试采取笔试形式。

三、考试时间考试时间为 120 分钟。

四、知识点1.数与式1.1 数的基本概念1.2 数的运算与性质1.3 数的应用1.4 算式的基本概念1.5 算式的运算1.6 算式的应用2.函数与方程2.1 函数的基本概念2.2 常用函数的性质2.3 函数的图像与性质2.4 函数的应用2.5 方程的基本概念2.6 一元一次方程及应用2.7 一元二次方程及应用2.8 二元一次方程组及图像2.9 其他代数方程及应用3.三角函数与解三角形3.1 角的基本概念3.2 三角函数的定义与性质3.3 三角函数的图像与性质3.4 解三角形4.解析几何4.1 解析几何基本概念4.2 二维坐标系与图形4.3 三维坐标系与图形4.4 平面解析几何4.5 空间解析几何5.数列与数学归纳法5.1 数列的基本概念5.2 数列的通项公式和递推公式5.3 数列的分类5.4 数学归纳法6.概率与统计6.1 概率的基本概念6.2 概率的计算方法6.3 统计的基本概念6.4 统计的数据处理方法7.数学思想方法7.1 数学证明的基本方法7.2 数学建模的基本方法7.3 数学探究的基本方法7.4 数学推理的基本方法以上是高考数学(文科)考试大纲的全文。

2007年高考.广东卷.文科数学试题及详细解答

2007年高考.广东卷.文科数学试题及详细解答

绝密★启用前试卷类型:A2007年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题。

满分150分。

考试用时120分钟。

注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再填涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答。

答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题号(或题组号),对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式V =31Sh ,其中S 是锥体的底面积,h 是锥体的高.如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 用最小二乘法求线性回归方程系数公式x b y n xn x yx n y x b ni i ni i i-=-∑-∑===,2121一、选择题:本大题共l0小题,每小题5分,满分50分.在每小题给出的四个选项中.只有一项是符合题目要求的. 1.已知集合{|10}M x x =+>,1{|0}1N x x=>-,则M N =A .{x|-1≤x <1}B .{x |x>1}C .{x|-1<x <1}D .{x |x ≥-1} 【解析】(1,),(,1)M N =-+∞=-∞,故M N (1,1)=-,选(C).2.若复数(1+bi)(2+i)是纯虚数(i 是虚数单位,b 是实数),则b=A .-2B .12-C. 12D .2 【解析】(1)(2)(2)(21)bi i b b i ++=-++,依题意202b b -=⇒=, 选(D).3.若函数f(x)=x 3(x ∈R),则函数y=f(-x)在其定义域上是 A .单调递减的偶函数 B.单调递减的奇函数 C .单凋递增的偶函数 D .单涮递增的奇函数【解析】函数3()y f x x =-=-单调递减且为奇函数,选(B).4.若向量,a b 满足||||1a b ==,a 与b 的夹角为60︒,则a a a b ⋅+⋅= A .12 B .32C.12+ D .2【解析】23||||||cos602a a ab a a b ⋅+⋅=+⋅︒=,选(B).5.客车从甲地以60km /h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km /h 的速度匀速行驶l 小时到达丙地。

2016年广东省高考数学试卷及答案解析(文科)(全国新课标ⅰ)

2016年广东省高考数学试卷及答案解析(文科)(全国新课标ⅰ)

2016年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.﹣3 B.﹣2 C.2 D.33.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2 D.35.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.(5分)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C 于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年广东省高考数学试卷(文科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.﹣3 B.﹣2 C.2 D.3【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2 D.3【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D10.(5分)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即+3=a2+2,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.=×2××2×2=.所以四面体PDEF的体积V=×DE×S△PEF19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C 于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增;②当a<0时,若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;x→﹣∞,f(x)→+∞.f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,f(x)在(1,+∞)单调递增,又x≤1时,f(x)<0,所以f(x)不存在两个零点.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

2011年高考真题详解——广东卷(文科数学)

2011年高考真题详解——广东卷(文科数学)

