三角函数的诱导公式一

合集下载

三角函数高中数学诱导公式大全

三角函数高中数学诱导公式大全

三角函数高中数学诱导公式大全三角函数是高中数学中的重要内容,它与三角形的关系密切,广泛应用于各个学科中。

掌握三角函数的诱导公式对于解决各种问题是非常有帮助的。

下面我们就来详细介绍一些三角函数的诱导公式。

1.正弦函数的诱导公式:sin(A + B) = sinAcosB + cosAsinBsin(A - B) = sinAcosB - cosAsinBsin2A = 2sinAcosAsinA + sinB = 2sin((A + B)/2)cos((A - B)/2)sinA - sinB = 2cos((A + B)/2)sin((A - B)/2)2.余弦函数的诱导公式:cos(A + B) = cosAcosB - sinAsinBcos(A - B) = cosAcosB + sinAsinBcos2A = 2cos^2A - 1 = 1 - 2sin^2AcosA + cosB = 2cos((A + B)/2)cos((A - B)/2)cosA - cosB = -2sin((A + B)/2)sin((A - B)/2)3.正切函数的诱导公式:tan(A + B) = (tanA + tanB) / (1 - tanAtanB)tan(A - B) = (tanA - tanB) / (1 + tanAtanB)tan2A = 2tanA / (1 - tan^2A)tanA + tanB = sin(A + B) / (cosAcosB)tanA - tanB = sin(A - B) / (cosAcosB)4.余切函数的诱导公式:cot(A + B) = (cotAcotB - 1) / (cotB + cotA)cot(A - B) = (cotAcotB + 1) / (cotB - cotA)cot2A = cot^2A - 2cotA / (cot^2A - 1)cotA + cotB = cotAcotB - 1 / (cotA + cotB)cotA - cotB = cotAcotB + 1 / (cotB - cotA)这些诱导公式可以帮助我们在计算三角函数的复杂表达式时,将其化简为更简洁的形式。

三角函数的诱导公式

三角函数的诱导公式

三角函数的诱导公式 所谓三角函数的诱导公式,就是讲角的三角函数转2n πα⋅
±化为角α的三角函数 常用公式(设α为任意角) 公式一:sin(2)k πα+= ,cos(2)k πα+= ,tan(2)k πα+= ,cot(2)k πα+= 公式二:
sin()πα+= ,cos()πα+= ,tan()πα+= ,cot()πα+= 公式三:
sin()α-= ,cos()α-= ,tan()α-= ,cot()α-= 公式四:
sin()πα-= ,cos()πα-= ,tan()πα-= ,cot()πα-= 公式五:sin(2)πα-= ,cos(2)πα-= ,tan(2)πα-= ,cot(2)πα-=
公式六:s i n()2πα+= ,cos()2πα+= ,tan()2πα+= ,cot()2πα+= ,sin()2πα-= ,cos()2πα-= ,tan()2πα-= ,cot()2πα-= 推算公式:3sin(
)2πα+= ,3cos()2πα+= ,3tan()2πα+= ,3cot()2πα+= ,3sin()2πα-= ,3cos()2πα-= ,3tan()2πα-= ,3cot()2πα-= 诱导公式记忆口诀:“奇变偶不变,符号看象限...........
” “奇、偶”指的是2π
的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。

“符号看象限”的含义是:α不一定是锐角,只不过把它看成锐角,看
2n πα⋅
±是第几象限角,等式右边加上一个把α看成是锐角时原函数值的符号。

三角函数诱导公式

三角函数诱导公式

三角函数诱导公式
1三角函数诱导公式
三角函数诱导公式是一项重要的数学原理,需要数学爱好者研究和掌握。

它指的是从已知角度对应的三角函数值可以得到一定程度的总结,且每种总结都可以归纳为基本的诱导公式。

三角函数诱导公式的使用,可以节省时间,提高计算效率,常见的三角函数诱导公式有:
1.sin a+b=2sin(a+b/2)cos(a-b/2)
cos a+b=2cos(a+b/2)cos(a-b/2)
2.sin(a-b)=2sin(a/2+b/2)cos(a/2-b/2)
cos(a-b)=cos(a/2+b/2)cos(a/2-b/2)-sin(a/2+b/2)sin(a/2-b/2) 3.sin2A=2sinAcosA
cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A
4.sin3A=3sina-4sin3A
cos3A=4cos3A-3cosA
三角函数诱导公式有助于更加有效地求解三角问题,但不能过于依赖它,只能作为计算辅助手段,将它用于更多地数学思考和创新中。

同时,还要注意上文说的诱导公式只涉及已知角度对应的三角函数值,因此,在求解未知的角的时候,还应使用反三角函数。

通过自
身学习和理解,从而掌握三角函数诱导公式,有助发展数学水平,提高数学活用能力。

完整版)三角函数诱导公式总结

完整版)三角函数诱导公式总结

完整版)三角函数诱导公式总结三角函数诱导公式与同角的三角函数知识点1】诱导公式及其应用诱导公式是指通过一些特定的公式,将三角函数中的某些角度转化为其他角度,从而简化计算。

