2018中考尺规作图、定义、命题、定理真题

合集下载

2018年中考数学真题分类汇编(第三期)专题35尺规作图试题(含解析)

2018年中考数学真题分类汇编(第三期)专题35尺规作图试题(含解析)

尺规作图一.填空题.(·辽宁省葫芦岛市) 如图,平分∠,是边上一点,以点为圆心、大于点到的距离为半径作弧,交于点,再分别以点为圆心,大于的长为半径作弧,两弧交于点.作直线分别交、于点.若∠°,,则.【解答】解:由作法得⊥于,∴∠°.∵平分∠,∴∠∠×°°.在△中,.在△中,∠°,∴.故答案为:..(·辽宁省抚顺市)(分)如图,▱中,,,连接,分别以点和点为圆心,大于的长为半径作弧,两弧相交于点,,作直线,交于点,连接,则△的周长是.【分析】根据平行四边形的性质可知,,再由垂直平分线的性质得出,据此可得出结论【解答】解:∵四边形是平行四边形,,,∴,.∵由作图可知,是线段的垂直平分线,∴,∴△的周长().故答案为:.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键..(·吉林长春·分)如图,在△中,.以点为圆心,以长为半径作圆弧,交的延长线于点,连结.若∠°,则∠的大小为度.【分析】根据等腰三角形的性质以及三角形内角和定理在△中可求得∠∠°,根据等腰三角形的性质以及三角形外角的性质在△中可求得∠∠∠°.【解答】解:∵,∠°,∴∠∠°,又∵,∴∠∠∠°.故答案为:.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.二.解答题. (·湖北江汉·分)图①、图②都是由边长为的小菱形构成的网格,每个小菱形的顶点称为格点.点,,,,均在格点上,请仅用无刻度直尺在网格中完成下列画图.()在图①中,画出∠的平分线;()在图②中,画一个△,使点在格点上.【分析】()构造全等三角形,利用全等三角形的性质即可解决问题;()利用菱形以及平行线的性质即可解决问题;【解答】解:()如图所示,射线即为所求.()如图所示,点即为所求;.(·湖北咸宁·分)已知:∠.求作:∠''',使∠'′'∠()如图,以点为圆心,任意长为半径画弧,分别交,于点;()如图,画一条射线′′,以点′为圆心,长为半径间弧,交′′于点′;()以点′为圆心,长为半径画弧,与第步中所而的弧交于点′;()过点′画射线′',则∠'''∠.根据以上作图步骤,请你证明∠''′∠.【答案】证明见解析.【解析】【分析】由基本作图得到′′′′,′′,则根据““可证明△≌△′′′,然后利用全等三角形的性质可得到∠''′∠.【详解】由作法得′′′′,′′,在△和△′′′中,∴△≌△′′′,∴∠∠′′′,即∠''′∠.【点睛】本题考查了基本作图——作一个角等于已知角,全等三角形的判定与性质,熟练掌握基本作图的基本方法以及利用判定三角形全等的方法是解题的关键..(·江苏常州·分)()如图,已知垂直平分,垂足为,与相交于点,连接.求证:∠∠.()如图,在△中,∠°,为的中点.①用直尺和圆规在边上求作点,使得∠∠(保留作图痕迹,不要求写作法);②在①的条件下,如果∠°,那么是的中点吗?为什么?【分析】()只要证明即可解决问题;()①作点关于的对称点′,连接′交于,连接,点即为所求.②结论:是的中点.想办法证明∠∠°,∠∠°,可得,;【解答】()证明:如图中,∵垂直平分线段,∴,∴∠∠,∵∠∠,∴∠∠.()①作点关于的对称点′,连接′交于,连接,点即为所求.②结论:是的中点.理由:设′交于.∵∠°,∠°,∴∠°,∵⊥,∴′,∴′,∴∠′∠′,∵∠∠′∠′°,∴∠′°,∴∠∠°,∠∠°,∴,,∴,∴是的中点.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

2018年全国中考数学试卷解析分类汇编专题35+尺规作图

2018年全国中考数学试卷解析分类汇编专题35+尺规作图

尺规作图
一.选择题
∆,使其斜边1. (2015年浙江衢州7,3分)数学课上,老师让学生尺规作图画Rt ABC
=.小明的作法如图所示,你认为这种作法中判断ACB
∠是直=,一条直角边BC a
AB c
角的依据是【】
A.勾股定理B.直径所对的圆周角是直角
C.勾股定理的逆定理D.90°的圆周角所对的弦是直径
【答案】B.
【考点】尺规作图(复杂作图);圆周角定理.
=,作AB的垂直平分线交AB于点O;
【分析】小明的作法是:①取AB c
②以点O为圆心,OB长为半径画圆;
e交于点C;
③以点B为圆心,a长为半径画弧,与O
BC AC.
④连接,
∆即为所求.
则Rt ABC
∠是直角的依据是:直径所对的圆周角是直角.
从以上作法可知,ACB
故选B.
.
2、(2015年浙江舟山9,3分)数学活动课上,四位同学围绕作图问题:“如图,已知直线l 和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q”. 分别作出了下列四个图形.其中作法错误的是【】。

1.第一节 尺规作图

1.第一节  尺规作图

第一节 尺规作图
返回目录
2. 在▱ABCD中,AD=2AB,∠B=60°,E、F分别为边AD、BC的中点.请仅 用无刻度的直尺分别按下列要求画图(保留画图痕迹). (1)在图中画一个以点A、点C为顶点的菱形; (2)在图中画一个以点B、点C为顶点的矩形. 解:(1)如解图①,菱形AFCE即为所求; (2)如解图②,矩形BECG即为所求.
第一节 尺:用无刻度的直尺和圆规作图 2.五种基本尺规作图的方法:
类型
图示
步骤
作图依据
1.作一条线段等 于已知线段
1.作射线OP;
2.以点O为圆心,a为 圆上的点到圆心 半径画弧,交OP于 的距离等于半径
点A,OA即为所求作
的线段
第一节 尺规作图
返回思 维导图
第2题图
第3题解图
思维导图
1.尺规作图 的定义
尺规 作图
2.五种基本 尺规作图 的方法
返回目录
1.作一条线段等于 已知线段 2.作一个角 等于已知角
3.作角的平分线
4.作线段的 垂直平分线 5.过一点作已知 直线的垂线
第一节 尺规作图
返回思 维导图
返回 目录
考点精讲
【对接教材】沪科:七上第4章P153-P155; 八上第15章P128-P131,P141-P143
第一节 尺规作图
返回目录
玩玩转转陕安西徽1100年年中中考考真真题题
命题点 尺规作图(2018年20题考查)
1.(2018安徽20题10分)如图,⊙O为锐角△ABC的外接圆,半径为5.
(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧 BC 的交点E;(保留作图痕迹,
不写作法) 解:(1)如解图,AE即为所求作的 ∠BAC的平分线;

【精编】2018中考数学试题分类汇编考点32尺规作图含解析

【精编】2018中考数学试题分类汇编考点32尺规作图含解析

2018中考数学试题分类汇编:考点32 尺规作图一.选择题(共13小题)1.(2018•襄阳)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm【分析】利用线段的垂直平分线的性质即可解决问题.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选:B.2.(2018•河北)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.3.(2018•河南)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.4.(2018•宜昌)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.5.(2018•潍坊)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=1【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;【解答】解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选:D.6.(2018•郴州)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6 B.2 C.3 D.【分析】直接利用角平分线的作法得出OP是∠AOB的角平分线,再利用直角三角形的性质得出答案.【解答】解:过点M作ME⊥OB于点E,由题意可得:OP是∠AOB的角平分线,则∠POB=×60°=30°,∴ME=OM=3.故选:C.7.(2018•台州)如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A.B.1 C.D.【分析】只要证明BE=BC即可解决问题;【解答】解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE﹣AB=1,故选:B.8.(2018•嘉兴)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A.B.C.D.【分析】根据菱形的判定和作图根据解答即可.【解答】解:A、由作图可知,AC⊥BD,且平分BD,即对角线平分且垂直的四边形是菱形,正确;B、由作图可知AB=BC,AD=AB,即四边相等的四边形是菱形,正确;C、由作图可知AB=DC,AD=BC,只能得出ABCD是平行四边形,错误;D、由作图可知对角线AC平分对角,可以得出是菱形,正确;故选:C.9.(2018•昆明)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.10.(2018•湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. r B.(1+)r C.(1+)r D. r【分析】如图连接CD,AC,DG,AG.在直角三角形即可解决问题;【解答】解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG===r,故选:D.11.(2018•台湾)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P 即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.12.(2018•安顺)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.【解答】解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.13.(2017•南宁)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC【分析】根据图中尺规作图的痕迹,可得∠DAE=∠B,进而判定AE∥BC,再根据平行线的性质即可得出结论.【解答】解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选:D.二.填空题(共7小题)14.(2018•南京)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE= 5 cm.【分析】直接利用线段垂直平分线的性质得出DE是△ABC的中位线,进而得出答案.【解答】解:∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.15.(2018•淮安)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是.【分析】连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;【解答】解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=,∴CD=BC﹣DB=5﹣=,故答案为.16.(2018•山西)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为2.【分析】作高线BG,根据直角三角形30度角的性质得:BG=1,AG=,可得AF的长.【解答】解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.17.(2018•东营)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是15 .【分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.【解答】解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S△ACD=•AC•DQ=×10×3=15,故答案为:15.18.(2018•通辽)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为9.【分析】只要证明△ABD是等边三角形,推出BD=AD=DC,可得S△ADC=S△ABD即可解决问题;【解答】解:由作图可知,MN垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠ADB=∠C+∠DAC=60°,∵AB=AD,∴△ABD是等边三角形,∴BD=AD=DC,∴S△ADC=S△ABD=×62=9,故答案为9.19.(2018•成都)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为.【分析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD==,在Rt△ADC中,AC==.故答案为.20.(2018•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH 的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是13或49或9 (不包括5).【分析】当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH 的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.【解答】解:当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH 的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为13或49或9.三.解答题(共21小题)21.(2018•广州)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.【分析】(1)利用尺规作出∠ADC的角平分线即可;(2)①延长DE交AB的延长线于F.只要证明AD=AF,DE=EF,利用等腰三角形三线合一的性质即可解决问题;②作点B关于AE的对称点K,连接EK,作KH⊥AB于H,DG⊥AB于G.连接MK.由MB=MK,推出MB+MN=KM+MN,根据垂线段最短可知:当K、M、N共线,且与KH重合时,KM+MN的值最小,最小值为KH的长;【解答】解:(1)如图,∠ADC的平分线DE如图所示.(2)①延长DE交AB的延长线于F.∵CD∥AF,∴∠CDE=∠F,∵∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,∵AD=AB+CD=AB+BF,∴CD=BF,∵∠DEC=∠BEF,∴△DEC≌△FEB,∴DE=EF,∵AD=AF,∴AE⊥DE.②作点B关于AE的对称点K,连接EK,作KH⊥AB于H,DG⊥AB于G.连接MK.∵AD=AF,DE=EF,∴AE平分∠DAF,则△AEK≌△AEB,∴AK=AB=4,在Rt△ADG中,DG==4,∵KH∥DG,∴=,∴=,∴KH=,∵MB=MK,∴MB+MN=KM+MN,∴当K、M、N共线,且与KH重合时,KM+MN的值最小,最小值为KH的长,∴BM+MN的最小值为.22.(2018•广东)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.23.(2018•安徽)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【分析】(1)利用基本作图作AE平分∠BAC;(2)连接OE交BC于F,连接OC,如图,根据圆周角定理得到=,再根据垂径定理得到OE⊥BC,则EF=3,OF=2,然后在Rt△OCF中利用勾股定理计算出CF=,在Rt△CEF中利用勾股定理可计算出CE.【解答】解:(1)如图,AE为所作;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF==,在Rt△CEF中,CE==.24.(2018•自贡)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)【分析】(1)作∠ABC的角平分线交AC于E,作EO⊥AC交AB于点O,以O为圆心,OB 为半径画圆即可解决问题;(2)作OH⊥BC于H.首先求出OH、EC、BE,利用△BCE∽△BED,可得=,解决问题;【解答】解:(1)⊙O如图所示;(2)作OH⊥BC于H.∵AC是⊙O的切线,∴OE⊥AC,∴∠C=∠CEO=∠OHC=90°,∴四边形ECHO是矩形,∴OE=CH=,BH=BC﹣CH=,在Rt△OBH中,OH==2,∴EC=OH=2,BE==2,∵∠EBC=∠EBD,∠BED=∠C=90°,∴△BCE∽△BED,∴=,∴=,∴DE=.25.(2018•北京)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB= AP ,CB= CQ ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;26.(2018•白银)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,27.(2018•无锡)如图,平面直角坐标系中,已知点B的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.【分析】(1)①作线段OB的垂直平分线AC,满足条件,②作矩形OA′BC′,直线A′C′,满足条件;(2)分两种情形分别求解即可解决问题;【解答】(1)解:如图△ABC即为所求;(2)解:这样的直线不唯一.①作线段OB的垂直平分线AC,满足条件,此时直线的解析式为y=﹣x+.②作矩形OA′BC′,直线A′C′,满足条件,此时直线A′C′的解析式为y=﹣x+4.28.(2018•孝感)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是PA=PB=PC ;(2)若∠ABC=70°,求∠BPC的度数.【分析】(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°﹣2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.【解答】解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;(2)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=180°﹣2×70°=40°,∵AM平分∠BAC,∴∠BAD=∠CAD=20°,∵PA=PB=PC,∴∠ABP=∠BAP=∠ACP=20°,∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.29.(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD 长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形;(2)解:设菱形ACDB的边长为x,∵四边形ABCD是菱形,∴AB∥CE,∴∠FAB=∠FCE,∠FBA=∠E,△EAB∽△FCE则:,即,解得:x=4,过A点作AH⊥CD于H点,∵在Rt△ACH中,∠ACH=45°,∴,∴四边形ACDB的面积为:.30.(2018•贵港)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.【分析】根据作一个角等于已知角,线段截取以及垂线的尺规作法即可求出答案.【解答】解:如图所示,△ABC为所求作31.(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.【分析】(1)连接EC,利用平行四边形的判定和性质解答即可;(2)连接EC,ED,FA,利用三角形重心的性质解答即可.【解答】解:(1)如图1所示,AF即为所求:(2)如图2所示,BH即为所求.32.(2018•青岛)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC 两边的距离相等.【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【解答】解:∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:33.(2018•宁波)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.【分析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.34.(2018•河南)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.35.(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:36.(2018•济宁)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.【分析】(1)直线CD与C′D′的交点即为所求的点O.(2)设切点为C,连接OM,OC.旅游勾股定理即可解决问题;【解答】解:(1)如图点O即为所求;(2)设切点为C,连接OM,OC.∵MN是切线,∴OC⊥MN,∴CM=CN=5,∴OM2﹣OC2=CM2=25,∴S圆环=π•OM2﹣π•OC2=25π.37.(2018•广安)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形.(2)画一个底边长为4,面积为8的等腰三角形.(3)画一个面积为5的等腰直角三角形.(4)画一个边长为2,面积为6的等腰三角形.【分析】(1)利用三角形面积求法以及直角三角形的性质画即可;(2)利用三角形面积求法以及等腰三角形的性质画出即可.(3)利用三角形面积求法以及等腰直角三角形的性质画出即可;(4)利用三角形面积求法以及等腰三角形的性质画出即可.【解答】解:(1)如图(1)所示:(2)如图(2)所示:(3)如图(3)所示;(4)如图(4)所示.38.(2018•青岛)问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.探究一用若干木棒来搭建横长是m,纵长是n的矩形框架(m、n是正整数),需要木棒的条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1))条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒22 条.问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为m(n+1)条,纵放的木棒为n(m+1)条.探究二用若干木棒来搭建横长是m,纵长是n,高是s的长方体框架(m、n、s是正整数),需要木棒的条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s 条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是 4 .拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒1320 条.【分析】从特殊到一般探究规律后利用规律即可解决问题;【解答】解:问题(一):当m=4,n=2时,横放木棒为4×(2+1)条,纵放木棒为(4+1)×2条,共需22条;问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为 m(n+1)条,纵放的木棒为n(m+1)条;问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s条.实际应用:这个长方体框架的横长是 s,则:[3m+2(m+1)]×5+(m+1)×3×4=170,解得m=4,拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,横放与纵放木棒条数之和为165×6=990条,竖放木棒条数为66×5=330条需要木棒1320条.故答案为22,m(n+1),n(m+1),[m(n+1)+n(m+1)](s+1),(m+1)(n+1)s,4,1320;39.(2018•香坊区)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N均在小正方形的顶点上;(3)连接ME,并直接写出EM的长.【分析】(1)利用等腰直角三角形的性质画出即可;(2)利用矩形的性质画出即可;(3)根据勾股定理解答即可.【解答】解:(1)如图所示;(2)如图所示;(3)如图所示,EM=40.(2018•天门)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;41.(2018•哈尔滨)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求,CE=4.。