2011年普通高等学校招生全国统一考试【广东卷】(文科数学)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页.全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:(每小题5分,共50分)【2011⋅广东文,1】1.设复数z 满足1iz =,其中i 为虚数单位,则z = ( ). A .i - B .i C .1 D .1- 【2011⋅广东文,2】2.已知集合(){,|A x y x y =、为实数,且}221xy +=,(){,|B x y x y=、为实数,且}1x y +=,则AB 的元素个数为( ).A .4B .3C .2D .1【2011⋅广东文,3】3.已知向量(1,2),(1,0),(3,4)===a b c .若λ为实数,()λ+a b ∥c ,则λ= ( ).A .14 B .12C .1D .2 【2011⋅广东文,4】4.函数1()lg(1)1f x x x=++-的定义域是( ). A .(,1)-∞- B .(1,)+∞ C .(1,1)(1,)-+∞ D .(,)-∞+∞【2011⋅广东文,5】5.不等式2210x x -->的解集是( ).A .1(,1)2-B .(1,)+∞C .(,1)(2,)-∞+∞D .1(,)(1,)2-∞-+∞ 【2011⋅广东文,6】6. 已知平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(),M x y 为D 上的动点,点A的坐标为),则z OM OA =⋅的最大值为( ).A .3B .4 C. D.【2011⋅广东文,7】7.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( ).A .20B .15C .12D .10【2011⋅广东文,8】8.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切.则C 的圆心轨迹为( ).A .抛物线B .双曲线C .椭圆D .圆【2011⋅广东文,9】9.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别为等边三角形、等腰三角形和菱形,则该几何体体积为( ).A .B .4C .D . 2【2011⋅广东文,10】10.设||||HO H T +是R 上的任意实值函数.如下定义两个函数()()f g x 和()()f g x ;对任意x R ∈,()()()()f g x f g x =;()()()()f g x f x g x =.则下列等式恒成立的是( ). A .()()()()()()()f g h x f h g h x =B . ()()()()()()()f g h x f h g h x =C . ()()()()()()()fg h x f h g h x =D .()()()()()()()f g h x f h g h x =二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)第Ⅱ卷(非选择题 共100分)二、填空题:(每小题5分,共20分)【2011⋅广东文,11】11.已知{}n a 是递增等比数列,2432,4a a a =-=,则此数列的公比=q .【2011⋅广东文,12】12.设函数3()cos 1.f x x x =+若()11f a =,则()f a -= ..【2011⋅广东文,13】13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打时间x (单位:小时)与当于投篮命中率y 之间的关系:小李这 5天的平均投篮命中率为 ,用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 .(二)选做题(14、15题,考生只能从中选做一题)【2011⋅广东文,14】14.(坐标系与参数方程选做题)已知两曲线参数方程分别为⎩⎨⎧==θθsin cos 5y x (0≤θ <π) 和254x ty t⎧=⎪⎨⎪=⎩(t ∈R ),它们的交点坐标为 . 【2011⋅广东文,15】15.(几何证明选讲选做题)如图4,在梯形ABCD 中,AB ∥CD ,AB =4,CD =2,E 、F 分别为AD 、BC 上点,且EF =3,EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为 .三、解答题:(本大题共6小题,共80分)【2011⋅广东文,16】16.(本小题满分12分)已知函数()12sin()36f x x π=-,x R ∈.(Ⅰ) 求()0f 的值; (Ⅱ) 设10,0,,(3),2213f ππαβα⎡⎤∈+=⎢⎥⎣⎦6(3),25f πβ+=求()sin αβ+的值. .【2011⋅广东文,17】17.(本小题满分13分)在某次测验中,有6位同学的平均成绩为75分.用n x 表示编号为()1,2,,6n n =的同学所得成绩,且前5(Ⅰ) 求第6位同学成绩6,及这6位同学成绩的标准差;(Ⅱ) 从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间()68,75中的概率.(2)前5位同学中随机选出的2位同学记为(,)a b ,,{1,2,3,4,5}a b ∈且a b ≠,则基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种,这5位同学中,编号为1、3、4、5号的同学成绩在区间(68,75)中设A 表示随机事件“从前5位同学中随机选出2位同学,恰有1位同学成绩在区间(68,75)中”,则A 中的基本事件有(1,2)、(2,3)、(2,4)、(2,5)共4种,则42()105P A ==. 【2011⋅广东文,18】18.(本小题满分12分)如图所示,将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右平移到的,,,A A B B ''分别为,,,,CD C D DE D E ''''的中点,1122,,,O O O O ''分别为,,,CD C D DE D E ''''的中点.(Ⅰ) 证明:12,,,O A O B ''四点共面;(Ⅱ) 设G 为AA '中点,延长1A O ''到H ',使得11O H A O ''''=,证明:2BO H B G '''⊥面.// (Ⅰ) ,,A A CD C D '''分别为中点,11//O A O A ''∴连接BO 2直线BO 2是由直线AO 1平移得到12//AO BO ∴12//O A BO ''∴ 12,,,O A O B ''∴共面.(Ⅱ) 将AO 1延长至H 使得O 1H=O 1A ,连接1,,HO HB H H '' ∴由平移性质得12O O ''=HB21//BO HO ''∴11,,2A G H O H H A H O H H GA H π''''''''''==∠=∠=1GA H O H H ''''∴∆≅∆12H O H GH A π'''∴∠+=1O H H G ''∴⊥ 2BO H G ''∴⊥12212222222,,O O B O O O O O B O O O O '''''''''''⊥⊥⋂= 1222O O B BO O ''''∴⊥平面 122O O BO '''∴⊥ 2BO H B '''∴⊥ H B H G H ''''⋂=2.BO H B G '''∴⊥平面解法二:证明:(1)连接2,BO 22,O O '依题意得1122,,,O O O O ''是圆柱底面圆的圆心 ∴,,,CD C D DE D E ''''是圆柱底面圆的直径 ∵,,A B B ''分别为C D '',DE ,D E ''的中点 ∴1290A O D B O D ''''''∠=∠=∴1A O ''∥2BO '∵BB '//22O ',四边形22O O B B ''是平行四边形 ∴2BO ∥2BO ' ∴1A O ''∥2BO∴12,,,O A O B ''四点共面(2)延长1A O '到H ,使得11O H AO ''=,连接1,,HH HO HB '' ∵11O H A O ''''=∴1O H ''2B '',四边形12O O B H ''''是平行四边形 ∴12O O ''∥H B ''∵1222O O O O '''⊥,122O O B O ''''⊥,2222O O B O O ''''=∴12O O ''⊥面22O O B B ''∴H B ''⊥面22O O B B '',2BO '⊂面22O O B B '' ∴2BO H B '''⊥易知四边形AA H H ''是正方形,且边长2AA '=,∵11tan 2HH HO H O H'''∠=='',1tan 2A G A H G A H '''∠=='', ∴1tan tan 1HO H A H G ''''∠⋅∠=, ∴190HO H A H G ''''∠+∠=, ∴1HO H G ''⊥易知12O O ''HB ,四边形12O O BH ''是平行四边形, ∴2BO '∥1HO ', ∴2BO H G ''⊥,H GH B H ''''=,∴2BO '⊥平面H B G ''.【2011⋅广东文,19】19.(本小题满分14分)设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性. 【解析】 .函数()f x 的定义域为(0,)+∞.22(1)2(1)1(),a a x a x f x x---+'=当212(1)2(1)1a a a x a x ≠---+时,方程的判别式112(1)()3a a ∆=--.①当10,0,()3a f x '<<∆>时有两个零点,12110,22x x a a =>= 且当12120,()0,()(0,)(,)x x x x f x f x x x '<<>>+∞或时在与内为增函数; 当1212,()0,()(,)x x x f x f x x x '<<<时在内为减函数;②当11,0,()0,()(0,)3a f x f x '≤<∆≤≥+∞时所以在内为增函数;③当11,()0(0),()(0,)a f x x f x x'==>>+∞时在内为增函数;④当111,0,0,2a x a >∆>=>时210,()2x f x a '=+<所以在定义域内有唯一零点1x ,且当110,()0,()(0,)x x f x f x x '<<>时在内为增函数;当1x x >时,1()0,()(,)f x f x x '<+∞在内为减函数。

