平面直角坐标系 (2)
4.2平面直角坐标系(2)教案13

4.2平面直角坐标系(2)教学与学生学习目标:1. 会根据所要表示的图形的需要建立直角坐标系,并用坐标表示图形上的点.2. 会用确定坐标、描点、连线的方法在直角坐标系中作出简单图形.学习重难点:●本节教学的重点是根据要表示的图形的需要建立适当的直角坐标系,并在直角坐标系中画出图形.●例3的思路比较复杂,需要学生有较高的综合运用知识的能力,是本节教学的难点.教学准备:学生(1)制作好带方格的平面直角坐标系;(2)带好作图工具,与组长共同制订本节课学习目标;教师:(1)制作好课件(几何画板);(2)制作好学习过程记录,课前发给学生;教学过程设计:一、课堂引入:上节课学习了平面直角坐标系,在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。
二、新知探索由此请完成如下问题:1.(导学1)例2 (1)对于正方形ABCD,建立如图的直角坐标系。
请写出A,B,C,D 各顶点的坐标。
学生把答案写在自己的课堂活动记录上,由一位学生板书,再师生共对。
(2)如果把X轴往下平移2个单位,那么A,B,C,D各顶点坐标在新坐标系中将怎样变化?学生写出,由另一位学生板书,并写在(1)答案的上方,便于让学生分析变动特点。
学习指导:各点的坐标发生如何的改变,有什么规律吗?学生思考后回答。
可见,选择不同点为原点,建立的平面直角坐标系后,各点的坐标是不同的,它是随着原点、X轴、Y轴的不同选择而不同的。
那么我们又如何根据需要,选择适当的点为原点,建立平面直角坐标系来解决问题呢?请同学们完成如下题目:2.当堂检测(诊学作业1):课内练习题T1:已知长方形ABCD的长为2,宽为1。
如图,请选择适当的点为原点建立平面直角坐标系,并写出各顶点的坐标;设问:请同学们思考我们可以有几种选择方法?学生举手回答,老师一一给予肯定,后由学生自选一种完成。
学生可能的情况:(1)以点A 为坐标原点,以AB 所在直线为X 轴,以AD 所在直线为Y 轴建立平面直角坐标系。
6.1.2平面直角坐标系2

描点方法
1、先找横坐标,并做X轴的垂 线(或Y轴平行线); 2、再找纵坐标,并做Y轴的垂 线(或X轴平行线); 3、两线交点就是所描的点。
平面直角坐标系:
y
6 5 4
3
2 1 -6 -5 -4 -3 -2 -1
o
-1 -2
1
2 3
4
5
6
x
1、x轴上的点的坐标特征是纵坐标等于零, -3 可记作:(x,0) -4 2、y轴上的点的坐标特征是横坐标等于零, -5 可记作:(0,y) -6 3、与x轴平行的直线上的点的纵坐标相同。 4、与y轴平行的直线上的点的横坐标相同。
y D(0,3) C
(3,3)
A(O)
7 B(3,0)
x
.正方形ABCD中,以正方形的中心O为坐标原点,点 D的坐标为(-5,5),写出A 、 B、C的坐标.
y D C
(5,5)
O
x
(-5,-5)
A
B(5,-5)
.正方形ABCD中,正方形边长为7,点A的坐标为 (-2,-1),写出 B、C 、D的坐标. y (-2,6) D
y
平面直角坐标系 第二象限
6
5 4
y轴或纵轴 第一象限
原点
1 2 3 4 5
3
2 1
x轴或横轴
6
-6 -5 -4 -3 -2 -1
-1 -2 -3 -4
o
X
第三象限
第四象限
注 ①两条数轴 ②互相垂直 叫平面直角坐标系
-5 意:坐标轴上的点不属于任何象限。 -6
③公共原点
·
练一练:指出图中A、B、C、D、E、F、G、H、 O各在那一象限?并写出各点的坐标 y F A(3,4) B(-5,4) 5 B A 4 C(-2,-4) D(2,-1)
5.2 平面直角坐标系(2)教案5份