【2018中考数学真题+分类汇编】一期35尺规作图试题含解析367【2018数学中考真题分项汇编系列】

【2018中考数学真题+分类汇编】一期35尺规作图试题含解析367【2018数学中考真题分项汇编系列】

尺规作图一、选择题1.(2018年湖北省宜昌市3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.【点评】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.2.(2018·山东潍坊·3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=l【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;【解答】解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选:D.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3. (2018·台湾·分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.4. (2018•河南•3分)如图,已知Y AOBC的顶点O(0,0),A(-1,2),点B在x轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( )A.,2)B.2)C.(-2)D.-2,2)5.(2018·浙江舟山·3分)用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是( )A.B.C.D.【考点】平行四边形的性质,菱形的判定,作图—尺规作图的定义【分析】首先要理解每个图的作法,作的辅助线所具有的性质,再根据平行四边形的性质和菱形的判定定理判定【解答】解:A、作的辅助线AC是BD的垂直平分线,由平行四边形中心对称图形的性质可得AC与BD互相平分且垂直,则四边形ABCD是菱形,故A不符合题意;B、由辅助线可得AD=AB=BC,由平行四边形的性质可得AD//BC,则四边形ABCD是菱形,故B不符合题意;C、辅助线AB、CD分别是原平行四边形一组对角的角平分线,只能说明四边形ABCD是平行四边形,故C符合题意;D、此题的作法是:连接AC,分别作两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,由AD//BC,得∠BAD+∠ABC=180°,∠BAC=∠DAC=∠ACB=∠ACD,则AB=BC,AD =CD,∠BAD=∠BCD,则∠BCD+∠ABC=180°,则AB//CD,则四边形ABCD是菱形故D不符合题意;故答案为C【点评】本题考查了根据平行四边形的性质和菱形的判定定理判定尺规作图正确与否的能力6. (2018•河北•3分)尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ二.1. (2018•安徽•分)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.2. (2018•甘肃白银,定西,武威)如图,在中,.(1)作的平分线交边于点,再以点为圆心,的长为半径作;(要求:不写作法,保留作图痕迹)(2)判断(1)中与的位置关系,直接写出结果.【答案】(1)作图见解析;(2)AC与⊙O相切.【解析】【分析】(1)根据角平分线的作法求出角平分线CO;(2)过O作OD⊥AC交AC于点D,先根据角平分线的性质求出DO=BO,再根据切线的判定定理即可得出答案.【解答】(1)如图,作出角平分线CO;作出⊙O.(2)AC 与⊙O 相切.【点评】考查作图—复杂作图,直线与圆的位置关系,熟练掌握角平分线的作法是解题的关键.3.(2018•北京•5分) 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P .lP求作:PQ ,使得PQ l ∥. 作法:如图,BCA Pl①在直线上取一点A ,作射线PA ,以点A 为圆心,AP 长为半径画弧,交PA 的延长线于点B ;②在直线上取一点C (不与点A 重合),作射线BC ,以点C 为圆心,CB 长为半径画弧,交BC 的延长线于点Q ; ③作直线PQ .所以直线PQ 就是所求作的直线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵AB =_______,CB =_______,∴PQ l ∥(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:QlPA CB(2)PA ,CQ ,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理3. (2018·四川自贡·10分)如图,在△ABC 中,∠ACB=90°.(1)作出经过点B ,圆心O 在斜边AB 上且与边AC 相切于点E 的⊙O (要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O 与边AB 交于异于点B的另外一点D ,若⊙O 的直径为5,BC=4;求DE 的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)【分析】(1)作∠ABC 的角平分线交AC 于E ,作EO ⊥AC 交AB 于点O ,以O 为圆心,OB 为半径画圆即可解决问题;(2)作OH ⊥BC 于H .首先求出OH 、EC 、BE ,利用△BCE ∽△BED ,可得=,解决问题;【解答】解:(1)⊙O 如图所示;(2)作OH ⊥BC 于H .∵AC 是⊙O 的切线, ∴OE ⊥AC ,∴∠C=∠CEO=∠OHC=90°, ∴四边形ECHO 是矩形,∴OE=CH=,BH=BC﹣CH=,在Rt△OBH中,OH==2,∴EC=OH=2,BE==2,∵∠EBC=∠EBD,∠BED=∠C=90°,∴△BCE∽△BED,∴=,∴=,∴DE=.【点评】本题考查作图﹣复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.(2018·浙江宁波·8分)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.【分析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.【考点】作图、平行四边形的性质【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.【点评】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.5.(2018·广东广州·12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值。

