(完整版)等差数列基础练习题一
等差数列练习题(有答案)百度文库(1)
一、等差数列选择题1.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n -=,则55a b =( ) A .3415B .2310C .317D .62272.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8B .10C .12D .143.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10-B .8C .12D .144.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11B .10C .6D .35.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 6.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4 C .a 5=2 D .a 6=27.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个B .3个C .2个D .1个 8.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .249.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200B .100C .90D .8010.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S11.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .412.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS =( ) A .177B .83 C .143D .10313.已知数列{}n a 中,132a =,且满足()*1112,22n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有n a nλ≥成立,则实数λ的最小值是( ) A .2B .4C .8D .1614.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2mB .21m +C .22m +D .23m +15.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-16.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为( ) A .511B .38C .1D .217.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15B .20C .25D .3018.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩19.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0B .1C .2D .320.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 二、多选题21.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >22.题目文件丢失!23.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .424.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .825.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值26.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =27.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a > B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 28.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =29.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =30.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S =D .15S 是最大值【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯. 故选:D 2.C 【分析】利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C 3.D 【分析】利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】147446=32a a a a a ++=∴=,则()177477142a a S a +=== 故选:D 4.A 【分析】利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,213a a d =+=,解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 5.B 【分析】利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=. 故选:B. 6.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 7.B 【分析】设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断D . 【详解】设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;所以7710217022128S d =⨯+≤-⨯=,B 错误;1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d≤-+,11100n a a nd nd +=+=+≤,解得10n d≥-, 所以10101n d d-≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由10n n a a +≥⎧⎨≤⎩求得.8.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 9.C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 10.B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 11.B 【分析】 由题意可得221114n n a a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,得221114n n a a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列, 所以2114(1)43n n n a =+-=-, 因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14nb ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题【分析】由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列,所以()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =. 又()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而126103S S =. 故选:D 【点睛】 思路点睛:(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列, (2)()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =. 13.A 【分析】 将11122n n n a a -=+变形为11221n n n n a a --=+,由等差数列的定义得出22n n n a +=,从而得出()22nn n λ+≥,求出()max22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】 因为2n ≥时,11122n n n a a -=+,所以11221n n n n a a --=+,而1123a = 所以数列{}2nn a 是首项为3公差为1的等差数列,故22nn a n =+,从而22n nn a +=. 又因为n a n λ≥恒成立,即()22nn n λ+≥恒成立,所以()max22n n n λ+⎡⎤≥⎢⎥⎣⎦. 由()()()()()()()1*121322,221122n n nn n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨+-+⎪≥⎪⎩N 得2n = 所以()()2max2222222n n n +⨯+⎡⎤==⎢⎥⎣⎦,所以2λ≥,即实数λ的最小值是214.C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+, ()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C.【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 15.C 【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C . 16.C 【分析】令22n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则63a b 可得.【详解】令22n S n λ=,()37n T n n λ=+,可得当2n ≥时,()()221221221n n n a S S n n n λλλ-=-=--=-,()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,()232n b n λ=+故622a λ=,322b λ=,故631a b =. 【点睛】由n S 求n a 时,11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 17.B 【分析】设出数列{}n a 的公差,利用等差数列的通项公式及已知条件,得到124a d +=,然后代入求和公式即可求解 【详解】设等差数列{}n a 的公差为d ,则由已知可得()()111261024a d a d a d +-+=+=, 所以()5115455254202S a d a d ⨯=+=+=⨯= 故选:B 18.B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题.19.D 【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【详解】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-, 联立得:()212133k k a a +-+=, 所以()232134k k a a +++=, 故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++,()()()()234538394041...a a a a a a a a =++++++++,()()201411820622k k =+⨯=-==∑1220,故①②③正确. 故选:D 20.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力.二、多选题21.ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.22.无23.BD 【分析】利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2. ∴1nn a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 24.BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+=整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题. 25.ABD由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD. 26.BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d Sd -⨯==-,()2779772d Sd -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7n nN ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6nn N上单调递增,1na 在7nn N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0nS <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题. 28.AD 【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】解:1385a a S +=,111110875108,90,02da a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392dS a d d d ⨯==-+=-, 131131213+11778392dS a d d d ⨯==-+=-,故D 正确. 故选:AD 【点睛】考查等差数列的有关量的计算以及性质,基础题. 29.ACD 【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确. 【详解】因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;当0d <时,1(1)(1)922n n n n n S na d dn d --=+=-+2(19)2dn n =-无最小值,故B 错误;因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a+⨯===,故D 正确.故选:ACD. 【点睛】本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题. 30.CD 【分析】根据等差数列中1118S S =可得数列的公差0d <,再根据二次函数的性质可知15S 是最大值,同时可得150a =,进而得到290S =,即可得答案; 【详解】1118S S =,∴0d <,设2n S An Bn =+,则点(,)n n S 在抛物线2y Ax Bx =+上,抛物线的开口向下,对称轴为14.5x =,∴1514S S =且为n S 的最大值,1118S S =12131815070a a a a ⇒+++=⇒=,∴129291529()2902a a S a +===, 故选:CD. 【点睛】本题考查利用二次函数的性质研究等差数列的前n 项和的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.。
等差数列数列练习题(5篇)
等差数列数列练习题(5篇)第一篇:等差数列数列练习题一、选择题35241.已知为等差数列,1A.-1B.1C.3D.7 a+a+a=105,a+a+a6=99,则a20等于()2.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D. 633.等差数列{an}的前n项和为Sn,且S3 =6,a1=4,则公差d等于5C.-2D 3 34.已知{an}为等差数列,且a7-2a4=-1, a3=0,则公差d=A.1B11C.D.2 225.若等差数列{an}的前5项和S5=25,且a2=3,则a7=()A.-2B.-A.12B.13C.14D.156.在等差数列{an}中,a2+a8=4,则其前9项的和S9等于()A.18B 27C36D 97.已知{an}是等差数列,a1+a2=4,a7+a8=28,则该数列前10项和S10等于()A.64B.100C.110D.1208.记等差数列{an}的前n项和为Sn,若a1=1,S4=20,则S6=()2A.16B.24C.36D.489.等差数列{an}的前n项和为Sx若a2=1,a3=3,则S4=()A.12B.10C.8D.610.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()A.63B.45C.36D.2711.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是()A.15二、填空题 B.30 C.31 D.6412.已知等差数列{an}的前n项和为Sn,若S12=21,则a2+a5+a8+a11=13.设等差数列{an}的前n项和为Sn,若S9=72,则a2+a4+a9=14.设等差数列{an}的前n项和为Sn,若a5=5a3则S9=S515.等差数列{an}的前n项和为Sn,且6S5-5S3=5,则a4=已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10 16.三、解答题17.在等差数列{an}中,a4=0.8,a11=2.2,求a51+a52+Λ+a80.18、设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0,①求公差d的取值范围;②S1,S2,Λ,S12中哪一个值最大?并说明理由.19、设等差数列{an}的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1){an}的通项公式a n 及前n项的和S n ;(2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.20.已知等差数列{an}中,a3a7=-16,a4+a6=0求{an}前n项和sn.1第二篇:数列四等差数列1、(2009湖北卷文)已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{an}的通项公式:(Ⅱ)若数列{an}和数列{bn}满足等式:an=={bn}的前n项和Sn2、(重庆市重庆八中2011届高三第四次月考理)设数列{an}的前n项和为Sn,a1=1,an=(1)求数列{an}的通项公式an;s11s22Snn+2(n-1),(n∈N).*b12+b22+b32+...bn2n(n为正整数),求数列snn(2)是否存在正整数n使得++....+求出n值;-(n-1)=2011?若存在,若不存在,说明理由.3、(北京龙门育才学校2011届高三上学期第三次月考)在数列{an}中,a1=bn=1an(n∈N).*13,并且对任意n∈N*,n≥2都有an⋅an-1=an-1-an成立,令(Ⅰ)求数列{bn}的通项公式;ann(Ⅱ)求数列{}的前n项和Tn.4、(江苏泰兴市重点中学2011届)已知数列{an}是等差数列,cn=an-an+1(n∈N*)(1)判断数列{cn}是否是等差数列,并说明理由;(2)如果a1+a3+Λ+a25=130,a2+a4+Λ+a26=143-13k(k为常数数列{cn}的通项公式;(3)在(2)的条件下,若数列{cn}得前n项和为Sn,问是否存在这样的实数k,使Sn当且仅当n=12时取得最大值。
等差数列题目100道
等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。
- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。
根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。
2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。
那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。
3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。
- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。
4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。
- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。
5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。
- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。
二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。
- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。
等差数列基础练习题
等差数列基础练习题等差数列基础练习题在平时的学习、工作中,我们最不陌生的就是练习题了,只有认真完成作业,积极地发挥每一道习题特殊的功能和作用,才能有效地提高我们的思维能力,深化我们对知识的理解。
你知道什么样的习题才算得上好习题吗?以下是小编帮大家整理的等差数列基础练习题,欢迎大家借鉴与参考,希望对大家有所帮助。
等差数列基础练习题11、一个递增(后项比前项大)的等差数列,第28项比第53项________(多或少)______个公差。
2、一个递增(后项比前项大)的等差数列,第53 项比第28 项________(多或少)______个公差。
3、一个递增(后项比前项大)的等差数列,第55 项比第37 项________(多或少)______个公差。
4、一个递增(后项比前项大)的等差数列,第55 项比第83 项________(多或少)______个公差。
5、一个递增(后项比前项大)的等差数列,第28项比第73项________(多或少)______个公差。
6、一个递增(后项比前项大)的等差数列,第90项比第73项________(多或少)______个公差。
7、一个递增(后项比前项大)的等差数列,首项比第73 项________(多或少)______个公差。
8、一个递增(后项比前项大)的等差数列,第87 项比首项________(多或少)______个公差。
9、一个递减(后项比前项小)的等差数列,第18项比第32 项________(多或少)______个公差。
10、一个递减(后项比前项小)的等差数列,第32项比第18 项________(多或少)______个公差。
11、一个递减(后项比前项小)的等差数列,第74项比第26项________(多或少)______个公差。
12、一个递减(后项比前项小)的等差数列,第74项比第91 项________(多或少)______个公差。
13、一个递减(后项比前项小)的等差数列,第29项比第86 项________(多或少)______个公差。
等差数列通项公式基础训练题(含详解)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.等差数列 中,已知 , ,则 ()
A.16B.17C.18D.19
2.设 为等差数列,若 ,则
A.4B.5C.6D.7
3.设数列 是公差为 的等差数列,若 ,则 ()
A.4B.3C.2D.1
4.已知数列 满足 ,且 ,那么 ()
A.8B.9C.10D.11
5.在数列{an}中,若 ,a1=8,则数列{an}的通项公式为()
A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)
6.在数列 中, =1, ,则 的值为()
A.99B.49C.101D.102
7.在数列 中, , , ,则 ()
A.6B.7C.8D.9
8.等差数列 中, ,则 ( ).