5.2 平面直角坐标系(2)一.辅助 执教者 执教时间1.板书课题:同学们,今天我们一起来探究一下《5.2平面直角坐标系(2)》。
2.学习目标:(1)在平面直角坐标系中,根据已知条件,会求一些简单图形点的坐标;(2)探究并小结在平面直角坐标系中,图形经过平移,翻折或旋转,对应点坐标变化规律。
3.自学指导:认真看书本P 123-124页并思考以下问题:(1)阅读例3,学会求简单图形中点的坐标,以及规范的表达;(2)通过P 123页的“讨论”,探究图形平移过程中对应点坐标发生的变化规律;(3)通过P 124页“数学实验室”操作,小结图形在翻折,平移过程中对应点坐标变化规律。
7分钟后进行自学检测 二.先学1.看书 :教师巡视,搜集问题,并且根据实际情况进行临时备课。
重点:图形平移、翻折前后对应点坐标变化规律;难点:图形旋转前后对应点坐标变化规律。
2.自学检测:(1)书本P124 数学实验室 (2)书本P125练习(3)在平面直角坐标系中,△OBA 为等腰直角三角形,且AB =OB =A 、B 点坐标.②将△OBA 分别沿着x 轴、y 轴翻折,写出点A 、B 翻折后的对应点坐标;③将△OBA 沿着x 轴水平向左平移5个单位,写出点A 、B 、O 三点平移后的对应点坐标;④将△OBA 沿着y 轴水平向上平移3个单位,写出点A 、B 、O 三点平移后的对应点坐标。
三.后教1.更正:学生黑板上板演,底下同学相互校对答案,交流方法。
预设(1):学生不会根据图像的变化求对应点的坐标。
预设(2):平移、翻折前后图形的对应点坐标变化搞不清楚。
2.讨论:小结在平面直角坐标系中,图形经过平移,翻折或旋转,对应点坐标变化规律。
拓展:(1)平面直角坐标系中,点A (3,2),将点A 绕O 点逆时针旋转90°到点E ,则E 坐标为 ;将点A 绕O 点逆时针旋转180°到点F ,则F 坐标为 .四.当堂训练必做题:1.点A (-2,1)关于x 轴的对称点坐标是 ,关于y 轴的对称点的坐标是 .2.点B 关于x 轴对称点坐标是(5,2),则点B 关于y3.如图,在平面直角坐标系中,OB =AB =10,A (12,0),则B 4.已知x 轴上点P 到y 轴的距离是3,则点P 坐标是_______.5.点M (1,-x +2y )与点(x +y ,4)关于x 轴对称,则x = ,y6.已知点A (3,2)与点B (x ,3x +1)在同一条垂直于x 轴的直线上,B 的坐标为 。
平面直角坐标系(2)PPT课件

(-4,8),(-5,7),(-6,8),(-6,6),
(-5,5),(-6.5,3.5),(-5,2),
(-52,020年110)月2日,(-6,0),(-3,0).
6
如图,已知等腰三角形ABCD中, ∠DAB=60°,AD=4,DC=2, 建立适当的直角坐标系。
1)求A、B、C、D各点坐标;
2)求出梯形面积;
课内练习。
2020年10月2日
5
先画一个直角坐标系,然后按顺序描出点,
并用线段连接,说出图形的形状。
1、(5,2),(5,5),(6,3),
(5,2),(7,2),(5,1),(3,1),
(2,2),(5,2)
2、(-3,0),(-2,0),(-1,1),(-2,1)
(-3,0),(-3,3),(-5,5),(-4,6),
南-3教学楼
“餐厅”的坐标。
行政楼 -4 -5
体育楼 思考:若坐标系的单位 长度为10米,分别求
-6
2020年10月2日
-7
“体育楼”“南教学楼 “北教学楼”的距2离
在建立直角坐标系表示点或物体的位置时, 一般应选择适当的点作为坐标原点,适当的 距离为单位长度; 有时 x 轴上与y轴上的 单位长度可以不同,但同一坐标轴上的单位 长度必须统一.
D
C
2020年10月2日
A
B7
本节课你的收获是什么?
2020年10月2日
8
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
苏科八年级上册数学《平面直角坐标系(2)》课件

