模拟电子技术学习指导与习题解答分析
模拟电子技术基础学习指导与习题解答
第一章思考题与习题解答1-1 名词解释半导体、载流子、空穴、自由电子、本征半导体、杂质半导体、N型半导体、P型半导体、PN结。
解半导体——导电能力介乎于导体与绝缘体之间的一种物质。
例如硅(Si)和锗(Ge),这两种半导体材料经常用来做晶体管。
载流子——运载电流的粒子。
在导体中的载流子就是自由电子;半导体中的载流子有两种,就是自由电子与空穴,它们都能参加导电。
空穴——硅和锗均为共价键结构,属于四价元素。
最外层的四个电子与相邻原子最外层电子组成四个共价键,每一个共价键上均有两个价电子运动。
当环境温度升高(加热或光照)时,价电子获得能量摆脱原子核与共价键对它的束缚进入自由空间成为自由电子,在原来的位置上就出现一个空位,称为空穴。
空穴带正电,具有吸引相邻电子的能力,参加导电时只能沿着共价键作依次递补式的运动。
自由电子——位于自由空间,带负电,参加导电时,在自由空间作自由飞翔式的运动,这种载流子称为自由电子。
本征半导体——不掺任何杂质的半导体,也就是指纯净的半导体,称为本征半导体。
杂质半导体——掺入杂质的半导体称为杂质半导体。
N型半导体——在本征硅(或锗)中掺入微量五价元素(如磷P),就形成含有大量电子的N型杂质半导体,又称电子型杂质半导体,简称N型半导体。
P型半导体——在本征硅(或锗)中掺入微量的三价元素(如硼B),就形成含大量空穴的P型杂质半导体,又称空穴型杂质半导体,简称P型半导体。
PN结——将一块P型半导体与一块N型半导体放在一起,通过一定的工艺将它们有机地结合起来,在其交界面上形成一个结,称为PN结。
1-3 选择填空(只填a、b…以下类同)(1)在PN结不加外部电压时,扩散电流漂移电流。
(a.大于,b.小于,c.等于)(2)当PN结外加正向电压时,扩散电流漂移电流。
(a1.大于,b1.小于,c1.等于)此时耗尽层。
(a2.变宽,b2.变窄,c2.不变)(3)当PN结外加反向电压时,扩散电流漂移电流。
模拟电子技术第五版基础习题与解答
模拟电子技术第五版基础习题与解答在电子技术领域,模拟电子技术是一门至关重要的基础学科。
对于学习者来说,通过做习题来巩固知识、加深理解是必不可少的环节。
《模拟电子技术第五版》中的基础习题涵盖了丰富的知识点,能够有效地检验我们对这门学科的掌握程度。
接下来,让我们一起探讨其中的一些典型习题及其解答方法。
我们先来看一道关于二极管的习题。
题目是这样的:已知一个二极管在电路中的工作电流为 10 mA,其导通压降为 07 V,求该二极管在电路中消耗的功率。
解答这道题,我们首先要明确功率的计算公式,即功率等于电压乘以电流。
在这个例子中,电压就是二极管的导通压降 07 V,电流为 10 mA(换算为 001 A)。
那么,二极管消耗的功率 P = 07 V × 001 A =0007 W = 7 mW。
再来看一道三极管的习题。
假设一个三极管的放大倍数为 50,基极电流为20 μA,求集电极电流的值。
对于三极管,集电极电流等于放大倍数乘以基极电流。
所以,集电极电流=50 × 20 μA =1000 μA = 1 mA。
下面这道题涉及到放大器的分析。
一个共射极放大器,输入电阻为1 kΩ,输出电阻为5 kΩ,电压放大倍数为-100。
若输入电压为 1 mV,求输出电压。
首先,根据电压放大倍数的定义,输出电压等于电压放大倍数乘以输入电压。
所以,输出电压=-100 × 1 mV =-100 mV。
接下来是一道关于反馈电路的习题。
在一个反馈电路中,反馈系数为 01,输入信号为 5 V,求反馈信号的大小。
反馈信号等于反馈系数乘以输入信号,即 01 × 5 V = 05 V。
在模拟电子技术中,运算放大器的相关习题也非常常见。
比如这样一道题:一个理想运算放大器组成的反相比例放大器,反馈电阻为 10kΩ,输入电阻为1 kΩ,输入电压为 2 V,求输出电压。
根据反相比例放大器的公式,输出电压等于(反馈电阻/输入电阻)×输入电压。
模电习题讲解与解析(第6版)2020
vi2
∵i3=i4,
0
vn R3
vn vo R4
vo
(1
R4 R3
)vn
vo表达式
vo
(1
R4 R3
)(
R2 R1 R2
vi1
R1 R1 R2
vi2 )
当R1=R2 =R3 时, vo vi1 vi2
分析:A1、 A2 电压跟随器
A3: vo1“”端 ,vo2“+”端, 加减电路
R2 R1
)
2
=
