(完整word版)等差数列基础练习题
等差数列数列练习题(5篇)
等差数列数列练习题(5篇)第一篇:等差数列数列练习题一、选择题35241.已知为等差数列,1A.-1B.1C.3D.7 a+a+a=105,a+a+a6=99,则a20等于()2.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D. 633.等差数列{an}的前n项和为Sn,且S3 =6,a1=4,则公差d等于5C.-2D 3 34.已知{an}为等差数列,且a7-2a4=-1, a3=0,则公差d=A.1B11C.D.2 225.若等差数列{an}的前5项和S5=25,且a2=3,则a7=()A.-2B.-A.12B.13C.14D.156.在等差数列{an}中,a2+a8=4,则其前9项的和S9等于()A.18B 27C36D 97.已知{an}是等差数列,a1+a2=4,a7+a8=28,则该数列前10项和S10等于()A.64B.100C.110D.1208.记等差数列{an}的前n项和为Sn,若a1=1,S4=20,则S6=()2A.16B.24C.36D.489.等差数列{an}的前n项和为Sx若a2=1,a3=3,则S4=()A.12B.10C.8D.610.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()A.63B.45C.36D.2711.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是()A.15二、填空题 B.30 C.31 D.6412.已知等差数列{an}的前n项和为Sn,若S12=21,则a2+a5+a8+a11=13.设等差数列{an}的前n项和为Sn,若S9=72,则a2+a4+a9=14.设等差数列{an}的前n项和为Sn,若a5=5a3则S9=S515.等差数列{an}的前n项和为Sn,且6S5-5S3=5,则a4=已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10 16.三、解答题17.在等差数列{an}中,a4=0.8,a11=2.2,求a51+a52+Λ+a80.18、设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0,①求公差d的取值范围;②S1,S2,Λ,S12中哪一个值最大?并说明理由.19、设等差数列{an}的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1){an}的通项公式a n 及前n项的和S n ;(2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.20.已知等差数列{an}中,a3a7=-16,a4+a6=0求{an}前n项和sn.1第二篇:数列四等差数列1、(2009湖北卷文)已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{an}的通项公式:(Ⅱ)若数列{an}和数列{bn}满足等式:an=={bn}的前n项和Sn2、(重庆市重庆八中2011届高三第四次月考理)设数列{an}的前n项和为Sn,a1=1,an=(1)求数列{an}的通项公式an;s11s22Snn+2(n-1),(n∈N).*b12+b22+b32+...bn2n(n为正整数),求数列snn(2)是否存在正整数n使得++....+求出n值;-(n-1)=2011?若存在,若不存在,说明理由.3、(北京龙门育才学校2011届高三上学期第三次月考)在数列{an}中,a1=bn=1an(n∈N).*13,并且对任意n∈N*,n≥2都有an⋅an-1=an-1-an成立,令(Ⅰ)求数列{bn}的通项公式;ann(Ⅱ)求数列{}的前n项和Tn.4、(江苏泰兴市重点中学2011届)已知数列{an}是等差数列,cn=an-an+1(n∈N*)(1)判断数列{cn}是否是等差数列,并说明理由;(2)如果a1+a3+Λ+a25=130,a2+a4+Λ+a26=143-13k(k为常数数列{cn}的通项公式;(3)在(2)的条件下,若数列{cn}得前n项和为Sn,问是否存在这样的实数k,使Sn当且仅当n=12时取得最大值。
(完整版)等差数列练习题及答案
等差数列练习一、选择题1、等差数列{}n a 中,10120S =,那么110a a +=( )A. 12B. 24C. 36D. 482、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( )A.有最小值且是整数B. 有最小值且是分数C. 有最大值且是整数D. 有最大值且是分数3、已知等差数列{}n a 的公差12d =,8010042=+++a a a Λ,那么=100S A .80 B .120 C .135D .160. 4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13SA .390B .195C .180D .1205、从前180个正偶数的和中减去前180个正奇数的和,其差为( )A. 0B. 90C. 180D. 3606、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A. 130B. 170C. 210D. 2607、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( )A.54S S <B.54S S =C. 56S S <D. 56S S =8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( )A. 13B. 12C. 11D. 109、已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2+n n ,则前n 个奇数项的和为( )A .)1(32+-n nB .)34(2-n nC .23n -D .321n 10若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为( )A .6B .8C .10D .12二.填空题1、等差数列{}n a 中,若638a a a =+,则9s = .2、等差数列{}n a 中,若232n S n n =+,则公差d = .3、在小于100的正整数中,被3除余2的数的和是4、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和S 10=5、一个等差数列共有10项,其中奇数项的和为252,偶数项的和为15,则这个数列的第6项是*6、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若337++=n n T S n n ,则88a b = . 三.解答题1、 在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++L .2、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0,①求公差d 的取值范围;②1212,,,S S S L 中哪一个值最大?并说明理由.3、己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求:(1)原数列的第12项是新数列的第几项? (2)新数列的第29项是原数列的第几项?4、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1)}{n a 的通项公式a n 及前n项的和S n ;(2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.5、某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元,(Ⅰ)问第几年开始获利?(Ⅱ)若干年后,有两种处理方案:(1)年平均获利最大时,以26万元出售该渔船;(2)总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算.参考答案一、 1-5 B A C B C 6-10 C B A B A二、 1、0 2、6 3、1650 4、-10 5、3 6、6三.1、n a n 2.0=,393805251=+++a a a Λ.2、①∵121126767713113712()6()002130()1302S a a a a a a a S a a a ⎧=+=+>⎪+>⎧⎪⇔⎨⎨<⎩⎪=+=<⎪⎩g ,∴111211060212a d a d a d +>⎧⎪+<⎨⎪+=⎩解得,2437d -<<-,②由67700a a a +>⎧⎨<⎩6700a a >⎧⇒⎨<⎩,又∵2437d -<<- ∴{}n a 是递减数列, ∴1212,,,S S S L 中6S 最大.3、解:设新数列为{},4,)1(,3,2,1512511d b b d n b b a b a b b n n +=-+=====有根据则即3=2+4d ,∴14d =,∴172(1)44n n b n +=+-⨯= 1(43)7(1)114n n a a n n -+=+-⨯=+=Q 又,∴43n n a b -=即原数列的第n 项为新数列的第4n -3项.(1)当n=12时,4n -3=4×12-3=45,故原数列的第12项为新数列的第45项; (2)由4n -3=29,得n=8,故新数列的第29项是原数列的第8项。
等差数列题目100道
等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。
- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。
根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。
2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。
那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。
3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。
- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。
4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。
- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。
5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。
- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。
二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。
- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。
等差数列练习题(打印版)
等差数列练习题(打印版)# 等差数列练习题## 一、选择题1. 已知等差数列的首项为5,公差为3,求第10项的值。
A. 32B. 35C. 38D. 412. 一个等差数列的前5项和为50,首项为2,求公差。
A. 10B. 8C. 6D. 43. 如果等差数列的第3项和第5项的和为26,且首项为a,公差为d,求第4项的值。
A. 13B. 14C. 15D. 16## 二、填空题1. 等差数列\[ a_n = a_1 + (n - 1)d \]中,如果\( a_1 = 10 \),\( d = 2 \),那么第6项\( a_6 \)的值为 \_\_\_\_\_\_。
2. 已知等差数列的前n项和公式为\[ S_n = \frac{n}{2}(2a_1 + (n - 1)d) \],如果\( S_6 = 90 \),\( a_1 = 5 \),求公差\( d \)。
3. 等差数列中,如果第1项和第4项的和为20,第2项和第3项的和为22,求首项\( a_1 \)和公差\( d \)。
## 三、解答题1. 一个等差数列的前10项和为220,首项为12,求公差和第10项的值。
2. 已知等差数列的前n项和公式,如果\( S_{15} = 1170 \),\( a_1 = 8 \),求\( S_{20} \)。
3. 一个等差数列的第1项为3,公差为2,求前20项的和。
## 四、证明题1. 证明:等差数列中,连续三项的和构成的数列也是等差数列。
2. 证明:等差数列的前n项和公式\[ S_n = \frac{n(a_1 + a_n)}{2} \]。
3. 证明:等差数列中,任意两项的等差中项等于它们的算术平均数。
注意:请同学们认真审题,仔细计算,确保答案的准确性。
练习题的目的是帮助大家更好地理解和掌握等差数列的相关知识,希望同学们能够通过练习提高解题能力。
等差数列基础练习题
等差数列基础练习题等差数列基础练习题在平时的学习、工作中,我们最不陌生的就是练习题了,只有认真完成作业,积极地发挥每一道习题特殊的功能和作用,才能有效地提高我们的思维能力,深化我们对知识的理解。
你知道什么样的习题才算得上好习题吗?以下是小编帮大家整理的等差数列基础练习题,欢迎大家借鉴与参考,希望对大家有所帮助。
等差数列基础练习题11、一个递增(后项比前项大)的等差数列,第28项比第53项________(多或少)______个公差。
2、一个递增(后项比前项大)的等差数列,第53 项比第28 项________(多或少)______个公差。
3、一个递增(后项比前项大)的等差数列,第55 项比第37 项________(多或少)______个公差。
4、一个递增(后项比前项大)的等差数列,第55 项比第83 项________(多或少)______个公差。
5、一个递增(后项比前项大)的等差数列,第28项比第73项________(多或少)______个公差。
6、一个递增(后项比前项大)的等差数列,第90项比第73项________(多或少)______个公差。
7、一个递增(后项比前项大)的等差数列,首项比第73 项________(多或少)______个公差。
8、一个递增(后项比前项大)的等差数列,第87 项比首项________(多或少)______个公差。
9、一个递减(后项比前项小)的等差数列,第18项比第32 项________(多或少)______个公差。
10、一个递减(后项比前项小)的等差数列,第32项比第18 项________(多或少)______个公差。
11、一个递减(后项比前项小)的等差数列,第74项比第26项________(多或少)______个公差。
12、一个递减(后项比前项小)的等差数列,第74项比第91 项________(多或少)______个公差。
13、一个递减(后项比前项小)的等差数列,第29项比第86 项________(多或少)______个公差。