尺规作图(解析版)2018年数学全国中考真题-2

尺规作图(解析版)2018年数学全国中考真题-2

2018年数学全国中考真题尺规作图(试题二)解析版一、选择题1.(2018浙江嘉兴,8,3)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()【答案】C 【解析】根据尺规作图以及菱形的判定方法.二、填空题△中,用直尺和圆规作AB、AC的垂直平分线,分1.(2018年江苏省南京市,14,2分).如图,在ABCBC=,则DE=cm.别交AB、AC于点D、E,连接DE.若10cm【答案】5【解析】∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【知识点】线段垂直平分线中位线2.(2018吉林省,11, 2分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为__________【答案】(-1,0)【解析】由题意知,OA=4,OB=3,∴AC=AB=5,则OC=1.则点C坐标为(-1,0)【知识点】尺规作图,实数与数轴的一一对应关系3.(2018山西省,14题,3分)如图,直线MN∥PQ.直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2.∠ABP =60°则线段AF 的长为 .【答案】2√3【解析】解:过点A 作AG ⊥PQ 交PQ 与点G由作图可知,AF 平分∠NAB∵ MN ∥PQ ;AF 平分∠NAB ;∠ABP =60°∴ ∠AFG =30°在Rt △ABG 中,∠ABP =60°,AB=2;∴ AG =√3在Rt △AFG 中,∠AFG =30°,AG =√3;∴ AF =2√3【知识点】角平分线、特殊角三角函数4. (2018内蒙古通辽,16,3分)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接A D .若AB =BD ,AB =6,∠C =30°,则△ACD 的面积为 .【答案】93【解析】依题意MN 是AC 的垂直平分线,所以∠C =∠DAC =30°,所以∠ADB =∠C +∠DAC =60°,又AB =BD ,所以△ABD 为等边三角形,∠BAD =60°,所以∠BAC =∠DAC +∠BAD =90°,因为AB =6,所以AC =63,所以△ABC 的面积为12×6×63=183.又BD =AD =DC ,所以S △ACD =12S △ABC =93,故应填:93.5. (2018辽宁省抚顺市,题号16,分值3)如图,ABCD 中,AB=7,BC=3,连接AC ,分别以点A 和点C 为圆PP【答案】10【解析】由题可知,直线MN 是线段AC 的垂直平分线,∴AE=EC.∵在ABCD 中DE+EC=CD=AB=7,AD=BC=3,∴△AED 的周长为AD+DE+AE=BC+DE+EC=BC+CD=10.【知识点】用尺规作垂直平分线,垂直平分线的性质.三、解答题1. (2018广东省,题号,分值) 如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.【思路分析】(1)根据尺规作图步骤作垂直平分线,保留痕迹即可;(2)先利用菱形性质求得∠DBA 的度数,再利用垂直平分线性质求得∠ABF 的度数,进而求得∠DBF 的度数.【解题过程】(1)如图直线MN 为所求(2)解:∵四边形ABCD 是菱形∴AD =AB ,AD ∥AB ,∵∠DBC =75°,∴∠ADB =75°,CA∴∠ABD =75°∴∠A =30°∵EF 为AB 的垂直平分线∴∠A =∠FBE =30°,∴∠DBE =45°【知识点】菱形性质;线段垂直平分线性质;尺规作图2. (2018甘肃省兰州市,20,6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长;(2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【思路分析】PC ⊥AC ,要使P 到AB 的距离(PD 的长)等于PC 的长,即求∠A 的角平分线与BC 的交点.【解题过程】(1)作∠A 的平分线AD ,交BC 于P ;(2)过点P 作直线AB 的垂线,垂中为D 。【知识点】尺规作图19题答案图2FE C DA BMN C A B第20题图3. (2018湖北省江汉油田潜江天门仙桃市,18,5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O ,M ,N ,A ,B 均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON 的平分线OP ;(2)在图②中,画一个Rt △ABC ,使点C 在格点上.【思路分析】(1)在只能用直尺画角平分线的情况下,就设法将∠MON 放置在能画出角平分线的图形中,如菱形.(2)原图是由全等的小菱形组成的,∴要想找到直角就要从菱形的对角线方面入手考虑.设法找让三角形中的一个顶点处在两个菱形的对角线交点位置,并且在格点上.【解题过程】解:(1)如图①,将∠MON 放在菱形AOBC 中,连接对角线OC ,并取格点P ,OP 即为所求. 2分 如图②所示,△ABC 或△ABC 1均可.4. (湖北省咸宁市,18,7)已知:AOB ∠.求作:,'''B O A ∠使'''AO B AOB ∠=∠ 作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ;(3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ;(4)过点 'D 画射线'OB ,则 '''AO B AOB ∠=∠. 根据以上作图步骤,请你证明AOB B O A ∠=∠'''.(第18题图) 图①图② BAO N M第18题答图 P A 图① ON MB C C 1 C图②B A【思路分析】由画一条射线''A O ,以点'O为圆心OC 长为半径画弧,交于点''A O 于点'C 可得OC =O′C′,由以点'C 为圆心,D C ,长为半径画弧,与第 2 步中所画的弧交于点'D 可得OD =O′D′,CD =C′D′,从而'''.COD C O D ∆≅∆【解题过程】证明:由作图步骤可知,在COD ∆和'''D O C ∆中,''''''OC O C OD O D CD C D ⎧=⎪=⎨⎪=⎩,'''().COD C O D SSS ∴∆≅∆COD D O C ∠=∠∴'''.即AOB B O A ∠=∠'''.【知识点】三角形全等;尺规作图5. (2018广西贵港,20,5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a ,求作:△ABC ,使∠A =∠α,∠C =90°,AB =a .【思路分析】先作∠A 等于已知角∠α,再在角的一边上截取线段AB =a ,再过B 点作角的另一边的垂线,垂足为C ,则△ABC 即为所求.【解答过程】所作图形如下a A6.(2018江苏常州,27,10)(本小题满分10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD;(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法).②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【解答过程】(1)∵EK垂直平分BC,点F在EK上,∴FC=FB,且∠CFD=∠BFD ∵∠AFE=∠BFD,∴∠AFE=∠CFD(2)如图所示,点Q为所求作的点.(3)Q是GN的中点。