6
6
角坐标系,并写出各个顶点的坐标.
5
5
y
4
6
描述4物体的位置并不
3 y
5
唯一y3
62
4
26
15 B
3
15 A
-3
-2
O4 -13
1 22 1
3-3
-2
O4 -13
x
123
2 1
-3
-2
O -1
2 1 12 3
x
C
D
-3
-2
O -1
1
2
3-3
-2
O -1
x
123
对于边长为4的正ΔABC,建立适当的直角坐标系, 写出各个顶点的坐标.
B 其中在 x轴上 的点的个数是(
)
A.1
B.2
C.3
D.4
A 6.若P(a,4-a)是第二象限的点,那么a满足(
)
A.a<0
B.a>4
C.0<a<4
D.a<0或a>4
做一做
1、已知下列各点,分别求出其坐标:
y
M(3,2)
N (2,3)
5
Q.
4
P (4,- 4)
. 3
2
M2
.N
M
Q (- 4,4)
AE B
解:建立直角坐标系如图,选择比例为1:100。
取点E为直角坐标系的原点,使俯视图中的线段
AB在x轴上, 则可得A,B,C,D各点的坐标分别为(-1,0), (2,0),(2.5,1.5),(0,3.5).
根据上述坐标在直角坐标系中作点A,B,C,D, 并用线段依次连结各点,如图中的四边形就是所求作的 俯视图。
数学六年级下册第七章-平面直角坐标系(2)——点的坐标特征-课件与答案

数学
七年级 下册
配RJ版
第七章
7.1
知识点2 根据点的位置确定参数的值
【例题2】(1)点P(m+3,m+1)在平面直角坐标系的x轴上,则
m= -1
,点P坐标为 (2,0) ;
(2)点P(m+3,m+1)在平面直角坐标系的y轴上,则点P坐标
为 (0,-2) ;
(3)若点(a,b-1)在第二象限,则a的取值范围是 a<0 ,b的取值
数学
(6)在y轴上的点是
F
七年级 下册
配RJ版
7.1
.
2.在平面直角坐标系中,点(-2,4)在第 二
象限.
3.已知点A(-3,2),点B(3,2),连接A,B两点所得线段与
平行.
第七章
x
轴
数学
七年级 下册
配RJ版
第七章
知识点1 判断点所在象限
【例题1】请你根据下列各点的坐标判定它们分别在第几
象限或在什么坐标轴上.
5.点B(x,-5)不可能在 ( A )
A.x轴上
B.y轴上
C.第三象限
D.第四象限
7.1
数学
七年级 下册
配RJ版
第七章
7.1
6.已知点M(3,2)与点N(x,y)在同一条垂直于x轴的直线上,且
点N到x轴的距离为5,那么点N的坐标是 (3,5)或(3,-5) .
7.若点A(a-1,4)和B(2,2a)到x轴的距离相等,则实数a的值
的特征.
数学
七年级 下册
配RJ版
第七章
知识沉淀
1.象限点的特征:
第一象限 第二象限 第三象限 第四象限
(+,+)
冀教版八年级下册数学 19.2《平面直角坐标系(二)》 课件(共21张PPT)

解:因为P到X轴的距离是2 ,所以, a的值可以等于±2,因此P(3,2) 或P(3,-2)。
巩固练习
1.点 M(- 8,12)到 x轴的距离是____8_____, 到 y轴的距离是___1_2____.
第4题
y
平行于x轴的直线上的各点的纵坐标相同,横坐标不同. 1
-1 0 1
x
-1
平行于y轴的直线上的各点的横坐标相同,纵坐标不同.
• (5)坐标平面内点P(m,2)与点Q(3,-2)关 于原点对称,则m=
(6)已知,点A(3a+5,-6a-2)在第二四象限的角 平分线上,求a2005-a的值
(7)若点P(x,y)满足xy﹥0,则点p在第几象 限?
C(-4,-1)
-1 -2
D(2.5,-2)
-3
-4
D (0,5) A(O) (0,0)
如图,正方形 ABCD的边长为5, 如果以点A为原点, AB所在直线为x轴,
C (5,5) 建立平面直角坐标系,
那么y轴是那条线? 写出正方形的顶点A、 B、C、D的坐标。
请再建立一个直 角坐标系。这时顶点 坐标又是多少?
x
B (5,0)
李强同学家在学校以东 100m再往北150m处, 张明同学家在学校以西 100m再往南50m处, 王玲同学家在学校以南 150m处,如图,再在 坐标系中画出这三位同 学家的位置,并用坐标 表示出来.
北
单位:m 李强
(100,150)
50
张明O 50
东
(-100,-50)
王玲 (0,-150)
第5题
4.2平面直角坐标系(2) 课件