等差数列通项公式基础训练题(含详解)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.等差数列 中,已知 , ,则 ()
A.16B.17C.18D.19
2.设 为等差数列,若 ,则
A.4B.5C.6D.7
3.设数列 是公差为 的等差数列,若 ,则 ()
A.4B.3C.2D.1
4.已知数列 满足 ,且 ,那么 ()
A.8B.9C.10D.11
5.在数列{an}中,若 ,a1=8,则数列{an}的通项公式为()
A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)
6.在数列 中, =1, ,则 的值为()
A.99B.49C.101D.102
7.在数列 中, , , ,则 ()
A.6B.7C.8D.9
8.等差数列 中, ,则 ( ).
A.110B.120C.130D.140
9.已知数列 是等差数列, ,则 ( )
A.36B.30C.24 D.1
10.在等差数列 中,若 ,则 ()
A.10B.5C. D.
11.等差数列 满足 ,则其前10项之和为( )
【详解】
根据题意,设 ,数列 是等差数列,
则 , ,
则 ,
即 ;
解可得 ;
故答案为:
【点睛】
本题考查等差数列的性质,关键是求出数列 的通项公式.
19.
【解析】
【分析】
本次考察的是等差数列通项公式的求法。
【详解】
,
【点睛】
等差数列通项公式除了掌握 ,考生还应掌握
等差数列性质基础练习题
等差数列性质基础练习题一、填空题1. 等差数列的通项公式为:an = a1 + (n 1)d,其中a1是首项,d是公差,n是项数。
若等差数列的首项为3,公差为2,则第五项的值为______。
2. 在等差数列{an}中,已知a3 = 7,a7 = 19,则公差d为______。
3. 已知等差数列的前三项分别为2,5,8,则第10项的值为______。
4. 等差数列的前n项和公式为:Sn = n(a1 + an)/2,若等差数列的前5项和为35,公差为3,则首项a1的值为______。
5. 在等差数列{an}中,若a4 = 16,a10 = 44,则第8项的值为______。
二、选择题A. an = a1 + (n 1)dB. an = a1 (n 1)dC. an = a1 / (n 1)dD. an = a1 (n 1)dA. 公差为4B. 公差为8C. 公差为12D. 公差为163. 在等差数列{an}中,若a1 = 3,d = 2,则第6项的值为()。
A. 9B. 11C. 13D. 15A. 首项为3B. 首项为5C. 首项为7D. 首项为95. 在等差数列{an}中,若a3 = 6,a7 = 18,则第5项的值为()。
A. 10B. 12C. 14D. 16三、解答题1. 已知等差数列的前4项分别为2,5,8,11,求第10项的值。
2. 在等差数列{an}中,已知a5 = 15,a10 = 35,求首项a1和公差d。
3. 已知等差数列的前7项和为49,公差为3,求第4项的值。
4. 在等差数列{an}中,若a1 = 4,d = 5,求前8项的和。
5. 已知等差数列的前5项和为55,公差为7,求第6项的值。
四、判断题1. 等差数列的任意两项之间的差都是相同的。
()2. 等差数列的通项公式中,n表示项数,而不是项的位置。
()3. 在等差数列中,如果首项为负数,公差为正数,那么数列中的项会逐渐减小。
(完整版)等差数列基础习题选(附详细答案)-答案
参考答案与试题解析一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣1考点:等差数列.专题:计算题.分析:本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a n}中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列考点:等差数列.专题:计算题.分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.解答:解:因为a n=2n+5,所以a1=2×1+5=7;a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.故此数列是以7为首项,公差为2的等差数列.故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.26考点:等差数列.专题:综合题.分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其等于2得到关于n的方程,求出方程的解即可得到n的值.解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,则a n=13﹣(n﹣1)=﹣n+=2,解得n=23故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差.解答:解:∵等差数列{a n}的前n项和为S n,S3=6,∴a2=2∵a4=8,∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算.5.两个数1与5的等差中项是()A.1B.3C.2D.考点:等差数列.专题:计算题.分析:由于a,b的等差中项为,由此可求出1与5的等差中项.解答:解:1与5的等差中项为:=3,故选B.点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5考点:等差数列.专题:计算题.分析:设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合公差为整数进而求出数列的公差.解答:解:设等差数列{a n}的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.4考点:等差数列的通项公式.专题:计算题.分析:设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11考点:等差数列的通项公式.专题:计算题.分析:先确定等差数列的通项,再利用,我们可以求得的值.解答:解:∵为等差数列,,,∴∴b n=b3+(n﹣3)×2=2n﹣8∵∴b8=a8﹣a1∵数列的首项为3∴2×8﹣8=a8﹣3,∴a8=11.故选D点评:本题考查等差数列的通项公式的应用,由等差数列的任意两项,我们可以求出数列的通项,是基础题.9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25 B.24 C.20 D.19考点:等差数列的通项公式.专题:计算题.分析:(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数求解,(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.解答:解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a n},则a1=11∵数列5,8,11,…与3,7,11,…公差分别为3与4,∴{a n}的公差d=3×4=12,∴a n=11+12(n﹣1)=12n﹣1.又∵5,8,11,…与3,7,11,…的第100项分别是302与399,∴a n=12n﹣1≤302,即n≤25.5.又∵n∈N*,∴两个数列有25个相同的项.故选A解法二:设5,8,11,与3,7,11,分别为{a n}与{b n},则a n=3n+2,b n=4n﹣1.设{a n}中的第n项与{b n}中的第m项相同,即3n+2=4m﹣1,∴n=m﹣1.又m、n∈N*,可设m=3r(r∈N*),得n=4r﹣1.根据题意得1≤3r≤100 1≤4r﹣1≤100 解得≤r≤∵r∈N*从而有25个相同的项故选A点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的要求较高.10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.1考点:等差数列的通项公式.专题:计算题.分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值.解答:解:∵a n=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),∴等差数列{a n}的公差是2,由S3=3a1+=9解得,a1=1.故选D.点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.11.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5考点:等差数列的性质.分析:用通项公式来寻求a1+a8与a4+a5的关系.解答:解:∵a1+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=0∴a1+a8=a4+a5∴故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质.12.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.考点:等差数列的性质.专题:计算题.分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.解答:解:设等差数列{a n}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1C.3D.7考点:等差数列的性质.专题:计算题.分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通项公式求得答案.解答:解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项的性质求得a3和a4.14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.考点:数列的求和;等差数列的性质.专题:计算题.分析:求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列,利用错位相减法求出数列的前n项的和.解答:解:∵等差数列{a n}中,a2=4,a6=12;∴公差d=;∴a n=a2+(n﹣2)×2=2n;∴;∴的前n项和,=两式相减得=∴故选B点评:求数列的前n项的和,先判断通项的特点,据通项的特点选择合适的求和方法.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.9考点:等差数列的性质.专题:计算题.分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列{a n}中,a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①根据等差数列的前n项和公式可得,所以a1+a7=6②②﹣①可得d=2,a1=﹣3所以a7=9故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.24考点:等差数列的性质.专题:计算题.分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求得答案.解答:解:a1+a3+a5=3a3=15,∴a3=5∴a1+a6=a3+a4=12∴s6=×6=36故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.17.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6 D.6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.解答:解:由,知a1+a11=0.∴a6=0,故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.18.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得a1+a11=a4+a8=16,再由S11=运算求得结果.解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.19.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1 B.0C.1D.2考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:由等差数列得性质可得:5a5=10,即a5=2.同理可得5a6=20,a6=4,再由等差中项可知:a4=2a5﹣a6=0解答:解:由等差数列得性质可得:a1+a9=a3+a7=2a5,又a1+a3+a5+a7+a9=10,故5a5=10,即a5=2.同理可得5a6=20,a6=4.再由等差中项可知:a4=2a5﹣a6=0故选B点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.20.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6B.7C.8D.9考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:先利用公式a n=求出a n,再由第k项满足4<a k<7,建立不等式,求出k的值.解答:解:a n==∵n=1时适合a n=2n﹣9,∴a n=2n﹣9.∵4<a k<7,∴4<2k﹣9<7,∴<k<8,又∵k∈N+,∴k=7,故选B.点评:本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.21.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5 B.5或6 C.4D.5考点:等差数列的前n项和.专题:计算题.分析:把数列的前n项的和S n看作是关于n的二次函数,把关系式配方后,又根据n为正整数,即可得到S n取得最小值时n的值.解答:解:因为S n=2n2﹣17n=2﹣,又n为正整数,所以当n=4时,S n取得最小值.故选C点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题.22.等差数列{a n}中,a n=2n﹣4,则S4等于()A.12 B.10 C.8D.4考点:等差数列的前n项和.专题:计算题.分析:利用等差数列{a n}中,a n=2n﹣4,先求出a1,d,再由等差数列的前n项和公式求S4.解答:解:∵等差数列{a n}中,a n=2n﹣4,∴a1=2﹣4=﹣2,a2=4﹣4=0,d=0﹣(﹣2)=2,∴S4=4a1+=4×(﹣2)+4×3=4.故选D.点评:本题考查等差数列的前n项和公式的应用,是基础题.解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和.23.