尺规作图(解析版)2018年数学全国中考真题-1

尺规作图(解析版)2018年数学全国中考真题-1

2018年数学全国中考真题尺规作图(试题一)解析版一、选择题1.(2018山东潍坊,6,3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=234AB C.点C是△ABD的外心D.sin2A+cos2D=1【答案】D【解析】由(1)可知,AB=AC=BC,∴△ABC为等边三角形,∴∠A=∠ACB=∠ABC=60°,S△ABC=23AB又由(2)可知CD=AC=BC=AB,∴∠CBD=∠D=12∠ACB=30°,S△BDC= S△ABC=234AB,点C是△ABD的外心.故选项A、B、C正确,故选择D.【知识点】尺规作图,等边三角形,等腰三角形,直角三角形2.(2018年山东省枣庄市,10,3分)如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PBPA,,那么使ABP为等腰三角形的点P的个数是()A.2个B.3个C.4个D.5个【答案】B第10题图BA【思路分析】首先由正方形的对边相等找到小矩形的长与宽的数量关系,其次利用网格作图中作垂线的方法找出符合题意的点,并注意分类思想的渗透.【解题过程】如下图,设每个小矩形的长与宽分别为x 、y ,则有2x =x +2y ,从而x =2y .因为线段AB 是1×2的矩形对角线,所以根据网格作垂线可知,过点B 与AB 垂直且相等的线段有BP 1和BP 2,过点A 与AB 垂直且相等的线段有BP 3,且P 1、P 2,P 3都在顶点上,因此满足题意的点P 共有3个,故选择B .【知识点】网格作图;等腰直角三角形3. (2018浙江湖州,9,3)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点; ②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连结OG .问:OG 的长是多少?大臣给出的正确答案应是( ) A .3r B .(1+22)r C .(1+23)r D .2r【答案】D【解析】连接AD ,AG ,则AD 经过点O .∵六个点等分圆,∴可求得AC =3r .∵△AOG 是直角三角形,∴由勾股定理可知OG 的长为2r .故选D.P 2P 3P 1AB第9题图AFEDCBGO【知识点】圆,等边三角形,勾股定理1.(2018湖南郴州,7,3)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于点C,D两点,分别以C,D为圆心,以大于12CD的长为半径作弧,两弧相交于点P,以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6B.2C.3D.33【答案】D【思路分析】判断出OP是∠AOB的平分线,过点M作ME⊥OB于E,根据角平分线的性质可得∠MOB=30°,然后根据“直角三角形中30°所对的直角边等于斜边一半”列式计算即可得解.【解析】解:由题意得OP是∠AOB的平分线,过点M作ME⊥OB于E,又∵∠AOB=60°,∴∠MOB=30°,在Rt△MOE中,OM=6,∴EM=12OM=3,故选C.【知识点】角平分线的性质,尺规作图2.(2018河北省,6,3)尺规作图要求:ⅰ.过直线外一点作这条直线的垂线;ⅱ.作线段的垂直平分线;ⅲ.过直线上一点作这条直线的垂线;ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:AFEDC BGO第9题答图则正确的配对是( )A .①—ⅳ,②—ⅱ,③—ⅰ,④—ⅲB . ①—ⅳ,②—ⅲ,③—ⅱ,④—ⅰC .①—ⅱ,②—ⅳ,③—ⅲ,④—ⅰD . ①—ⅳ,②—ⅰ,③—ⅱ,④—ⅲ【答案】D【解析】根据不同的作图方法可以一一对应. ②的已知点在直线外,所以对应ⅰ,④的已知点在直线上,所以对应ⅲ.【知识点】尺规作图,角的平分线,垂线,线段的垂直平分线3. (201湖北宜昌,13,3分) 尺规作图:经过已知直线外一点作这条直线的垂线.下列作图中正确的是( )A. B.C. D.(第13题图)【答案】B【解析】经过已知直线外一点作这条直线的垂线的尺规作图为:以这点为圆心画弧,再以和直线的两个交点为圆心画弧,两弧交点和这点连接,该直线就是这条直线的垂线.故选择B. 【知识点】尺规作图:过直线外一点作已知直线的垂线.4. 2018贵州安顺,T8,F3)已知△ABC (AC <BC ),用尺规作图的方法在BC 上确定一点P ,使 PA+PC =BC, 则符合要求的作图痕迹是( )l第6题图P①ABO②·③BA ④lP【答案】D【解析】选项A,该作图痕迹表示AB=PB,不符合题意;选项B,该作图痕迹表示作线段AC的垂直平分线交BC于点P,即PA=PC,不符合题意;选项C,该作图痕迹表示AC=PC,不符合题意;选项D,该作图痕迹表示作线段AB的垂直平分线交BC于点P,即PA=PB,故PA+PC=BC,符合题意.故选D.【知识点】尺规作图.5.(2018四川凉山州,4,4分)如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于12AB长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于D,连结AD.若AD=AC,∠B=25°,则∠C=()A.70°B.60°C.50°D.40°【答案】C【解析】由作图可知MN为线段AB的垂直平分线,∴AD=BD,∠DAB=∠B=25°,∵∠CDA为△ABD的一个外角,∴∠CDA=∠DAB+∠B=50°.∵AD=AC,∴∠C=∠CDA=50°.故选择C.【知识点】尺规作图——线段的垂直平分线,线段垂直平分线的性质,三角形外角的性质,等腰三角形的性质.6.1.(2018江苏无锡,10,3分)如图是一个3×3正方形方格纸的对角线AB剪下图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由点A运动到B点的不同路径共有()A.4条B. 5条C. 6条D.7条【答案】B【思路分析】按照点P经过的格点确定所有符合要求的路线.【解题过程】如图所示,运动路线有:ACDFGJB;ACDFIJB;ACEFGJB;ACEFIJB;ACEHIJB,共5条.【知识点】二、填空题1. (2018四川省成都市,14,4)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E ,若DE =2,CE =3,则矩形的对角线AC 的长为 .【思路分析】因为由作图可知MN 为线段AC 的垂直平分线,则有AE =CE =3,在Rt △ADE 中,由勾股定理可以求出AD 的长,然后再在Rt △ADC 中用勾股定理求出AC 即可.【解析】解:连接AE ,由作图可知MN 为线段AC 的垂直平分线,∴AE =CE =3,在Rt △ADE 中,2AE =2AD+2DE ,∴AD =,在Rt △ADC 中,2AC =2AD +2CD ,∵CD =DE +CE =5,∴AC =【知识点】尺规作图;线段垂直平分线的性质;勾股定理1. (2018湖南益阳,18,4分)如图,在△ABC 中,AB =5,AC =4,BC =3. 按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AC 于点M 、N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点E ;③作射线AE ;④以同样的方法作射线BF . AE 交BF 于点O ,连接OC ,则OC = .【思路分析】过点O 作OD ⊥AC ,垂足为D .根据题目给出的数据可知△ABC 为直角三角形,根据作图可知点O 为△ABC 的内心,从而根据内切圆半径公式2a b cr +-=,求出内切圆半径OD ,从而求出OC 的长. 【解析】解:过点O 作OD ⊥AC ,垂足为D .由作图可知AE 、CF 分别是∠BAC 和∠ABC 的平分线, ∴点O 为△ABC 的内心,OC 平分∠ACB , ∵AB =5,AC =4,BC =3. ∴32+42=52.∴△ABC 为直角三角形,∠ACB =90°. ∵OD 为内切圆半径,∴OD =34512+-= ∵∠OCD =12∠ACB =45°.∴△OCD 为等腰直角三角形.∴OC OD【知识点】勾股定理的逆定理,三角形的内切圆,基本作图,等腰直角三角形.2. (2018湖北荆州,T12,F3)已知:AOB ∠,求作:AOB ∠的平分线.作法:①以点O 为圆心,适当长为半径画弧,分别交OA ,OB 于点M ,N ;②分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在AOB ∠内部交于点C ;③画射线OC .射线OC 即为所求.上述作图用到了全等三角形的判定方法,这个方法是 .【答案】SSS【解析】由作图可得OM=ON,MC=NC,而OC=OC,∴根据“SSS”可判定∆MOC≌∆NOC.【知识点】作图—基本作图;三角形全等的判定.三、解答题1.(2018江苏无锡,26,10分)如图,平面直角坐标系中,已知点B的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.【思路分析】(1)方法一:过点B分别向x轴、y轴作垂线,垂直分别为A、C,过AC 画直线即可;方法二:连接OB,作OB的垂直平分线,分别交x轴、y轴于点A、C,过AC 画直线即可.(2)根据(1)中的作图方法,利用待定系数法求出函数表达式.【解题过程】(1)方法一:过点B分别向x轴、y轴作垂线,垂直分别为A、C,过AC 画直线即可;方法二:连接OB,作OB的垂直平分线,分别交x轴、y轴于点A、C,过AC 画直线即可.(2)方法一:由作图可知点A 的坐标为(6,0),点B 的坐标为(0,4), 设AC 的解析式为y=kx+b ,则6004k b k b +=⎧⎨+=⎩,解得234k b ⎧=-⎪⎨⎪=⎩, ∴243y x =-+. 方法二:作BM ⊥x 轴于点M ,BN ⊥y 轴于点N ,则BM=4,BN=6,设A (a ,0)C (0,b ),利用轴对称的性质可得BC=OC=b ,AB=OA=a , 由△BAM ∽BCN 得==BA BM AMBC BN CN, ∴46=64a ab b -=-, ∴133132a b ⎧=⎪⎪⎨⎪=⎪⎩ 设AC 的解析式为y=mx+n ,则13031302m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩,解得32132m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴31322y x =-+. 【知识点】2. (2018山东省济宁市,18,7)(7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法.现有以下工具:①卷尺;②直棒EF ;③T 型尺(CD 所在的直线垂直平分线段AB ).(1)在图1中,请你画出用T型尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积.”如果测得MN=10cm,请你求出这个环形花坛的面积.【思路分析】(1)根据垂径定理,可知:圆心O必在直线CD上,则直线CD与C′D′的交点即为所求的点O;(2)设切点为C,连接OM,OC.从而化归直角三角形中,应用勾股定理即可解决问题.【解题过程】(1)如图点O即为所求;(2)设切点为C,连接OM,OC.∵ MN是切线,∴OC⊥MN,∴CM=CN=5,∴ OM2-OC2=CM2=25,∴S圆环=π•OM2-π•OC2=25π.【知识点】尺规作图的应用线段的垂直平分线的性质垂径定理勾股定理3. (2018山东青岛中考,15,4分)已知:如图,ABC∠,射线BC上一点D.求作:等腰PBD∆的底边,点P在ABC∆,使线段BD为等腰PBD∠内部,且点P到ABC∠两边的距离相等.(请用直尺、圆规作图,不写作法,但要保留作图痕迹.)【思路分析】作线段BD的垂直平分线与∠ABC的平分线,交于点P,连接BP,PD,则△PBD就是求作的三角形.【解题过程】解:作图如下:【知识点】尺规作图——角平分线、垂直平分线1.(2018江西,15,6分)如图,在四边形ABCD中,AB//CD,AB=2CD,E为AB的中点.请仅用无刻度的....直尺..分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.第15题图【思路分析】(1)连接CE,∵AB∥CD,AB=2CD,E为AB的中点,∴四边形AECD是平行四边形. 由AECD 得DC=AE=BE,∴四边形EBCD也是平行四边形,∴AF为BD上的中线.(2)由(1)知AF、DE为等腰△ABD两腰上的中线,∴G是等腰△ABD三条中线的交点,故连接BG并延长交AD于H,则利用三线合一知BH为高.【解析】(1)如解图①,AF为所求;如解图②,BH为所求.第15题解图①第15题解图②【知识点】等腰三角形,平行四边形,创新作图2. (2018福建A 卷,20,8) 求证:相似三角形对应边上的中线之比等于相似比. 要求:①根据给出的△ABC 及线段A ′B ′,∠A ′(∠A ′=∠A ),以线段A ′B ′为一边,在给出的图形上用尺规作出△A ′B ′C ′,使得△A ′B ′C ′∽△ABC ,不写作法,保留作图痕迹; ②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【思路分析】①利用“作一个角等于已知角”的尺规作图方法完成作图;②利用相似三角形性质及三角形中线性质得出成比例线段,再根据“两边对应成比例及夹角相等的两个三角形相似”证两三角形相似,据此可得出结论. 【解题过程】解:(1)(2)已知:如图,△A ′B ′C ′∽△ABC ,=A B B C A C k AB BC AC ′′′′′′,A ′D ′=D ′B ′,AD=DB ,求证:=D C k DC′′. 证明:∵A ′D ′=D ′B ′,AD=DB ,∴A ′D ′=12A ′B ′,AD=12AB , ∴12=12A BA D AB AD AB AB ′′′′′′. ∵△A ′B ′C ′∽△ABC ,∴AA ′,A B A C AB AC′′′′,在△A ′D ′C ′∽△ADC 中,A D A C AD AC ′′′′,且AA ′,∴△A ′D ′C ′∽△ADC ,∴==D C A C k DC AC′′′′. 【知识点】尺规作图——作一个角等于已知角;相似三角形的判定和性质3. (2018四川自贡,23,10分)如图,在⊿ABC 中,ACB 90∠=.⑴.作出经过点B ,圆心O 在斜边AB 上且与边AC 相切于点E 的⊙O ; (要求:用尺规作图,保留作图痕迹,不写作法和证明)⑵.设⑴中所作的⊙O 与边AB 交于异于点B 的另外一点D ,若⊙O的直径为5,BC 4=;求DE 的长.(如果用尺规作图画不出图形,可画出草图完成⑵问)【思路分析】(1)作出的⊙O 与边AC 相切于点E ,∴AC OE ⊥,BC OE //,连接弦BE ,有OBE EBC OEB ∠=∠=∠,∴BE 是ABC ∠的角平分线.根据垂径定理,∴圆心O 在弦BE 的垂直平分线上.(2)BE 平分ABC ∠,∴BCE ∆∽BED ∆,根据对应边成比例,求出BE 长,在BED Rt ∆中,应用勾股定理即可求DE 长. 【解题过程】(1)如图,作B ∠的平分线交AC 于点E ,作线段BE 的垂直平分线交AB 于点O .以点O 为圆心,以OB 为半径作圆O ,图中即为所求.(2)∵BD 是⊙O 的直径,∴ 90=∠BED . ∵BE 平分ABC ∠,∴EBD CBE ∠=∠. 在BCE ∆与BED ∆中,EBD CBE ∠=∠,BED BCE ∠=∠ ∴BCE ∆∽BED ∆,∴DD BE BE BC =,即54BEBE =,解得52=BE . 在BED Rt ∆中,5)52(52222=-=-=BE BD DE综上所述,DE 长为5.【知识点】尺规作图,切线的性质,相似三角形的性质与判定,解直角三角形4. (2018湖北省孝感市,20,7分)如图,ABC ∆中,AB AC =,小聪同学利用直尺和圆规完成了如下操A作:①作BAC ∠的平分线AM 交BC 于点D ;②作边AB 的垂直平分线EF ,EF 与AM 相交于点P ; ③连接PB ,PC .请你观察图形解答下列问题:(1)线段PA ,PB ,PC 之间的数量关系是________; (2)若70ABC ∠=,求BPC ∠的度数.【思路分析】(1)根据从垂直平分线的性质可得PA=PB=PC.(2)根据等腰三角形的性质可得∠ACB =70ABC ∠=,再有三角形的内角和定理可得∠BAC=40°,再由角平分线的性质和等腰三角形的性质可得∠BAP =∠CAP=∠ABP =∠ACP=20°,最后由三角形外角的性质可得BPC ∠ =∠BPD+∠CPD=∠BAP +∠ABP +∠CAP +∠ACP =80°.【解题过程】解:(1)线段PA ,PB ,PC 之间的数量关系是:PA PB PC ==(或相等). (2)∵AM 平分BAC ∠,AB AC =,70ABC ∠=, ∴AD BC ⊥,9020BAD CAD ABC ∠=∠=-∠=. ∵EF 是线段AB 的垂直平分线, ∴PA PB =,∴20PBA PAB ∠=∠=. ∵BPD ∠是PAB ∆的外角, ∴40BPD PAB PBA ∠=∠+∠=. ∴40BPD CPD ∠=∠=. ∴80BPC BPD CPD ∠=∠+∠=.【知识点】线段垂直平分线的性质;等腰三角形的性质;三角形的内角和定理;三角形外角的性质;角平分线和线段的垂直平分线的尺规作图.5.(2018·北京,17,5)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.Pl求作:直线PQ,使得PQ∥l.作法:如图:①在直线l上取一点A,作射线P A,以点A为圆心,AP长为半径画弧,交P A的延长线于点B;②直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ∥l(________________)(填推理的依据).【思路分析】(1)利用尺规作图,先作射线BC,再在射线BC上截取线段CQ=CB;最后过点P、Q作直线即可;(2)由作图易知P A=AB,CQ=CB,依据是三角形的中位线的定义及定理,两点确定一条直线.【解题过程】17.解:(1)如下图所示:(2)P A ,CQ ;依据:①连接三角形两边中点的线段叫做三角形的中位线;②三角形的中位线平行于第三边;③两点确定一条直线.【知识点】尺规作图;三角形的中位线定理6.(2018陕西,17,5分)如图,已知:在正方形ABCD 中,M 是BC 边上一定点,连接AM .请用尺规作图法,在AM 上求作一点P ,使△DP A ∽△ABM .(不写作法,保留作图痕迹)【思路分析】过点D 作线段AM 的垂线,垂足为点P ,则点P 即为所求的点. 【解题过程】如图所示,AM 与DG 的交点即为满足条件的点P .作法如下(题目不要求写作法,以下步骤可省略):①以点D 为圆心,以任意长为半径画弧交AM 于E 、F 两点, ②分别以E 、F 为圆心,以大于12EF 为半径画弧,两弧交于点G , ③作直线DG 交AM 于点P ,则点P 即为所求点.【知识点】尺规作图l。

7.1尺规作图(第1部分)-2018年中考数学试题分类汇编(word解析版)

7.1尺规作图(第1部分)-2018年中考数学试题分类汇编(word解析版)

第七部分专题拓展7.1 尺规作图【一】知识点清单1、作图—尺规作图的定义;2、作图-基本作图(作一条线段等于已知线段);3、作图-基本作图(作一个角等于已知角);4、作图-基本作图(角的平分线);5、作图-基本作图(线段的垂直平分线);6、作图-基本作图(过直线外一点作直线的垂线)7、尺规作图-作三角形的外接圆;尺规作图-作三角形的内切圆【二】分类试题及参考答案与解析一、选择题1.(2018年河北-第6题-3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【知识考点】作图—基本作图.【思路分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【解答过程】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.【总结归纳】此题主要考查了基本作图,正确掌握基本作图方法是解题关键.2.(2018年河南省-第9题-3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于12DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.1,2)B.,2)C.(32)D.2,2)【知识考点】坐标与图形性质;平行四边形的性质;作图—基本作图.【思路分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答过程】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【总结归纳】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.二、填空题1.(2018年天津-第18题-3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上,(I)∠ACB的大小为(度);(Ⅱ)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P 逆时针旋转,点P的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明).【知识考点】作图﹣旋转变换.【思路分析】(I)根据勾股定理可求AB,AC,BC的长,再根据勾股定理的逆定理可求∠ACB的大小;(Ⅱ)通过将点B以A为中心,取旋转角等于∠BAC旋转,找到线段BC选择后所得直线FG,只需找到点C到FG的垂足即为P′【解答过程】解:(1)由网格图可知AC=,BC=,AB=,∵AC2+BC2=AB2∴由勾股定理逆定理,△ABC为直角三角形.∴∠ACB=90°故答案为:90°(Ⅱ)作图过程如下:取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求证明:连CF,∵AC,CF为正方形网格对角线∴A、C、F共线∴AF=5=AB由图形可知:GC=,CF=2,∵AC=,BC=∴△ACB∽△GCF∴∠GFC=∠B∵AF=5=AB∴当BC边绕点C逆时针选择∠CAB时,点B与点F重合,点C在射线FG上.由作图可知T为AB中点∴∠TCA=∠TAC∴∠F+∠P′CF=∠B+∠TCA=∠B+∠TAC=90°∴CP′⊥GF此时,CP′最短故答案为:如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求【总结归纳】本题考查了直角三角形的证明、图形的旋转、三角形相似和最短距离的证明.解题的关键在于找到并证明线段BC旋转后所在的位置.2.(2018年山西-第14题-3分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.。

2018年中考数学复习试题汇编----尺规作图(含答案)

2018年中考数学复习试题汇编----尺规作图(含答案)