以下是常用的诱导公式:公式一:sin(-α) = -sinα;cos(-α) = cosα;tan(-α) = -tanα公式二:sin(π+α) = -sinα;cos(π+α) = -cosα;tan(π+α) =tanα公式三:sin(π-α) = sinα;cos(π-α) = -cosα;tan(π-α) = -tanα公式四:sin(2π-α) = -sinα;cos(2π-α) = cosα;tan(2π-α) = -tanα公式五:sin(π/2-α) = cosα;cos(π/2-α) = sinα公式六:sin(π/2+α) = cosα;cos(π/2+α) = -sinα公式七:sin(-π/2-α) = -cosα;cos(-π/2-α) = -sinα公式八:sin(-π/2+α) = -cosα;cos(-π/2+α) = sinα公式九:sin(α+2kπ) = sinα;cos(α+2kπ) = cosα;tan(α+2kπ) = tanα(其中k∈Z)。

以上公式可以总结为两条规律:1.前四组诱导公式可以概括为:函数名不变,符号看象限。

2.公式五到公式八总结为一句话:函数名改变,符号看象限(原函数所在象限)。

另外,还有一个规律是:奇变偶不变,符号看象限。

也就是说,将三角函数的角度全部化成kπ/2+α或是kπ/2-α的形式,如果k是奇数,那么符号要改变;如果k是偶数,符号不变。

例1、求值:(1)cos(2916π)= ________;(2)tan(-855)= ________;(3)sin(-π)= ________。

例2、已知tan(π+α)=3,求:(2cos(-α)-3sin(π+α))/(4cos(-α)+sin(2π-α))的值。

(完整版)诱导公式总结大全

(完整版)诱导公式总结大全

e an dAl l t h i ng si nt he i r诱导公式1 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α cot (2k π+α)=cot α 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α cot (π+α)=cot α 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)=-sin α cos (-α)=cos α tan (-α)=-tan α cot (-α)=-cot α 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan αe an dAl l t 同角三角函数的基本关系式 倒数关系  tan α ·cot α=1 sin α ·csc α=1 cos α ·sec α=1 商的关系 sin α/cos α=tan α=sec α/csc α cos α/sin α=cot α=csc α/sec α 平方关系 sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。

1.3.1三角函数诱导公式1

1.3.1三角函数诱导公式1
个把 看成锐角时原函数值的符号。
的正弦(余弦)函数值,分别等于的余弦(正弦)函数值
y

O
P( x, y) A(1,0)
小结
2、你能概括以下研究诱导公式的思想方法吗?
圆的对称性 角的终边 的对称性 角之间的 数量关系 诱导公式
对称点的 数量关系
“对称是美的基本形式”
A(1,0)
p2 ( x , y )
sin sin
公式 四
cos cos tan tan
sin( k 2 ) sin 公 sin( ) sin 公 cos( k 2 ) cos 式 cos( ) cos 式 tan( k 2 ) tan 一 二 tan( ) tan (其中k Z )
sin( ) sin 公 cos( ) cos 式 tan( ) tan 三
sin( ) sin 公 cos( ) cos 式 四 tan( ) tan
记忆方法:函数名不变,符号看象限
k 2 , , 的三角函数值,等于的同名函数值 前面加上一个把 看成锐角时原函数值的符号。
问:如何计算sin210o
探究一:给定一个角,
角 的终边与角的终边有什么关系? 它们的三角函数之间有什么关系?
公式 二 y

O
sin sin cos cos tan tan

p1 ( x , y )
用公式三或一
任意正角的 三角函数
用公式一
0 到 360 的角
o
o
用公式 二或四

三角函数的诱导公式解析与应用

三角函数的诱导公式解析与应用

三角函数的诱导公式解析与应用三角函数是数学中常见且重要的函数之一,在解决几何问题以及物理、工程等实际应用中扮演着重要的角色。

在三角函数的学习过程中,诱导公式是我们必须要掌握和应用的一部分内容。

本文将对三角函数的诱导公式进行解析,并探讨其在数学和实际应用中的具体应用。

一、三角函数的诱导公式解析1. 正弦函数的诱导公式正弦函数是三角函数中最为常见的函数之一,其诱导公式为:sin(x ± π) = sin(x)cos(π) ± cos(x)sin(π)根据诱导公式,我们可以得出几个重要的结论:- sin(x + π) = -sin(x)- sin(x - π) = -sin(x)- sin(x + 2π) = sin(x)- sin(x - 2π) = sin(x)这些结论表明,通过加减π或2π,正弦函数的值可以保持不变或者取负值。

2. 余弦函数的诱导公式余弦函数是三角函数中与正弦函数密切相关的函数,其诱导公式为:cos(x ± π) = cos(x)cos(π) ∓ sin(x)sin(π)同样地,根据诱导公式,我们可以得出以下结论:- cos(x + π) = -cos(x)- cos(x - π) = -cos(x)- cos(x + 2π) = cos(x)- cos(x - 2π) = cos(x)3. 正切函数的诱导公式正切函数是三角函数中较为特殊的函数,其诱导公式为:tan(x ± π) = (tan(x) ± tan(π)) / (1 ∓ tan(x)tan(π))其中,tan(π) = 0,因此可以得到以下结论:- tan(x + π) = tan(x)- tan(x - π) = tan(x)- tan(x + 2π) = tan(x)- tan(x - 2π) = tan(x)二、三角函数的诱导公式应用1. 几何问题中的应用三角函数的诱导公式在解决几何问题中有着广泛的应用。