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230 B.140 C.115 D.95考点:等差数列的前n项和.专题:综合题.分析:分别利用等差数列的通项公式化简已知的两个等式,得到①和②,联立即可求出首项和公差,然后利用求出的首项和公差,根据公差数列的前n项和的公式即可求出数列前10项的和.解答:解:a3=a1+2d=4①,a8=a1+7d=19②,②﹣①得5d=15,解得d=3,把d=3代入①求得a1=﹣2,所以S10=10×(﹣2)+×3=115故选C.点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.26.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()A.第10项B.第11项C.第10项或11项D.第12项考点:等差数列的前n项和;二次函数的性质.专题:转化思想.分析:方法一:由a n,令n=1求出数列的首项,利用a n﹣a n﹣1等于一个常数,得到此数列为等差数列,然后根据求出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口向下的抛物线,当n=﹣时,前n项的和有最大值,即可得到正确答案;方法二:令a n大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.解答:解:方法一:由a n=﹣2n+21,得到首项a1=﹣2+21=19,a n﹣1=﹣2(n﹣1)+21=﹣2n+23,则a n﹣a n﹣1=(﹣2n+21)﹣(﹣2n+23)=﹣2,(n>1,n∈N+),所以此数列是首项为19,公差为﹣2的等差数列,则S n=19n+•(﹣2)=﹣n2+20n,为开口向下的抛物线,当n=﹣=10时,S n最大.所以数列{a n}从首项到第10项和最大.方法二:令a n=﹣2n+21≥0,解得n≤,因为n取正整数,所以n的最大值为10,所以此数列从首项到第10项的和都为正数,从第11项开始为负数,则数列{a n}从首项到第10项的和最大.故选A点评:此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到n 的值;也可以直接令a n≥0,求出解集中的最大正整数解,要求学生一题多解.二.填空题(共4小题)27.如果数列{a n}满足:=.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=101.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够求出f(100).解答:解:∵f(n+1)=f(n)+1,x∈N+,f(1)=2,∴f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,…∴f(n)=n+1,∴f(100)=100+1=101.故答案为:101.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为58.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:先求出等差数列的前两项,可得通项公式为a n=7﹣2n,从而得到n≤3时,|a n|=7﹣2n,当n>3时,|a n|= 2n﹣7.分别求出前3项的和、第4项到第10项的和,相加即得所求.解答:解:由于等差数列{an}的前n项的和,故a1=s1=5,∴a2=s2﹣s1=8﹣5=3,故公差d=﹣2,故a n=5+(n﹣1)(﹣2)=7﹣2n.当n≤3时,|a n|=7﹣2n,当n>3时,|a n|=2n﹣7.故前10项之和为a1+a2+a3﹣a4﹣a5﹣…﹣a10=+=9+49=58,故答案为58.点评:本题主要考查等差数列的通项公式,前n项和公式及其应用,体现了分类讨论的数学思想,属于中档题.11。
(完整版)等差数列基础练习题.docx
数列基础知识点和方法归纳1. 等差数列的定义与性质定义: a n 1 a n d ( d 为常数), a n a 1n 1 d等差中项: x , A , y 成等差数列2Ax ya 1 a n nnn 1 前 n 项和Snna 1d22性质: a n 是等差数列(1)若 m n p q ,则 a ma n a p a q ;2. 等比数列的定义与性质定义:a n1q( q 为常数, q0 ),an aqn 1a n.1等 比 中 项 : x 、 G 、 y 成 等 比 数 列G2xy , 或Gxy .na 1 ( q 1) 前 项和:S n a 1qnn 1( q 1) (要注意!)1 q性质: a n 是等比数列(1)若 m np q ,则 a · aa · amnpq等差数列·基础练习题一、填空1.等差数列 8,5, 2,⋯的第 20___________.2.在等差数列中已知 a1=12, a6=27, d=___________3. 在等差数列中已知d 1,a7=8,a1=_______________ 34.等差数列 -10,-6,-2, 2,⋯前 ___的和是 545.数列 a n的前n和S n=3n n2,a n=___________二、9. 在等差数列a n中a3a1140 , a4a5a6a7a8a9a10的()A.84B.72C.60.D.4810. 在等差数列a n中,前 15 的和S1590 , a8()A.6B.3C.12D.412. 在等差数列a n中,若a3a4a5a6a7450 , a2a8的等于()A.45B.75C.180D.30014. 数列 3, 7,13, 21,31,⋯的通公式是()A. C.a n4n1B. a n n3n2n 2 a n n2n1 D.不存在16.设等差数列a n的前n 项和公式是S n5n23n ,求它的前3项,并求它的通项公式17.如果等差数列a n的前4项的和是2,前 9 项的和是 -6,求其前 n 项和的公式。
等差数列基础练习题百度文库
一、等差数列选择题1.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2mB .21m +C .22m +D .23m +2.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11B .10C .6D .33.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -B .322n - C .3122n - D .3122n + 4.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1625.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为( ) A .89B .910C .1011D .11126.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29B .38C .40D .587.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .248.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .1519.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72B .90C .36D .4510.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60B .120C .160D .24011.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51B .57C .54D .7212.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .1313.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}n b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )A .25B .50C .75D .10014.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21B .15C .10D .615.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19B .20C .21D .2216.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25B .11C .10D .917.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4218.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<19.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( ) A .211n n -+ B .212n n -+C .221n n -+D .222n n -+20.已知数列{}n a 的前n 项和为n S ,112a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列说法中错误的是( )A .214a =-B .648211S S S =+ C .数列{}12n n n S S S +++-的最大项为712D .1121n n n n nT T T n n +-=++ 二、多选题21.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =22.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 23.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值24.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=25.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值26.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <27.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <28.在下列四个式子确定数列{}n a 是等差数列的条件是( )A .n a kn b =+(k ,b 为常数,*n N ∈);B .2n n a a d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和21n S n n =++(*n N ∈).29.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列30.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+, ()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C.【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 2.A 【分析】利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】由3914a a +=,23a =,又{}n a 为等差数列, 得39121014a a a d +=+=,213a a d =+=,解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 3.C 【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-. 故选:C. 4.B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.5.C 【分析】首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案.【详解】当1n =时,111a S ==, 当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =. 设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…. 故选:C 6.A 【分析】根据等差中项的性质,求出414a =,再求10a ; 【详解】因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 7.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 8.B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B 9.B 【分析】由题意结合248,,a a a 成等比数列,有2444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,∴2444(4)(8)a a a =-+,解之得48a =,∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,∴99(229)902S ⨯+⨯==,故选:B 【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2k m n a a a =; 2、等差数列前n 项和公式1()2n n n a a S +=的应用. 10.B 【分析】根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()11515815152a a S a +==,从而可得出结果.【详解】解:由题可知,2938a a a +=+,由等差数列的性质可知2938a a a a +=+,则88a =,故()1158158151521515812022a a a S a +⨯====⨯=. 故选:B. 11.B 【分析】根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】317102a a a += 1039a ∴=,即103a =()1191019191921935722a a a S +⨯∴===⨯= 故选:B 12.B【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B 13.B 【分析】先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到21212k k b --=,结合等差数列的求和公式,即可求解. 【详解】由题意,等差数列{}n a 的前n 项和为n S ,且2n S n =,可得21n a n =-,因为n a m ≥,即21n m -≥,解得12m n +≥, 当21m k =-,(*k N ∈)时,1m m b k m +=,即()()11212m m m mk m b m m +===++, 即21212k k b --=, 从而()13519113519502b b b b ++++=++++=.