2018年中考数学复习试题汇编----尺规作图1.阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆;第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为________.151(作图正确1分.答案正确1分)2.下面是“作已知圆的内接正方形”的尺规作图过程.请回答:该尺规作图的依据是______________________________________________.到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分;(圆内接正多边形定义)3.下面是“作顶角为120°的等腰三角形的外接圆”的尺规作图过程.请回答:该尺规作图的依据是_____________________________________________.4.石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A 出发,将△ABC 分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).请回答,C AC C AC ABC S S S2211成立的理由是:①;②.16.①两条直线被一组平行线所截,所得的对应线段成比例;②等底同高的三角形面积相等16.在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB 是△ABC 的一个内角.求作:∠APB= ∠ACB.小路的作法如下:如图,P①作线段AB 的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;On③以点O 为圆心,OA 为半径作△ABC 的外接圆;AB④在弧ACB 上取一点P,连结AP,BP.m所以∠APB= ∠ACB.老师说:“小路的作法正确.”)的依据是;请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC(2)∠APB=∠ACB的依据是.16.(1)线段垂直平分线上的点与这条线段两个端点的距离相等;(2)同弧所对的圆周角相等.6.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:请回答:这样做的依据是.16.圆的定义,直径的定义,直径所对的圆周角为90°,到线段两端点距离相等的点在线段的垂直平分线上,经过半径的外端并且垂直于这条半径的直线是圆的切线.7.下面是“过圆外一点作圆的切线”的尺规作图过程.请回答以下问题:(1)连接OA,OB,可证∠OAP =∠OBP = 90°,理由是;(2)直线PA,PB是⊙O的切线,依据是.16.直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线.8.下面是“作出所在的圆”的尺规作图过程.。

【推荐精选】2018年中考数学考点总动员系列 专题29 尺规作图(含解析)

【推荐精选】2018年中考数学考点总动员系列 专题29 尺规作图(含解析)

考点二十九:尺规作图聚焦考点☆温习理解1.尺规作图的作图工具限定只用圆规和没有刻度的直尺2.基本作图(1)作一条线段等于已知线段,以及线段的和﹑差;(2)作一个角等于已知角,以及角的和﹑差;(3)作角的平分线;(4)作线段的垂直平分线;(5)过一点作已知直线的垂线.3.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆;(3)作圆的内接正方形和正六边形.5.有关中心对称或轴对称的作图以及设计图案是中考的常见类型6.作图的一般步骤尺规作图的基本步骤:(1)已知:写出已知的线段和角,画出图形;(2)求作:求作什么图形,它符合什么条件,一一具体化;(3)作法:应用“五种基本作图”,叙述时不需重述基本作图的过程,但图中必须保留基本作图的痕迹;(4)证明:为了验证所作图形的正确性,把图作出后,必须再根据已知的定义、公理、定理等,结合作法来证明所作出的图形完全符合题设条件;(5)讨论:研究是不是在任何已知的条件下都能作出图形;在哪些情况下,问题有一个解、多个解或者没有(6)结论:对所作图形下结论.名师点睛☆典例分类考点典例一、应用角平分线、线段的垂直平分线性质画图【例1】(2017四川自贡第22题)两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在∠DCE的内部,请画出该山庄的位置P.(不要求写作法,保留作图痕迹.)【答案】作图见解析.【解析】试题分析:根据角平分线的性质可知:到CD和CE的距离相等的点在∠DCE的角平分线上,所以第一步作:∠ECD的平分线CF;根据中垂线的性质可得:到A、B的距离相等的点在AB的垂直平分线上,所以第二步作线段AB的垂直平分线MN,其交点就是P点.试题解析:作法:①作∠ECD的平分线CF,②作线段AB的中垂线MN,③MN与CF交于点P,则P就是山庄的位置.考点:作图设计.【点睛】本题借助实际场景,考查了几何基本作图的能力,考查了线段垂直平分线和角平分线的性质及应【举一反三】A B C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,(2017黑龙江绥化第22题)如图,,,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离.请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)【答案】作图见解析.【解析】考点:作图—应用与设计作图.考点典例二、画已知直线的平行线,垂线【例2】(北京市燕山区2017届九年级一模)下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.请回答:该作图依据是__________________________________________________.【答案】四边相等的四边形是菱形,菱形对边平行,两点确定一条直线【解析】四边相等的四边形是菱形,菱形对边平行,两点确定一条直线。

(完整版)中考数学尺规作图专题复习(含答案)

(完整版)中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

2018年全国中考数学试题分知识点汇编:45 尺规作图

2018年全国中考数学试题分知识点汇编:45  尺规作图

2018年全国中考数学试题分知识点汇编:45 尺规作图【知识点】尺规作图,实数与数轴的一一对应关系3.(2019山西省,14题,3分)如图,直线MN∥PQ.直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于1CD长为半径作弧,两弧在∠NAB内交于点E;2③作射线AE交PQ于点F.若AB=2.∠ABP =60°则线段AF的长为.【答案】2√3【解析】解:过点A作AG⊥PQ交PQ与点G由作图可知,AF平分∠NAB∵MN∥PQ;AF平分∠NAB;∠ABP =60°∴∠AFG =30°在Rt△ABG中,∠ABP =60°,AB=2;∴AG =√3在Rt△AFG中,∠AFG =30°,AG =√3;∴AF =2√3【知识点】角平分线、特殊角三角函数4.(2019内蒙古通辽,16,3分)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于12AC 的长为半径作弧,两弧相交于M、N两点;②作直线MN 交BC于点D,连接A D.若AB=BD,AB=6,∠C=30°,则△ACD的面积为.【答案】9 3【解析】依题意MN是AC的垂直平分线,所以∠C=∠DAC =30°,所以∠ADB=∠C+∠DAC=60°,又AB=BD,所以△ABD为等边三角形,∠BAD=60°,所以∠BAC=∠DAC +∠BAD=90°,因为AB=6,所以AC=63,所以△ABC的面积为12×6×63=183.又BD=AD=DC,所以S△ACD=12S△ABC=93,故应填:93.5.(2019辽宁省抚顺市,题号16,分值3)如图,ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于点M、N,作直线MN,交CD于点E,连接AE,则△AED的周长是__________.【答案】10【解析】由题可知,直线MN是线段AC的垂直平分线,∴AE=EC.∵在ABCD中DE+EC=CD=AB=7,AD=BC=3,∴△AED的周长为AD+DE+AE=BC+DE+EC=BC+CD=10.【知识点】用尺规作垂直平分线,垂直平分线的性质.三、解答题1.(2019广东省,题号,分值)如图,BD是菱形ABCD的对角线,︒CBD,=∠75(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求DBF∠的度数.【思路分析】(1)根据尺规作图步骤作垂直平分线,保留痕迹即可;(2)先利用菱形性质求得∠DBA的度数,再利用垂直平分线性质求得∠ABF的度数,进而求得∠DBF的度数.【解题过程】(1)如图直线MN为所求(2)解:∵四边形ABCD是菱形∴AD=AB,AD∥AB,∵∠DBC=75°,∴∠ADB=75°,∴∠ABD=75°∴∠A=30°∵EF为AB的垂直平分线∴∠A=∠FBE=30°,∴∠DBE=45°【知识点】菱形性质;线段垂直平分线性质;尺规作图2. (2019甘肃省兰州市,20,6分)如图,在Rt△ABC中. (1)利用尺度作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【思路分析】PC⊥AC,要使P到AB的距离(PD的长)等于PC的长,即求∠A的角平分线与BC的交点.【解题过程】(1)作∠A的平分线AD,交BC于P;(2)过点P作直线AB的垂线,垂中为D。【知识点】尺规作图3.(2019湖北省江汉油田潜江天门仙桃市,18,5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【思路分析】(1)在只能用直尺画角平分线的情况下,就设法将∠MON放置在能画出角平分线的图形中,如菱形.(2)原图是由全等的小菱形组成的,∴要想找到直角就要从菱形的对角线方面入手考虑.设法找让三角形中的一个顶点处在两个菱形的对角线交点位置,并且在格点上.【解题过程】解:(1)如图①,将∠MON放在菱形AOBC 中,连接对角线OC,并取格点P,OP即为所求.2分如图②所示,△ABC或△ABC1均可.4.(湖北省咸宁市,18,7)已知:AOB∠.求作:,'''B O A∠使'''∠=∠AO B AOB作法:(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)如图2,画一条射线''A O,以点'O为圆心OC长为半径画弧,交于点''A O于点'C;(3)以点'C为圆心,DC,长为半径画弧,与第2 步中所画的弧交于点'D;(4)过点'D画射线'OB,则'''∠=∠.AO B AOB根据以上作图步骤,请你证明AOB'.=∠''A∠OB【思路分析】由画一条射线''A O,以点'O为圆心OC长为半径画弧,交于点''A O于点'C可得OC=O′C′,由以点'C为圆心,DC,长为半径画弧,与第2 步中所画的弧交于点'D可得OD=O′D′,CD=C′D′,从而'''.∆≅∆COD C O D【解题过程】证明:由作图步骤可知,在COD∆和'''DC∆中,O即AOB''.=∠'A∠BO【知识点】三角形全等;尺规作图5.(2019广西贵港,20,5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作:△ABC,使∠A=∠α,∠C=90°,AB=a.【思路分析】先作∠A等于已知角∠α,再在角的一边上截取线段AB=a,再过B点作角的另一边的垂线,垂足为C,则△ABC即为所求.【解答过程】所作图形如下6.(2019江苏常州,27,10)(本小题满分10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD;(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法).②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【解答过程】(1)∵EK垂直平分BC,点F在EK上,∴FC=FB,且∠CFD=∠BFD∵∠AFE=∠BFD,∴∠AFE=∠CFD(2)如图所示,点Q为所求作的点.(3)Q是GN的中点。

7.1尺规作图-河北省1997-2018年中考数学试题分类汇编(word原题及解析版)

7.1尺规作图-河北省1997-2018年中考数学试题分类汇编(word原题及解析版)

第七部分专题拓展7.1 尺规作图【一】知识点清单1、作图—尺规作图的定义;2、作图-基本作图(作一条线段等于已知线段);3、作图-基本作图(作一个角等于已知角);4、作图-基本作图(角的平分线);5、作图-基本作图(线段的垂直平分线);6、作图-基本作图(过直线外一点作直线的垂线)7、尺规作图-作三角形的外接圆;尺规作图-作三角形的内切圆【二】分类试题汇编一、选择题1.(2010年-6题-2分)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M2.(2012年-7题-3分)如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,FG 是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧3.(2013年-12题-3分)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对4.(2014年-12题-3分)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.5.(2016年-10题-3分)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BAD C.S△ABC=BC•AH D.AB=AD 6.(2018年-6题-3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ二、填空题1.(2015年-20题-3分)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.2.(2017年-18题-3分)如图,依据尺规作图的痕迹,计算∠α=°.三、解答题1.(2011年-23题-9分)如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA 的延长线上,且CE=BK=AG.(1)求证:①DE=DG ; ②DE ⊥DG(2)尺规作图:以线段DE ,DG 为边作出正方形DEFG (要求:只保留作图痕迹,不写作法和证明); (3)连接(2)中的KF ,猜想并写出四边形CEFK 是怎样的特殊四边形,并证明你的猜想: (4)当1CE CB n时,请直接写出ABCD DEFG S S 正方形正方形的值.【三】参考答案与解析一、选择题1.(2010年-6题-2分)如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是( )A .点PB .点QC .点RD .点M【分类目录】5.9圆的有关性质;7.1尺规作图;7.15格点题目 【知识考点】垂径定理.【思路分析】作AB 和BC 的垂直平分线,它们相交于Q 点,根据弦的垂直平分线经过圆心,即可确定这条圆弧所在圆的圆心为Q 点.【解答过程】解:连结BC ,作AB 和BC 的垂直平分线,它们相交于Q 点.。

7.1尺规作图(第5部分)2018年中考数学试题分类汇编(山东四川word解析版)

7.1尺规作图(第5部分)2018年中考数学试题分类汇编(山东四川word解析版)