三角函数诱导公式(一)

三角函数诱导公式(一)

三角函数诱导公式(一)1、公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)=sinα, k∈z cos (2kπ+α)=cosα, k∈z tan (2kπ+α)=tanα, k∈z cot (2kπ+α)=cotα, k∈z sec (2kπ+α)=secα, k∈z csc (2kπ+α)=cscα, k∈z2、公式二:α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sinα cos (π+α)=-cosαtan (π+α)= tanα cot (π+α)= cotαsec (π+α) =—secα csc (π+α) =—cscα3、公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)=-sinα cos (-α)= cosα tan (-α)=-tanα cot (-α)=-cotαsec (—α) = secα csc (—α) =—cscα4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)=-cosα tan (π-α)=-tanα cot (π-α)=-cotα sec (π—α) =—secα csc (π—α) = cscα5、公式五:利用公式一和公式三可以得2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)= cosα tan (2π-α)=-tanα cot (2π-α)=-cotα sec (2π—α) = secα csc (2π—α) =—cscα习题1.下列等式中,恒成立的是( )(A) sin(1800+2000)=sin2000 (B)cos(-α)=—cos α(C) cos(1800+2000)=—cos2000 (D)sin(-α)=sin α2.sin 2(π+α)-cos(π+α)cos(-α)+1的值是( )(A) 2sin 2α (B)0 (C)1 (D)2 3.sin(-619 )的值是( ) (A) 21(B) -21 (C) 23(D) -234.已知cos(π-x)=—21,23π<x<2π,则sin(2π-x)的值等于( ) (A) 21(B)± 23(C)23 (D) -235.计算sin 34πcos(-6π)tan(-45π)=_________. 6.化简sin 2(-α)tan α+cos 2(π+α)cot α-2 sin(π+α) cos(-α)=__ ___7.计算:sin(-15600)cos9300+cos(-13800) sin(-14100)=_______.8.已知COS(6π+θ)= 33,则COS(65π-θ)=__________. 9.求下列各三角函数值:(1) sin(-13200 ) (2) tan9450 (3)cos655π (4)cot(-322π)10.已知cos(π-α)=- 21,计算: (1) sin(2π-α); (2)cot[2)12(π+k +α](k ∈Z)11.已知sin(α-π) =2cos(2π-α),求)sin()cos(3)2cos(5)sin(ααπαπαπ----+-的值12.(1)求值sin 2(-300) +sin 22250 +2sin2100 +cos 2(-450) ;(2)若sin(π+α)=41,求[]1)cos(cos )cos(-++απααπ—)cos()cos()2cos()cos(απαπαπα-+++-- 值;13.化简:)(cos )tan()2cot()cos()(sin 32πααππααππα++--++。

三角函数诱导公式大全

三角函数诱导公式大全

三角函数诱导公式大全三角函数诱导公式三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)2诱导公式作用及用法一、三角函数诱导公式的作用:可以将任意角的三角函数转化为锐角三角函数。

三角函数的诱导公式

三角函数的诱导公式

三角函数的诱导公式公式一:sin(α+k·)=sinα cos(α+k·)=cosαtan(α+k·)=tanα其中k∈Z.公式二:sin(+α)=-sinα cos(+α)=-cosαtan(+α)=tanα公式三:sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanα公式四:sin(-α)=sinαcos(-α)=-cosαtan(-α)=-tanα总结:α+k·2(k∈Z),-α,±α的三角函数,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。

公式五:sin(-α)=cosα cos(-α)=sinα公式六:sin(+α)=cosα cos(+α)=-sinα总结:±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.重、难点知识归纳及讲解(一)利用诱导公式可以把任意角的三角函数转化为锐角三角函数,即:例1、求值:.例2、设的值为()A.B. C.-1 D.1(二)同角三角函数关系式在求值、化简、证明中的应用.1、已知角α的某一三角函数值,可求出α的其余三角函数值.例3、已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.2、利用同角三角函数关系式进行化简:化简结果的基本要求(1)函数个数尽可能少;(2)次数尽可能低;(3)项数尽可能少;(4)尽可能地去掉根号;(5)尽可能地不含分母;(6)能求出值的要求出值来.例4、若sinαcosα<0,sinαtanα<0,化简:.3、利用同角关系式进行三角恒等式的证明.证明三角恒等式的方法较多,既可由一边证向另一边,也可先证得另一个等式成立,从而得出要证的等式,还可用比较法证明等,关键是要依题而定。

例5、证明:.练习1.若,则的值为().A. B. C. D.2.和的终边关于轴对称,则下列各式中正确的是()A. B.C. D.3.的值等于().A.B.C.D.4.的值是()A.B.C.D.5.在△中,下列各表达式为常数的是().A.B.C. D.6.如果,那么是()A. B. C. D.7.的值为()A.B.C.D.8.已知且是第四象限角,则 =()A .B .C .D .9.如果 ,且,则 可以是( ). A .B .C .D .10.已知 是方程 的根,那么 的值等于( ).A .B .C .D .11. 为整数,化简 所得结果是( ) A . B .C .D .12.,则的值为( )A .0B .1C .-1D .13.若,则等于( )A .B .C .D .14、已知sin 5α=,则44sin cos αα-的值为( ) A .15-B .35-C .15D .3515、0203sin 702cos 10--=( )A. 12B. 2C. 2D.2。