故选:B. 14.C 【分析】根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】因为134222a a a a +=⎧⎨-=⎩,所以122222a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,所以5154550101102S a d ⨯=+=⨯+⨯=, 故选:C. 15.B 【分析】由等差数列的性质可得数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,再由等差数列的通项公式可得1nn a ,进而可得1n a n=,再结合基本不等式即可得解. 【详解】因为*121210,n n n n a a a ++-+=∈N ,所以12211n n n a a a ++=+, 所以数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设其公差为d , 由25111,25a a a ==可得25112,115a a a ==⋅, 所以111121145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111a d ⎧=⎪⎨⎪=⎩,所以()1111n n d n a a =+-=,所以1n a n=,所以不等式100n n a a +≥即100n a n+≥对任意的*n N ∈恒成立,又10020n n +≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用. 16.D 【分析】利用等差数列的性质直接求解. 【详解】 因为131,5a a ==,315529a a a a =+∴=,故选:D . 17.C 【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =,所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.18.D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D. 19.D 【分析】先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出2122n n n a -+=,进而求出n a .【详解】 解:11nn na a na +=+, ()11n n n a na a ++=∴,化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:111n nn a a +-=, 即21111a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:213243111111+a a a a a a --+-+ (111)123n n a a -+-=+++…1n +-, 即111(1)2n n n a a --=, 2111(1)(1)2=1(2,)222n n n n n n n n n z a a ---+∴=++=≥∈,又111a =也满足上式, 212()2n n n n z a -+∴=∈, 22()2n a n z n n ∴=∈-+.故选:D. 【点睛】 易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合. 20.D 【分析】当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120nn n a S S -+=可推导出数列1n S ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫⎨⎬⎩⎭的通项公式,由221a S S =-可判断A 选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得111112020n n n n n nS S S S S S ----+=⇒-+=, 整理得1112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫⎨⎬⎩⎭为以2为首项,以2为公差的等差数列()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111424a S S =-=-=-,A 选项正确; B 中,1n S ⎧⎫⎨⎬⎩⎭为等差数列,显然有648211S S S =+,B 选项正确; C 中,记()()1212211221n n n n b S S n n n S ++=+-=+-++, ()()()1123111212223n n n n b S S S n n n ++++=+-=+-+++,()()()1111602223223n n n b b n n n n n n ++∴-=--=-<++++,故{}n b 为递减数列, ()1123max 111724612n b b S S S ∴==+-=+-=,C 选项正确;D 中,12n n S =,()()2212n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()11112112111n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.故选:D . 【点睛】关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩来求解,在变形过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解.二、多选题21.BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确.选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题. 22.ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题. 23.AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d , 则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定; 24.BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形. 25.BD 【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确;【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题. 26.AD 【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题. 27.AD 【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系. 28.AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列.A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;C 选项中()*2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差数列,故正确;D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2n S An Bn =+,所以{}n a 不为等差数列.故错误. 故选:AC 【点睛】本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 29.ABC 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴=所以当0c 时,{}n a 是等差数列, 0a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:A B C 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题. 30.AD 【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】解:1385a a S +=,111110875108,90,02da a d a a d a ⨯++=++==,故正确A.由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392dS a d d d ⨯==-+=-, 131131213+11778392dS a d d d ⨯==-+=-,故D 正确. 故选:AD 【点睛】考查等差数列的有关量的计算以及性质,基础题.。
等差数列基础练习题及答案.doc
等差数列基础练习题及答案精品文档等差数列基础练习题及答案一(选择题8(数列的首项为3,为等差数列且,若,,则=设Sn是等差数列{an}的前n项和,若=)14(在等差数列{an}中,a2=4,a6=12,,那么数列{}的前n项和等于17(等差数列{an}的公差d,0,且,则数列{an}的前n项和Sn取得最大值时的项数n是二(填空题27(如果数列{an}满足:=2)28(如果f=f+1,且f=2,则f=(29(等差数列{an}的前n项的和,则数列{|an|}的前10项之和为(30(已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16( 求数列{an}的通项公式:若数列{an}和数列{bn}满足等式:an==,求数列{bn}的前n项和Sn(1 / 13精品文档参考答案与试题解析一(选择题348(数列的首项为3,为等差数列且,若,,则= )5姓名:_______________学号:____________________班级:_____________________等差数列基础检测题一、选择题1、已知等差数列{an}的首项a1,1,公差d,2,则a4等于A(5B(6C(7D(92、已知{an}为等差数列,a2,a8,12,则a5等于A( B(5C(6D(73、在数列{an}中,若a1,1,an,1,an,2,则该数列的通项公式an,A(2n,1B(2n,1C(2nD(24、等差数列{an}的公差为d,则数列{can}A(是公差为d的等差数列B(是公差为cd的等差数2 / 13精品文档列C(不是等差数列D(以上都不对5、在等差数列{an}中,a1,21,a7,18,则公差d,11 B.311C(,D36、在等差数列{an}中,a2,5,a6,17,则a14,A(45B(41C(39D(37X k b 1 . c o m1517、等差数列{an}a101, x,16xx12A(50B(1332C(24D(8*8、已知数列{an}对任意的n?N,点Pn都在直线y,2x,1上,则{an}为A(公差为2的等差数列 B(公差为1的等差数列C(公差为,2的等差数列 D(非等差数列9、已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是A(2B(3C(6D(910、若数列{an}是等差数列,且a1,a4,45,a2,a5,39,则a3,a6,3 / 13精品文档A(24B(27C(30D(3311、下面数列中,是等差数列的有4,5,6,7,8,… ?3,0,,3,0,,6,… ?0,0,0,0,…1234?,, 10101010A(1个B(2个C(3个D(4个12、首项为,24的等差数列从第10项起开始为正数,则公差d的取值范围是8A(d,B(d,388d,3D.,d?33二、填空题13、在等差数列{an}中,a10,10,a20,20,则a30,________.14、?ABC三个内角A、B、C成等差数列,则B,__________.15、在等差数列{an}中,若a7,m,a14,n,则a21,________.216、已知数列{an}满足a2n,1,an,4,且a1,1,an,0,则an,________.三、解答题17、在等差数列{an}中,已知a5,10,a12,31,求4 / 13精品文档它的通项公式(18、在等差数列{an}中,已知a5,,1,a8,2,求a1与d;已知a1,a6,12,a4,7,求a9.19、已知{an}是等差数列,且a1,a2,a3,12,a8,16.求数列{an}的通项公式;若从数列{an}中,依次取出第2项,第4项,第6项,…,第2n项,按原来顺序组成一个新数列{bn},试求出{bn}的通项公式(20、已知等差数列{an}中,a1,a2,a3,…,an且a3,a6为方程x2,10x,16,0的两个实根(求此数列{an}的通项公式;268是不是此数列中的项,若是,是第多少项,若不是,说明理由(21、已知三个数成等差数列,其和为15,首、末两项的积为9,求这三个数(22、已知,是等差数列{an}图象上的两点(求这个数列的通项公式;画出这个数列的图象;判断这个数列的单调性(5 / 13精品文档答案:一、选择题1-CCBBC6-10 BDABD 11-1BD二、填空题a20,a1020,1013、解析:法一:d1,a30,a20,10d,20,10,30.0,1020,10法二:由题意可知,a10、a20、a30成等差数列,所以a30,2a20,a10,2×20,10,30. 答案:3014、解析:?A、B、C成等差数列,?2B,A,C. 又A,B,C,180?,?3B,180?,?B,60?. 答案:60?15、解析:?a7、a14、a21成等差数列,?a7,a21,2a14,a21,2a14,a7,2n,m. 答案:2n,m22216、解析:根据已知条件a2n,1,an,4,即an,1,an,4,数列{a2n}是公差为4的等差数列,22?an,a1,?4,4n,3.an,0,?an,4n,3.4n,3三、解答题17、解:由an,a1,d得10,a1,4d?a1,,2?,解得?. ?31,a1,11d?d,3??6 / 13精品文档等差数列的通项公式为an,3n,5.a1,?5,1?d,,1,18、解:由题意,知? ?a1,?8,1?d,2.?a1,,5,解得? ?d,1.?a1,a1,?6,1?d,12,?由题意,知? ??a1,?4,1?d,7.a1,1,?解得? ?d,2.?a9,a1,d,1,8×2,17.19、解:?a1,a2,a3,12,?a2,4,a8,a2,d,?16,4,6d,?d,2, ?an,a2,d,4,×2,2n.a2,4,a4,8,a8,16,…,a2n,2×2n,4n. 当n,1时,a2n,a2,4n,4,4.{bn}是以4为首项,4为公差的等差数列( ?bn,b1,d,4,4,4n.20、解:由已知条件得a3,2,a6,8.又?