2023广东高考文科数学 (2)

2023广东高考文科数学 (2)

2023广东高考文科数学引言2023广东高考中,文科数学是其中一门重要的科目。

对于广东高考生来说,备考文科数学非常关键,因为它占据了总分的很大比例。

本文将对2023广东高考文科数学进行详细的介绍和解析,包括考试内容、复习建议和备考技巧等。

考试内容2023广东高考文科数学的考试内容主要分为两部分:基础知识和应用题。

基础知识部分基础知识部分包括数与式、函数与方程、空间与图形和统计与概率。

下面将对每个部分的内容进行简要描述。

1.数与式:包括整式、分式、二次根式等基本概念和运算规则。

2.函数与方程:包括一次函数、二次函数、指数函数、对数函数、三角函数等基本函数的定义、性质和图像。

3.空间与图形:包括平面几何和立体几何的基本概念,如直线、曲线、三角形、多边形、圆、球等。

4.统计与概率:包括统计的基本概念和应用,如频率、频数分布、概率的计算等。

应用题部分应用题部分是考察学生运用数学知识解决实际问题的能力。

主要包括各种实际问题的建模和解决方法,如最优化问题、几何问题、统计问题和概率问题等。

复习建议为了备考2023广东高考文科数学,学生需要合理安排复习时间,并采取合适的复习策略。

以下是一些建议供参考。

1.制定复习计划:根据自己的学习情况和时间安排,制定一个详细的复习计划。

将复习内容分成小块,每天专注于一个或几个重点知识点。

2.多做题:高考数学是一个实践性很强的科目,多做题能够加深对知识点的理解和掌握。

可以选择一些历年高考真题或模拟试卷进行练习。

3.理解原理:高考数学的题目往往有一定的规律性和深层次的思考,不仅要做题,还要理解题目背后的原理。

在做题的过程中,要思考为什么要这样做,它是如何应用到实际问题中的。

4.记笔记:高考数学的知识点很多,复习过程中难免会忘记或混淆一些概念。

建议在复习过程中记录下重要的知识点和公式,便于查阅和复习。

5.寻求帮助:如果在复习过程中遇到困难,不要犹豫寻求帮助。

可以向老师、同学或家长请教,或者参加一些数学辅导班提升自己的数学水平。

2015年广东高考数学文科试卷带详解

2015年广东高考数学文科试卷带详解

2015年高考数学 广东卷(文科)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若集合{1,1}M =-,{2,1,0}N =-,则M N = ( )A. {0,-1}B. {0}C. {1}D. {-1,1} 【参考答案】 C【测量目标】集合交集及其运算 【试题分析】{1}M N = ,故选C.2.已知i 是虚数单位,则复数2(1i)+=( ) A. -2 B. 2 C.-2i D. 2i 【参考答案】 D【测量目标】复数的乘法运算.【试题分析】22(1i)12i i 12i 1+=++=+-=2i ,故选D.3. 下列函数中,既不是奇函数,也不是偶函数的是( ) A. 2sin y x x =+ B. 2cos y x x =-C. 122xxy =+D. sin 2y x x =+ 【参考答案】 A【测量目标】函数奇偶性的判断【试题分析】函数2()sin f x x x =+的定义域为R ,因为(1)1sin1,(1)1sin1f f =+-=- ,所以函数2()sin f x x x =+既不是奇函数,也不是偶函数;函数2cos y x x =-的定义域为R ,关于y 轴对称,因为22()()cos()cos ()f x x x x x f x -=---=-=, 所以函数2cos y x x =-是偶函数;函数122x xy =+的定义域为R , 关于y 轴对称,因为11()22(),22x x x x f x f x ---=+=+=所以函数122x x y =+是偶函数;函数sin 2y x x=+的定义域为R , 关于原点对称,因为()sin(2)sin 2(),f x x x x x f x -=-+-=--=-所以函数sin 2y x x =+是奇函数.故选A.4 . 若变量,x y 满足约束条件2204x y x y x +⎧⎪+⎨⎪⎩≤≥≤, 则23z x y =+的最大值为( )A. 10B. 8C. 5D. 2 【参考答案】 C 【测量目标】线性规划.【试题分析】作出可行域如图所示:第4题图作直线0:230,l x y +=再作一组平行于0l 的直线l 经过点A 时,23z x y =+取得最大值,由224x y x +=⎧⎨=⎩得41x y =⎧⎨=-⎩, 所以点A 的坐标为(4 ,-1),所以max z =243(1)5⨯+⨯-=, 故选C.5.设ABC △的内角,,A B C 的对边分别为,,.a b c若2,a c A ===且,b c <则b =( )A.B. 2C. D. 3【参考答案】 B【测量目标】余弦定理【试题分析】由余弦定理得:2222cos ,a b c bc A =+-所以2222b =+2b -⨯⨯2, 即2680b b -+=, 解得:2b =或4,b =因为,b c <所以2b =,故选 B. 6. 若直线1l 和2l 是异面直线, 1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A. l 至少与1l ,2l 中的一条相交B. l 与1l ,2l 都相交C. l 至多与1l ,2l 中的一条相交D. l 与1l ,2l 都不相交 【参考答案】 A【测量目标】空间点、线、面的位置关系.【试题分析】直线1l 和2l 是异面直线, 1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,若l 与1l ,2l 都不相交,即1l //l ,2l //l ,即1l //2l ,1l 与2l 在同一平面,与题意不符,则l 至少与1l ,2l 中的一条相交, 故选A.7. 已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A. 0.4B. 0.6C. 0.8D. 1 【参考答案】 B 【测量目标】古典概型【试题分析】5件产品中有2件次品,记为,a b , 有3件合格品,记为,,,c d e 从这5件产品中任取2件,有10种,分别是(,)a b ,(,),(,),(,),(,),a c a d a e b c (,),(,),(,),(,),b d b e c d c e(,),d e 恰有一件次品,有6种,分别是(,),(,),(,),(,),(,),(,),a c a d a e b c b d b e 设事件A =“恰有一件次品”,则)P A (=610=0.6,故选B. 8. 已知椭圆222125x y m+=(m >0)的左焦点为1(4,0),F -则m =( ) A. 9 B. 4 C. 3 D. 2 【参考答案】 C【测量目标】椭圆的简单几何性质.【试题分析】由题意得:222549,m =-=因为0,m >所以3,m =故选C.9. 在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形, (1,2),AB =-(2,1),AD =则AD AC ⋅= ( )A. 2B. 3C. 4D. 5 【参考答案】 D【测量目标】平面向量的加减运算和坐标运算.【试题分析】因为四边形ABCD 是平行四边形, 所以(1,2)(2,1)AC AB AD =+=-+=(3,1),-所以AD AC ⋅=231(1)5,⨯+⨯-=故选D.10. 