A.110B.120C.130D.140
9.已知数列 是等差数列, ,则 ( )
A.36B.30C.24 D.1
10.在等差数列 中,若 ,则 ()
A.10B.5C. D.
11.等差数列 满足 ,则其前10项之和为( )
【详解】
根据题意,设 ,数列 是等差数列,
则 , ,
则 ,
即 ;
解可得 ;
故答案为:
【点睛】
本题考查等差数列的性质,关键是求出数列 的通项公式.
19.
【解析】
【分析】
本次考察的是等差数列通项公式的求法。
【详解】
,
【点睛】
等差数列通项公式除了掌握 ,考生还应掌握
(完整版)经典等差数列练习题(含答案),推荐文档
A.13 项 B.14 项 C.15 项 D.16 项
3.已知等差数列的通项公式为an 3n a, a为常数,则公差 d=( )
4.首项为24 的等差数列从第10 项起开始为正数,则公差d 的取值范围是( )
A. d 8 3
B. d 3
C. 8 d 3 3
D. 8 d 3 3
A.第 22 项 B.第 21 项 C.第 20 项 D.第 19 项 6. 已知数列a,-15,b,c,45 是等差数列,则 a+b+c 的值是( )
4.在等差数列{an}中,若 a4 a6 a8 a10 a12 120 ,则 2a10 a12
.
5.在首项为 31,公差为-4 的等差数列中,与零最接近的项是
6. 如果等差数列 an的第 5 项为 5 ,第 10 项为 5 ,则此数列的第 1个负数项
是第项.
7.已知{an }是等差数列,且 a4 a7 a10 57, a4 a5 a6 a14 77, 若ak 13, 则 k=
2 4 8 16
( 6) 1 1 1 ,,
1 ,
,
1
…….
3 8 15 24 35
2. 成等差数列的四个数的和为 26 ,第二数与第三数之积为 40 ,求这四个数。
3. 已知等差数列{ an }中, a3 a7 16, a4 a6 0, 求{ an }的 通项公式
4. 数列通项公式为 an=n2-5n+4,问(1)数列中有多少项是负数?(2)n 为何值时,an 有最小值?并求出最小值.
5.
在等差数列a
中,公差 d
n
1 ,前100 项的和 S 2
100
45Βιβλιοθήκη ,则 a1a3a
等差数列练习题(有答案)百度文库
一、等差数列选择题1.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-2.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 3.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4 C .a 5=2 D .a 6=24.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -B .322n - C .3122n - D .3122n + 5.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160B .180C .200D .2206.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .247.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 8.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS =( ) A .177B .83 C .143D .1039.题目文件丢失!10.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10B .9C .8D .711.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( )A .60B .120C .160D .24012.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸D .二丈二尺五寸13.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .47B .1629C .815D .4514.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) A .48B .60C .72D .2415.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12B .20C .40D .10016.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4217.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<18.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若p m n q <<<且()*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )A .22p p S p a =⋅B .p q m n a a a a >C .1111p q m n a a a a +<+D .1111p q m nS S S S +>+ 19.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51B .57C .54D .7220.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .85二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 22.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >23.题目文件丢失!24.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =25.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为1226.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 27.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <28.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列29.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为2230.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C . 2.B 【分析】利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=. 故选:B. 3.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 4.C 【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-. 故选:C. 5.B 【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020()10181802S a a =+=⨯=. 故选:B 6.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 7.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 8.D 【分析】由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列, 所以()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =.又()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而126103S S =.故选:D 【点睛】 思路点睛:(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列, (2)()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =.9.无10.A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A 11.B 【分析】利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】因为7916+=a a ,所以由等差数列的性质得978216a a a +==, 解得88a =, 所以()11515815151581202a a S a +===⨯=. 故选:B 12.D 【分析】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,已知条件为985.5S =,14731.5a a a ++=,由等差数列性质即得5a ,4a ,由此可解得d ,再由等差数列性质求得后5项和. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===(尺),所以59.5a =(尺),由题知1474331.5a a a a ++==(尺),所以410.5a =(尺),所以公差541d a a =-=-, 则()8910111210555522.5a a a a a a a d ++++==+=(尺). 故选:D . 13.D 【分析】设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果 【详解】设该妇子织布每天增加d 尺, 由题意知2020192042322S d ⨯=⨯+=, 解得45d =. 故该女子织布每天增加45尺. 故选:D 14.A 【分析】根据条件列方程组,求首项和公差,再根据107891093S S a a a a -=++=,代入求值. 【详解】由条件可知114832362a d a d +=⎧⎪⎨⨯+=⎪⎩,解得:102a d =⎧⎨=⎩, ()10789109133848S S a a a a a d -=++==+=.故选:A 15.B 【分析】由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B. 16.C【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.17.D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D. 18.D 【分析】利用等差数列的求和公式可判断A 选项的正误;利用作差法结合等差数列的通项公式可判断B 选项的正误;利用p q m n a a a a <结合不等式的基本性质可判断C 选项的正误;利用等差数列的求和公式结合不等式的基本性质可判断D 选项的正误. 【详解】对于A 选项,由于()()1221222p pp p p p a a Sp a a pa ++==+≠,故选项A 错误;对于B 选项,由于m p q n -=-,则()()p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅⎡⎤⎡⎤⎣⎦⎣⎦()()()()()22m n m n m n a q n d a q n d a a q n a a d q n d =--⋅+--=----⎡⎤⎡⎤⎣⎦⎣⎦()()()2220q n n m d q n d =-----<,故选项B 错误;对于C 选项,由于1111p q m n m n p q p q p q m n m na a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误;对于D 选项,设0x q n m p =-=->,则()()()20pq mn m x n x mn x n m x -=-+-=---<,从而pq mn <,由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+.()()()()()()111111p q pq p q mn m n m n --=-++<-++=--,故()()22221122p q m n p q p q m n m nS S p q a d m n a d S S +--+--+=++>++=+.()()()()()221111112112224p q p p q q pq p q pq p q S S pa d qa d pqa a d d--+---⎡⎤⎡⎤⋅=+⋅+=++⎢⎥⎢⎥⎣⎦⎣⎦()()()221121124mn m n mn p q mna a d d+---<++()()()221121124m n mn m n mn m n mna a d d S S +---<++=,由此1111p q m n p q p q m n m nS S S S S S S S S S S S +++=>=+,故选项D 正确. 故选:D. 【点睛】关键点点睛:本题考查等差数列中不等式关系的判断,在解题过程中充分利用基本量来表示n a 、n S ,并结合作差法、不等式的基本性质来进行判断. 19.B 【分析】根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】317102a a a += 1039a ∴=,即103a =()1191019191921935722a a a S +⨯∴===⨯= 故选:B 20.C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-,∴1215(6121)71(4151)59a kb k ⨯-==⨯-, 故选:C .二、多选题21.ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换. 22.ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确;对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.23.无24.BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式 【详解】解:设等差数列{}n a 的公差为d , 因为30S =,46a =,所以113230236a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n nS na d n ---=+=-+=, 故选:BC 25.ACD 【分析】由题可得16a d =-,0d <,21322n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-,对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d dS n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 26.BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误; 对于B 选项,()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==,此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题. 27.AC 【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112x f x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111x x x x x e f x f x e e e e --+=+-=+-=++++,所以()1112xf x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥;当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC 【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 28.AD 【分析】利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式, 所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列,因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误, 故选:AD 【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题 29.AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题. 30.ABC 【分析】根据等差数列性质依次分析即可得答案. 【详解】解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以()114141402a a S +==,故A 选项正确;对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误. 故选:ABC . 【点睛】本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题.。