{an}为等差数列,设首项为a1,公差为d, a1,2d,2?a1,,2??,解得?. ?a1,5d,8?d,2??an,,2,×2,2n,4(数列{an}的通项公式为an,2n,4.7 / 13精品文档令268,2n,4,解得n,136.268是此数列的第136项(6-2等差数列基础巩固一、选择题1(如果等差数列{an}中,a3,a4,a5,12,那么a1,a2,…,a7,A(14C(28[答案] C[解析] 由a3,a4,a5,12得,a4,4, ?a1,a2,…,a7,a1,a727,7a4,28.B(21 D(352(在等差数列{an}中,已知a4,a8,16,则a2,a10,A(12C(20[答案] B[解析] 本题考查等差数列的性质(由等差数列的性质得,a2,a10,a4,a8,16,B正确( 在等差数列{an}中,已知a4,a8,16,则该数列前11项和S11,A(58C(143[答案] B[解析] 本题主要考查等差数列的性质及求和公式(8 / 13精品文档11?a1,a11?11×16由条件知a4,a8,a1,a11,16,S112,11×82B(8D(17B(1D(24,88.3(设等差数列{an}的前n项和为Sn.若a1,,11,a4,a6,,6,则当Sn取最小值时,n等于A(6C(8[答案] Aa1,,11,?a1,,11[解析] 设公差为d,.a4,a6,,6,?d,2B(D(9n?n,1?Sn,na12d,,11n,n2,n,n2,12n. ,2,36. 即n,6时,Sn最小(4(在等差数列{an}中,若a4,a6,12,Sn是数列{an}的前n项和,则S9的值为A(48C(60 [答案] B[解析] 解法1:?a4,a6,a1,a9,12,?a1,a9?9×12?S9,,254.解法2:利用结论:S2n,1,an, ?a4,a6?S9,9×a5,9×2,54.5(若一个等差数列的前3项的和为34,最后3项的9 / 13精品文档和为146,且所有项的和为390,则这个数列有A(13项C(11项B(12项 D(10项 B(5D(66[答案] Aa1,a2,a3,34[解析] 依题意?,an,2,an,1,an,146两式相加得,,,180. ?a1,an,a2,an,1,a3,an,2,?a1,an,60. n?a1,an?Sn,,390,?n,13.anan,1,126(等差数列{an}中,a1,a3,a7,2a4,4,则2的值为整n,3n数时n的个数为A(4C(2[答案] C[解析] a3,a7,2a4,2d,4, ?d,2.?an,2n,2.anan,1,12?2n,2??2n,4?,12?n,3nn,3n20,4,n?n,3?当n,1,2时,符合题意( 二、填空题7(设Sn为等差数列{an}的前n项和,S4,14,S10,S7,30,则S9,________.10 / 13精品文档[答案]4[解析] 设首项为a1,公差为d,由S4,14得B(D(14×34a1,2,14.?由S10,S7,30得3a1,24d,30,即a1,8d,10.?联立??得a1,2,d,1,?S9,54.8(在等差数列{an}中,|a3|,|a9|,公差d [答案]或6[解析] ?d0,Sn取得最大值时的自然数n是5或6. 三、解答题9(设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列(求数列{an}的公比;证明:对任意k?N,,Sk,2,Sk,Sk,1成等差数列( [解析] 设数列{an}的公比为q,由a5,a3,a4成等差数列,得2a3,a5,a4,即2a1q2,a1q4,a1q3,由a1?0,q?0得q2,q,2,0,解得q1,,2,q2,1,所以q,,2.证明:对任意k?N,,Sk,2,Sk,1,2Sk,, ,ak,1,ak,2,ak,1,2ak,1,ak,1? ,0,11 / 13精品文档所以,对任意k?N,,Sk,2,Sk,Sk,1成等差数列(能力提升一、选择题1(设Sn是公差为d的无穷等差数列{an}的前n项和,则下列命题错误的是A(若d C(若数列{Sn}是递增数列,则对任意n?N,,均有Sn>0 D(若对任意n?N,,均有Sn>0,则数列{Sn}是递增数列 [答案] C[解析] 本题考查等差数列的性质(对于等差数列,1,1,3,…,其{Sn}是递增数列,但S1,S2不大于0,故选C.SS2(等差数列{an}中,Sn是其前n项和,a1,,2014012010,2,则S014的值为A(,012C(012[答案] DSSS[解析] 设Sn,An,Bn,则n,An,B,012010,2A,2,2B(01D(,014S故A,1.又a1,S1,A,B,,014,?B,,015.?014,014,015,,1.?S2014,,014.二、填空题12 / 13精品文档13 / 13。
等差数列基础测试题(附详细答案)
等差数列:1、已知等差数列{a n }的首项a 1=1,公差d =2,则a 4等于( )A .5B .6C .7D .92、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )A .4B .5C .6D .73、在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项公式a n =( )A .2n +1B .2n -1C .2nD .2(n -1)4、等差数列{a n }的公差为d ,则数列{ca n }(c 为常数且c ≠0)( )A .是公差为d 的等差数列B .是公差为cd 的等差数列C .不是等差数列D .以上都不对5、在等差数列{a n }中,a 1=21,a 7=18,则公差d =( )A.12B.13C .-12D .-136、在等差数列{a n }中,a 2=5,a 6=17,则a 14=( )A .45B .41C .39D .377、若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .338、下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,…④110,210,310,410,… A .1个 B .2个C .3个D .4个二、填空题(共20,每小题5分)9、在等差数列{a n }中,a 10=10,a 20=20,则a 30=________.10、△ABC 三个内角A 、B 、C 成等差数列,则B =__________.11、在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=________.三、解答题(共70分)12、在等差数列{a n }中,已知a 5=10,a 12=31,求它的通项公式.(10分)13、在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ;(2)已知a 1+a 6=12,a 4=7,求a 9.14、已知{a n }是等差数列,且a 1+a 2+a 3=12,a 8=16.(12分)(1)求数列{a n }的通项公式;答案:一、选择题1-5 CCBBC 6-8BDB二、填空题13、解析:法一:d =a 20-a 1020-10=20-1020-10=1,a 30=a 20+10d =20+10=30. 法二:由题意可知,a 10、a 20、a 30成等差数列,所以a 30=2a 20-a 10=2×20-10=30. 答案:3014、解析:∵A 、B 、C 成等差数列,∴2B =A +C . 又A +B +C =180°,∴3B =180°,∴B =60°. 答案:60°15、解析:∵a 7、a 14、a 21成等差数列,∴a 7+a 21=2a 14,a 21=2a 14-a 7=2n -m . 答案:2n -m三、解答题17、解:由a n =a 1+(n -1)d 得⎩⎪⎨⎪⎧ 10=a 1+4d 31=a 1+11d ,解得⎩⎪⎨⎪⎧a 1=-2d =3. ∴等差数列的通项公式为a n =3n -5.18、解:(1)由题意,知⎩⎪⎨⎪⎧ a 1+(5-1)d =-1,a 1+(8-1)d =2. 解得⎩⎪⎨⎪⎧ a 1=-5,d =1. (2)由题意,知⎩⎪⎨⎪⎧ a 1+a 1+(6-1)d =12,a 1+(4-1)d =7. 解得⎩⎪⎨⎪⎧a 1=1,d =2. ∴a 9=a 1+(9-1)d =1+8×2=17.19、解:(1)∵a 1+a 2+a 3=12,∴a 2=4,∵a 8=a 2+(8-2)d ,∴16=4+6d ,∴d =2, ∴a n =a 2+(n -2)d =4+(n -2)×2=2n .(2)a 2=4,a 4=8,a 8=16,…,a 2n =2×2n =4n . 当n >1时,a 2n -a 2(n -1)=4n -4(n -1)=4.∴{b n }是以4为首项,4为公差的等差数列. ∴b n =b 1+(n -1)d =4+4(n -1)=4n .。
(完整word版)等差数列基础练习题
等差数列·基础练习题一、填空题1. 等差数列8,5,2,…的第20项为___________.2. 在等差数列中已知a 1=12, a 6=27,则d=___________3. 在等差数列中已知13d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2()a b -的等差中项是________________— 5. 等差数列—10,—6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________二、选择题8. 若lg2,lg(21),lg(23)x x -+成等差数列,则x 的值等于( )A.0B. 2log 5 C 。
32 D.0或329。
在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( )A 。
84B 。
72 C.60 . D.4810. 在等差数列{}n a 中,前15项的和1590S = ,8a 为( )A.6 B 。
3 C 。
12 D.411。
等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20下昂的和等于A 。
160 B.180 C.200 D 。
22012。
在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( )A 。
45B 。
75 C.180 D.30013. 设n S 是数列{}n a 的前n 项的和,且2n S n =,则{}n a 是( )A 。
等比数列,但不是等差数列 B.等差数列,但不是等比数列C 。
等差数列,且是等比数列D 。
既不是等差数列也不是等比数列 14. 数列3,7,13,21,31,…的通项公式是( ) A 。
41n a n =- B. 322n a n n n =-++ C. 21n a n n =++ D.不存在 三、计算题15。
(word完整版)等差数列等比数列基础练习题
1.等差数列 ,10,7,4,1的第11项是 。
2。
等差数列中,第三项是9,第9项是3,则第6项是 。
3.等差数列{}n a 中,3524a a +=,23a =,则6a = . 4。
若数列{}n a 中,若21=a ,1221=-+n n a a ,求5a 。
5.设12,x x 是方程2650x x ++=的两个根,则12,x x 的等差中项是 。
6。
在等差数列}{n a 中,若18,063-==S S ,则=9S . 7.数列{a n }中,1a =3,且21-=+n n a a )(*N n ∈,则8a =8.数列{}n a 是首项为1,公差为3的等差数列,若n a =2011,则n = 9.在等差数列{}n a 中,12497,1,16a a a a 则==+=10.已知一个等差数列的前10项的和是310,前20项的和是1220,则它的前30项的和11.一个等差数列的前4项的和是24,前5项的和与前2项的和的差是27,则它的通项公式n a = 12.数列{}n a 的前n 项和公式n n S n 322+=,则它的通项公式n a =13.在等差数列{a n }中,a 1>0,a 5=3a 7,前n 项和为S n ,若S n 取得最大值,则n = 14.等差数列{a n }中,a 5=24,S 5=70,则S 10=_ 15.等比数列{a n }的前n 项和为S n =3n +t ,则t =16.在等比数列{a n }中,已知2113=a ,2143=S ,则a 1= ,q = 17.等比数列{a n }中,a n 〉0,a 2·a 4+2a 3·a 5+a 4·a 6=25,则a 3+a 5= 18.设{a n }中,a n =20-4n ,则这个数列前 项和最大。
19.等差数列{a n }中,公差d ≠0,若a 1,a 3,a 9成等比,则1042931a a a a a a ++++=20.等差数列{a n }各项均为正,若a 3a 5+ a 3a 8+ a 5a 10+ a 8a 10=64,则S 12= 21。
等差数列基础练习题百度文库
一、等差数列选择题1.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-2.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1B .2C .3D .43.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=( )A .2B .3C .4D .54.设数列{}n a 的前n 项和21n S n =+. 则8a 的值为( ).A .65B .16C .15D .14 5.在等差数列{a n }中,a 3+a 7=4,则必有( )A .a 5=4B .a 6=4C .a 5=2D .a 6=26.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32B .33C .34D .357.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 8.已知等差数列{}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是( )A .7B .8C .7或8D .99.题目文件丢失!10.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .15111.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项12.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12B .20C .40D .10013.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}n b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )A .25B .50C .75D .10014.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103B .107C .109D .10515.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25B .11C .10D .916.