M
Q(- 4,4)
1
M1
6 5 4 3 2 1O 1 2 3 4 5 6 7
x
1
3叫做点M的横坐标,
2
2叫做点M的纵坐标。
3
合起来叫做点
4
M在平面的坐标,记
5
做M(3,2)
.P
一般,先在x轴上得 到横坐标,再在y轴
上得到纵坐标。
回教顾学旧目知
标
(三) 由坐标找点:
21cnjy
(1)在平面直角坐标系中画出下列各点:A(-2,-1)、
答案不唯一,如:以火车站为坐标原 点,南北方向为y轴,东西方向为x轴 建立平面直角坐标系(如图).设图中每 个小正方形的边长为1000 m,则火车 站(0,0),体育场(-4000,2000), 华侨宾馆(-3000,-2000),乐源超 市(2000,-3000).
达教标学测目评
标
21cnjy
1.如图,若在象棋盘上建立平面直角坐标系,使“将”位于
达教标学测目评
标
21cnjy
3.如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别 为A(0,0),B(9,0),C(7,5),D(2,7),求四边形ABCD的 面积.
达教标学测目评
标
4.排列做操队形时,甲、乙、丙位置如图所示,甲对乙说,如果 我的位置用(0,0)来表示,你的位置用(2,1)表示,那么 丙的位置是(A ) A.(5,4) B.(4,5) C.(3,4) D.(4、3)
重点 难点
根据要表示的图形的需要建立适当的直角坐标系,并在直角坐标系中画出 图形. 例3的思路比较复杂,需要学生有较高的综合运用知识的能力,是本节教学 的难点.
回教顾学旧目知
浙教版八年级上册4.2 平面直角坐标系(2) 课件(共20张PPT)

拓展
2.如图,点A的坐标是(2,2),若 点P在x轴上,且△APO是等腰 三角形,求点P的坐标.
y
2
A
1
-1 0
x
P
1 2 34
达标
3.若点P在第三象限且到x轴的距 离为2, 到y轴的距离为1.5,则点 P的坐标是____(_-1_._5,__-2_)______. 4.若点(a,b-1)在第二象限,则a的
点如的何坐选标择分y轴别?为(2)根据所 根据上述坐标在直角坐标系中 标注(的-1尺,寸0,)如,何(选2择,0坐)标 作点A,B,C,D,并用线段依次连 (轴2的.单5位,1长.度5?),(0,3.5)结各点,
如图中的四边形ABCD就是所求作的图形
若以A为坐标原点, 建立适当的坐标系,你能
D
写出ABCD各点的y坐标吗?
3.在点A(-2,-4)、B(-2,4)、C(3,-4)、D(3,4) 中,属第一象限的点是 点D ,属第二象限的点是 点B , 属第三象限的点是 点A , 属第四象限的点是 点C .
纵轴 y
4
第二象限 3
(-,+) 2
1
-4 -3 -2 -1 o
原点
-1
第三象限 -2
(-,-) -3
-4
第一象限
解:A点在第二象限;B点在第四象限;
C点在第三象限;D点在第一象限;
E点在x轴上;F点在y轴上
3、已知点P(0,a)在y轴的负半轴,则Q(-a2-2,-a+2)在( B ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
4.如xy>0,且x+y<0,那么P(x,y)在( C ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.1.2平面直角坐标系(2) 公开课一等奖课件

y
点A与点 D关于X轴对称 横坐标相同, 纵坐标互为相反数
B
( -3 , 2)
A ( 3, 2 )
1
0
C (-3, -2 )
点A与点 B关于Y轴对称
孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试 成绩就否定自己。高三的几次模拟考试中,她的 成绩一直稳定在年级前5名左右。
第四象限
横坐标相同的点的连线平行于y轴
如图,分别写出八边形各个顶点的坐标。 y
C(-1,5) D(-4,2)
1 0 1
B (4,5)
A (7,2) x H (7,-3) G (4,-6)
E(-4,-3) F (-1,-6)
纵坐标相同的点的连线平行于x轴
结论2
1、第一、二、三、四象限内的坐标的符号 分别是(+,+),(-,+),(-,-),(+, -) 2、坐标轴的点至少有一个是0 x轴,y轴上点的坐标的特点: x轴上的点的纵坐标为0,表示为(x,0) y轴上的点的横坐标为0,表示为(0,y) 3、纵坐标相同的点的连线平行于x轴
上海 2006 高考 理科 状元-武亦 文
5.2平面直角坐标系(2)教学设计