第七部分专题拓展7.1 尺规作图【一】知识点清单1、作图—尺规作图的定义;2、作图-基本作图(作一条线段等于已知线段);3、作图-基本作图(作一个角等于已知角);4、作图-基本作图(角的平分线);5、作图-基本作图(线段的垂直平分线);6、作图-基本作图(过直线外一点作直线的垂线)7、尺规作图-作三角形的外接圆;尺规作图-作三角形的内切圆【二】分类试题汇编及参考答案与解析一、选择题二、填空题1.(2018年山东省威海市-第18题-3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线12y x=于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线12y x=于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线12y x=于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线12y x=于点B4,…按照如此规律进行下去,点B2018的坐标为.【知识考点】一次函数图象上点的坐标特征;规律型:点的坐标.【思路分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答过程】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).【总结归纳】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.2.(2018年山东省东营市-第15题-4分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.【知识考点】角平分线的性质;作图—基本作图.【思路分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.【解答过程】解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S△ACD=•AC•DQ=×10×3=15,故答案为:15.【总结归纳】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.三、解答题1.(2018年山东省青岛市-第15题-4分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.【知识考点】作图—复杂作图;角平分线的性质;等腰三角形的判定与性质.【思路分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【解答过程】解:∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【总结归纳】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.2.(2018年四川省自贡市-第23题-8分)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE 的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)【知识考点】作图—复杂作图;切线的判定与性质.【思路分析】(1)作∠ABC的角平分线交AC于E,作EO⊥AC交AB于点O,以O为圆心,OB 为半径画圆即可解决问题;(2)作OH⊥BC于H.首先求出OH、EC、BE,利用△BCE∽△BED,可得=,解决问题;【解答过程】解:(1)⊙O如图所示;(2)作OH⊥BC于H.∵AC是⊙O的切线,∴OE⊥AC,∴∠C=∠CEO=∠OHC=90°,∴四边形ECHO是矩形,∴OE=CH=,BH=BC﹣CH=,在Rt△OBH中,OH==2,∴EC=OH=2,BE==2,∵∠EBC=∠EBD,∠BED=∠C=90°,∴△BCE∽△BED,∴=,∴=,∴DE=.【总结归纳】本题考查作图﹣复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.(2018年四川省攀枝花市-第20题-8分)已知△ABC中,∠A=90°.(1)请在图1中作出BC边上的中线(保留作图痕迹,不写作法);(2)如图2,设BC边上的中线为AD,求证:BC=2AD.【知识考点】作图—基本作图.【思路分析】(1)如图1,作BC的垂直平分线得到BC的中点D,从而得到BC边上的中线AD;(2)延长AD到E,使ED=AD,连接EB、EC,如图2,通过证明四边形ABEC为矩形得到AE=BC,从而得到BC=2AD.【解答过程】(1)解:如图1,AD为所作;(2)证明:延长AD到E,使ED=AD,连接EB、EC,如图2,∵CD=BD,AD=ED,∴四边形ABEC为平行四边形,∵∠CAB=90°,∴四边形ABEC为矩形,∴AE=BC,∴BC=2AD.【总结归纳】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的判定与性质.。

初中数学中考复习:尺规作图及命题、证明

初中数学中考复习:尺规作图及命题、证明

14
考点三:与圆有关的尺规作图 • 与圆有关的尺规作图:
• (1)过不在同一条直线上的三点作圆(即三角形的外接圆); • (2)作三角形的内切圆; • (3)作圆的内接正方形及正六边形.
• 有关中心对称或轴对称的作图以及设计图案是中考常见的类型.
15
考点三:与圆有关的尺规作图
• 【例 如图,已知△ABC,∠B=40°.
题;

若甲错,即x≤14,则y≥6,则乙错,故D不是真命题.

根据以上分析,故选B.
• 【答案】 B
30
考点五:命题、定理、证明 • 基本事实与定理:
• (1)经过长期实践后公认为正确的命题,作为判断其他命题的依据,这些命题称为 基本事实.例如,“两点之间线段最短”,“两点确定一条直线”.
• (2)用推理的方法判断为正确的命题叫做定理.例如,“对顶角相等”,“三角形任何 两边的和大于第三边”.
1 2
AC的长为半径画弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是(
B
)

A.7
B.10
C.11
D.12
22
考点四:尺规作图的综合应用
• 【例】(2018·湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作 图考他的大臣:
• ①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点; • ②分别以点A、D为圆心,AC长为半径画弧,G是两弧的一个交点; • ③连结OG. • 问:OG的长是多少? • 大臣给出的正确答案应是( )
1 2
AC的长为半径画弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是(
)