(完整版)等差数列练习题有答案
数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。
11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。
{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。
n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。
1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。
n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。
n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。
等差数列基础习题精选(附详细答案)
等差数列基础习题精选一.选择题(共26小题)已知等差数列{a n}中,a3=9 ,a9=3 ,则公差d的值为(B. 1C. _丄已知数列{a n}的通项公式是a n=2n+5 ,则此数列是(以7为首项,公差为2的等差数列B. 以7为首项,公差为5的等差数列C. 以5为首项,公差为2的等差数列D.不是等差数列在等差数列{a n}中,a i=13 ,a3=12 ,若a n=2 ,则n等于(23 B. 24 C. 25 26等差数列{a n}的前n项和为S n ,已知S3=6 , a4=8 ,则公差d=B. C. 35 .两个数1与5的等差中项是B. C. 26 . 一个首项为23 ,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是B. - 3C. - 4D. -5(2012?畐建)等差数列{a n}中,a1+a 5=10 , a4=7 ,则数列{a n}的公差为()B . 2 8 .数列{%]的首项为3 , {唧为等差数列且(底『),若b3»2. So 二 12,则 a < (C . 3C . 3B . 8C . 3D . 11已知两个等差数列 5, 8 , 11,…和3, 7 , 11,…都有100项,贝陀们的公共项的个数为 ( )25 B . 24 C . 20 1910 . 设S n 为等差数列 {a n }的前n 项和,右满足a n =a n - 1 +2 ( n > 2),且 S 3=9 , 则 a 1 =(B .C .11 . (2005黑龙江如果数列{a n }是等差数列,则(12 . a 1+a 8> a 4+a 5B . a 1+a 8=a 4+a 5C . a 1 +a 8 V a 4+a 5a 1a 8=a 4a 5(2004福建) 设S n 是等差数列{a n }的前n 项和,右瓷奇哙(B . - 1C . 213 . (2009安徽) 已知{a n }为等差数列,a 1+a 3+a 5=105 , a 2+a 4+a 6=99 ,则 a 20 等于(B . 1C . 1C . 8在等差数列{a n }中,a 2=4 , a 6=12 ,,那么数列{缶}的前n 项和等于(2- — 2口15 . 已知S n 为等差数列{a n }的前n 项的和,a 2+a 5=4 , S 7=21 ,则a ?的值为B . 7C . 816 . 已知数列{a n }为等差数列,a 1+a 3+a 5=15 , a 4=7 ,则S 6的值为( ) 30 B . 35 C . 36 2417 . (2012营口)等差数列{a n }的公差d < 0,且a ( = a%,则数列 釧的前n 项和S n 取得最大值时的项数n 是( )B . 6C . 5 或 618 . (2012辽宁)在等差数列{a n }中,已知a 4+a 8=16 ,则该数列前11项和S 11 =58 B . 88 C . 143 17619.已知数列{a n }等差数列,且 a 1+a 3+a 5+a 7+a 9=10 , a 2+a 4+a 6+a 8+a 10=20 ,则 a 4=(20.(理)已知数列{a n }的前n项和S n =n 2 - 8n ,第k 项满足4 v a k < 7 ,则k=(B . B .21 .数列a n的前n项和为S n,若S n=2n 2- 17n ,则当S n取得最小值时n的值为B. 5 或6C. 422 . 等差数列{a n}中,a n=2n - 4,则S4 等于(12 B. 10 C. 823 . 若{a n}为等差数列,33=4 , a8=19 ,则数列{a n}的前10项和为( )A. 230B. 140C. 115 9524 . 等差数列{a n}中,a3+a 8=5 ,则前10 项和S10=( )B. 25C. 50 10025 . 设S n是公差不为0的等差数列{a n}的前n项和,且S1, S2, S4成等比数列,则至等于()6B. 2C.26.设a n= - 2n+21 , 则数列{a n}从首项到第几项的和最大(A.第10项B. 第11项C. 第10项或11项D.第12项二.填空题(共4小题)27 .如果数列{a n}满足:引二3,—-—-]二5 ( n6 ,则且块28 .如果f (n+1 ) =f (n) +1 (n=1 , 2, 3 …),且f (1) =2,则f (100)=29 .等差数列{a n}的前n项的和片二尿- 口?,则数列{|a n|}的前10项之和为30 .已知{a n}是一个公差大于0的等差数列,且满足a3a6=55 , a2+a7=16 .(I)求数列{a n}的通项公式:bl bn b* 5⑴若数列{a n}和数列{b n}满足等式:a n=甘亩寺匸(n为正整数),求数列{b n}的前n项和S n .参考答案与试题解析一.选择题(共26小题)a9=3 ,贝y公差d的值为(1 .已知等差数列{a n}中,a3=9 ,)B.考点:等差数列.专题:计算题.分析:本题可由题意,构造方程组r叮解出该方程组即可得到答案1 牛+(9-1) d=3解答:解:等差数列{a n}中,a3=9 , a9=3 ,f中+(3-1) d=9 由等差数列的通项公式,可得屮31*10解得I 引,即等差数列的公差 d= - 1.d 二 - 1故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.2 .已知数列{a n }的通项公式是a n =2n+5 ,则此数列是 ()分析:直接根据数列{a n }的通项公式是a n =2n+5求出首项,再把相邻两项作差求出公差即可得出结论 解答:解:因为a n =2n+5 ,所以 a i =2 X 1+5=7 ;a n+1 - a n =2 (n+1 ) +5 - (2n+5 ) =2 .故此数列是以7为首项,公差为2的等差数列. 故选A .点评:本题主要考查等差数列的通项公式的应用 .如果已知数列的通项公式 ,可以求出数列中的任意一项3 .在等差数列{a n }中,a i =13 , a 3=12 ,若a n =2 ,则n 等于( )C .以 考点: 专题: 7为首项,公差为2的等差数列5为首项,公差为2的等差数列等差数列. 计算题.B .以7为首项,公差为5的等差数列 D .不是等差数列A . 23B . 24C . 25D . 2610考点:等差数列. 专题:根据a i =i3 , a 3=12 ,利用等差数列的通项公式求得d 的值,然后根据首项和公差写出数列的通项公式让其等于2得到关于n 的方程,求出方程的解即可得到则 a n =13 - - ( n - 1)=-丄n+ 21=2 ,解得 n=232 2 2故选A4.等差数列{a n }的前n 项和为S n ,已知S 3=6 , a 4=8 ,则公差d=()考点:等差数列. 专题:计算题.分析:根据等差数列的前三项之和是6 ,得到这个数列的第二项是 2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差.解答:解:•••等差数列{a n }的前n 项和为S n ,S 3=6 , •••a2=2••• 8=2+2d ••• d=3 ,分析: 解答: 解:由题意得a 3=a i +2d=12 ,把a i =13代入求得d=-1 2,点评: 此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.B . 2C . 3D .一 2故选c.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算5 .两个数1与5的等差中项是()A. 1B.等差数列. 3 C. 2D.皿专题:计算题.分析:由于a, b的等差中项为呂+b,由此可求出21与5的等差中项.解答:解:1与5的等差中项为:1+5=3 ,2故选B.点评:本题考查两个数的等差中项,牢记公式a, b的等差中项为:空也是解题的关键,属基础题.26 . 一个首项为23 ,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是考点:等差数列.专题:计算题.分析:设等差数列{an}的公差为d,因为数列前六项均为正数,第七项起为负数,所以-孕<<1<-孕,结合公5 6差为整数进而求出数列的公差B. - 3C. - 4D. -5所以 a 6=23+5d , a 7=23+6d , 又因为数列前六项均为正数,第七项起为负数,因为数列是公差为整数的等差数列 所以d= - 4 . 故选C .2012?畐建)等差数列{a n }中,a 1+a 5=10 , a 4=7 ,则数列{a n }的公差为()B . 2专题:计算题.分析:设数列{a n }的公差为d ,则由题意可得 2a 1+4d=10 , a 1+3d=7 ,由此解得d 的值.解答:解:设数列{a n }的公差为d ,则由a 1+a 5=10 , a 4=7 ,可得2a 1+4d=10 , a 1+3d=7 ,解得d=2 ,故选B .点评:本题主要考查等差数列的通项公式的应用,属于基础题.8 .数列{〜}的首项为3 , {bj 为等差数列且b "二a 血-,若耳二-戈,B . 8 解答: 解:设等差数列{a n }的公差为d ,点评: 解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.考点: 等差数列的通项公式C . 3C . 3考点:等差数列的通项公式专题:计算题.分析:先确定等差数列的通项,再利用%二a叶1 一(n£ N* ),我们可以求得舸的值.解答:解:•••{»)为等差数列,5=-2, So二12,/•b n=b 3+ (n - 3 )x 2=2n- 8-•b8=a 8 —a 1••数列{aj的首项为3••• 2 X— 8=a 8 — 3 , •—8=11 .故选D点评:本题考查等差数列的通项公式的应用,由等差数列的任意两项,我们可以求出数列的通项,是基础题.9 .已知两个等差数列5, 8 , 11,…和3, 7 , 11,…都有100项,贝陀们的公共项的个数为()A. 25B. 24C. 20D. 19等差数列的通项公式考点:计算题.专题:(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的分析:最小公倍数求解,(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解解答:解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a n},贝y a i=11••数列5, 8, 11,…与3, 7, 11,…公差分别为3与4 ,••• {a}的公差d=3 X4=12 ,•••an=11+12 (n - 1) =12n -1 .又••• 5,8 , 11,…与3, 7 , 11,…的第100项分别是302与399 ,•••an=12n - 1 < 302 即n <25.5 .又•••n€N*,•••两个数列有25个相同的项.故选A解法二:设5 , 8 , 11 ,与3, 7 , 11 ,分别为{a n}与{b n},则a n=3n+2 , b n=4n - 1.设{a n}中的第n项与{b n}中的第m项相同,即3n+2=4m - 1 , • n~ m - 1.3又m、n € N* ,可设m=3r (r€ N* ), 得n=4r -1 .根据题意得K 3r w 100 1 w 4- K 100 解得r晋•/ r€*从而有25个相同的项故选A点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的1010 .设S n 为等差数列{a n }的前n 项和,若满足a n =a n -1+2 ( n > 2),且 $3=9 ,则a 1=()c . - 1考点:等差数列的通项公式 专题:计算题. 分析:根据递推公式求出公差为2 ,再由S 3=9以及前n 项和公式求出a 1的值.解答: 解:-a n ua n - 1 +2 ( n 》2 ),.・皿—a n - 1=2 ( n 》2),•••等差数列{a n }的公差是2, 由 S 3=3a 1 + ^^ X2=9 解得,31=1 .2故选D .点评:本题考查了等差数列的定义,以及前n 项和公式的应用,即根据代入公式进行求解11 .( 2005黑龙江)如果数列{a n }是等差数列,贝y (考点:等差数列的性质.分析:用通项公式来寻求 a i +a 8与a 4+a 5的关系. 解答: 解:•••a1+a 8- (a 4+a 5)=2a 1+7d - (2a 1+7d ) =0••a i +a 8=a 4+a 5••故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质B . 3 A . a 1+a 8>a 4+a 5 B . a i +a 8=a 4+a 5C. a i +a 8 V a 4+a 5D . a 1a 8=a 4a 512 . (2004福建)设S n是等差数列{a n}的前n项和,若上^ '考点:等差数列的性质. 专题:计算题.分析:解答:点评:13 .( B. - 1 C. 2 D .豆充分利用等差数列前n项和与某些特殊项之间的关系解题解:设等差数列{a n}的首项为a i,由等差数列的性质可得a i+a 9=2a 5,a i+a5=2a 3,笼——=竺=2宀,巧5巧5 92 X5故选A.本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用已知等差数列{a n}的前n项和为S n,则有如下关系S2n - 1= (2n - 1)a n .2009安徽)已知{a n}为等差数列,a1+a 3+a 5=105 , a2+a4+a6=99 ,则a20 等于()B. 1C. 3考点:等差数列的性质.