三角函数的诱导公式

三角函数的诱导公式

cos
sin
cos
sin
【总一总★成竹在胸】
口诀:奇变偶不变,符号看象限
意义: k (k Z)的三角函数值
2 1)当k为偶数时,等于的同名三角函数值,前面加上 一个把 看作锐角时原三角函数值的符号; 2)当k为奇数时,等于的异名三角函数值,前面加上 一个把 看作锐角时原三角函数值的符号;
三角函数线:用有向线段的数量来表示。
y
y MP sin MP (正弦线) r OP
x OM cos OM (余弦线) r OP
O
P
T
M
A
x
y AT tan AT (正切线) x OA
上节
回顾
三角函数的诱导公式一:
sin 2k sin
课堂
0
例题
例1:求三角函数值:
2 解 : (1) cos225 cos(180 45 ) cos45 2 11 3 (2) sin sin(4 ) sin 3 3 3 2

11 16 1cos 225 ; 2sin ; 3sin( ); 4 cos 2040 0 3 3
提升
训练
【例 4】 在△ABC 中,若 sin(2π-A)=- 2sin(π- B), 3cosA=- 2cos(π-B),求△ABC 的三内角.
2 3 (2)当 cosA=- 2 时,cosB=- 2 . 又 A、B 是三角形内角, 3 5 ∴A=4π,B=6π,不合题意. π π 7 综上知,A=4,B=6,C=12π.
高一年级理科数学卢
上节
回顾
设是 一 个 任 意 角 , 的 终 边 上 任 意 一 点 P ( x , y )(除 端 点 外 ), 它 与 原 点 的 距 离 是 r (r x y 0), 那 么:

三角函数诱导公式一到六

三角函数诱导公式一到六

三角函数诱导公式一到六三角函数诱导公式是一种重要的数学工具,其涵盖了众多的基础公式以及核心概念,从而有助于数学学习者的深入学习。

该公式一为:正负sinθ±cosθ=±1,其中sinθ为正弦值,cosθ为余弦值。

这引出了正负概念,也就是指可以通过对正弦值和余弦值的取反来将角度的正负值改变,从而得到正确的表达。

该公式二为:sin2θ=2sinθcosθ,其中sin2θ为双角函数,也就是2倍角函数,指的是由角θ的正弦值和余弦值的乘积组成的2倍角函数。

它提出了双角函数的一个重要概念,即可以把一个角度的正弦函数进行双倍化,从而得到一个新的函数。

该公式三为:sin3θ=3sinθ-4sinθcosθ,其中sin3θ为三角函数,即3倍角函数,指的是由角θ的正弦值、余弦值及乘积组成的三倍角函数。

它强调了可以由角度构成的函数可以三倍放大,从而获得新的函数。

该公式四为:sinθcosθ=½sin2θ,其中sinθcosθ表示乘积函数,即正弦值与余弦值的乘积,½sin2θ则表示双角函数,也就是正负sin2θ的一半。

它告诉我们正弦值与余弦值的乘积可以等价于双角函数的一半,从而实现数学的运算计算。

该公式五为:sin2θcosθ=½sin3θ,其中sin2θcosθ表示乘积函数,即正弦值与余弦值的积,½sin3θ则表示三倍角函数,也就是正负sin3θ的一半。

它告诉我们正弦值与余弦值的积可以等价于三角函数的一半,从而得到更精准的运算结果。

最后,该公式六为:cos2θ-sin2θ=cos2θ,其中cos2θ为双角余弦函数,表示双倍角度的余弦值,sin2θ则表示双角正弦函数,即2倍角度的正弦值。

它指出,通过对双角余弦值和双角正弦值求差可以获得双角余弦值,从而将数学运算结果进行计算。

总之,三角函数诱导公式既展现了微积分中潜藏着的深奥理论,又展示了反复出现的有用方法,为人们打开了一扇数学思维的大门,著作既为学习者提供了强大、有效的科学方法,又能够为数学实践带来巨大的收获。

诱导公式总结大全

诱导公式总结大全

诱导公式1所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号看象限。

“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。

(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

一全正;二正弦;三两切;四余弦这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

三角函数诱导公式大全

三角函数诱导公式大全

三角函數誘導公式大全三角函数诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

诱导公式总结大全

诱导公式总结大全

诱导公式1所谓三角函数诱导公式,就就是将角n·(π/2)±α得三角函数转化为角α得三角函数。

公式一: 设α为任意角,终边相同得角得同一三角函数得值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二: 设α为任意角,π+α得三角函数值与α得三角函数值之间得关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三: 任意角α与 -α得三角函数值之间得关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四: 利用公式二与公式三可以得到π-α与α得三角函数值之间得关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五: 利用公式一与公式三可以得到2π-α与α得三角函数值之间得关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六: π/2±α与α得三角函数值之间得关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号瞧象限。