2018年全国中考数学试题分知识点汇编:45 尺规作图2018--1-精选学习文档

2018年全国中考数学试题分知识点汇编:45  尺规作图2018--1-精选学习文档

一、选择题1. (2019山东潍坊,6,3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB ,分别以A ,B 为圆心,以AB 长为半径作弧,两弧的交点为C ;(2)以C 为圆心,仍以AB 长为半径作弧交AC 的延长线于点D ;(3)连接BD ,BC .下列说法不正确的是( )A .∠CBD =30°B .S △BDC =24AB C .点C 是△ABD 的外心 D .sin 2A +cos 2D =1 【答案】D【解析】由(1)可知,AB =AC =BC ,∴△ABC 为等边三角形,∴∠A =∠ACB =∠ABC =60°,S △ABC 2AB 又由(2)可知CD =AC =BC =AB ,∴∠CBD =∠D =12∠ACB =30°,S △BDC = S △ABC 2AB ,点C 是△ABD 的外心. 故选项A 、B 、C 正确,故选择D .【知识点】尺规作图,等边三角形,等腰三角形,直角三角形2. (2019年山东省枣庄市,10,3分)如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P 是某个小矩形的顶点,连接PB PA ,,那么使ABP 为等腰三角形的点P 的个数是( )A . 2个B . 3个C .4个D .5个【答案】B【思路分析】首先由正方形的对边相等找到小矩形的长与宽的数量关系,其次利用网格作图中作垂线的方法找出符合题意的点,并注意分类思想的渗透.【解题过程】如下图,设每个小矩形的长与宽分别为x 、y ,则有2x =x +2y ,从而x =2y .因为线段AB 是1×2的矩形对角线,所以根据网格作垂线可知,过点B 与AB 垂直且相等的线段有BP 1和BP 2,过点A 与AB 垂直且相等的线段有BP 3,且P 1、P 2,P 3都在顶点上,因此满足题意的点P 共有3个,故选择B .【知识点】网格作图;等腰直角三角形3. (2019浙江湖州,9,3)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点;②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点;③连结OG .问:OG 的长是多少?大臣给出的正确答案应是( )A .3rB .(1+22)r C .(1+23)r D .2r 【答案】D【解析】连接AD ,AG ,则AD 经过点O .∵六个点等分圆,∴可求得AC =3r .∵△AOG是直角三角形,∴由勾股定理可知OG 的长为2r .故选D.【知识点】圆,等边三角形,勾股定理1. (2019湖南郴州,7,3)如图,∠AOB=60°,以点O 为圆心,以任意长为半径作弧交OA ,OB 于点C ,D 两点,分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ,以O 为端点作射线OP ,在射线OP 上截取线段OM=6,则M 点到OB 的距离为( )A.6B.2C.3D.【答案】D【思路分析】判断出OP 是∠AOB 的平分线,过点M 作ME ⊥OB 于E ,根据角平分线的性质可得∠MOB=30°,然后根据“直角三角形中30°所对的直角边等于斜边一半”列式计算即可得解.【知识点】角平分线的性质,尺规作图2.(2019河北省,6,3)尺规作图要求:ⅰ.过直线外一点作这条直线的垂线;ⅱ.作线段的垂直平分线;ⅲ.过直线上一点作这条直线的垂线;ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①—ⅳ,②—ⅱ,③—ⅰ,④—ⅲB.①—ⅳ,②—ⅲ,③—ⅱ,④—ⅰC.①—ⅱ,②—ⅳ,③—ⅲ,④—ⅰD.①—ⅳ,②—ⅰ,③—ⅱ,④—ⅲ【答案】D【解析】根据不同的作图方法可以一一对应.②的已知点在直线外,所以对应ⅰ,④的已知点在直线上,所以对应ⅲ.【知识点】尺规作图,角的平分线,垂线,线段的垂直平分线3.(201湖北宜昌,13,3分)尺规作图:经过已知直线外一点作这条直线的垂线.下列作图中正确的是( )A. B.C. D.(第13题图)【答案】B【解析】经过已知直线外一点作这条直线的垂线的尺规作图为:以这点为圆心画弧,再以和直线的两个交点为圆心画弧,两弧交点和这点连接,该直线就是这条直线的垂线.故选择B.【知识点】尺规作图:过直线外一点作已知直线的垂线.4.2019贵州安顺,T8,F3)已知△ABC (AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC = BC, 则符合要求的作图痕迹是()【答案】D【解析】选项A,该作图痕迹表示AB=PB,不符合题意;选项B,该作图痕迹表示作线段AC的垂直平分线交BC于点P,即PA=PC,不符合题意;选项C,该作图痕迹表示AC=PC,不符合题意;选项D,该作图痕迹表示作线段AB的垂直平分线交BC于点P,即PA=PB,故PA+PC=BC,符合题意.故选D.【知识点】尺规作图5. (2019四川凉山州,4,4分)如图,在△ABC 中,按以下步骤作图:①分别以A 、B 为圆心,大于12AB 长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于D ,连结AD .若AD =AC ,∠B =25°,则∠C =( )A.70°B.60°C.50°D.40°【答案】C【解析】由作图可知MN 为线段AB 的垂直平分线,∴AD =BD ,∠DAB=∠B =25°,∵∠CDA 为△ABD 的一个外角,∴∠CDA=∠DAB+∠B =50°.∵AD =AC ,∴∠C =∠CDA=50°.故选择C.【知识点】尺规作图——线段的垂直平分线,线段垂直平分线的性质,三角形外角的性质,等腰三角形的性质.6.1. (2019江苏无锡,10,3分)如图是一个3×3正方形方格纸的对角线AB 剪下图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由点A 运动到B 点的不同路径共有( )A.4条B. 5条C. 6条D.7条【答案】B【思路分析】按照点P 经过的格点确定所有符合要求的路线.【解题过程】如图所示,运动路线有:ACDFGJB ;ACDFIJB ;ACEFGJB ;ACEFIJB ;ACEHIJB ,共5条.【知识点】二、填空题1. (2019四川省成都市,14,4)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E ,若DE =2,CE =3,则矩形的对角线AC 的长为 .【思路分析】因为由作图可知MN 为线段AC 的垂直平分线,则有AE =CE =3,在Rt △ADE 中,由勾股定理可以求出AD 的长,然后再在Rt △ADC 中用勾股定理求出AC 即可.【解析】解:连接AE ,由作图可知MN 为线段AC 的垂直平分线,∴AE =CE =3,在Rt △ADE 中,2AE =2AD+2DE ,∴AD =,在Rt △ADC 中,2AC =2AD +2CD ,∵CD =DE +CE =5,∴AC =【知识点】尺规作图;线段垂直平分线的性质;勾股定理1. (2019湖南益阳,18,4分)如图,在△ABC 中,AB =5,AC =4,BC =3. 按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AC 于点M 、N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点E ;③作射线AE ;④以同样的方法作射线BF . AE 交BF 于点O ,连接OC ,则OC = .【思路分析】过点O 作OD ⊥AC ,垂足为D .根据题目给出的数据可知△ABC 为直角三角形,根据作图可知点O 为△ABC 的内心,从而根据内切圆半径公式2a b c r +-=,求出内切圆半径OD ,从而求出OC 的长. 【解析】解:过点O 作OD ⊥AC ,垂足为D .由作图可知AE 、CF 分别是∠BAC 和∠ABC 的平分线,∴点O 为△ABC 的内心,OC 平分∠ACB ,∵AB =5,AC =4,BC =3.∴32+42=52.∴△ABC 为直角三角形,∠ACB =90°.∵OD 为内切圆半径,∴OD =34512+-= ∵∠OCD =12∠ACB =45°. ∴△OCD 为等腰直角三角形.∴OC OD【知识点】勾股定理的逆定理,三角形的内切圆,基本作图,等腰直角三角形.2. (2019湖北荆州,T12,F3)已知:AOB ∠,求作:AOB ∠的平分线.作法:①以点O 为圆心,适当长为半径画弧,分别交OA ,OB 于点M ,N ;②分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在AOB ∠内部交于点C ;③画射线OC .射线OC 即为所求.上述作图用到了全等三角形的判定方法,这个方法是 .【答案】SSS【解析】由作图可得OM=ON ,MC=NC ,而OC=OC ,∴根据“SSS ”可判定∆MOC ≌∆NOC.【知识点】作图—基本作图;三角形全等的判定.三、解答题1. (2019江苏无锡,26,10分)如图,平面直角坐标系中,已知点B 的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC ,它与x 轴和y 轴的正半轴分别交于点A 和点C ,且使∠ABC=90°,△ABC 与△AOC 的面积相等.(作图不必写作法,但要保留作图痕迹)(2)问:(1)中这样的直线AC 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC ,并写出与之对应的函数表达式.【思路分析】(1)方法一:过点B 分别向x 轴、y 轴作垂线,垂直分别为A 、C ,过AC 画直线即可; 方法二:连接OB ,作OB 的垂直平分线,分别交x 轴、y 轴于点A 、C ,过AC 画直线即可.(2)根据(1)中的作图方法,利用待定系数法求出函数表达式.【解题过程】(1)方法一:过点B 分别向x 轴、y 轴作垂线,垂直分别为A 、C ,过AC 画直线即可; 方法二:连接OB ,作OB 的垂直平分线,分别交x 轴、y 轴于点A 、C ,过AC 画直线即可.(2)方法一:由作图可知点A 的坐标为(6,0),点B 的坐标为(0,4),设AC 的解析式为y=kx+b ,则6004k b k b +=⎧⎨+=⎩,解得234k b ⎧=-⎪⎨⎪=⎩, 方法二:作BM ⊥x 轴于点M ,BN ⊥y 轴于点N ,则BM=4,BN=6,设A (a ,0)C (0,b ),利用轴对称的性质可得BC=OC=b ,AB=OA=a ,由△BAM ∽BCN 得==BA BM AM BC BN CN, 设AC 的解析式为y=mx+n , 则13031302m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩,解得32132m n ⎧=-⎪⎪⎨⎪=⎪⎩, 【知识点】2.(2019山东省济宁市,18,7)(7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法.现有以下工具:①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T型尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积.”如果测得MN=10cm,请你求出这个环形花坛的面积.【思路分析】(1)根据垂径定理,可知:圆心O必在直线CD上,则直线CD与C′D′的交点即为所求的点O;(2)设切点为C,连接OM,OC.从而化归直角三角形中,应用勾股定理即可解决问题.【解题过程】(1)如图点O即为所求;(2)设切点为C,连接OM,OC.∵ MN是切线,∴OC⊥MN,∴CM=CN=5,∴ OM2-OC2=CM2=25,∴S圆环=π•OM2-π•OC2=25π.【知识点】尺规作图的应用线段的垂直平分线的性质垂径定理勾股定理3. (2019山东青岛中考,15,4分)已知:如图,ABC∠,射线BC上一点D.求作:等腰PBD∆的底边,点P在ABC∆,使线段BD为等腰PBD∠两边的距离相等. (请∠内部,且点P到ABC用直尺、圆规作图,不写作法,但要保留作图痕迹.)【思路分析】作线段BD的垂直平分线与∠ABC的平分线,交于点P,连接BP,PD,则△PBD就是求作的三角形.【解题过程】解:作图如下:【知识点】尺规作图——角平分线、垂直平分线1.(2019江西,15,6分)如图,在四边形ABCD中,AB//CD,AB=2CD,E为AB的中点.请仅用无刻度的....直尺..分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.第15题图【思路分析】(1)连接CE,∵AB∥CD,AB=2CD,E为AB的中点,∴四边形AECD是平行四边形. 由AECD得DC =AE =BE ,∴四边形EBCD 也是平行四边形,∴AF 为BD 上的中线.(2)由(1)知AF 、DE 为等腰△ABD 两腰上的中线,∴G 是等腰△ABD 三条中线的交点,故连接BG 并延长交AD 于H ,则利用三线合一知BH 为高.【解析】(1)如解图①,AF 为所求;如解图②,BH 为所求.第15题解图① 第15题解图②【知识点】等腰三角形,平行四边形,创新作图2. (2019福建A 卷,20,8) 求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC 及线段A ′B ′,∠A ′(∠A ′=∠A ),以线段A ′B ′为一边,在给出的图形上用尺规作出△A ′B ′C ′,使得△A ′B ′C ′∽△ABC ,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【思路分析】①利用“作一个角等于已知角”的尺规作图方法完成作图;②利用相似三角形性质及三角形中线性质得出成比例线段,再根据“两边对应成比例及夹角相等的两个三角形相似”证两三角形相似,据此可得出结论.【解题过程】解:(1)(2)已知:如图,△A ′B ′C ′∽△ABC ,=A B B C A C k AB BC AC ==′′′′′′,A ′D ′=D ′B ′,AD=DB ,求证:=D C k DC′′. 证明:∵A ′D ′=D ′B ′,AD=DB ,∴A ′D ′=12A ′B ′,AD=12AB , ∵△A ′B ′C ′∽△ABC ,∴A A ??′,A B A C AB AC =′′′′, 在△A ′D ′C ′∽△ADC 中,A D A C AD AC=′′′′,且A A ??′, ∴△A ′D ′C ′∽△ADC ,∴==D C A C k DC AC′′′′. 【知识点】尺规作图——作一个角等于已知角;相似三角形的判定和性质3. (2019四川自贡,23,10分)如图,在⊿ABC 中,ACB 90∠=.⑴.作出经过点B ,圆心O 在斜边AB 上且与边AC 相切于点E 的⊙O ;(要求:用尺规作图,保留作图痕迹,不写作法和证明)⑵.设⑴中所作的⊙O 与边AB 交于异于点B 的另外一点D ,若⊙O 的直径为5,BC 4=;求DE 的长.(如果用尺规作图画不出图形,可画出草图完成⑵问)【思路分析】(1)作出的⊙O 与边AC 相切于点E ,∴AC OE ⊥,BC OE //,连接弦BE ,有OBE EBC OEB ∠=∠=∠,∴BE 是ABC ∠的角平分线.根据垂径定理,∴圆心O 在弦BE 的垂直平分线上.(2)BE 平分ABC ∠,∴BCE ∆∽BED ∆,根据对应边成比例,求出BE 长,在BED Rt ∆中,应用勾股定理即可求DE 长.【解题过程】(1)如图,作B ∠的平分线交AC 于点E ,作线段BE 的垂直平分线交AB 于点O .以点O 为圆心,以OB 为半径作圆O ,图中即为所求.(2)∵BD 是⊙O 的直径,∴ 90=∠BED .∵BE 平分ABC ∠,∴EBD CBE ∠=∠.在BCE ∆与BED ∆中,∴BCE ∆∽BED ∆,∴DD BE BE BC =,即54BE BE =,解得52=BE . 在BED Rt ∆中,综上所述,DE 长为5.【知识点】尺规作图,切线的性质,相似三角形的性质与判定,解直角三角形4. (2019湖北省孝感市,20,7分)如图,ABC ∆中,AB AC =,小聪同学利用直尺和圆规完成了如下操作: ①作BAC ∠的平分线AM 交BC 于点D ;②作边AB 的垂直平分线EF ,EF 与AM 相交于点P ;③连接PB ,PC .请你观察图形解答下列问题:(1)线段PA ,PB ,PC 之间的数量关系是________;(2)若70ABC ∠=,求BPC ∠的度数.【思路分析】(1)根据从垂直平分线的性质可得PA=PB=PC.(2)根据等腰三角形的性质可得∠ACB =70ABC ∠=,再有三角形的内角和定理可得∠BAC=40°,再由角平分线的性质和等腰三角形的性质可得∠BAP =∠CAP=∠ABP =∠ACP=20°,最后由三角形外角的性质可得BPC ∠=∠BPD+∠CPD=∠BAP +∠ABP +∠CAP +∠ACP =80°.【解题过程】解:(1)线段PA ,PB ,PC 之间的数量关系是:PA PB PC ==(或相等).(2)∵AM 平分BAC ∠,AB AC =,70ABC ∠=,∵EF 是线段AB 的垂直平分线,∵BPD ∠是PAB ∆的外角,【知识点】线段垂直平分线的性质;等腰三角形的性质;三角形的内角和定理;三角形外角的性质;角平分线和线段的垂直平分线的尺规作图.5. (2019·北京,17,5)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P .求作:直线PQ ,使得PQ ∥l .作法:如图:①在直线l 上取一点A ,作射线P A ,以点A 为圆心,AP 长为半径画弧,交P A 的延长线于点B ;②直线l 上取一点C (不与点A 重合),作射线BC ,以点C 为圆心,CB 长为半径画弧,交BC 的延长线于点Q ;③作直线PQ .所以直线PQ 就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ∥l(________________)(填推理的依据).【思路分析】(1)利用尺规作图,先作射线BC,再在射线BC上截取线段CQ=CB;最后过点P、Q作直线即可;(2)由作图易知P A=AB,CQ=CB,依据是三角形的中位线的定义及定理,两点确定一条直线.【解题过程】17.解:(1)如下图所示:(2)P A,CQ;依据:①连接三角形两边中点的线段叫做三角形的中位线;②三角形的中位线平行于第三边;③两点确定一条直线.【知识点】尺规作图;三角形的中位线定理6.(2019陕西,17,5分)如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上求作一点P,使△DP A∽△ABM.(不写作法,保留作图痕迹)【思路分析】过点D作线段AM的垂线,垂足为点P,则点P即为所求的点.【解题过程】如图所示,AM与DG的交点即为满足条件的点P.作法如下(题目不要求写作法,以下步骤可省略):①以点D为圆心,以任意长为半径画弧交AM于E、F两点,②分别以E、F为圆心,以大于12EF为半径画弧,两弧交于点G,③作直线DG交AM于点P,则点P即为所求点.【知识点】尺规作图。

陕西省2018年中考数学复习课件:第二编:陕西中考十年真题精讲第17题:尺规作图(解答题).pptx

陕西省2018年中考数学复习课件:第二编:陕西中考十年真题精讲第17题:尺规作图(解答题).pptx
《中考内参(数学)2018》配套课件
陕西中考十年真题精讲第17题:尺规作图(解答题)
解:如图所示:点P即为所求.
《中考内参(数学)2018》配套课件
陕西中考十年真题精讲第17题:尺规作图(解答题)
解:如图所示:三角形DEF即为所求.
《中考内参(数学)2018》配套课件
陕西中考十年真题精讲第17题:尺规作图(解答题)
陕西中考十年真题精讲第17题:尺规作图(解答题)
解:如图,直线AD即为所求:
《中考内参(数学)2018》配套课件
陕西中考十年真题精讲第17题:尺规作图(解答题)
解:如图,AD即为所求.
《中考内参(数学)2018》配套课件
陕西中考十年真题精讲第17题:尺规作图(解答题)
解:如图所示,点P即为所求.
《中考内参(数学)2018》配套课件
陕西中考十年真题精讲第17题:尺规作图(解答题)
解:如图所示:点C即为所求.
《中考内参(数学)2018》配套课件
陕西中考十年真题精讲第17题:尺规作图(解答题)
解:如图,作两公路的夹角 ∠MON的角平分线OE,连接AB, 作AB的垂直平分线CD,直线CD和 OE交于P,即仓库应该建在P位置 上.
《中考内参(数学)2018》配套课件
陕西中考十年真题精讲第17题:尺规作图(解答题)
解:如图所示:⊙O即为所求.
《中考内参(数学)2018》配套课件
陕西中考十年真题精讲第17题:尺规作图(解答题)
解:如图,(1)BD是∠B的平分线; (2)AE是BC边上的中线.
《中考内参(数学)2018》配套课件
解:如图所示:P点即为所求.
《中考内参(数学)2018》配套课件
陕西中考十年真题精讲第17题:尺规作图(解答题)

7.1尺规作图(第4部分)-2018年中考数学试题分类汇编(word解析版)

7.1尺规作图(第4部分)-2018年中考数学试题分类汇编(word解析版)