专题:计算题.分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通项公式求得答案.解答:解:由已知得a 1+a 3+a 5=3a 3=105 ,a 2+a 4+a 6=3a 4=99 ,•—3=35 , a 4=33,二 d=a — 23= - 2 .•••a20=a3+17d=35+ ( - 2)x 17=1 .故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用性质求得a 3和a 4.14.在等差数列{a n冲,a 2=4,a 6=12,,那么数列{莎}的前n 项和等于(n±2A 也.2"考点:数列的求和;等差数列的性质. 专题:计算题.分析:求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列列的前n 项的和.解答:解:•••等差数列{a n }中,a 2=4 , a 6=12 ;••公差 d=^^mz|=2;6-2 6-2•••an=a 2+ (n - 2) x 2=2n ;.解题的关键是利用等差数列中等差中项的,利用错位相减法求出数•芦的前n项和,23S 垃二 1X*+2X (*) +3X (I)+■■■+ (n-1) X (号)故选B点评:求数列的前n 项的和,先判断通项的特点,据通项的特点选择合适的求和方法15 .已知S n 为等差数列{a n }的前n 项的和,a 2+a 5=4 , S 7=21 ,则a 7的值为()B . 7考点:等差数列的性质. 专题:计算题.分析:由a 2+a 5=4 , S 7=21根据等差数列的性质可得a 3+a 4=a i +a 6=4①,根据等差数列的前 n 项和公式可得,Qi +an———X 7=21,联立可求d , a 1,代入等差数列的通项公式可求解答:解:等差数列{a n }中,a 2+a 5=4 , S 7=21根据等差数列的性质可得 a 3+a 4=a 1 +a 6=4①31 + a 下根据等差数列的前 n 项和公式可得,1 「X 7=21£n-1 1 n+n X (―)23热TX +2X G)+3X (*)2 3两式相减得2s 二丄+ (i) + (!) 2 垃 2 2 2 1 1 甘1■i - (2)(n-1) X+…+H 1-叫)1 nn+l1 rt+1C . 8仃所以a i+a 7=6②10②-①可得d=2 , a 1 = - 3 所以a 7=9 故选D点评:本题主要考查了等差数列的前n 项和公式及等差数列的性质的综合应用 16 .已知数列{a n }为等差数列,a 1+a 3+a 5=15 , a 4=7 ,则S 6的值为( )考点:等差数列的性质. 专题:计算题.分析:利用等差中项的性质求得a 3的值,进而利用a i +a 6=a 3+a 4求得a i +a e 的值,代入等差数列的求和公式中求得答案.解答: 解:a i +a 3+a 5=3a 3=15 ,•••a3=5--ai +a 6=a 3+a 4=12故选C 点评:本题主要考查了等差数列的性质 .特别是等差中项的性质17 . ( 2012营口)等差数列{a n }的公差d < 0 ,且孑二蜡,则数列{a n }的前n 项和S n 取得最大值时的项数n 是(),属于基础试题.A . 30B . 35C . 36D . 24(自]+自6 ) •••s=X 6=36仃考点:等差数列的前n 项和;等差数列的通项公式.专题:计算题.分析:由af = afi ,知a 1+a 11=0 .由此能求出数列{a n }的前n 项和S n 取得最大值时的项数 n . 解答:解:由d<0,4 =知 a i +a 11=0 .•••a6=0 , 故选C .本题主要考查等差数列的性质 ,求和公式.要求学生能够运用性质简化计算2012辽宁)在等差数列{a n }中,已知a 4+a 8=16 ,则该数列前11项和S 11=( ) 专题:计算题. 分析:、11(^]+ 且[[)根据等差数列的定义和性质得a 1+a 11=a 4+a 8=16 ,再由S 11 = ----------- ------- 运算求得结果.解答:、、, L1 ( ai + a )解:•.•在等差数列 {an }中,已知 a 4+a 8=16 , •a 1+a 11=a 4+a 8=16 , ^811 = ---------- ------- =88 ,故选B .点评:本题主要考查等差数列的定义和性质,等差数列的前n 项和公式的应用,属于中档题.B . 6C . 5 或 6点评: 18 .( A . 58B . 88C . 143D . 176考点: 等差数列的性质;等差数列的前n 项和.1019 .已知数列{a n}等差数列,且a1+a 3+a 5+a7+a9=10 , a2+a4+a6+a g+a 10=20 ,则a4=( )B. 0C. 1考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:由等差数列得性质可得:5a5=10 ,即a5=2 .同理可得5a6=20 , a6=4 ,再由等差中项可知:a4=2a 5- a6=0解答:解:由等差数列得性质可得:a1+a 9=a3+a7=2a 5,又a1+a3+a5+a7+a9=10 ,故5a5=10 ,即a5=2 .同理可得5a6=20 , a6=4 .再由等差中项可知:a4=2a 5- a6=0故选B点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.20 .(理)已知数列{a n}的前n项和S n=n2- 8n ,第k项满足4v ay 7 ,则k=()B. 7C. 8考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:分析:先利用公式an- 佝(E)S - S (口>2)求出a n,再由第k项满足4V a k v 7,建立不等式,求出k的值.解答:解:an" S (n=l)Sn-Sn-l(4)-7Cn=l)-9+2nn=1 时适合a n=2n - 9 ,—a n=2n -9 .•/ 4 W k < 7,.・.42k - 9 <7 ,1R••—< kv 8,又••• k(N+ ,••• k=7 , 2故选B.占评:点评:本题考查数列的通项公式的求法,解题时要注意公式a n= ⑸(n=l)f 、的合理运用,属于基础Sn-S.-i(4)题.21 .数列a n的前n项和为S n,若S n=2n 2- 17n ,则当S n取得最小值时n的值为()B. 5 或6C. 4考点:等差数列的前n项和.专题:计算题.分析:把数列的前n项的和S n看作是关于n的二次函数,把关系式配方后,又根据n为正整数,即可得到Si取得最小值时n的值.解答:2解:因为S n=2n2- 17n=2“T)-縈又n为正整数,所以当n=4时,S n取得最小值.故选C点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题.22 .等差数列{a n }中,a n =2n - 4,则S 4等于( )考点:等差数列的前n 项和.专题:计算题.分析:利用等差数列{a n }中,a n =2n - 4,先求出a 1, d ,再由等差数列的前 n 项和公式求S^. 解答:解:•••等差数列{a n }中,a n =2n - 4,•—1=2 - 4= - 2, a 2=4 - 4=0 , d=0 - ( - 2) =2 ,=4 X( -2) +4 X3 =4 .故选D .n 项和公式的应用,是基础题.解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和.考点:等差数列的前 专题:综合题.A . 12B . 10C . 8点评:本题考查等差数列的前23 .若{a n }为等差数列 ,33=4 , 38=19 ,则数列{a n }的前10项和为( )A . 230B . 140C . 115D . 95点评:此题考查学生灵活运用等差数列的通项公式及前n 项和的公式化简求值,是一道基础题.24 .等差数列{a n }中, a 3+a 8=5 ,则前 10 项和 S io =B . 25C . 50D . 100考点:等差数列的前 n 项和;等差数列的性质.专题:计算题.^分析:分"根据条件并利用等差数列的定义和性质可得10 ( ai + ain)a 1+a 10=5 ,代入前10项和S 10 = --------- \ —— 运算求得结果.解答:解:等差数列{a n }中,a 3+a 8=5 ,「.a1+a 10=5 ,10 ( Qj + a in )••前10项和S 10 ==25 , 故选B .点评:本题主要考查等差数列的定义和性质,以及前n 项和公式的应用,求得a 1+a 10=5 ,是解题的关键,属于基分析:分别利用等差数列的通项公式化简已知的两个等式 ,得到①和②,联立即可求出首项和公差,然后利用求出的首项和公差,根据公差数列的前 n 项和的公式即可求出数列前 10项的和.解答: 解:a 3=a i +2d=4 ①,a 8=a i +7d=19 ②,②-①得5d=15 , 解得d=3 , 把d=3代入①求得a 1= - 2 , 所以 S 10=10 X(-2) +1°* 9 X 3=1152故选C .0的等差数列{a n }的前n 项和,且S 1, S 2, S 4成等比数列,则至等于()6 B . 2考点:等差数列的前 专题:计算题.分析:由S 1, S 2, S 4成等比数列,根据等比数列的性质得到 S 22=S 1S 4,然后利用等差数列的前 n 项和的公式分别 表示出各项后,代入即可得到首项和公差的关系式,根据公差不为0,即可求出公差与首项的关系并解出公差d ,然后把所求的式子利用等差数列的通项公式化简后,把公差d 的关系式代入即可求出比值解答:解:由S 1, S 2, S 4成等比数列,/•(2a 1+d )2=a 1 ( 4a 1+6d ).故选C点评:此题考查学生掌握等比数列的性质,灵活运用等差数列的通项公式及前n 项和的公式化简求值,是一道综合题.26 .设a n = - 2n+21 ,则数列{a n }从首项到第几项的和最大( )A .第10项B .第11项C .第10项或11项D .第12项25 .设S n 是公差不为C . 3考点:等差数列的前n项和;二次函数的性质.专题:转化思想.分方法一:由a n,令n=1求出数列的首项,利用a n- a n-1等于一个常数,得到此数列为等差数列,然后根析:据求出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口向下的抛物线,当n= --L时,前n项的和有最大值,即可得到正确答案;2a方法二:令a n大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.解解:方法一:由a n= - 2n+21 ,得到首项a1= - 2+21=19 , a n - 1= - 2 (n - 1) +21= - 2n+23 ,答:则a n - a n - 1= ( - 2n+21 ) - ( - 2n+23 ) = - 2 ,(n > 1, n € N +),所以此数列是首项为19 ,公差为-2的等差数列,则S n=19 n+咛L? (-2) = - Wn,为开口向下的抛物线当n= 6巴1)=10时,S n最大-所以数列{a n}从首项到第10项和最大.方法二:令a n= - 2n+21 > 0,解得n^因为n取正整数,所以n的最大值为10,所以此数列从首项到第10项的和都为正数,从第11项开始为负数,则数列{a n}从首项到第10项的和最大.故选A此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到点评:n的值;也可以直接令a n> 0,求出解集中的最大正整数解,要求学生一题多解.二.填空题(共4小题)27 •如果数列{an}满足:d二3, 丄—丄匸5 (忒朋 ,贝!Jg _计1 J H J-15n-14-考点:数列递推式;等差数列的通项公式.专题:计算题•分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项根据等差数列的通项公式写出数列,进一步得到结果•解答:解:•••根据所给的数列的递推式丄二5八齢1••数列{丄}是一个公差是5的等差数列,'5=3 ,••数列的通项是丄—U5二斗5口-5二5n-孕"n B 3 3二_ 3故答案为:_5—15n—14点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目28 •如果f (n+1 ) =f (n) +1 (n=1 , 2, 3…),且f (1) =2,则f (100) = _101考点:数列递推式;等差数列的通项公式• 专题:计算题• 分析:由f (n+1 ) =f (n) +1 , x € N+ , f (1) =2 ,依次令n=1 , 2, 3,…,总结规律得到f (n) =n+1 ,由此能够求出f ( 100 )•解答:解:••• f (n+1 ) =f (n) +1 , x€ N+ ,f (1) =2 ,••• f () =f ( 1) +1=2+1=3f (3) =f (2) +1=3+1=4 ,f (4) =f (3) +1=4+1=5 ,••• f n) =n+1 ,••• f 100) =100+1=101故答案为:101 •点评:本题考查数列的递推公式的应用,是基础题•解题时要认真审题,仔细解答•29 •等差数列{a n}的前n项的和3石曲一nS则数列{|a n|}的前10项之和为_58考点:数列的求和;等差数列的通项公式• 专题:计算题•分析:先求出等差数列的前两项,可得通项公式为a n=7 - 2n ,从而得到nW3时,關|=7 - 2n ,当n >3时,毎|=2n - 7.分别求出前3项的和、第4项到第10项的和,相加即得所求.解答:解:由于等差数列{a n}的前n项的和3石曲-吐,故a1=S1=5 ,•••a2=S2 - S1=8 - 5=3 ,故公差d= - 2,故an=5+ ( n - 1) ( - 2) =7 - 2n .当nW3 时,|a n|=7 - 2n ,当n >3 时,旧』=2n - 7 .故前10 项之和为a1+a2+a3-a4 - a5-…-a10=啤L+芈型=9+49=58 , a故答案为58 •点评:本题主要考查等差数列的通项公式 ,前n 项和公式及其应用,体现了分类讨论的数学思想 ,属于中档题.30 .已知{a n }是一个公差大于 0的等差数列,且满足a 3a 6=55 , a 2+a 7=16 .求数列{a n }的通项公式:b 1 bn b*若数列{a n }和数列{b n }满足等式:a n= =」+二+二+ n (n 为正整数),求数列{b n }的前n 项2 2? 2孑 2^专题: (1)将已知条件a 3a 6=55 , a 2+a 7=16 ,利用等差数列的通项公式用首项与公差表示,列出方程组,求出首项与公差,进一步求出数列{a n }的通项公式(2)将已知等式仿写出一个新等式,两个式子相减求出数列{b n }的通项,利用等比数列的前 n 项和公式求出数列{b n }的前n 项和S n .解(1)解:设等差数列{a n }的公差为d ,则依题设d >0由 a2+a7=16 .得 2a 1+7d=16①由 a 3?a s =55 ,得(a i +2d )(a i +5d ) =55 ②由①得 2a i =16 - 7d 将其代入②得(16 - 3d )(16+3d ) =220 . 即 256 - 9d 2=220 /.(f=4 ,又 d > 0,••• d=2,代入①得a 1=1 •••an=1+ (n - 1) ?2=2n - 1所以 a n =2n - 1(n)考点: 数列的求和;等差数列的通项公式.分析:解答:b(2 )令 C n =——,贝y 有 a n =C 1+C 2+ …+Ci , a n+1 =C 1+C 2+ …+© - 12^a1 =1 , a n+1 — an =2即当 n 》2 时,b n =2n+1 又当 n=1 时,b i =2a 1=2两式相减得an+1 — a n =cn+1 ,「•S +l =2,c n =2 ( n > 2), /2,(n=l) 诂1 (4)< BR >0 ( nTH-1 _ 1 \于是S n=b1+b2+b3…+t h=2+2 3+24+ …+2"+1=2+2 2+2 3+24+ …+2+1- 4= ----- - 4 =9^^ -2-1即S n=2 n+2- 6点评:求一个数列的前n项和应该先求出数列的通项,利用通项的特点,然后选择合适的求和的方法。