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4217.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18B .19C .20D .2118.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6B .7C .8D .1019.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333122n n n a a a ++=+,则10a 等于( ) A .10BC .64D .420.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .85二、多选题21.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .322.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12d =B .12d =-C .918S =D .936S =23.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .824.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =25.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值26.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >27.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-28.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+29.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值30.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S =D .15S 是最大值【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C . 2.C 【分析】利用等差数列的下标和性质以及基本量运算,可求出1a . 【详解】设等差数列{}n a 的公差为d ,则3856522a a a a a +=+=+,解得652d a a =-=,212112228S a a a d a =+=+=+=,解得13a =故选:C 3.B 【分析】根据等差数列的性质,由题中条件,可直接得出结果.【详解】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S ,所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B. 4.C 【分析】利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】由21n S n =+得,12a =,()2111n S n -=-+,所以()221121n n n a S S n n n -=-=--=-, 所以2,121,2n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.故选:C. 【点睛】本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 5.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 6.D 【分析】设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出111429m n =-,再由[]90,100m ∈求出n 的值.【详解】根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈,则有(1)(2)(28)294061520n n n n m n m ++++++++=++=则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤ 解得34.96635.31n ≤≤,因为年龄为整数,所以35n =. 故选:D 7.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 8.C 【分析】215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.【详解】22152251524n S n n n ⎛⎫=-=--⎪⎝⎭,∴数列{}n S 的图象是分布在抛物线21522524y x ⎛⎫=--⎪⎝⎭上的横坐标为正整数的离散的点.又抛物线开口向上,以152x =为对称轴,且1515|7822-=-|, 所以当7,8n =时,n S 有最小值. 故选:C9.无10.B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B 11.D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 12.B 【分析】由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B. 13.B 【分析】先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到21212k k b --=,结合等差数列的求和公式,即可求解. 【详解】由题意,等差数列{}n a 的前n 项和为n S ,且2n S n =,可得21n a n =-,因为n a m ≥,即21n m -≥,解得12m n +≥,当21m k =-,(*k N ∈)时,1m m b k m+=,即()()11212m m m mk m b m m +===++, 即21212k k b --=, 从而()13519113519502b b b b ++++=++++=.故选:B. 14.B 【分析】根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】根据题意可知正整数能被21整除余2,21+2n a n ∴=, 5215+2107a ∴=⨯=.故选:B. 15.D 【分析】利用等差数列的性质直接求解. 【详解】 因为131,5a a ==,315529a a a a =+∴=,故选:D . 16.C 【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.17.B【分析】由已知判断出数列{}n a 是以1为首项,以2为公差的等差数列,求出通项公式后即可求得10a .【详解】()122n n a a n --=≥,且11a =,∴数列{}n a 是以1为首项,以2为公差的等差数列,通项公式为()12121n a n n =+-=-,10210119a ∴=⨯-=,故选:B. 18.D 【分析】由等差数列的通项公式及前n 项和公式求出1a 和d ,即可求得5a . 【详解】解:设数列{}n a 的首项为1a ,公差为d , 则由542S S =,248a a +=,得:111154435242238a d a d a d a d ⨯⨯⎛⎫+=+ ⎪⎝⎭+++=⎧⎪⎨⎪⎩,即{1132024a d a d +-+=, 解得:{123a d =-=,51424310a a d ∴=+=-+⨯=.故选:D. 19.D 【分析】利用等差中项法可知,数列{}3n a 为等差数列,根据11a =,22a =可求得数列{}3n a 的公差,可求得310a 的值,进而可求得10a 的值. 【详解】对*n N ∀∈都有333122n n n a a a ++=+,由等差中项法可知,数列{}3n a 为等差数列,由于11a =,22a =,则数列{}3n a 的公差为33217d a a =-=,所以,33101919764a a d =+=+⨯=,因此,104a .故选:D. 20.C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴1215(6121)71(4151)59a kb k ⨯-==⨯-, 故选:C .二、多选题21.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n n a a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题. 22.BD 【分析】由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】因为1937538a a a a +=+=+=, 所以()1999983622a a S +⨯===.因为35a =,73a =,所以公差731732a a d -==--. 故选:BD23.BD【分析】 依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解.【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+= 整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n +-≥且为偶数, 验证可知5,8n =满足题意.故选:BD.【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.24.BD【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误.【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942dS d -⨯==-,A 选项错误;对于B 选项,()2229272dS d -⨯==-,()2779772dS d -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误;对于D 选项,50a =,D 选项正确.故选:BD.【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.25.BD【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解.【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误;而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>,又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的.∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确;故选:BD.【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.26.ABC【分析】根据等差数列性质依次分析即可得答案.【详解】解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以()114141402a a S +==,故A 选项正确; 对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误.故选:ABC .【点睛】本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题.27.AC【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =, ∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-== 故选:AC .【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.28.ABD【分析】由已知递推式可得数列2=,公差为1的等差数列,结合选项可得结果.【详解】)211n a =-得)211n a +=,1=,即数列2=,公差为1的等差数列,2(1)11n n =+-⨯=+,∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,所以易知ABD 正确,故选:ABD.【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.29.AC【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值.【详解】解:在递增的等差数列{}n a 中,由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =, 则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC .【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.30.CD【分析】根据等差数列中1118S S =可得数列的公差0d <,再根据二次函数的性质可知15S 是最大值,同时可得150a =,进而得到290S =,即可得答案;【详解】1118S S =,∴0d <,设2n S An Bn =+,则点(,)n n S 在抛物线2y Ax Bx =+上,抛物线的开口向下,对称轴为14.5x =,∴1514S S =且为n S 的最大值,1118S S =12131815070a a a a ⇒+++=⇒=, ∴129291529()2902a a S a +===, 故选:CD.【点睛】本题考查利用二次函数的性质研究等差数列的前n项和的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.。
(完整word版)等差数列基础题训练
基础题训练11. 等差数列{}n a 中,已知,2,101-==d a 则=6a ——。
2. 等差数列{}n a 中,已知=++==76593,9,1a a a a a 则_______。
3. 等差数列{}n a 中,==-=982,6,6s a a 则_______.4. 等差数列{}n a 中,===n a a a 则,21,952_________. 5. 等差数列{}n a 中,_____,7,118452=-=-=+a a a a 则。
6. 在等差数列{}n a 中,33,39852741=++=++a a a a a a 则=++963a a a 则____7.在等差数列{}n a 中,若34567a +a +a +a +a =450,则28a +a =_______。
8.已知等差数列{}n a 中,26a a 与的等差中项为5,37a a 与的等差中项为7,则n a = 。
9.等差数列{}n a 中,n S =40,1a =13,d = -2 时,n =______________. 10.已知等差数列{}n a 的前n 项和为__,,80,35,1107===a s s s n 则d=____. 11。