(1
6V
20 ) 10
2
0 2 2 vo 10 20
vO =6V
in=0
in=0
(c) vn = vp =0 , in=0
vo vn= 2V
vo = 2V
(d) vn = vp =2V, in=0
vo = vn = vp =2V
方法一:公式法 vi“+”端 ,同相放大电路 同相放大电路通用公式:
vo vo vo =0.6+1.2V =1.8V
vp1
vp2
方法二:虚短虚断法 : vp = vn, ip=in=0
A1: i1=i21 , vn1=vp1=0
vi1 vn1 R1
vn1 vo1 , R21
vo1
R21 R1
vi
100 0.6=1.2V
50
A2:i2=i22 ,
vo1 vn2 vn2 vo ,
工 作 区 ③
+
DZ
符号
①
(b) 伏安特性
稳压管, RL//DZ ,VO =VZ
解: (1) VO = VZ , IR = IO + IZ , VI = VR + VO
模拟电子技术基础学习指导与习题解答(谢红主编)第五章 思考题与习题解答
第五章 思考题与习题解答5-1 什么是功率放大电路?对功率放大电路有哪些特殊要求?解 以输出功率为主的放大电路称功率放大电路。
对功率放大电路有四点要求:①输出功率要足够大,输出电阻越小越好。
所谓足够大的功率是指能带动负载作功的功率。
输出电阻越小,带负载能力越强。
②效率高。
也就是说,在电源电压一定的情况下,输出功率要大,而管耗要小。
③非线性失真小。
④有过载保护措施。
这是一种防止过载时由于大电流导致烧管的安全措施。
一般是设计保护电路。
5-2 什么是交越失真?它是怎么产生的?用什么方法消除它?解 交越失真是指在正弦波形的正、负半周交界处出现台阶现象的失真情况。
其原因是晶体管存在死区电压,它的特性为非线性特性,因此交越失真属于非线性失真。
克服的办法是加小偏置,使在无信号输入时,小偏置电压等于晶体管的死区电压(或开启电压),一旦有信号加入,晶体管立刻进入线性工作区,这样就不会出现交越失真了。
5-3 功率放大电路按工作状态不同可分为哪三种?它们各有什么优缺点?解 功率放大电路按工作状态不同可分为甲类、乙类、甲乙类三种。
甲类的最大优点是在信号周期内不失真。
缺点是效率低,在不加信号时也消耗能量,而且静态管耗最大,严重抑制了效率的提高。
乙类的优点是效率高。
静态时管耗为零。
缺点是有削半波失真,只能输出半个周期。
甲乙类是介乎于甲类和乙类两种工作状态之间的一种,其效率比较高,失真情况介乎于以上二者之间,是一种经常采用的工作状态。
※※5-4 甲乙二人在讨论功率放大电路的供电问题时,甲认为从能量守恒的概念出发,当输出功率大时,电源给出的电流理应增加;乙则认为只要输出幅度不失真,电流应在静态值附近上下波动,不管输出幅度大小,其平均值应不变。
你同意哪一种观点?解 对于甲类功放,乙说得对。
因为此时V CQ1cm I I I ==。
而对于乙类功放,甲说得对。
因为此时V cm 2πI I =。
两种功放均符合能量守恒。
※※5-5 甲乙二人在讨论功率放大管的发热问题时,甲认为当输出功率最大时管子最热,因为电流消耗大;乙则认为此时最冷,因损耗在管子中的功率已经都转换成输出功率。
《模拟电子技术》经典习题(有图详细分析版)
项目一习题参考答案1. PN结正向偏置时是指P区接电源的正极,N区接电源的负极。
2. 在常温下,硅二极管的死区电压约为0.5V,导通后正向压降约为0.6~0.8V ;锗二极管的死区电压约为0.1V,导通后正向压降约为0.2~0.3V。
3. 三极管按结构分为NPN型和PNP型;按材料分为硅管和锗管。
三极管是电流控制型器件,控制能力的大小可用 表示,它要实现信号放大作用,需发射结正偏,集电结反偏。
4. 场效应管是电压控制型器件,控制能力的大小可用g m表示,它的主要特点是输入电阻很大。
5. 能否将1.5V的干电池以正向接法接到二极管两端?为什么?解:不能,因为二极管正向电阻很小,若将1.5V的干电池以正向接法接到二极管两端会使得电路中的电流很大,相当于干电池正、负极短路。
6. 分析图1.52所示电路中各二极管是导通还是截止,并求出A、B两端的电压U AB(设VD为理想二极管,即二极管导通时其两端电压为零,反向截止时电流为零)。
图1.52 题6图解:(a)VD导通,U AB=-6V。
(b)VD截止,U AB=-12 V。
(c)VD1导通,VD2截止,U AB=0 V。
(d)VD1截止,VD2导通,U AB=-15 V。