等差数列性质基础练习题
等差数列性质基础练习题一、填空题1. 等差数列的通项公式为:an = a1 + (n 1)d,其中a1是首项,d是公差,n是项数。
若等差数列的首项为3,公差为2,则第五项的值为______。
2. 在等差数列{an}中,已知a3 = 7,a7 = 19,则公差d为______。
3. 已知等差数列的前三项分别为2,5,8,则第10项的值为______。
4. 等差数列的前n项和公式为:Sn = n(a1 + an)/2,若等差数列的前5项和为35,公差为3,则首项a1的值为______。
5. 在等差数列{an}中,若a4 = 16,a10 = 44,则第8项的值为______。
二、选择题A. an = a1 + (n 1)dB. an = a1 (n 1)dC. an = a1 / (n 1)dD. an = a1 (n 1)dA. 公差为4B. 公差为8C. 公差为12D. 公差为163. 在等差数列{an}中,若a1 = 3,d = 2,则第6项的值为()。
A. 9B. 11C. 13D. 15A. 首项为3B. 首项为5C. 首项为7D. 首项为95. 在等差数列{an}中,若a3 = 6,a7 = 18,则第5项的值为()。
A. 10B. 12C. 14D. 16三、解答题1. 已知等差数列的前4项分别为2,5,8,11,求第10项的值。
2. 在等差数列{an}中,已知a5 = 15,a10 = 35,求首项a1和公差d。
3. 已知等差数列的前7项和为49,公差为3,求第4项的值。
4. 在等差数列{an}中,若a1 = 4,d = 5,求前8项的和。
5. 已知等差数列的前5项和为55,公差为7,求第6项的值。
四、判断题1. 等差数列的任意两项之间的差都是相同的。
()2. 等差数列的通项公式中,n表示项数,而不是项的位置。
()3. 在等差数列中,如果首项为负数,公差为正数,那么数列中的项会逐渐减小。
(完整版)等差数列基础习题选(附详细答案)-答案
参考答案与试题解析一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣1考点:等差数列.专题:计算题.分析:本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a n}中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列考点:等差数列.专题:计算题.分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.解答:解:因为a n=2n+5,所以a1=2×1+5=7;a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.故此数列是以7为首项,公差为2的等差数列.故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.26考点:等差数列.专题:综合题.分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其等于2得到关于n的方程,求出方程的解即可得到n的值.解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,则a n=13﹣(n﹣1)=﹣n+=2,解得n=23故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差.解答:解:∵等差数列{a n}的前n项和为S n,S3=6,∴a2=2∵a4=8,∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算.5.两个数1与5的等差中项是()A.1B.3C.2D.考点:等差数列.专题:计算题.分析:由于a,b的等差中项为,由此可求出1与5的等差中项.解答:解:1与5的等差中项为:=3,故选B.点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5考点:等差数列.专题:计算题.分析:设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合公差为整数进而求出数列的公差.解答:解:设等差数列{a n}的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.4考点:等差数列的通项公式.专题:计算题.分析:设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11考点:等差数列的通项公式.专题:计算题.分析:先确定等差数列的通项,再利用,我们可以求得的值.解答:解:∵为等差数列,,,∴∴b n=b3+(n﹣3)×2=2n﹣8∵∴b8=a8﹣a1∵数列的首项为3∴2×8﹣8=a8﹣3,∴a8=11.故选D点评:本题考查等差数列的通项公式的应用,由等差数列的任意两项,我们可以求出数列的通项,是基础题.9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25 B.24 C.20 D.19考点:等差数列的通项公式.专题:计算题.分析:(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数求解,(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.解答:解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a n},则a1=11∵数列5,8,11,…与3,7,11,…公差分别为3与4,∴{a n}的公差d=3×4=12,∴a n=11+12(n﹣1)=12n﹣1.又∵5,8,11,…与3,7,11,…的第100项分别是302与399,∴a n=12n﹣1≤302,即n≤25.5.又∵n∈N*,∴两个数列有25个相同的项.故选A解法二:设5,8,11,与3,7,11,分别为{a n}与{b n},则a n=3n+2,b n=4n﹣1.设{a n}中的第n项与{b n}中的第m项相同,即3n+2=4m﹣1,∴n=m﹣1.又m、n∈N*,可设m=3r(r∈N*),得n=4r﹣1.根据题意得1≤3r≤100 1≤4r﹣1≤100 解得≤r≤∵r∈N*从而有25个相同的项故选A点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的要求较高.10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.1考点:等差数列的通项公式.专题:计算题.分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值.解答:解:∵a n=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),∴等差数列{a n}的公差是2,由S3=3a1+=9解得,a1=1.故选D.点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.11.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5考点:等差数列的性质.分析:用通项公式来寻求a1+a8与a4+a5的关系.解答:解:∵a1+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=0∴a1+a8=a4+a5∴故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质.12.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.考点:等差数列的性质.专题:计算题.分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.解答:解:设等差数列{a n}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1C.3D.7考点:等差数列的性质.专题:计算题.分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通项公式求得答案.解答:解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项的性质求得a3和a4.14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.考点:数列的求和;等差数列的性质.专题:计算题.分析:求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列,利用错位相减法求出数列的前n项的和.解答:解:∵等差数列{a n}中,a2=4,a6=12;∴公差d=;∴a n=a2+(n﹣2)×2=2n;∴;∴的前n项和,=两式相减得=∴故选B点评:求数列的前n项的和,先判断通项的特点,据通项的特点选择合适的求和方法.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.9考点:等差数列的性质.专题:计算题.分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列{a n}中,a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①根据等差数列的前n项和公式可得,所以a1+a7=6②②﹣①可得d=2,a1=﹣3所以a7=9故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.24考点:等差数列的性质.专题:计算题.分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求得答案.解答:解:a1+a3+a5=3a3=15,∴a3=5∴a1+a6=a3+a4=12∴s6=×6=36故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.17.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6 D.6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.解答:解:由,知a1+a11=0.∴a6=0,故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.18.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得a1+a11=a4+a8=16,再由S11=运算求得结果.解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.19.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1 B.0C.1D.2考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:由等差数列得性质可得:5a5=10,即a5=2.同理可得5a6=20,a6=4,再由等差中项可知:a4=2a5﹣a6=0解答:解:由等差数列得性质可得:a1+a9=a3+a7=2a5,又a1+a3+a5+a7+a9=10,故5a5=10,即a5=2.同理可得5a6=20,a6=4.再由等差中项可知:a4=2a5﹣a6=0故选B点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.20.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6B.7C.8D.9考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:先利用公式a n=求出a n,再由第k项满足4<a k<7,建立不等式,求出k的值.解答:解:a n==∵n=1时适合a n=2n﹣9,∴a n=2n﹣9.∵4<a k<7,∴4<2k﹣9<7,∴<k<8,又∵k∈N+,∴k=7,故选B.点评:本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.21.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5 B.5或6 C.4D.5考点:等差数列的前n项和.专题:计算题.分析:把数列的前n项的和S n看作是关于n的二次函数,把关系式配方后,又根据n为正整数,即可得到S n取得最小值时n的值.解答:解:因为S n=2n2﹣17n=2﹣,又n为正整数,所以当n=4时,S n取得最小值.故选C点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题.22.等差数列{a n}中,a n=2n﹣4,则S4等于()A.12 B.10 C.8D.4考点:等差数列的前n项和.专题:计算题.分析:利用等差数列{a n}中,a n=2n﹣4,先求出a1,d,再由等差数列的前n项和公式求S4.解答:解:∵等差数列{a n}中,a n=2n﹣4,∴a1=2﹣4=﹣2,a2=4﹣4=0,d=0﹣(﹣2)=2,∴S4=4a1+=4×(﹣2)+4×3=4.故选D.点评:本题考查等差数列的前n项和公式的应用,是基础题.解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和.23.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230 B.140 C.115 D.95考点:等差数列的前n项和.专题:综合题.分析:分别利用等差数列的通项公式化简已知的两个等式,得到①和②,联立即可求出首项和公差,然后利用求出的首项和公差,根据公差数列的前n项和的公式即可求出数列前10项的和.解答:解:a3=a1+2d=4①,a8=a1+7d=19②,②﹣①得5d=15,解得d=3,把d=3代入①求得a1=﹣2,所以S10=10×(﹣2)+×3=115故选C.点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.26.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()A.第10项B.第11项C.第10项或11项D.第12项考点:等差数列的前n项和;二次函数的性质.专题:转化思想.分析:方法一:由a n,令n=1求出数列的首项,利用a n﹣a n﹣1等于一个常数,得到此数列为等差数列,然后根据求出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口向下的抛物线,当n=﹣时,前n项的和有最大值,即可得到正确答案;方法二:令a n大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.解答:解:方法一:由a n=﹣2n+21,得到首项a1=﹣2+21=19,a n﹣1=﹣2(n﹣1)+21=﹣2n+23,则a n﹣a n﹣1=(﹣2n+21)﹣(﹣2n+23)=﹣2,(n>1,n∈N+),所以此数列是首项为19,公差为﹣2的等差数列,则S n=19n+•(﹣2)=﹣n2+20n,为开口向下的抛物线,当n=﹣=10时,S n最大.所以数列{a n}从首项到第10项和最大.方法二:令a n=﹣2n+21≥0,解得n≤,因为n取正整数,所以n的最大值为10,所以此数列从首项到第10项的和都为正数,从第11项开始为负数,则数列{a n}从首项到第10项的和最大.故选A点评:此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到n 的值;也可以直接令a n≥0,求出解集中的最大正整数解,要求学生一题多解.二.填空题(共4小题)27.如果数列{a n}满足:=.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=101.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够求出f(100).解答:解:∵f(n+1)=f(n)+1,x∈N+,f(1)=2,∴f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,…∴f(n)=n+1,∴f(100)=100+1=101.故答案为:101.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为58.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:先求出等差数列的前两项,可得通项公式为a n=7﹣2n,从而得到n≤3时,|a n|=7﹣2n,当n>3时,|a n|= 2n﹣7.分别求出前3项的和、第4项到第10项的和,相加即得所求.解答:解:由于等差数列{an}的前n项的和,故a1=s1=5,∴a2=s2﹣s1=8﹣5=3,故公差d=﹣2,故a n=5+(n﹣1)(﹣2)=7﹣2n.当n≤3时,|a n|=7﹣2n,当n>3时,|a n|=2n﹣7.故前10项之和为a1+a2+a3﹣a4﹣a5﹣…﹣a10=+=9+49=58,故答案为58.点评:本题主要考查等差数列的通项公式,前n项和公式及其应用,体现了分类讨论的数学思想,属于中档题.11。