已知等差数列{}n a 的前m 项和为30, 前2m 项和为100, 则前3m 项和为____. 12.在等差数列{}n a 中,3,15654321=++=++a a a a a a =12s 则____ 13. 等差数列{}n a 中,._____,10,10011010010===a a a 那么若 14.等差数列{}n a 中, 1a 〈0, 最小,若n s s s ,4525=则n=______15.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s . 16.等差数列{}n a 的前n 项和记为n S ,已知102020,410a S ==,(1)求数列{}n a 的通项公式; (2)若S n =135,求以n .基础题训练21。
等差数列基础练习题 百度文库
一、等差数列选择题1.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为( ) A .511B .38C .1D .22.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72B .90C .36D .453.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=( )A .2B .3C .4D .54.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11B .10C .6D .35.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -B .nC .21n -D .2n6.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米7.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160B .180C .200D .2208.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1629.题目文件丢失!10.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=( )A .10B .145C .300D .32011.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩12.已知等差数列{}n a 的公差d 为正数,()()111,211,n n n a a a tn a t +=+=+为常数,则n a =( )A .21n -B .43n -C .54n -D .n13.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4B .6C .7D .8 14.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则99S a =( ) A .9B .5C .1D .5915.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25B .11C .10D .916.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<17.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .518.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18B .19C .20D .2119.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51B .57C .54D .7220.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32B .33C .34D .35二、多选题21.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列 22.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列23.题目文件丢失!24.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .6525.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23 C .32D .326.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为827.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列28.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 29.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为2230.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】令22n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则63a b 可得.【详解】令22n S n λ=,()37n T n n λ=+,可得当2n ≥时,()()221221221n n n a S S n n n λλλ-=-=--=-,()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,()232n b n λ=+故622a λ=,322b λ=,故631a b =. 【点睛】由n S 求n a 时,11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 2.B 【分析】由题意结合248,,a a a 成等比数列,有2444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,∴2444(4)(8)a a a =-+,解之得48a =,∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,∴99(229)902S ⨯+⨯==,故选:B 【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2k m n a a a =; 2、等差数列前n 项和公式1()2n n n a a S +=的应用. 3.B 【分析】根据等差数列的性质,由题中条件,可直接得出结果. 【详解】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S ,所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B. 4.A 【分析】利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,213a a d =+=,解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 5.B 【分析】根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩,所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=,故选:B. 6.B 【分析】利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=. 故选:B. 7.B 【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020()10181802S a a =+=⨯=. 故选:B 8.B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.9.无10.C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。
等差数列基础测试题题库百度文库
一、等差数列选择题1.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( )A .121B .161C .141D .1512.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10-B .8C .12D .143.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .04.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=( )A .2B .3C .4D .55.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45B .50C .60D .806.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列D .S 2,S 4+S 2,S 6+S 4必成等差数列7.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个B .3个C .2个D .1个8.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列9.题目文件丢失!10.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10B .9C .8D .711.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( )A .1B .2C .3D .412.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-13.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( )A .12尺布 B .518尺布 C .1631尺布 D .1629尺布 14.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为( ) A .511B .38C .1D .215.已知等差数列{}n a 的公差d 为正数,()()111,211,n n n a a a tn a t +=+=+为常数,则n a =( )A .21n -B .43n -C .54n -D .n16.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60B .11C .50D .5517.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4218.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( ) A .54钱 B .43钱 C .23钱 D .53钱 19.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333122n n n a a a ++=+,则10a 等于( ) A .10BC .64D .420.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS =( ) A .177B .83 C .143D .103二、多选题21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .()1122n n F n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦22.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =- B .201912a =C .332S =D . 2 01920192S =23.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为824.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.25.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为1226.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列27.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( )A .59823a a S +=B .27S S =C .5S 最小D .50a =28.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥29.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <30.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B 2.D 【分析】利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】147446=32a a a a a ++=∴=,则()177477142a a S a +=== 故选:D3.A 【分析】 转化条件为122527n na a n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 4.B 【分析】根据等差数列的性质,由题中条件,可直接得出结果. 【详解】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S ,所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B. 5.C 【分析】利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解 【详解】{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =1158158()15215156022a a a S a +⨯⨯====故选:C【点睛】本题考查等差数列性质及前n 项和公式,属于基础题 6.D 【分析】根据等差数列的性质,可判定A 、B 正确;当首项与公差均为0时,可判定C 正确;当首项为1与公差1时,可判定D 错误. 【详解】由题意,数列{}n a 为等差数列,n S 为前n 项和,根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误. 故选:D. 7.B 【分析】设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断D . 