若集合{(,,,)|04,04,04E p q r s p s q s r s =<<<≤≤≤≤≤≤且,,,p q r s ∈N},{(,,,)|04,04F t u v w t u v w =<<≤≤≤≤且,,,t u v w ∈N },用()card X 表示集合X 中的元素个数,则()()card E card F +=( ) A. 50 B. 100 C. 150 D. 200 【参考答案】D【测量目标】推理与证明.【试题分析】当4s =时,,,p q r 都是取0,1,2,3中的一个,有44464⨯⨯=种,当3s =时,,,p q r 都是取0,1,2中的一个,有33327⨯⨯=种,当2s =时,,,p q r 都是取0,1中的一个,有2228⨯⨯=种,当1s =时,,,p q r 都取0,有1种,所以()card E =64+27+8+1=100,当0t =时,u 取1,2,3,4中的一个,有4种,当1t =时,u 取2,3,4中的一个,有3种,当2t =时,u 取3,4中的一个,有2种,当3t =时,u 取4,有1种,所以t 、u 的取值有1+2+3+4=10种,同理,v 、w 的取值也有10种,所以()card F =10⨯10=100,所以()()c a r d Ec a rd F +=100+100=200,故选D.一、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题)11.不等式2340x x --+>的解集为_________. 【参考答案】 (-4,1) 【测量目标】一元二次不等式.【试题分析】由2340x x +-<得:41,x -<<所以不等式2340x x --+>的解集为 (-4,1),所以答案应填(-4,1).12. 已知样本数据12,,...,n x x x 的均值x =5,则样本数据1221,21,...,21n x x x +++的均值为__________. 【参考答案】 11 【测量目标】均值的性质.【试题分析】因为样本数据12,,...,n x x x 的均值x =5,所以样本数据1221,21,...,21n x x x +++的均值为2125111,x +=⨯+=所以答案应填:11.13. 若三个正数,,a b c 成等比数列,其中55a c =+=-则b =__________. 【参考答案】1【测量目标】等比中项.【试题分析】因为三个正数,,a b c成等比数列,所以2(51b ac ==+-=,因为0,b >所以1,b =所以答案应填:1.(二)选作题(14、15题,考生只能从中选作一题)14.(坐标系与参数方程选做题)在平面直角坐标系xoy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为(cos sin )2,ρθθ+=-曲线2C 的参数方程为2x t y ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为__________. 【参考答案】 (2,-4)【测量目标】1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点.【试题分析】曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28,y x =由228x y y x+=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为(2,-4),所以答案应填:(2,-4). 15. (几何证明选讲选做题)如图,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线EC 的垂线,垂足为D .若AB =4,CE=则AD =____________.第15题图【参考答案】 3【测量目标】切线的性质、平行线分线段成比例定理、切割线定理.【试题分析】连接OC ,则OC ⊥DE ,所以OC //,AD 所以,OC OEAD AE=由切割线定理得:2,CE BE AE =⋅所以(4)12,BE BE +=即24120,BE BE +-=解得:2BE =或6BE =-(舍去),所以263,4OC AE AD OE ⋅⨯===所以答案应填:3.三、解答题(本大题共6小题,满分80分.解答题写出文字说明、证明过程和演算步骤.) 16. (本小题满分12分)已知tan 2.α= (1)求πtan()4α+的值. (2)求2sin 2sin sin cos cos 21ααααα+--的值. 【测量目标】(1)两角和的正切公式;(2)二倍角的正、余弦公式,同角三角函数的基本关系.【试题分析】(1)tan tantan 1214tan()341tan 121tan tan4παπααπαα++++====----(2)2sin 2sin sin cos cos 21ααααα+--=222sin cos sin sin cos (2cos 1)1αααααα+---=222sin cos sin sin cos 2cos αααααα+- =22tan tan tan 2ααα+- =222222⨯+-=117. (本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280.300]分组的频率分布直方图如图.第17题图(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【测量目标】(1)频率分布直方图;(2)样本的数字特征(众数、中位数);(3)分层抽样.【试题分析】(1)由(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)⨯20=1得:x=0.0075,所以直方图中x的值是0.0075(2)月平均用电量的众数是2202402302+=因为(0.002+0.0095+0.011)⨯20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)⨯20+0.0125⨯(a-220)=0.5得:a=224,所以月平均用电量的中位数是224.(3)月平均用电量为[220,240)的用户有0.0125⨯20⨯100=25户,月平均用电量为[240,260)的用户有0.0075⨯20⨯100=15户,月平均用电量为[260,280)的用户有0.005⨯20⨯100=10户,月平均用电量为[280,300)的用户有0.0025⨯20⨯100=5户,抽取比例=111 25151055=+++,所以月平均用电量在[220,240)的用户中应抽取12555⨯=户18.(本小题满分14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,4,6, 3.PD PC AB BC====第18题图(1)证明://BC 平面PDA ; (2)证明:BC ⊥PD ; (3)求点C 到平面PDA 的距离.【测量目标】(1)线面平行;(2)线线垂直;(3)点到平面的距离.【试题分析】(1)因为四边形ABCD 是长方形,所以//BC AD ,因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以//BC 平面PDA(2)因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC 平面,ABCD CD =BC ⊂平面ABCD ,所以BC ⊥平面PDC ,因为PD ⊂平面,PDC 平面PDC 平面,ABCD CD =所以BC ⊥PD(3)取CD 的中点E ,连结AE 和PE ,因为,PD PC =所以PE ⊥CD ,在Rt △PED中,PE因为平面PDC ⊥平面ABCD ,平面PDC 平面,ABCD CD =PE ⊂平面PDC ,所以PE ⊥平面ABCD ,由(2)知:BC ⊥平面PDC ,由(1)知://BC AD ,所以AD 垂直平面PDC ,因为PD ⊂平面PDC ,所以AD ⊥PD ,设点C 到平面PDA 的距离为h ,因为C PDA P ACD V V --=三棱锥三棱锥,所以1133PDA ACD S h S PE ⋅=⋅△△,即ACD PDA S PE h S ⋅=△△=1362342⨯⨯=⨯⨯,所以点C 到平面PDA19.