“奇、偶”指得就是整数n得奇偶,“变与不变”指得就是三角函数得名称得变化:“变”就是指正弦变余弦,正切变余切。

(反之亦然成立)“符号瞧象限”得含义就是:把角α瞧做锐角,不考虑α角所在象限,瞧n·(π/2)±α就是第几象限角,从而得到等式右边就是正号还就是负号。

一全正;二正弦;三两切;四余弦这十二字口诀得意思就就是说: 第一象限内任何一个角得四种三角函数值都就是“+”; 第二象限内只有正弦就是“+”,其余全部就是“-”; 第三象限内只有正切与余切就是“+”,其余全部就是“-”; 第四象限内只有余弦就是“+”,其余全部就是“-”。

高1数学-三角函数-诱导公式

高1数学-三角函数-诱导公式

高一数学诱导公式知识点1.诱导公式一~四(1)公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,tan(α+2k π)=tan α,其中k ∈Z .(2)公式二:sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α.(3)公式三:sin(-α)=-sin α,cos(-α)=cos α,tan(-α)=-tan α.(4)公式四:sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α.2.诱导公式的记忆2k π+α(k ∈Z ),π+α,π-α,-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简记为“函数名不变,符号看象限”.3.诱导公式五~六(1)公式五:sin ⎝⎛⎭⎫π2-α=cos α;cos ⎝⎛⎭⎫π2-α=sin α. 以-α替代公式五中的α,可得公式六.(2)公式六:sin ⎝⎛⎭⎫π2+α=cos α;cos ⎝⎛⎭⎫π2+α=-sin α. 4.诱导公式的理解、记忆与灵活应用公式一~四归纳:α+2k π(k ∈Z ),-α,π±α的三角函数值,等于角α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名不变,符号看象限”.公式五~六归纳:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名改变,符号看象限”或“正变余、余变正、符号象限定”.六组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.当k 为偶数时,函数名不改变;当k 为奇数时,函数名改变;前面加一个把α视为锐角时原函数值的符号,记忆口诀为“奇变偶不变,符号看象限”.题型一 给角求值【例1】求下列各三角函数值.(1)sin(-83π); (2)cos 196π; (3)sin[(2n +1)π-23π].【过关练习】1.求下列三角函数值.(1)sin ⎝⎛⎭⎫-436π;(2)cos 296π;(3)tan(-855°).2.sin 585°的值为( )A .-22 B.22 C .-32 D.323.cos(-16π3)+sin(-16π3)的值为( ) A .-1+32B.1-32C.3-12 D.3+12题型二 给值求值问题【例1】已知cos(α-75°)=-13,且α为第四象限角,求sin(105°+α)的值.【例2】已知cos ⎝⎛⎭⎫α+π6=35,π2≤α≤3π2,求sin ⎝⎛⎭⎫α+2π3的值.【过关练习】1.已知cos(α-π)=-513,且α是第四象限角,则sin α等于( ) A .-1213 B.1213 C.512 D .±12132.已知sin(5π2+α)=15,那么cos α等于( ) A .-25 B .-15 C.15 D.253.若sin(3π+α)=-12,则cos(7π2-α)等于( ) A .-12 B.12 C.32 D .-324.已知cos(π+α)=-35,π<α<2π,求sin(α-3π)+cos(α-π)的值.5.已知sin ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫α-π3的值.题型三 三角函数式的化简【例1】化简下列各式.(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(2)1+2sin 290°cos 430°sin 250°+cos 790°.【过关练习】1.化简:(1)sin (540°+α)·cos (-α)tan (α-180°);(2)cos (θ+4π)·cos 2(θ+π)·sin 2(θ+3π)sin (θ-4π)sin (5π+θ)cos 2(-π+θ).2.化简:cos (180°+α)sin (α+360°)sin (-α-180°)cos (-180°-α).题型四 利用诱导公式证明恒等式【例1】求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.【过关练习】1.求证:2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2 (π+θ)=tan (9π+θ)+1tan (π+θ)-1.题型五 诱导公式的综合应用【例1】已知f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α). (1)化简f (α);(2)若α是第三象限的角,且cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值; (3)若α=-31π3,求f (α)的值.【过关练习】1.已知角α终边经过点P (-4,3),求cos (π2+α)sin (-π-α)cos (11π2-α)sin (9π2+α)的值.2.已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin (π2-α)-2cos (π2+α)-sin (-α)+cos (π+α)= .【补救练习】1.cos 600°的值为( ) A.32 B.12 C .-32 D .-122.若sin α=12,则cos(π2+α)的值为( ) A.12 B.32 C .-12 D .-323.化简下列各式.(1)sin(-193π)cos 76π; (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).4.已知sin(π+α)=-13.计算: (1)cos ⎝⎛⎭⎫α-3π2; (2)sin ⎝⎛⎭⎫π2+α; (3)tan(5π-α).1.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( )A .1B .2sin 2αC .0D .22.tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为( ) A.m +1m -1 B.m -1m +1C .-1D .1 3.若sin(π-α)=log 8 14,且α∈⎝⎛⎭⎫-π2,0,则cos(π+α)的值为( ) A.53B .-53C .±53D .以上都不对4.已知cos ⎝⎛⎭⎫π6+θ=33,则cos ⎝⎛⎭⎫5π6-θ= .5.已知sin ⎝⎛⎭⎫α-π6=13,则cos ⎝⎛⎭⎫α+π3的值为( ) A .-233 B.233 C.13 D .-136.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α的值等于( ) A .-13 B.13 C .-223 D.2237.已知f (α)=tan (π-α)·cos (2π-α)·sin (π2+α)cos (-α-π),化简f (α)= .1.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫32π-α+2sin(2π-α)的值为( ) A .-2m 3 B.2m 3 C .-3m 2 D.3m 22.已知cos(π2+φ)=32,且|φ|<π2,则tan φ等于( ) A .-33 B.33C .- 3 D.3 3.式子cos 2(π4-α)+cos 2(π4+α)= . 4.若cos(α-π)=-23,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.5.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.6.已知cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2,求sin 3(π-α)+cos (α+π)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α的值.。