【详解】设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;所以7710217022128S d =⨯+≤-⨯=,B 错误;1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d≤-+,11100n a a nd nd +=+=+≤,解得10n d≥-, 所以10101n d d-≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由10n n a a +≥⎧⎨≤⎩求得.8.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力.9.无10.A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A 11.B 【分析】由题意可得221114n n a a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,得221114n n a a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列, 所以2114(1)43n n n a =+-=-, 因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14nb ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题 12.C 【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C . 13.D 【分析】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,根据15a =,30390S =可求得d 的值. 【详解】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,由题意可得30130293015015293902S a d d ⨯=+=+⨯=,解得1629d =.故选:D. 14.C 【分析】令22n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则63a b 可得. 【详解】令22n S n λ=,()37n T n n λ=+,可得当2n ≥时,()()221221221n n n a S S n n n λλλ-=-=--=-,()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,()232n b n λ=+故622a λ=,322b λ=,故631a b =. 【点睛】由n S 求n a 时,11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 15.A 【分析】由已知等式分别求出数列的前三项,由2132a a a =+列出方程,求出公差,利用等差数列的通项公式求解可得答案. 【详解】11a =,()()1211n n n a a tn a ++=+,令1n =,则()()121211a a t a +=+,解得21a t =-令2n =,则()()2322121a a t a +=+,即()2311t a t -=-,若1t =,则20,1a d ==,与已知矛盾,故解得31a t =+{}n a 等差数列,2132a a a ∴=+,即()2111t t -=++,解得4t =则公差212d a a =-=,所以()1121n a a n d n =+-=-. 故选:A 16.D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()1111161111552a a S a +===.故选:D. 17.C 【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.18.C 【分析】根据甲、乙、丙、丁、戊所得依次成等差数列,设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,然后再由五人钱之和为5,甲、乙的钱与与丙、丁、戊的钱相同求解. 【详解】设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,则根据题意有(2)()()(2)5(2)()()(2)a d a d a a d a d a d a d a a d a d -+-+++++=⎧⎨-+-=++++⎩,解得116a d =⎧⎪⎨=-⎪⎩,所以戊所得为223a d +=, 故选:C . 19.D 【分析】利用等差中项法可知,数列{}3n a 为等差数列,根据11a =,22a =可求得数列{}3n a 的公差,可求得310a 的值,进而可求得10a 的值. 【详解】对*n N ∀∈都有333122n n n a a a ++=+,由等差中项法可知,数列{}3n a 为等差数列,由于11a =,22a =,则数列{}3n a 的公差为33217d a a =-=,所以,33101919764a a d =+=+⨯=,因此,104a .故选:D. 20.D 【分析】由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列, 所以()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =. 又()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而126103S S =. 故选:D 【点睛】 思路点睛:(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,(2)()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =.二、多选题21.BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭为公比的等比数列, 所以()()1nF n n +-=⎝⎭115()n -=++, 令1nn n Fb -=⎝⎭,则11n n b +=+,所以1n n b b +=-, 所以n b⎧⎪⎨⎪⎪⎩⎭以510-32-为公比的等比数列,所以1n n b -+,所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件;故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题. 22.ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确;41121a =-=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;20193201967322S =⨯=,D 正确.故选:ACD . 【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解. 23.BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD. 24.BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 25.ACD 【分析】由题可得16a d =-,0d <,21322n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误; 对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d dS n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 26.AB 【分析】根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,1149249,2a d a d =-=-. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,1492a d =-,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛⎫=+-=-+-=- ⎪⎝⎭,令0n a ≥得51510,22n n -≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列{}na 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误.故选:AB 【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解. 27.BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d Sd -⨯==-,A 选项错误;对于B 选项,()2229272d Sd -⨯==-,()2779772d Sd -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解. 28.BC 【分析】 设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断.【详解】 设公差d 不为零, 因为38a a =,所以1127a d a d +=+, 即1127a d a d +=--, 解得192a d =-,11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误;()()()()()()221101110910,10102222n n n n n n dd na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误; 故选:BC 29.AD 【分析】 利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确.【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题. 30.AD 【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】解:1385a a S +=,111110875108,90,02da a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392dS a d d d ⨯==-+=-, 131131213+11778392dS a d d d ⨯==-+=-,故D 正确. 故选:AD 【点睛】考查等差数列的有关量的计算以及性质,基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列·基础练习题
一、填空题
1. 等差数列8,5,2,…的第20项为___________.
2. 在等差数列中已知a 1=12, a 6=27,则d=___________
3. 在等差数列中已知13
d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2
()a b -的等差中项是________________- 5. 等差数列-10,-6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________
7. 数列{}n a 的前n 项和2
3n S n n -=,则n a =___________
二、选择题
8. 若lg 2,lg(21),lg(23)x x
-+成等差数列,则x 的值等于( ) A.0 B. 2log 5 C. 32 D.0或32
9. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( )
A.84
B.72
C.60 .
D.48
10. 在等差数列{}n a 中,前15项的和1590S = ,8a 为( )
A.6
B.3
C.12
D.4
11. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20下昂的和等于
A.160
B.180
C.200
D.220
12. 在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( )
A.45
B.75
C.180
D.300
13. 设n S 是数列{}n a 的前n 项的和,且2
n S n =,则{}n a 是( )
A.等比数列,但不是等差数列
B.等差数列,但不是等比数列
C.等差数列,且是等比数列
D.既不是等差数列也不是等比数列 14. 数列3,7,13,21,31,…的通项公式是( )
A. 41n a n =-
B. 32
2n a n n n =-++ C. 2
1n a n n =++ D.不存在
三、计算题
15.求集合{}|21,*60M m m n n N m ==-∈<,且中元素的个数,并求这些元素的和
16.设等差数列{}n a 的前n 项和公式是2
53n S n n =+,求它的前3项,并求它的通项公式
17.如果等差数列{}n a 的前4项的和是2,前9项的和是-6,求其前n 项和的公式。
18.根据下列各题中的条件,求相应的等差数列{}n a 的有关未知数: (1)151
,,5,66
n a d S =
=-=-求n 及n a ; (2)12,15,10,n n d n a a S ===-求及 数列练习题
1、在等差数列中,
(1)若,则=__ 2),则
=_
(3)若,则
=______(4)若
,则
=________
(5)若,则=________。
(6)若
,则
=________。
(7)若是方程的解,则=________。
(8)若公差,且是关于的方程的两个根,则=________。
(9)若,则=________。
2、在等比数列中,
(1)若,则=________2)若,则=________。
(3)若,则=__4)若,则=
(5)若=81,则=________。
(6)若是方程的解,则=________。
(7)设是由正数组成的等比数列,公比,且,那么=________。
(9)设,则=________。
(10)若=48,=60,则=_ 11),,=_______
3、等差数列98,95,92,…,101-3,…,当为何值时,前项和最大?
4、已知为各项都大于0的等比数列,公比,则:
(A);(B);(C);(D)不能确定。
5、在等比数列中,若,,,求自然数的取值范围。
6、设等差数列的公差与等比数列的公比都是,,且,
,,(1)求和的值。
(2)是否是的项?若是,是第几项?
7、设等差数列与的前项之和分别为,且,求的值。
8、已知数列的通项公式,求前n项的和。
9、若,记的整数部分为,
试求的值。
10、已知数列的前项和的公式为,求数列的前项和
11、已知求,(1),求;(2),求
12、对于数列中,有,试用表示
13、设数列的每一项都不为零,,已知,求通项公式。