(完整版)等差数列基础练习题.docx
数列基础知识点和方法归纳1. 等差数列的定义与性质定义: a n 1 a n d ( d 为常数), a n a 1n 1 d等差中项: x , A , y 成等差数列2Ax ya 1 a n nnn 1 前 n 项和Snna 1d22性质: a n 是等差数列(1)若 m n p q ,则 a ma n a p a q ;2. 等比数列的定义与性质定义:a n1q( q 为常数, q0 ),an aqn 1a n.1等 比 中 项 : x 、 G 、 y 成 等 比 数 列G2xy , 或Gxy .na 1 ( q 1) 前 项和:S n a 1qnn 1( q 1) (要注意!)1 q性质: a n 是等比数列(1)若 m np q ,则 a · aa · amnpq等差数列·基础练习题一、填空1.等差数列 8,5, 2,⋯的第 20___________.2.在等差数列中已知 a1=12, a6=27, d=___________3. 在等差数列中已知d 1,a7=8,a1=_______________ 34.等差数列 -10,-6,-2, 2,⋯前 ___的和是 545.数列 a n的前n和S n=3n n2,a n=___________二、9. 在等差数列a n中a3a1140 , a4a5a6a7a8a9a10的()A.84B.72C.60.D.4810. 在等差数列a n中,前 15 的和S1590 , a8()A.6B.3C.12D.412. 在等差数列a n中,若a3a4a5a6a7450 , a2a8的等于()A.45B.75C.180D.30014. 数列 3, 7,13, 21,31,⋯的通公式是()A. C.a n4n1B. a n n3n2n 2 a n n2n1 D.不存在16.设等差数列a n的前n 项和公式是S n5n23n ,求它的前3项,并求它的通项公式17.如果等差数列a n的前4项的和是2,前 9 项的和是 -6,求其前 n 项和的公式。
等差数列练习题及答案精选全文
可编辑修改精选全文完整版等差数列练习题一、选择题1、等差数列{}n a 中,10120S =,那么110a a +=( )A. 12B. 24C. 36D. 482、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数3、已知等差数列{}n a 的公差12d =,8010042=+++a a a ,那么=100S A .80 B .120C .135D .160.4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S A .390 B .195 C .180 D .1205、从前180个正偶数的和中减去前180个正奇数的和,其差为( )A. 0B. 90C. 180D. 360 6、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A. 130B. 170C. 210D. 2607、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( )A.54S S <B.54S S =C. 56S S <D. 56S S =8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( )A. 13B. 12C. 11D. 109、记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为()A .1B .2C .4D .810.已知S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .B .5C .7D .9二.填空题1、等差数列{}n a 中,若638a a a =+,则9s = .2、等差数列{}n a 中,若232n S n n =+,则公差d = .3、在小于100的正整数中,被3除余2的数的和是4、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和S 10=5、一个等差数列共有10项,其中奇数项的和为252,偶数项的和为15,则这个数列的第6项是6、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若337++=n n T S n n ,则88a b = .7.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.三.解答题1、 在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.2、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围; ②1212,,,S S S 中哪一个值最大?并说明理由.3、己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求: (1)原数列的第12项是新数列的第几项?(2)新数列的第29项是原数列的第几项?4、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1)}{n a 的通项公式a n 及前n项的和S n ; (2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.5、n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +n a 2=错误!未找到引用源。
等差数列试题及答案(1)
一、等差数列选择题1.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60B .120C .160D .2402.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1B .2C .3D .43.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200B .100C .90D .804.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=( )A .2B .3C .4D .55.设数列{}n a 的前n 项和21n S n =+. 则8a 的值为( ).A .65B .16C .15D .146.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1627.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29B .38C .40D .588.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅+=( ) A .278B .52C .3D .49.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .210.已知数列{}n a 中,132a =,且满足()*1112,22n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有n a nλ≥成立,则实数λ的最小值是( ) A .2B .4C .8D .1611.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=B .560a a +=C .670a a +=D .890a a +=12.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺A .47B .1629C .815D .4513.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=( )A .10B .145C .300D .32014.已知等差数列{}n a 的公差d 为正数,()()111,211,n n n a a a tn a t +=+=+为常数,则n a =( )A .21n -B .43n -C .54n -D .n15.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60B .11C .50D .55 16.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则99S a =( ) A .9B .5C .1D .5917.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18B .19C .20D .2118.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若p m n q <<<且()*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )A .22p p S p a =⋅B .p q m n a a a a >C .1111p q m n a a a a +<+D .1111p q m nS S S S +>+ 19.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15B .30C .3D .6420.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .85二、多选题21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()n nF n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦D .()n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦22.题目文件丢失!23.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .6524.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+25.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >26.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-27.在下列四个式子确定数列{}n a 是等差数列的条件是( )A .n a kn b =+(k ,b 为常数,*n N ∈);B .2n n a a d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和21n S n n =++(*n N ∈).28.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<-C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项29.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =30.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S =D .15S 是最大值【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.B 【分析】根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()11515815152a a S a +==,从而可得出结果.【详解】解:由题可知,2938a a a +=+,由等差数列的性质可知2938a a a a +=+,则88a =,故()1158158151521515812022a a a S a +⨯====⨯=. 故选:B. 2.C 【分析】利用等差数列的下标和性质以及基本量运算,可求出1a . 【详解】设等差数列{}n a 的公差为d ,则3856522a a a a a +=+=+,解得652d a a =-=,212112228S a a a d a =+=+=+=,解得13a =故选:C3.C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 4.B 【分析】根据等差数列的性质,由题中条件,可直接得出结果. 【详解】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S ,所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B. 5.C 【分析】利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】由21n S n =+得,12a =,()2111n S n -=-+,所以()221121n n n a S S n n n -=-=--=-, 所以2,121,2n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.故选:C. 【点睛】本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 6.B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B.【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.7.A 【分析】根据等差中项的性质,求出414a =,再求10a ; 【详解】因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 8.A 【分析】根据数列{}n a 是等差数列,且1109a a a +=,求出首项和公差的关系,代入式子求解. 【详解】因为1109a a a +=, 所以11298a d a d +=+, 即1a d =-,所以()11295101019927278849a a a a a d a a d d a d ++⋅⋅⋅+====++. 故选:A 9.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 10.A 【分析】 将11122n n n a a -=+变形为11221n n n n a a --=+,由等差数列的定义得出22n n n a +=,从而得出()22nn n λ+≥,求出()max22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】 因为2n ≥时,11122n n n a a -=+,所以11221n n n n a a --=+,而1123a = 所以数列{}2nn a 是首项为3公差为1的等差数列,故22nn a n =+,从而22n nn a +=. 又因为n a n λ≥恒成立,即()22nn n λ+≥恒成立,所以()max22n n n λ+⎡⎤≥⎢⎥⎣⎦. 由()()()()()()()1*121322,221122n n nn n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨+-+⎪≥⎪⎩N 得2n = 所以()()2max2222222n n n +⨯+⎡⎤==⎢⎥⎣⎦,所以2λ≥,即实数λ的最小值是2 故选:A 11.B 【分析】由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】由等差数列的求和公式可得()110101002a a S +==,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 12.D 【分析】设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果 【详解】设该妇子织布每天增加d 尺, 由题意知2020192042322S d ⨯=⨯+=, 解得45d =. 故该女子织布每天增加45尺. 故选:D 13.C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。