三角函数诱导公式一

三角函数诱导公式一

三角函数诱导公式一三角函数诱导公式一三角函数的诱导公式一是指sin(A ± B)和cos(A ± B)的展开公式。

其中,A和B是任意角度。

首先,我们来考虑sin(A + B)的展开。

我们可以利用复数的指数形式来推导这个公式。

复数的指数形式可以表示为z = re^(iθ),其中r是模长,θ是辐角。

假设A和B是任意两个角度,我们可以将A和B分别表示为复数的指数形式,即A=r₁e^(iα)和B=r₂e^(iβ)。

然后,我们可以求解sin(A + B)。

根据三角函数的性质,我们可以将复数的指数形式转化为三角函数的形式,即A = r₁cosα + ir₁sinα,B = r₂cosβ + ir₂sinβ。

那么,A + B就是(r₁cosα + r₂cosβ) + i(r₁sinα + r₂sinβ)。

根据欧拉公式,e^(ix) = cosx + isinx,我们可以将上式进一步转化为sin(A + B) = sin(r₁cosα + r₂cosβ + ir₁sinα + ir₂sinβ)。

然后,我们可以展开求解。

根据三角函数的展开公式,可以将以上式子化简为sin(A + B) = sin(r₁cosα + r₂cosβ)cos(ir₁sinα +ir₂sinβ)+ cos(r₁cosα + r₂cosβ)sin(ir₁sinα + ir₂sinβ)。

对于复数的正弦函数和余弦函数,我们知道cos(ix) = cosh(x)和sin(ix) = isinh(x),其中cosh(x)和sinh(x)为双曲函数。

那么,sin(ir₁sinα + ir₂sinβ) = isinh(r₁sinα + r₂sinβ) = isin(r₁sinα)cosh(r₂sinβ) + cosh(r₁sinα)sin(r₂sinβ)。

接着,我们可以将以上的式子进行整理得到sin(A + B) =sin(r₁cosα + r₂cosβ)cos(r₁sinα)cosh(r₂sinβ) +cos(r₁cosα)sin(r₂sinβ)cosh(r₁sinα)sinh(r₂sinβ)。