(本小题满分14分)设数列{n a }的前n 项和为n S ,n ∈*N .已知1a =1,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.(1)求4a 的值;(2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列;(3)求数列{}n a 的通项公式.【测量目标】(1)等比数列的定义;(2)等比数列的通项公式;(3)等差数列的通项公式. 【试题分析】(1)当n =2时,4231458S S S S +=+,即43534(1)5(1)242a +++++= 358(1)124+++,解得:478a =(2)因为211458n n n n S S S S ++-+=+(2n ≥),所以21114444n n n n n n S S S S S S ++-+-+-=-(2)n ≥,即214(2),n n n a a a n +++=≥因为312544164,4a a a +=⨯+==所以24n n a a ++=14n a +,因为2121111111114242212142422(2)22n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----,所以数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列.(3)由(2)知:数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列,所以1111()22n n n a a -+-=,即114,11()()22n n n n a a ++-=所以数列1()2n na ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是以1212a =为首项,公差为4的等差数列,所以2(1)442,1()2n n an n =+-⨯=-即1(42)()2n n a n =-⨯,所以数列{}n a 的通项公式是11(21)()2n n a n -=-⨯.20.(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程; (3)是否存在实数k ,使得直线L :()4y k x =-与曲线C 只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【测量目标】(1)圆的标准方程;(2)直线与圆的位置关系;(3)圆锥曲线与圆的位置关系.【试题分析】 将圆1C :22650x y x +-+=化为()2234x y -+=,所以圆1C 的圆心坐标为()3,0.(2)设线段AB 的中点()00,M x y ,由圆的性质可得1C M 垂直于直线l ,设直线l 的方程为y mx =(易知直线l 的斜率存在),所以11C M k m ⋅=-,00y mx =,所以000013y y x x ⋅=--,所以200030x x y -+=即22003924x y ⎛⎫-+= ⎪⎝⎭,因为动直线l 与圆1C 相交,所以2<,所以245m <,所以222200045y m x x =<,所以22000435x x x -<,解得053x >或00x <,又因为003x <≤,所以0533x <≤.所以()00,M x y 满足220003953243x y x ⎛⎫⎛⎫-+=<≤ ⎪⎪⎝⎭⎝⎭, 即M 的轨迹C 的方程为223924x y ⎛⎫-+=⎪⎝⎭533x ⎛⎫<≤ ⎪⎝⎭. (3)由题意知直线L 表示过定点()4,0T ,斜率为k 的直线结合图形,220003953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭表示的是一段关于x轴对称,起点为5,3⎛ ⎝⎭按逆时针方向运动到5,33⎛ ⎝⎭的圆弧.根据对称性,只需讨论在x 轴对称下方的圆弧.设P 5,33⎛⎫- ⎪ ⎪⎝⎭,则3543PT k ==-,而当直线L 与轨迹C32=,解得34k =±.在这里暂取34k =,因为34<,所以PT k k <,第20题图结合图形,可得对于x 轴对称下方的圆弧,当0k ≤≤或43k =时,直线L 与x 轴对称下方的圆弧有且只有一个交点,根据对称性可知77k -≤≤或43k =±.综上所述:当77k -≤≤43k =±时,直线L :()4y k x =-与曲线C 只有一个交点.21.(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---. (1)若()01f ≤,求a 的取值范围; (2)讨论()f x 的单调性; (3)当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数. 【测量目标】(1)绝对值不等式;(2)函数的单调性;(3)函数的最值和函数的零点. 【试题分析】 (1)()220f a a a a a a =+-+=+,因为()01f ≤,所以1a a +≤,当0≤a 时,01≤,显然成立;当0a >时,则有21a ≤,所以12a ≤,所以102a <≤.综上所述,a 的取值范围是12a ≤. (2)()()()2221,212,x a x x a f x x a x a x a⎧--≥⎪=⎨-++<⎪⎩,对于()2121u x a x =--,其对称轴为21122a x a a -==-<,开口向上,所以()f x 在(),a +∞上单调递增;对于()21212u x a x a =-++,其对称轴21122a x a a +==+> ,开口向上,所以()f x 在(),a -∞上单调递减.综上所述:()f x 在 (),a +∞上单调递增,在(),a -∞上单调递减.(3)由(2)得()f x 在(),a +∞上单调递增,在()0,a 上单调递减,所以()()2min f x f a a a ==-.(i )当2a =时,()()min 22,f x f ==-()223,254,2x x x f x x x x ⎧-≥=⎨-+<⎩令()40f x x +=,即()4f x x =-()0x >,因为()f x 在()0,2上单调递减,所以()()22f x f >=-而4y x=-在()0,2上单调递增,()22y f <=-,所以()y f x =与4y x=-在()0,2上无交点.当2x ≥时,()243f x x x x=-=-,即32340x x -+=,所以322240x x x --+=,所以()()2210x x -+=,因为2x ≥,所以2x =,即当2a =时()4f x x +有一个零点2x =.(ii )当2a >时,()()2m i n fx f a a a ==-,当()0,x a ∈时,()024f a =>,()2f a a a =-,而4y x =-在()0,x a ∈上单调递增,当x a =时,4y a=-.下面比较()2f a a a =-与4a -因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a 所以aa a a f 4)(2-<-=第21题图结合图象不难得当2>a ,)(x f y =与xy 4-=有两个交点. 综上,当2=a 时,()4f x x +有一个零点2x =;当2>a ,)(x f y =与xy 4-=有两个零点.。