等差数列基础测试题(附详细答案)
等差数列:1、已知等差数列{a n }的首项a 1=1,公差d =2,则a 4等于( )A .5B .6C .7D .92、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )A .4B .5C .6D .73、在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项公式a n =( )A .2n +1B .2n -1C .2nD .2(n -1)4、等差数列{a n }的公差为d ,则数列{ca n }(c 为常数且c ≠0)( )A .是公差为d 的等差数列B .是公差为cd 的等差数列C .不是等差数列D .以上都不对5、在等差数列{a n }中,a 1=21,a 7=18,则公差d =( )A.12B.13C .-12D .-136、在等差数列{a n }中,a 2=5,a 6=17,则a 14=( )A .45B .41C .39D .377、若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .338、下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,…④110,210,310,410,… A .1个 B .2个C .3个D .4个二、填空题(共20,每小题5分)9、在等差数列{a n }中,a 10=10,a 20=20,则a 30=________.10、△ABC 三个内角A 、B 、C 成等差数列,则B =__________.11、在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=________.三、解答题(共70分)12、在等差数列{a n }中,已知a 5=10,a 12=31,求它的通项公式.(10分)13、在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ;(2)已知a 1+a 6=12,a 4=7,求a 9.14、已知{a n }是等差数列,且a 1+a 2+a 3=12,a 8=16.(12分)(1)求数列{a n }的通项公式;答案:一、选择题1-5 CCBBC 6-8BDB二、填空题13、解析:法一:d =a 20-a 1020-10=20-1020-10=1,a 30=a 20+10d =20+10=30. 法二:由题意可知,a 10、a 20、a 30成等差数列,所以a 30=2a 20-a 10=2×20-10=30. 答案:3014、解析:∵A 、B 、C 成等差数列,∴2B =A +C . 又A +B +C =180°,∴3B =180°,∴B =60°. 答案:60°15、解析:∵a 7、a 14、a 21成等差数列,∴a 7+a 21=2a 14,a 21=2a 14-a 7=2n -m . 答案:2n -m三、解答题17、解:由a n =a 1+(n -1)d 得⎩⎪⎨⎪⎧ 10=a 1+4d 31=a 1+11d ,解得⎩⎪⎨⎪⎧a 1=-2d =3. ∴等差数列的通项公式为a n =3n -5.18、解:(1)由题意,知⎩⎪⎨⎪⎧ a 1+(5-1)d =-1,a 1+(8-1)d =2. 解得⎩⎪⎨⎪⎧ a 1=-5,d =1. (2)由题意,知⎩⎪⎨⎪⎧ a 1+a 1+(6-1)d =12,a 1+(4-1)d =7. 解得⎩⎪⎨⎪⎧a 1=1,d =2. ∴a 9=a 1+(9-1)d =1+8×2=17.19、解:(1)∵a 1+a 2+a 3=12,∴a 2=4,∵a 8=a 2+(8-2)d ,∴16=4+6d ,∴d =2, ∴a n =a 2+(n -2)d =4+(n -2)×2=2n .(2)a 2=4,a 4=8,a 8=16,…,a 2n =2×2n =4n . 当n >1时,a 2n -a 2(n -1)=4n -4(n -1)=4.∴{b n }是以4为首项,4为公差的等差数列. ∴b n =b 1+(n -1)d =4+4(n -1)=4n .。
(完整word版)等差数列基础练习题
等差数列·基础练习题一、填空题1. 等差数列8,5,2,…的第20项为___________.2. 在等差数列中已知a 1=12, a 6=27,则d=___________3. 在等差数列中已知13d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2()a b -的等差中项是________________— 5. 等差数列—10,—6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________二、选择题8. 若lg2,lg(21),lg(23)x x -+成等差数列,则x 的值等于( )A.0B. 2log 5 C 。
32 D.0或329。
在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( )A 。
84B 。
72 C.60 . D.4810. 在等差数列{}n a 中,前15项的和1590S = ,8a 为( )A.6 B 。
3 C 。
12 D.411。
等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20下昂的和等于A 。
160 B.180 C.200 D 。
22012。
在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( )A 。
45B 。
75 C.180 D.30013. 设n S 是数列{}n a 的前n 项的和,且2n S n =,则{}n a 是( )A 。
等比数列,但不是等差数列 B.等差数列,但不是等比数列C 。
等差数列,且是等比数列D 。
既不是等差数列也不是等比数列 14. 数列3,7,13,21,31,…的通项公式是( ) A 。
41n a n =- B. 322n a n n n =-++ C. 21n a n n =++ D.不存在 三、计算题15。
等差数列基础练习题及详细答案
等差数列基础练习题及详细答案等差数列基础习题一.选择题1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣12.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.264.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一25.两个数1与5的等差中项是()A.1B.3C.2D.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣57.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.48.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.119.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.110.如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 11.设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.12.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A .﹣1B . 1C . 3D . 713.已知S n 为等差数列{a n }的前n 项的和,a 2+a 5=4,S 7=21,则a 7的值为()A . 6B . 7C . 8D . 914.已知数列{a n }为等差数列,a 1+a 3+a 5=15,a 4=7,则s 6的值为()A . 30B . 35C . 36D . 2415.等差数列{a n }的公差d <0,且,则数列{a n }的前n 项和S n 取得最大值时的项数n 是()A . 5B . 6C . 5或6D . 6或7二.填空题1.如果数列{a n }满足:= _________ .2.如果f (n+1)=f (n )+1(n=1,2,3…),且f (1)=2,则f (100)= _________ .3. 已知等差数列{}n a 的前m 项和为30, 前2m 项和为100, 则前3m 项和为____.4.等差数列{}n a 中, 1a <0,最小,若n s s s ,4525=则n=______三解答题1.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .2.等差数列{}n a 的前n 项和记为n S ,已知102020,410a S ==,(1)求数列{}n a 的通项公式;(2)若S n =135,求以n .一.选择题(共15小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣1考点:等差数列.专题:计算题.分析:本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a n}中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列考点:等差数列.专题:计算题.分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.解答:解:因为a n=2n+5,所以a1=2×1+5=7;a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.故此数列是以7为首项,公差为2的等差数列.故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.26考点:等差数列.专题:综合题.分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,其等于2得到关于n 的方程,求出方程的解即可得到n的值.解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,则a n=13﹣(n﹣1)=﹣n+=2,解得n=23故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数的通项公式,得到数列的公差.解答:解:∵等差数列{a n}的前n项和为S n,S3=6,∴a2=2∵a4=8,∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的倍,这样可以简化题目的运算.5.两个数1与5的等差中项是()A.1B.3C.2D.考点:等差数列.专题:计算题.分析:由于a,b的等差中项为,由此可求出1与5的等差中项.解答:解:1与5的等差中项为:=3,故选B.点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5考点:等差数列.专题:计算题.分析:设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合差为整数进而求出数列的公差.解答:解:设等差数列{a n}的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012?福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.4考点:等差数列的通项公式.专题:计算题.分析:设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=(c)A.0B.8C.3D.119.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.1考点:等差数列的通项公式.专题:计算题.分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值.解答:解:∵a n=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),∴等差数列{a n}的公差是2,由S3=3a1+=9解得,a1=1.故选D.点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.10.(2005?黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5考点:等差数列的性质.分析:用通项公式来寻求a1+a8与a4+a5的关系.解答:解:∵a1+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=0∴a1+a8=a4+a5∴故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质.11.(2004?福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.考点:等差数列的性质.专题:计算题.分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.解答:解:设等差数列{a n}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.12.(2009?安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1C.3D.7考点:等差数列的性质.专题:计算题.分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通公式求得答案.