三角函数诱导公式大全

三角函数诱导公式大全

三角函数诱导公式大全三角函数是数学中的一种重要函数,广泛应用于几何、物理、工程等领域。

在计算三角函数值时,诱导公式是一种非常有用的工具,可以通过已知的三角函数值来求解其他三角函数值。

下面是一些常用的三角函数诱导公式:1.正弦函数诱导公式:sin(x + π) = -sin(x)sin(x + π/2) = cos(x)sin(π/2 - x) = cos(x)sin(π/2 + x) = cos(x)sin(π - x) = sin(x)sin(π - x) = -sin(x)2.余弦函数诱导公式:cos(x + π) = -cos(x)cos(x + π/2) = -sin(x)cos(π/2 - x) = sin(x)cos(π/2 + x) = -sin(x)cos(π - x) = -cos(x)cos(π - x) = cos(x)3.正切函数诱导公式:tan(x + π) = tan(x)tan(x + π/2) = -cot(x)tan(π/2 - x) = cot(x)tan(π/2 + x) = -cot(x)tan(π - x) = -tan(x)tan(π - x) = tan(x) 4.余切函数诱导公式:cot(x + π) = cot(x)cot(x + π/2) = -tan(x)cot(π/2 - x) = tan(x)cot(π/2 + x) = -tan(x)cot(π - x) = -cot(x)cot(π - x) = cot(x) 5.正割函数诱导公式:sec(x + π) = -sec(x)sec(x + π/2) = csc(x)sec(π/2 - x) = csc(x)sec(π/2 + x) = -csc(x)sec(π - x) = -sec(x)sec(π - x) = sec(x)6.余割函数诱导公式:csc(x + π) = -csc(x)csc(x + π/2) = sec(x)csc(π/2 - x) = sec(x)csc(π/2 + x) = -sec(x)csc(π - x) = -csc(x)csc(π - x) = csc(x)这些是一些常用的三角函数诱导公式,利用这些公式可以修改已知的三角函数值,从而得到其他函数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的诱导公式(一)[学习目标] 1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题.知识点一 诱导公式一~四(1)公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,tan(α+2k π)=tan α,其中k ∈Z .(2)公式二:sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α.(3)公式三:sin(-α)=-sin α,cos(-α)=cos α,tan(-α)=-tan α.(4)公式四:sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α.思考1 任意角α与π+α,-α,π-α的终边之间有怎样的对称关系?思考2 设任意角α的终边与单位圆交于点P (x 0,y 0),分别写出π+α,-α,π-α的终边与单位圆的交点坐标.知识点二 诱导公式的记忆2k π+α(k ∈Z ),π+α,π-α,-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简记为“函数名不变,符号看象限”.思考 你能用简洁的语言概括一下诱导公式一~四的作用吗?题型一 给角求值例1 求下列各三角函数值.(1)sin(-83π); (2)cos 196π; (3)sin[(2n +1)π-23π]. 解 (1)sin(-83π)=-sin 83π=-sin(2π+23π) =-sin 23π=-sin(π-π3) =-sin π3=-32.(2)cos 196π=cos(2π+76π) =cos(π+π6)=-cos π6=-32. (3)sin[(2n +1)π-23π]=sin[2n π+(π-23π)] =sin π3=32. 跟踪训练1 求下列三角函数值.(1)sin ⎝ ⎛⎭⎪⎫-436π; (2)cos 296π; (3)tan(-855°). 解 (1)sin ⎝ ⎛⎭⎪⎫-436π=-sin 436π=-sin(6π+76π) =-sin 76π=-sin ⎝⎛⎭⎫π+π6=sin π6=12; (2)cos 296π=cos(4π+56π) =cos 56π=cos ⎝⎛⎭⎫π-π6 =-cos π6=-32; (3)tan(-855°)=-tan 855°=-tan(2×360°+135°)=-tan 135°=-tan(180°-45°)=tan 45°=1.题型二 给值求值问题例2 已知cos(α-75°)=-13,且α为第四象限角, 求sin(105°+α)的值.解 ∵cos(α-75°)=-13<0,且α为第四象限角, ∴α-75°是第三象限角.∴sin(α-75°)=-1-cos 2(α-75°)=- 1-⎝ ⎛⎭⎪⎫-132=-223. ∴sin(105°+α)=sin []180°+(α-75°) =-sin(α-75°)=223.跟踪训练2 已知cos(π+α)=-35,π<α<2π,求sin(α-3π)+cos(α-π)的值. 解 ∵cos(π+α)=-cos α=-35,∴cos α=35, ∵π<α<2π,∴3π2<α<2π,∴sin α=-45. ∴sin(α-3π)+cos(α-π)=-sin(3π-α)+cos(π-α)=-sin(π-α)+(-cos α)=-sin α-cos α=-(sin α+cos α)=-⎝ ⎛⎭⎪⎫-45+35=15.题型三 三角函数式的化简例3 化简下列各式.(1)tan(2π-α)sin(-2π-α)cos(6π-α)cos(α-π)sin(5π-α);(2)1+2sin 290°cos 430°sin 250°+cos 790°. 解 (1)原式=sin(2π-α)cos(2π-α)·sin(-α)cos(-α)cos(π-α)sin(π-α)=-sin α(-sin α)cos αcos α(-cos α)sin α=-sin αcos α=-tan α. (2)原式=1+2sin(360°-70°)cos(360°+70°)sin(180°+70°)+cos(720°+70°)=1-2sin 70°cos 70°-sin 70°+cos 70°=|cos 70°-sin 70°|cos 70°-sin 70°=sin 70°-cos 70°cos 70°-sin 70°=-1.跟踪训练3 化简:(1)sin(540°+α)·cos(-α)tan(α-180°); (2)cos(θ+4π)·cos 2(θ+π)·sin 2(θ+3π)sin(θ-4π)sin(5π+θ)cos 2(-π+θ).解 (1)原式=错误!=sin(180°+α)cos αtan α=-sin αcos αsin αcos α=-cos 2α. (2)原式=cos θ·cos 2θ·sin 2θsin θ·(-sin θ)·cos 2θ=-cos θ.分类讨论思想在三角函数中的应用例4 证明:2sin(α+n π)cos(α-n π)sin(α+n π)+sin(α-n π)=(-1)n cos α,n ∈Z . 