再讨论:再把△A′B′C′向下平移3个单位长度得到△A′′B′′C′′,你能写出△A′′B′′C′′各顶点的坐标吗?
数学实验室:
探索对称点的坐标关系,强化学生对“点的坐标的数值变化与点的位置变化的关系”的认识.
1.数学实验一.
方法二:将点A′向下平移3个单位长度得到点A′′,再根据平移不改变图形的形状、大小,由△A′B′C’的特点,以点A为基础点画出△A′′B′′C′′.
学生在课本上描点.
最后教师展示画图的结果.
通过学生的讨论活动,复习了上节课所学的坐标,坐标与几何图形之间的关系,并回顾了等腰三角形的性质.为解决课本的例3作准备.
总结:
通过这节课你学到了什么?
尝试对知方法和经验.
试对所学知识进行反思,归纳和总结.会对知识进行提炼,体会数学的思想和应用,将感性的认识升华为理性的认识.
课后作业:
课本132-133页2、4、7.
师生共同边讨论,边画图.
学生重点讨论:所写点A坐标的理由是什么?
由学生独立思考后,通过小组讨论解决问题.最后展示讨论的结果.
注意:点B′的位置与点B的关系,不要将点B′与点C′混淆.
同样由学生自己讨论解决.
注意学生总结得到△A′′B′′C′′的不同方法:
方法一:将点A′、B′、C′分别向下平移3个单位长度,得到点A′′、B′′、C′′,从而得到△A′′B′′C′′.
(3)探讨平移前、后线段端点A与A′、B与B′的纵坐标之间的关系;
(4)写出平移前、后线段中点D与D′的坐标,并分别探讨它们的纵坐标、横坐标之间的关系;
(5)写出线段AB上任意一点C(m,n),当AB平移到A′B′后,点C′的坐标,形成关于点的坐标变化与点的位置变化关系的一般认识.
2023年人教版七年级数学下册第七章《平面直角坐标系(2)》学案

新人教版七年级数学下册第七章《平面直角坐标系(2)》学案【学习目标】理解并应用平面直角坐标系概念掌握四个象限内点、坐标轴上的点及特殊位置的点的坐标特征,并能初步利用它判断点的位置,会简单的面积计算。
【学习流程】一、问题探究:根据你对坐标平面内点所在位置不同,坐标符号特征如下(用“+”、“-”、“0”分别填写) 点的位置横坐标符号纵坐标符号在第一象限+ +在第二象限在第三象限在第四象限在正半轴上在x轴在负半轴上在正半轴上在y轴在负半轴上图2 原点二、自学归纳:第一象限点的横坐标为,纵坐标为,即点P(x,y)在第一象限,则x 0,y 0;第二象限点的横坐标为,纵坐标为,即点P(x,y)在第一象限,则x 0,y 0;第三象限点的横坐标为,纵坐标为,即点P(x,y)在第一象限,则x 0,y 0;第四象限点的横坐标为,纵坐标为,即点P(x,y)在第一象限,则x 0,y 0;在x轴上的点坐标为0,即点P(x,y)在x轴上,则= 0;在y轴上的点坐标为0,即点P(x,y)在y轴上,则= 0;三、当堂训练:1.指出下列各点所在的象限或坐标轴。
A(-1,-2),B(2,-4),C(-1,5),D(8,9),E(-5,0),F(0,3),G(3,0),H(0,6)2.已知如图:A(-5,4)、B(-2,-2)、C(0,2).求三角形ABC的面积。
3.已知点P (m,n ),若mn>0,则点P 在第 象限;若mn<0,则点P 在第 象限; 若mn>0,m+n<0则点P 在第 象限;若mn<0,m+n>0则点P 在第 象限; 四、范例解析:已知点P 到x 轴的距离是2,到y 轴的距离是3,则点P 是多少?五、课后巩固:1.如图,在所给的坐标系中,描出下列各点的位置。
⑴A (-4,-4) H (-2,-2)C (3,3)D (5,5 )E (-3,-3) I (0,0)观察:①这些点的横坐标和纵坐标都 ②这些点还有什么特点?⑵A (-4,4) H (2,-2)C (3,-3)D (-5,5 )E (-3, 3) I (0,0)观察:①这些点的横坐标和纵坐标都 ②这些点又有什么特点? 2.⑴在平面直角坐标系中描点A(-2,4),B (3,4),画出直线AB ,直线AB 的特点: ; 若点M 是直线AB 上任意一点,则点M 的纵坐标是 。
新浙教版八年级上4.2平面直角坐标系(2)