解答:解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项性质求得a3和a4.13.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.9考点:等差数列的性质.专题:计算题.分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列{a n}中,a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①根据等差数列的前n项和公式可得,所以a1+a7=6②②﹣①可得d=2,a1=﹣3所以a7=9故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.14.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.24考点:等差数列的性质.专题:计算题.分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求答案.解答:解:a1+a3+a5=3a3=15,∴a3=5∴a1+a6=a3+a4=12∴s6=×6=36故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.15.(2012?营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6 D.6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.解答:解:由,知a1+a11=0.∴a6=0,故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.二.填空题(共4小题)1.如果数列{a n}满足:=.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列通项公式写出通项,本题是一个中档题目.2.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=101.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够出f(100).解答:解:∵f(n+1)=f(n)+1,x∈N+,f(1)=2,∴f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,…∴f(n)=n+1,∴f(100)=100+1=101.故答案为:101.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.3. 已知等差数列{}n a的前m项和为30, 前2m项和为100, 则前3m项和为2104.等差数列{}n a 中, 1a <0,最小,若n s s s ,4525=则n=____35__三.解答题 2.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .答案: S n=n 2-9n 或S n =-n 2+9n2.等差数列{}n a 的前n 项和记为n S ,已知102020,410a S ==,(1)求数列{}n a 的通项公式;(2)若S n =135,求以n .答案. a n =n+10,n=9。
等差数列基础题训练
等差数列基础题训练基础题训练11.等差数列a n中,已知a i 10,d 2,则――.2.等差数列a n中,已知a3 1,a9 9,则a§ a6 a? ______________ .3.等差数列a n中,a2 6,兎6,则S9 _________ .4.等差数列a n中,a? 9,a5 21,则a n___________ .5.等差数列a n中,a2 a s 11, a4 7,则a s _________ .6.在等差数列a n中a1 a4 a739,则a2 a5 a833,则a3 a6 a9 ______7.________________________________________________ 在等差数列a n中,若a3+a4+a s+a6+a7=450 ,则 a2+a s= ______________ .8.已知等差数列an中,a2与a6的等差中项为5 , a3与a?的等差中项为7 , 则a n _________________________ . ___________9.等差数列a n 中,S n =40,a1 =13,d= -2 时,n= ________________ .10 . 已知等差数列a n 的前n 项和为S n ,S7 35,Se 80,则a〔__, d= ____ .11.已知等差数列a n的前m项和为30,前2m项和为100,则前3m项和为 ___ .12.在等差数列a n中a i a2 a315,84 a5a6 3,则卷______13.等差数列 a n 中,若8io 100,8100 10,那么an o ________________ .14.等差数列a n中,81 <0, S25 S45,若S n最小,则n= _______15.已知等差数列{a n}中,a3a716,a4 a6 0,求{a.}前n项和s n .16.等差数列{a n}的前n项和记为S n,已知a10 20$0 410 ,(1)求数列{a n}的通项公式;(2)若S = 135,求以n .基础题训练21.{a n}为等差数列,且a7-2a4=- 1, a3= 0,则公差d= ( )1A.—2B.—2 D. 22.在等差数列{a n}中,已知a3 2,贝卩该数列的前5项之和为( )(A) 10 ( B) 16 (C 20 (D) 323.设等差数列{a n}的前n项和为S n,若S3 9 , S6 36,则a? a* a93(A ) 63 (B ) 45(C 36(D ) 27那么a g a 6 a ?川a ?9的值是 ((A )- 78 (B )— 82 (Q- 148 (D )— 1825.设S n 是等差数列{a n }的前n 项和.已知a 2 = 3, a 6 = 11,则S ?等于 ( ) A. 13B. 35C. 49D. 636. 设数列{a n }的前n 项和S n n 2,则a 8的值为()(A ) 15(B) 16 (C) 49 (D ) 647.设等差数列a n 的前n 项和为S n ,若a 111, a 4比6,则当S n 取最小值时,n 等于( )A . 6B . 7C. 8 D . 98. 等差数列{a .}中,a 1 3a 8亦120,则3a ? a^的值为______________9. 等差数列{a n }中,a 1 - , a 2 a § 4 , a . 3,则 n4.已知等差数列{%}的公差d2, aia4 a 7|卄 a9750 ,解答题3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列基础练习题一1. 等差数列8,5,2,…的第20项为___________.2. 在等差数列中已知a 1=12, a 6=27,则d=__________3. 在等差数列中已知13d =-,a 7=8,则a 1=_______________ 4. 已知数列{}n a 中112n n a a +=+,且12a =,则1999a =_______. 5. 等差数列-10,-6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________8. 若lg 2,lg(21),lg(23)x x-+成等差数列,则x 的值等于__________9. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为___________ 10. 在等差数列{}n a 中,前15项的和1590S = ,8a 为_____________11. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20项的和等于___________12. 在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于_________ 13.在等差数列{a n }中,S 5=28,S 10=36,则S 15等于 ___________14.等差数列{a n },已知a 3+a 11=10,则a 6+a 7+a 8等于 _______________15.在等差数列{a n }中,(1)若a 1+a 3+a 5=-1,则a 1+a 2+a 3+a 4+a 5=______;(2)若a 2+a 3+a 4+a 5=34,a 2·a 5=52,且a 5>a 2,则a 5=______; (3)若S 15=90,则a 8=______; (4)若a 6=a 3+a 8,则S 9=______;(5)若S n =100,S 2n =400,则S 3n =______;(6)若a 1+a 2+a 3+a 4=124,a n +a n-1+a n-2+a n-3=156,S n =210,则n =______ 16.在等差数列{a n }中,若a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为______ 17.一个直角三角形的三条边成等差数列,则它的最短边与最长边的比为______18.在1与25之间插入五个数,使其组成等差数列,则这五个数为________________19.在等差数列{a n }中,已知a 2+a 7+a 8+a 9+a 14=70,则a 8= 。
20.在等差数列{a n }中,S 4=6,S 8=20,则S 16= 。
21.在50和350之间,所有末位数字是1的整数之和是 _______________ 22.已知为等差数列,135246105,99a a a a a a ++=++=,则20a 等于___23.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于____ 24.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于____ 25.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =_____ 26.若等差数列{}n a 的前5项和525S =,且23a =,则7a =________ 27.在等差数列{}n a 中, 284a a +=,则 其前9项的和S 9等于________28.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于________29.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =________ 30.等差数列{}n a 的前n 项和为n s 若=则432,3,1S a a ==_________31.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=______32.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.33. 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 34.设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S = 35.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a =36.已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和S 10= 37.根据下列各题中的条件,求相应的等差数列{}n a 的有关未知数: (1)151,,5,66n a d S ==-=-求n 及n a ; (2)12,15,10,n n d n a a S ===-求及38.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .39.设等差数列{}n a 的前n 项和公式是253n S n n =+,求它的前3项,并求它的通项公式40.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.等差数列基础练习题一()答案1.2011949a a d =+=- 2.615273a a d d =+== 3.7116810a a d a =+== 4.+11122n n a a d -=∴=1999119981001a a d ∴=+= 5.()1110,4,541542n a d s n n dna =-==-+=()()26270,930n n n n --=-+=()9,3n n ∴==-舍 6.()1+2n n7.()()2221331154n n s n n s n n n n -=-∴=---=-+-()2n ≥1n n s s -∴-=24n -+24n a n ∴=-+且112a s == 8.()()2lg 21=lg 2lg 23x x -++,()()22122+32,x x x t -==,设则()()221=23,450,t t t t -+--=解得5,1t t ==-(舍)22 5.log 5x x ∴== 9.347740240,20a a a a +=∴==()()41059687a a a a a a a ∴+-++++7360a == 10. ()1151515902a a s +==,86a ∴=11. 12318192024,78a a a a a a ++=-++=12021931854a a a a a a ∴+++++=,()120354a a +=120a a ∴+18=且()12020+201802a a s ==。
12.180 13.48 14.15 15.()513-()5213a =()3.6(4)0 (5)900(6)6 16.27 17.设三边长分别为,,x d x x d -+则有:()22x x d +-()2,4x d x d =+=整理得 3:5 18.1,,,,,,25a b c d e 设则有2c=26,c=1341313,4a a d d ∴=+==∴这五个数是5、9、13、17、21. 19.14 20.72 21.50和350之间所有末尾数字是一的整数有51,61,71,…341,构成一个首项为151,a =公差为d=10的等差数列()511101041n a n n ∴=+-=+=341计算出30n =。
()30513413058802s === 22.1 23.49 24.-2 25.-1226.13 27.18 28.10029.48 30.8 31.45 32.7 33.24 34.9 35. 13解析:()153552522a a a s +==35a =,同理323s a =,所以原式化为: 323230155,631a a a a -=-=化简得()()11111,6231,39133a d a d a d a d +-+=+=∴+=413a ∴= 36.-10 37. ()115,n =1532a =-,()1152n n n d s na -=+=-,()12110na n n d +-=-, 211600n n --=,()()()154015,4n n n n -+===-解得舍15n a a =114a d =+()2.11538,360n a s s =-==-38.3737463716160+0a a a a a a a a =-=-⎧⎧∴⎨⎨+==⎩⎩解得188-2a =-或,d=2或 2299n s n n n ∴=-+或-n 39. 1238,18,28a a a ===,1102n n n a s s n -=-=-且11a s =40.解析:首先由已知求出基本量1a d 和,再将所求转化为8050s s -,10.2,0.2a d ==,8050648,255s s ==,8050393s s ∴-=。