2020年广东高考(文科)数学试题及答案

2020年广东高考(文科)数学试题及答案
15.曲线 的一条切线的斜率为2,则该切线的方程为______________.
【答案】
【解析】
【分析】
设切线的切点坐标为 ,对函数求导,利用 ,求出 ,代入曲线方程求出 ,得到切线的点斜式方程,化简即可.
【详解】设切线的切点坐标为 ,
【详解】由图可得:函数图象过点 ,
将它代入函数 可得:
又 是函数 图象与 轴负半轴的第一个交点,
所以 ,解得:
所以函数 的最小正周期为
故选:C
【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.
8.设 ,则 ()
A. B. C. D.
【答案】B
【解析】
【分析】
根据已知等式,利用指数对数运算性质即可得解
据此结合目标函数的几何意义可知目标函数在点A处取得最大值,
联立直线方程: ,可得点A的坐标为: ,
据此可知目标函数的最大值为: .
故答案为:1.
【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 则 ()
A. B.
C. D.
2.若 ,则 ()
A.0B.1
C. D.2
3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()

2008高考广东数学文科试卷含详细解答(全word版)

2008高考广东数学文科试卷含详细解答(全word版)

2008年普通高等学校招生全国统一考试(广东卷)(文科)全解析广东佛山南海区南海中学 钱耀周一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求。

1.第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A ={参加北京奥运会比赛的运动员},集合B ={参加北京奥运会比赛的男运动员}。

集合C ={参加北京奥运会比赛的女运动员},则下列关系正确的是A.A ⊆BB.B ⊆CC.A ∩B =CD.B ∪C =A【解析】送分题呀!答案为D.2.已知0<a <2,复数z a i =+(i 是虚数单位),则|z |的取值范围是B. (1,C.(1,3)D.(1,5) 【解析】12+=a z ,而20<<a ,即5112<+<a ,51<<∴z ,选B.3.已知平面向量(1,2)a =,(2,)b m =-,且a //b ,则23a b +=( )A 、(5,10)--B 、(4,8)--C 、(3,6)--D 、(2,4)--【解析】排除法:横坐标为2(6)4+-=-,选B.4.记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )A 、2B 、3C 、6D 、7【解析】4224123S S S d d --==⇒=,选B.5.已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数 【解析】222211cos 4()(1cos 2)sin 2cos sin sin 224x f x x x x x x -=+===,选D. 6.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( )A 、10x y ++=B 、10x y +-=C 、10x y -+=D 、10x y --=【解析】易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b =,故待求的直线的方程为10x y -+=,选C.(或由图形快速排除得正确答案.)7.将正三棱柱截去三个角(如图1所示A 、B 、C 分别是GHI ∆三边的中点)得到的几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为【解析】解题时在图2的右边放扇墙(心中有墙),可得答案A.8. 命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是( )A 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数B 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数C 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数D 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数【解析】考查逆否命题,易得答案A.9、设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( )A 、1a <-B 、1a >-C 、1a e <-D 、1a e>-【解析】题意即0x e a +=有大于0的实根,数形结合令12,x y e y a ==-,则两曲线交点在第一象限,结合图像易得11a a ->⇒<-,选A.10、设,a b R ∈,若||0a b ->,则下列不等式中正确的是( )A 、0b a ->B 、330a b +<C 、220a b -< D 、0b a +>【解析】利用赋值法:令1,0a b ==排除A,B,C,选D.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11-13题)11.为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85,[)85,95由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)55,75的人数是 .【解析】20(0.06510)13⨯⨯=,故答案为13.12.若变量x ,y 满足240,250,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则z =3x +2y 的最大 值是________。

2023广东高考文科数学

2023广东高考文科数学

2023广东高考文科数学引言2023年广东高考即将到来,作为文科生的你,文科数学是重要的科目之一。

本文档将为你介绍2023广东高考文科数学的相关内容,包括考试科目、考试形式、考试大纲等。

希望通过本文档的学习,能够帮助你更好地备考数学,取得优异的成绩。

考试科目2023广东高考文科数学的考试科目包括数学一和数学二两个部分。

数学一主要涵盖了数与代数、函数与方程、数列与数学归纳法等内容;而数学二主要包括平面几何、立体几何、统计与概率等内容。

考试形式2023广东高考文科数学的考试形式分为两个部分:选择题和解答题。

选择题部分共包括50道题目,每题4个选项,考生需要在答题卡上选择正确的答案。

解答题部分共包括5道题目,考生需要在试卷上作答,解答过程和答案都要写在试卷上指定的位置。

考试大纲2023广东高考文科数学的考试大纲主要包括以下几个方面的内容:1.数与代数:包括数系、绝对值、整式、方程、不等式等内容;2.函数与方程:包括函数的概念、函数的性质、函数图像、函数的应用等内容;3.数列与数学归纳法:包括等差数列、等比数列、递推数列、数学归纳法等内容;4.平面几何:包括平面上的图形、平面上的几何关系、平面几何的证明等内容;5.立体几何:包括立体图形的表达、立体图形的计算、立体几何的证明等内容;6.统计与概率:包括数据的收集整理、统计指标、概率的概念、概率的计算等内容。