y y建立适当的直角坐 如图,矩形ABCD 的长与宽分别是6,4,
标系,并写出各个顶点的坐标.
5
4 3 y 2 6 1 5 -3 4 O -2 -1 3 2 1 C -3 -3 y 6 5 4 B
6
6
5
4 3 y 2 6 1 5
3
2 1 2 1 O -2 -1 1 2 3 -3 3 -3
A x 1 2 3 x
(2) Y轴
第二象限 (- , + )
-4 -3 -2
第一象限 (+ , + )
2 3 (1) X 轴
1
-1 O 0 1 -1 -2 -3
x
(1)横轴
(3)原点
第三象限
第四象限 (+ , - )
(- , - )
-4
当堂检测
1.在点A(-2,-4)、B(-2,4)、C(3,-4)、 D(3,4)中,属第一象限的点是 ,属第二象限的 点是 ,属第三象限的点是 , 属第四象限 的点是 .
横坐标
纵坐标
P(3,4)
坐标
平面直角坐标系
(2)纵轴 3 (3)原点
y
2
1
(2) Y轴
(1) X 轴 2 3
-4 -3
-2
在平面内有公共原点
-1 O 0 1 -1
x
(1)横轴
而且互相垂直的两条数轴,
-3 -4
-2
就构了平面直角坐标系
.简称直角坐标系
平面直角坐标系(笛卡尔坐标系)
(2)纵轴
y
3 2
B(3,0)
P.123 课内练习1、2
y 6 5 4 3 2
y 6
5
y 6 5
4 镇政府 4 3 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、坐标平面内对称点的坐标特征 (1)点P(a,b)关于x轴的对称点P1的坐标为 (a,-b)
x不变,y变 (2) 点P(a,b)关于y轴的对称点P2的坐标为(-a,b)
x变,y不变 (3)点P(a,b)关于原点的对称P 1 点P3的坐标为 (-a,-b)
x变,y变
7
六、学以致用、
例1、点A(-3,2)在第
求点B的坐标。
例3
1、直角坐标系内点P(-2,3)关于原点对称的点Q的坐
标为 (
)
2、已知点P(a-1,5)和点Q(2,b-1)关于X轴对称,则 a=( ) , b= ( )
3、若点P(m-2,m )是第二象限的点,则m的取值 为 ()
4、若点P(m+3,m+1)在X轴上,则点P的坐标为( )
9
1
一.数轴上点的坐标的定义: 数轴上各个点对应着一个实数,这个实数叫做这
个点的坐标。
二·平面直角坐标系的概念; 1·平面内两条互相垂直的数轴 组成的平面直角坐标系 2·水平的数轴叫横轴 (或x轴)取向右为正 ,铅直的数 轴叫(y轴 )取向上为正 两坐标轴的交点叫做原点 3·建立平面直角坐标系的平面叫坐标平面 4·两条坐标轴将平面分成4个部分, 坐标轴上的点不属 于任何一个部分
2
三·平面内点的坐标的定义
(1)由点A向x做垂线 垂足在x轴上的坐标 叫做点A的横坐标
(2)点A向y轴做垂线 垂足在y轴上的坐标 叫做点A的纵坐标
点A的横坐标a ,纵坐标b 合起来叫做
点A的坐标 记作点A(a,b).
平面内点的坐标是一对有序实数
3
例1、在一个直角坐标系中分别描出坐标是 A(2,3)B(-2,3),c(-3,-2),D(3,-2)E(0,-2), F(-2,0)。
②若点p (x,y) 在y轴上,则它的横坐标x=0,纵坐 标为任意实数
③坐标原点是x轴和y轴的交点,它的横,纵坐标都 为0.即x=y=0
若p(x,y)在第一,三象限的角平分线上,则x=y 若p(x,y)在第二,四象限的角平分线上,则x=y 5
例2、在直角坐标系中描出点A(2,-3),分别找 出它关于x轴,y轴及原点的对称点的坐标, 并写出这些点的坐标特征
象限,点B(3,-2)
在第
象限,点C(3,2)在第 象限, 点 D
(-3,-2)在第 象限,点 D(2,0)在
轴
上。
例2、已知A点是坐标平面上的一点,而且点A与x轴 的距离是3个单位,与y轴的距离是4个单位,若点A 在第二象限内.
求:(1)点A的坐标 (2)若点B与点A的距离是4个单位,且AB∥y 轴,
4
四·平面直角坐标系中点的坐标特征 (1)各象限内点的坐标特点:设P(x,y) 第一象限的点:x>0,y>0 第二象限的点:x<0,y>0 第三象限的点:x<0,y<0 第四象限的点: x>0,y<0
(2)坐标轴上的点的坐标特征 ①若点p(x,y)在x轴上,则他的纵坐标等于y=0,横 坐标为任意实数