第七部分专题拓展7.1 尺规作图【一】知识点清单1、作图—尺规作图的定义;2、作图-基本作图(作一条线段等于已知线段);3、作图-基本作图(作一个角等于已知角);4、作图-基本作图(角的平分线);5、作图-基本作图(线段的垂直平分线);6、作图-基本作图(过直线外一点作直线的垂线)7、尺规作图-作三角形的外接圆;尺规作图-作三角形的内切圆【二】分类试题汇编及参考答案与解析一、选择题1.(2018年江苏省南通市-第7题-3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于12EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°【知识考点】作图—基本作图;平行线的性质.【思路分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答过程】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.【总结归纳】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM是解题关键.2.(2018年湖北省宜昌市-第13题-3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【知识考点】作图—基本作图;垂线.【思路分析】根据过直线外一点向直线作垂线即可.【解答过程】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.【总结归纳】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.3.(2018年湖南省郴州市-第7题-3分)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于12CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6 B.2 C.3 D.【知识考点】含30度角的直角三角形;作图—基本作图.【思路分析】直接利用角平分线的作法得出OP是∠AOB的角平分线,再利用直角三角形的性质得出答案.【解答过程】解:过点M作ME⊥OB于点E,由题意可得:OP是∠AOB的角平分线,则∠POB=×60°=30°,∴ME=OM=3.故选:C.【总结归纳】此题主要考查了基本作图以及含30度角的直角三角形,正确得出OP是∠AOB的角平分线是解题关键.二、填空题1.(2018年湖南省益阳市-第18题-4分)如图,在△ABC中,AB=5,AC=4,BC=3.按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点E;③作射线AE;④以同样的方法作射线BF.AE交BF于点O,连接OC,则OC=.【知识考点】勾股定理的逆定理;作图—基本作图.【思路分析】直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案.【解答过程】解:过点O作OD⊥BC,OG⊥AC,垂足分别为:D,G,由题意可得:O是△ACB的内心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四边形OGCD是正方形,∴DO=OG==1,∴CO=.故答案为:.【总结归纳】此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键.2.(2018年湖北省荆州市-第12题-3分)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于12 MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是.【知识考点】全等三角形的判定;作图—基本作图.【思路分析】利用基本作图得到OM=ON,CM=CN,加上公共边OC,则可根据SSS证明三角形全等.【解答过程】解:由作法①知,OM=ON,由作法②知,CM=CN,∵OC=OC,∴△OCM≌△OCN(SSS),故答案为:SSS.【总结归纳】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定.请回答:该尺规作图的依据是.【知识考点】作图—复杂作图.【思路分析】连接OD、CD.只要证明△ODC是等边三角形即可解决问题;【解答过程】解:连接OD、CD.由作图可知:OD=OC=CD,∴△ODC是等边三角形,∴∠DCO=60°,∵AC是⊙O直径,∴∠ADC=90°,∴∠DAB=90°﹣60°=30°.∴作图的依据是:直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等,故答案为直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【总结归纳】本题考查作图﹣复杂作图,圆的有关性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题1.(2018年湖北省孝感市-第20题-8分)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是;(2)若∠ABC=70°,求∠BPC的度数.【知识考点】作图—复杂作图;线段垂直平分线的性质;等腰三角形的性质.【思路分析】(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°﹣2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.【解答过程】解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;(2)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=180°﹣2×70°=40°,∵AM平分∠BAC,∴∠BAD=∠CAD=20°,∵PA=PB=PC,∴∠ABP=∠BAP=∠ACP=20°,∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.【总结归纳】本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.2.(2018年湖南省怀化市-第23题-12分)已知:如图,在四边形ABCD中,AD∥BC.点E为CD 边上一点,AE与BE分别为∠DAB和∠CBA的平分线.(1)请你添加一个适当的条件,使得四边形ABCD是平行四边形,并证明你的结论;(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=45,求⊙O的半径.【知识考点】圆的综合题.【思路分析】(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;(2)作出相应的图形,如图所示;(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.【解答过程】解:(1)当AD=BC时,四边形ABCD是平行四边形,理由为:证明:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形;故答案为:AD=BC;(2)作出相应的图形,如图所示;(3)∵AD∥BC,∴∠DAB+∠CBA=180°,∵AE与BE分别为∠DAB与∠CBA的平分线,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∵AB为圆O的直径,点F在圆O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°,∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin∠ABE=sin∠AGF==,∵AE=4,∴AB=5,则圆O的半径为2.5.【总结归纳】此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.3.(2018年江苏省镇江市-第27题-9分)(1)如图1,将矩形ABCD折叠,使BC落在对角线BD 上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为°.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN (点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=73,求B′D的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.【知识考点】四边形综合题.【思路分析】(1)利用平行线的性质以及翻折不变性即可解决问题;(2)【画一画】,如图2中,延长BA交CE的延长线由G,作∠BGC的角平分线交AD于M,交BC于N,直线MN即为所求;【算一算】首先证明DG=DF,理由勾股定理求出CF,可得BF,再利用翻折不变性,可知FB′=FB,由此即可解决问题;【验一验】由△CDK∽△IB′C,推出==,即==,设CB′=3k,IB′=4k,IC=5k,由折叠可知,IB=IB′=4k,可知BC=BI+IC=4k+5k=9,推出k=1,推出IC=5,IB′=4,B′C=3,在Rt△ICB′中,tan∠B′IC==,连接ID,在Rt△ICD中,tan∠DIC==,由此即可判断tan∠B′IC≠tan∠DIC,推出B′I所在的直线不经过点D;【解答过程】解:(1)如图1中,∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=46°,由翻折不变性可知,∠DBE=∠EBC=∠DBC=23°,故答案为23.(2)【画一画】,如图2中,【算一算】如图3中,∵AG=,AD=9,∴GD=9﹣=,∵四边形ABCD是矩形,∴AD∥BC,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,CF==,∴BF=BC﹣CF=,由翻折不变性可知,FB=FB′=,∴DB′=DF﹣FB′=﹣=3.【验一验】如图4中,小明的判断不正确.理由:连接ID,在Rt△CDK中,∵DK=3,CD=4,∴CK==5,∵AD∥BC,∴∠DKC=∠ICK,由折叠可知,∠A′B′I=∠B=90°,∴∠IB′C=90°=∠D,∴△CDK∽△IB′C,∴==,即==,设CB′=3k,IB′=4k,IC=5k,由折叠可知,IB=IB′=4k,∴BC=BI+IC=4k+5k=9,∴k=1,∴IC=5,IB′=4,B′C=3,在Rt△ICB′中,tan∠B′IC==,连接ID,在Rt△ICD中,tan∠DIC==,∴tan∠B′IC≠tan∠DIC,∴B′I所在的直线不经过点D.【总结归纳】本题考查四边形综合题、矩形的性质、翻折变换、勾股定理、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题,属于中考压轴题.4.(2018年江苏省常州市-第27题-10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【知识考点】线段垂直平分线的性质;直角三角形斜边上的中线;作图—复杂作图.【思路分析】(1)只要证明FC=FB即可解决问题;(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答过程】(1)证明:如图1中,∵EK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.理由:设PP′交GN于K.∵∠G=60°,∠GMN=90°,∴∠N=30°,∵PK⊥KN,∴PK=KP′=PN,∴PP′=PN=PM,∴∠P′=∠PMP′,∵∠NPK=∠P′+∠PMP′=60°,∴∠PMP′=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN,QM=QG,∴QG=QN,∴Q是GN的中点.【总结归纳】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尺规作图、定义、命题、定理参考答案与试题解析一.选择题(共18小题)1.(2018•嘉兴)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A. B.C.D.【分析】根据菱形的判定和作图根据解答即可.【解答】解:A、作图根据由作图可知,AC⊥BD,且平分BD,即对角线平分且垂直的四边形是菱形,正确;B、由作图可知AB=BC,AD=AB,即四边相等的四边形是菱形,正确;C、由作图可知AB=DC,AD=BC,只能得出ABCD是平行四边形,错误;D、由作图可知对角线AC平分对角,可以得出是菱形,正确;故选:C.2.(2018•襄阳)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm【分析】利用线段的垂直平分线的性质即可解决问题.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选:B.3.(2018•湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A.r B.(1+)r C.(1+)r D.r【分析】如图连接CD,AC,DG,AG.在直角三角形即可解决问题;【解答】解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG===r,故选:D.4.(2018•南通)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.5.(2018•台湾)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P 点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.6.(2018•潍坊)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=l【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;【解答】解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S=AB2,△ABD∵AC=CD,=AB2,∴S△BDC故A、B、C正确,故选:D.7.(2018•台州)如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A.B.1 C.D.【分析】只要证明BE=BC即可解决问题;【解答】解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE﹣AB=1,故选:B.8.(2018•嘉兴)用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A.点在圆内B.点在圆上C.点在圆心上D.点在圆上或圆内【分析】由于反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.由此即可解决问题.【解答】解:反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是:点在圆上或圆内.故选:D.9.(2018•岳阳)下列命题是真命题的是()A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等【分析】根据平行四边形的性质、三角形的重心的概念、多边形内角和的计算公式、圆内接四边形的性质判断即可.【解答】解:平行四边形的对角线互相平分,A是假命题;三角形的重心是三条边的中线的交点,B是假命题;五边形的内角和=(5﹣2)×180°=540°,C是真命题;圆内接四边形的对角互补,D是假命题;故选:C.10.(2018•台州)下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形【分析】根据平行四边形、矩形、菱形、正方形的判定定理判断即可.【解答】解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.11.(2018•嘉兴)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁【分析】直接利用已知得出甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,进而得出答案.【解答】解:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,∴甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,∵甲、乙都没有输球,∴甲一定与乙平,∵丙得分3分,1胜0平,乙得分5分,1胜2平,∴与乙打平的球队是甲与丁.故选:B.12.(2018•荆门)下列命题错误的是()A.若一个多边形的内角和与外角和相等,则这个多边形是四边形B.矩形一定有外接圆C.对角线相等的菱形是正方形D.一组对边平行,另一组对边相等的四边形是平行四边形【分析】A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可;B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆;C、根据正方形的判定方法进行判断;D、一组对边平行且相等的四边形是平行四边形.【解答】解:A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;C、对角线相等的菱形是正方形,故此选项正确;D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;本题选择错误的命题,故选:D.13.(2018•滨州)下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.14.(2018•重庆)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分【分析】根据平行四边形的对角线互相平分;矩形的对角线平分且相等;菱形的对角线互相平分且垂直;正方形的对角线互相垂直平分进行分析即可.【解答】解:A、平行四边形的对角线互相垂直平分,是假命题;B、矩形的对角线互相垂直平分,是假命题;C、菱形的对角线互相平分且相等,是假命题;D、正方形的对角线互相垂直平分,是真命题;故选:D.15.(2018•永州)下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.任意多边形的内角和为360°D.三角形的中位线平行于第三边,并且等于第三边的一半【分析】根据矩形的判定方法对A进行判断;根据菱形的判定方法对B进行判断;根据多边形的内角和对C进行判断;根据三角形中位线性质对D进行判断.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项为假命题;B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;C、任意多边形的外角和为360°,所以C选项为假命题;D、三角形的中位线平行于第三边且等于第三边的一半,所以D选项为真命题.故选:D.16.(2018•重庆)下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【解答】解:A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选:A.17.(2018•衡阳)下列命题是假命题的是()A.正五边形的内角和为540°B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.圆内接四边形的对角互补【分析】根据正多边形的内角和的计算公式、矩形的性质、菱形的判定、圆内接四边形的性质判断即可.【解答】解:正五边形的内角和=(5﹣2)×180°=540°,A是真命题;矩形的对角线相等,B是真命题;对角线互相垂直的平行四边形是菱形,C是假命题;圆内接四边形的对角互补,D是真命题;故选:C.18.(2018•眉山)下列命题为真命题的是()A.两条直线被一组平行线所截,所得的对应线段成比例B.相似三角形面积之比等于相似比C.对角线互相垂直的四边形是菱形D.顺次连结矩形各边的中点所得的四边形是正方形【分析】根据平行线分线段成比例定理、相似三角形的性质、菱形的判定定理、中点四边形的性质判断即可.【解答】解:两条直线被一组平行线所截,所得的对应线段成比例,A是真命题;相似三角形面积之比等于相似比的平方,B是假命题;对角线互相垂直的平行四边形是菱形,C是假命题;顺次连结矩形各边的中点所得的四边形是菱形,D是假命题;故选:A.。

相关文档
最新文档