备考建议为了在2023广东高考文科数学中取得优异的成绩,以下是一些建议供考生参考:1.注重基础知识的理解和掌握:首先要确保对于各个知识点的基础知识掌握牢固,这对于解答选择题和解答题都非常重要。

2.多做真题和模拟题:通过做真题和模拟题,可以更好地了解自己的薄弱环节,有针对性地进行复习和提高。

3.注重解题方法和思维的训练:解答题需要有良好的解题方法和思维,要善于归纳总结题目的解题思路,并通过练习不同类型的题目提高解题能力。

4.注重习题的辅导和分析:做完习题后,及时进行辅导和分析,找出做错的原因并加以改进,将错题订正并记下解题思路,以免重犯同样的错误。

广东高考数学(文科)考试大纲的说明

广东高考数学(文科)考试大纲的说明

20XX年普通高等学校招生全国统一考试数学(文科)考试大纲的说明(广东卷)I.命题指导思想坚持“有助于高校科学公正地选拔人才,有助于推进普通高中课程改革,实施素质教育”的基本原则,体现普通高中新课程的理念、以能力立意,将知识、能力和素质融为一体,全面检测考生的数学素养,发挥数学作为主要基础学科的作用,考查考生对中学数学的基础知识、基本技能的掌握程度,考查考生对数学思想方法和数学本质的理解水平,以及进入高等学校继续学习的潜能。

II.考试内容一、考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能。

各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明。

对知识的要求依次是了解、理解、掌握三个层次。

(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

这一层次所涉及的主要行为动词有了解,知道、识别,模仿,会求、会解等。

(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。

这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想像,比较,判别,初步应用等。

(3)掌握:要求能够对所列知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。

这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论,运用、解决问题等。

2.能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年高考数学(文科)考试大纲的说明(广东卷)I.考试范围与要求(一)必考内容与要求1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的“属于”关系。

②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

(2)集合间的基本关系①理解集合之间包含于相等的含义,能识别给定集合的子集。

②在具体情境中,了解全集与空集的含义。

(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

③能使用韦恩(Venn)图表达集合的关系及运算。

2.函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择适当的方法(如图像法、列表法、解析法)表示函数。

③了解简单的分段函数,并能简单应用。

④理解函数的单调性、最大(小)值以及几何意义;结合具体函数,了解函数奇偶性的含义。

⑤会运用函数图象理解和研究函数的性质。

(2)指数函数①了解指数函数模型的实际背景。

②理解有理数指数幂的含义,了解实数幂的意义,掌握幂的运算。

③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。

(3)对数函数①理解对数函数的概念以及运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

② 理解对数函数的概念;理解对数函数的单调性,掌握对数函数图像通过的特殊点。

③了解指数函数x a y =与对数函数x y a log =互为反函数(1,0≠>a a )(4)幂函数① 了解幂函数的概念。

② 结合函数2132,1,,,x y xy x y x y x y =====的图像,了解它们的变化情况。

(5)函数与方程 ① 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。

② 根据具体函数的图像,能够用二分法求相应方程的近似解。

(6)函数模型及其应用① 了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。

3.立体几何初步(1)空间几何体① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。

②能画出简单空间图形(长方体、球、圆柱、棱柱等简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图。

③会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式。

④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。

⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理。

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内。

◆公理2:过不在同一直线上的三点,有且只有一个平面。

◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。

◆公理4:平行于同一条直线的两条直线互相平行。

◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理。

理解以下判定定理:◆如果平面外一条直线与此平面内的一条直线平行,那么改直线与此平面平行。

◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行。

◆如果一条直线与一个平面内的两条相交直线都垂直,那么改直线与此平面垂直。

◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直。

理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平面。

◆如果两个平行平面同时和第三个平面相交,那么它们的交线互相平行。

◆垂直于同一个平面的两条直线平行。

◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直。

③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题。

4.平面解析几何初步(1)直线与方程①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。

②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。

③能根据两条直线的斜率判定这两条直线平行或垂直。

④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。

⑤能够解方程组的方法求两直线的交点坐标。

⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程。

②能根据给定直线、圆的方程,判断直线与圆的位置关系,能根据给定两个圆的方程判断两圆的位置关系。

③能用直线和圆的方程解决一些简单的问题。

④初步了解代数方法处理几何问题的思想。

(3)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标系表示点的位置。

②会推导空间两点间的距离公式。

5.算法初步(1)算法的含义、程序框图①了解算法的含义、了解算法的思想。

②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。

(2)基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、循环语句的含义。

6.统计(1)随机抽样①理解随机抽样的必要性和重要性。

②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。

(2)总体估计①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点。

②理解样本数据标准差的意义和作用,会计算数据标准差。

③能从样本数据中提取基本的数学特征(如平均数、标准差),并作出合理的解释。

④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。

⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。

(3)变量的关注性① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。

② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

7.概率(1)事件与概率① 了解随机时件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。

② 了解两个互斥事件的概率加法公式。

(2)古典概型① 理解古典概型及其概率计算公式。

② 会计算一些随机事件所含的基本事件数及事件发生的概率。

(3)随机数与几何概型① 了解随机数的意义,能运用模拟方法估计概率。

② 了解几何概型的意义。

8.基本初等函数Ⅱ(三角函数)(1)任意角的概念、弧度制① 了解任意角的概念。

② 了解弧度制的概念,能进行弧度与角度的互化。

(2)三角函数① 理解任意角三角函数(正弦、余弦、正切)的定义。

② 能利用单位圆中的三角函数线推导出απαπ±+,2的正弦、余弦、正切的诱导公式,能画出x y x y x y tan ,cos ,sin ===的图象,了解三角函数的周期性。