证明 当n 为偶数时,令n =2k ,k ∈Z ,左边=2sin(α+2k π)cos(α-2k π)sin(α+2k π)+sin(α-2k π)=2sin αcos αsin α+sin α=2sin αcos α2sin α=cos α. 右边=(-1)2k cos α=cos α,∴左边=右边.当n 为奇数时,令n =2k -1,k ∈Z ,左边=2sin(α+2k π-π)cos(α-2k π+π)sin(α+2k π-π)+sin(α-2k π+π)=2sin(α-π)cos(α+π)sin(α-π)+sin(α+π)=2(-sin α)(-cos α)(-sin α)+(-sin α)=2sin αcos α-2sin α=-cos α. 右边=(-1)2k -1cos α=-cos α,∴左边=右边.综上所述,2sin(α+n π)cos(α-n π)sin(α+n π)+sin(α-n π)=(-1)n cos α,n ∈Z 成立.1.sin 585°的值为( )A .-22 B.22 C .-32 D.322.cos(-16π3)+sin(-16π3)的值为( ) A .-1+32B.1-32C.3-12D.3+123.记cos(-80°)=k ,那么tan 100°等于( )A.1-k 2kB .-1-k 2k C.k 1-k 2 D .-k1-k 2 4.化简:cos(180°+α)sin(α+360°)sin(-α-180°)cos(-180°-α).一、选择题1.cos 600°的值为( )A.32B.12 C .-32 D .-122.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( )A .1B .2sin 2αC .0D .23.已知cos(α-π)=-513,且α是第四象限角,则sin α等于( )A .-1213 B.1213 C.512 D .±12134.若sin(-110°)=a ,则tan 70°等于( ) A.a1-a 2 B.-a 1-a 2 C.a 1+a 2 D.-a 1+a 25.tan(5π+α)=m ,则sin(α-3π)+cos(π-α)sin(-α)-cos(π+α)的值为( ) A.m +1m -1 B.m -1m +1C .-1D .1 6.若sin(π-α)=log 8 14,且α∈⎝⎛⎭⎫-π2,0,则cos(π+α)的值为( ) A.53 B .-53 C .±53D .以上都不对 二、填空题 7.已知cos ⎝⎛⎭⎫π6+θ=33,则cos ⎝ ⎛⎭⎪⎫5π6-θ= . 8.若cos(π+α)=-12,32π<α<2π,则sin(α-2π)= . 9.cos(-585°)sin 585°+sin(-570°)的值等于 . 10.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 017)的值为 . 三、解答题11.化简下列各式. (1)sin(-193π)cos 76π; (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).12.若cos(α-π)=-23,求 sin(α-2π)+sin(-α-3π)cos(α-3π)cos(π-α)-cos(-π-α)cos(α-4π)的值.当堂检测答案:1.答案 A解析sin 585°=sin(360°+225°)=sin(180°+45°)=-sin 45°=-2 2 .2.答案 C解析原式=cos 16π3-sin16π3=cos4π3-sin4π3=-cos π3+sinπ3=3-12.3.答案 B解析∵cos(-80°)=k,∴cos 80°=k,∴sin 80°=1-k2.∴tan 80°=1-k2 k.∴tan 100°=-tan 80°=-1-k2 k.4.化简:cos(180°+α)sin(α+360°)sin(-α-180°)cos(-180°-α).解原式=(-cos α)·sin α[-sin(α+180°)]·cos(180°+α)=sin αcosαsin(α+180°)cos(180°+α)=sin αcos α(-sin α)(-cos α)=1.课时精炼答案一、选择题1.答案 D解析 cos 600°=cos(360°+240°)=cos 240°=cos(180°+60°)=-cos 60°=-12. 2.答案 D解析 原式=(-sin α)2+cos αcos(-α)+1=sin 2α+cos 2α+1=2.3.答案 A解析 ∵cos(α-π)=cos(π-α)=-cos α=-513, ∴cos α=513,又α是第四象限角, ∴sin α<0,则sin α=-1-cos 2α=-1213. 4.答案 B解析 ∵sin(-110°)=-sin 110°=-sin(180°-70°) =-sin 70°=a ,∴sin 70°=-a ,∴cos 70°=1-(-a )2=1-a 2,∴tan 70°=sin 70°cos 70°=-a 1-a 2. 5.答案 A解析 原式=sin α+cos αsin α-cos α=tan α+1tan α-1=m +1m -1. 6.答案 B解析 ∵sin(π-α)=sin α=log 232-2=-23, ∴cos(π+α)=-cos α=-1-sin 2 α=-1-49=-53. 二、填空题7.答案 -33解析 cos ⎝ ⎛⎭⎪⎫5π6-θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6+θ =-cos ⎝⎛⎭⎫π6+θ=-33.8.答案 -32解析 由cos(π+α)=-12,得cos α=12, 故sin(α-2π)=sin α=-1-cos 2α=-1-(12)2 =-32(α为第四象限角).9.答案 2+2解析 原式=cos(360°+225°)sin(360°+225°)-sin(360°+210°)=cos 225°sin 225°-sin 210°=-cos 45°sin(180°+45°)-sin(180°+30°)=-22-22+12=2+2. 10.答案 -3解析 ∵f (4)=a sin(4π+α)+b cos(4π+β)=a sin α+b cos β=3,∴f (2 017)=a sin(2 017π+α)+b cos(2 017π+β) =a sin(π+α)+b cos(π+β)=-a sin α-b cos β =-3.三、解答题11.解 (1)sin(-193π)cos 76π =-sin(6π+π3)cos(π+π6)=sin π3cos π6=34. (2)sin(-960°)cos 1 470°-cos 240°sin(-210°) =-sin(180°+60°+2×360°)cos(30°+4×360°) +cos(180°+60°)sin(180°+30°)=sin 60°cos 30°+cos 60°sin 30°=1.12.解 原式=-sin(2π-α)-sin(3π+α)cos(3π-α)-cos α-(-cos α)cos α=sin α-sin αcos α-cos α+cos 2α=sin α(1-cos α)-cos α(1-cos α)=-tan α. ∵cos(α-π)=cos(π-α)=-cos α=-23, ∴cos α=23.∴α为第一象限角或第四象限角. 当α为第一象限角时,cos α=23, sin α=1-cos 2α=53,∴tan α=sin αcos α=52, ∴原式=-52. 当α为第四象限角时,cos α=23, sin α=-1-cos 2α=-53, ∴tan α=sin αcos α=-52,∴原式=52. 综上,原式=±52.。

相关文档
最新文档