③ 理解正弦函数、余弦函数在区间[]π2,0的性质(如单调性、最大值和最小值以及与x 轴的交点等)。

理解正切函数在区间⎪⎭⎫ ⎝⎛-2,2ππ的单调性。

④ 理解同角三角函数的基本关系式: x xx x x tan cos sin ,1cos sin 22==+。

⑤ 了解函数)sin(ϕω+=x A y 的物理意义;能画出)sin(ϕω+=x A y 的图象。

了解参数ϕω,,A 对函数图象变化的影响。

⑥ 了解三角函数是描述周期变化现在的重要函数模型,会用三角函数解决一些简单实际问题。

9.平面向量(1)平面向量的实际背景及基本概念① 了解向量的实际背景。

② 理解平面向量的概念,理解两个向量相等的含义。

③ 理解向量的几何表示。

(2)向量的线性运算① 掌握向量的加法、减法的运算,并理解其几何意义。

② 掌握向量数乘的运算及其意义,理解两个向量贡献的含义。

③ 了解向量线性运算的性质及其几何意义。

(3)平面向量的基本定理及坐标表示① 了解平面向量的基本定理及其意义② 掌握平面向量的正交分解及其坐标表示③ 学会用坐标表示平面向量的加法、减法与数乘运算④ 理解用坐标表示的平面向量共线的条件。

(4)平面向量的数量积① 理解平面向量数量积的含义及其物理意义② 了解平面向量的数量积与向量投影的关系③ 掌握数量积的坐标表达式,会进行平面向量数量积的运算④ 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

(5)向量的应用① 会用向量方法解决某些简单的平面几何问题② 会用向量方法解决简单的力学问题与其他一些实际问题10.三角恒等变换(1)和与差的三角函数公式① 会用向量数量积推导出两角差的余弦公式②能利用两角差的余弦公式导出两角差的正弦、正切公式③能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式。

导出二倍角的正弦、余弦、正切公式,了解它们的内在联系。

(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)。

11.解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

12.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图象、通项公式)②了解数列是自变量为正数的一类函数(2)等差数列、等比数列①理解等差数列、等比数列的概念②掌握等差数列、等比数列的通项公式与前n项和公式③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题④了解等差数列与一次函数、等比数列与指数函数的关系13.不等式(1)不等关系了解现实世界和日常生活中的不等式关系,了解不等式(组)的实际背景(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图(3)二元一次不等式组与简单线性规划问题① 会从实际情境中抽象出二元一次不等式组② 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组 ③ 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(4)基本不等式:)0,(2≥≥+b a ab b a ① 了解基本不等式的证明过程② 会用基本不等式解决简单的最大(小)值问题14.常用逻辑用语(1)命题以及关系① 理解命题的概念② 了解“若p ,则q ”形式命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系③ 理解必要条件、充分条件与充要条件的意义(2)简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义(3)全称量词与存在量词① 理解全称量词与存在量词的意义② 能正确地对含有一个量词的命题进行否定15.圆锥曲线与方程(1)圆锥曲线① 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用② 掌握椭圆的定义、几何图形、标准方程及简单几何性质.③ 了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.④ 理解数形结合的思想⑤ 了解圆锥曲线的简单应用16.导数及其应用(1)导数概念及其几何意义① 了解导数概念的实际背景② 理解导数的几何意义(2)导数的运算 ①能根据导数定义求函数xy x y x y C y 1,,,2====的导数 ②能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数●常见基本初等函数的导数公式和常用导数运算公式 :)且(且;为常数10log 1)(log ;1)(ln )1,0(ln )(;)(;sin )(cos ;cos )(sin ;,)()(0''''''1''≠>==≠>==-==∈==+-a a e xx x x a a a a a e e x x x x N n nx x C C a a x x x x n n ●法则1 )()()]()(['''x v x u x v x u ±=±●法则2 )()()()()]()(['''x v x u x v x u x v x u +=●法则3 )0)(()()()()()(])()([2'''≠-=x v x v x v x u x v x u x v x u (3)导数在研究函数中的应用① 了解函数单调性和导数的关系:能利用导数研究函数的单调性,会求函数的单调性区间(其中多项式函数一般不超过三次)② 了解函数在某点取得极值的必要条件和充分条件:会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭期间上函数的最大值、最小值(其中多项式函数一般不超过三次)(4)生活中的优化问题会利用导数解决某些实际问题17.统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题(1)独立检验了解独立检验(只要求2*2列联表)的基本思想、方法及其简单应用(2)回归分析了解回归的基本思想、方法及其简单应用18.推理与证明(1)合情推理与演绎推理①了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发展中的作用②了解演绎推理的重要性,掌握演绎推理的基本形式,并能运用它们进行一些简单推理③了解合情推理和演绎推理之间的联系和差异(2)直接证明与间接证明①了解直接证明和两种方法——分析法和综合法;了解分析法和综合法的思考过程、特点②了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点19.数系的扩充与复数的引人(1)复数的概念①理解复数的基本概念②理解复数相等的充要条件③了解复数相等的代数表示及其几何意义(2)复数的四则运算①会进行复数代数形式的四则运算②了解复数代数形式的加、减运算的几何意义20.框图(1)流程图①了解程序框图②了解工序流程图(即统筹图)③能绘制简单实际问题的流程图。

相关文档
最新文档