7. 在图1.53所示电路中,设VD为理想二极管,u i =6sinω t (V),试画出u O的波形。
图1.53 题7图解:(a)(b)8. 电路如图1.54所示,已知u i=5sinΩ t(V),二极管导通电压为0.7V。
试画出u i与的波形。
解:u i>3.7V时,VD1导通,VD2截止,u o=3.7V;3.7V>u i>-4.4V时,VD1截止,VD2截止,u o= u i;u i<-4.4V时,VD1截止,VD导通,u o=-4.4 V。
9. 测得电路中几个三极管的各极对地电压如图1.55所示,试判别各三极管的工作状态。
图1.54 题8图图1.55 题9图解:(a)三极管已损坏,发射结开路(b)放大状态(c)饱和状态(d)三极管已损坏,发射结开路10. 测得放大电路中六只晶体管的电位如图1.56所示。
模拟电子技术学习指导与习题解答分析
把电路分成两个部分,一部分是由二极管组成的非线性电路,另一部分则是由电源、 电阻等线性元件组成的线性部分。分别画出非线性部分(二极管)的伏安特性曲线和线性部
分的特性曲线,两条特性曲线的交点即为电路的工作电压和电流。
2)等效模型分析法
二极管的等效模型有四种:理想、恒压降、折线和微变等效模型。一般情况下,理想 模型和恒压降模型用得较多。
还兼作阴极),其中,阴极有发射电子的作用,阳极有接收电子的作用。二极管具有单向导 电的特性,可用作整流和检波。在二极管的基础上增加一个栅极就成了电子三极管,栅极
能控制电流,栅极上很小的电流变化,都会引起阳极很大的电流变化,所以,电子三极管 有放大作用。
5.晶体管和集成电路
1)晶体管
通俗地说,晶体管是半导体做的固体电子元件。像金、银、铜、铁等金属,它们导电 性能好,叫做导体。木材、玻璃、陶瓷、云母等不易导电,叫做绝缘体。导电性能介于导 体和绝缘体之间的物质,叫半导体。晶体管就是用半导体材料制成的,这类材料中最常见 的便是锗和硅两种。晶体管的出现是电子技术之树上绽开的一朵绚丽多彩的奇葩。
图2.5 PN结的形成
当浓度差引起的多子的扩散运动和内电场引起的少子的漂移运动达到动态平衡时,就 形成了PN结。
2)PN结的单向导电性
PN结加正向偏置时,能形成较大的正向电流,PN结正向电阻很小;加反向偏置时,
反向饱和电流很小,PN结呈高阻这就是PN结的单向导电性。
3.半导体二极管
1)二极管的伏安特性
PN结外加正向电压一一正向偏置时, 由于是多子导电,因而外加电压的微小变化将使
电流有较大的变化。结果,扩散力大于电场力 一一由多子形成的扩散(正向)电流起主导地
位,而少子形成的漂移电流可忽略不计, 空间电荷区变窄,电阻变小。当外加负向电压 ——
模拟电子技术(模电课后习题含标准答案)(第三版)
第1章 常用半导体器件1.1选择合适答案填入空内。
(l)在本征半导体中加入( A )元素可形成N 型半导体,加入( C )元素可形成P 型半导体。
A.五价 B. 四价 C. 三价 (2)当温度升高时,二极管的反向饱和电流将(A) 。
A.增大 B.不变 C.减小(3)工作在放大区的某三极管,如果当I B 从12 uA 增大到22 uA 时,I C 从l mA 变为2mA ,那么它的β约为( C ) 。
A.83B.91C.100(4)当场效应管的漏极直流电流I D 从2mA 变为4mA 时,它的低频跨导g m 将( A ) 。
A.增大;B.不变;C.减小 1.3电路如图P1.2 所示,已知10sin i u t ω=(V ),试画出i u 与o u 的波形。
设二极管导通电压可忽略不计。
图P1.2 解图P1.2解:i u 与o u 的波形如解图Pl.2所示。
1.4电路如图P1.3所示,已知t u i ωsin 5=(V ),二极管导通电压U D =0.7V 。
试画出i u 与o u 的波形图,并标出幅值。
图P1.3 解图P1.31.6电路如图P1.4所示, 二极管导通电压U D =0.7V ,常温下mV U T 26≈,电容C 对交流信号可视为短路;i u 为正弦波,有效值为10mV 。
试问二极管中流过的交流电流的有效值为多少?解:二极管的直流电流()/ 2.6D D I V U R mA =-=其动态电阻:/10D T D r U I ≈=Ω故动态电流的有效值:/1di D I U r mA =≈1.7现有两只稳压管,稳压值分别是6V 和8V ,正向导通电压为0.7V 。
试问: (1)若将它们串联相接,则可得到几种稳压值?各为多少? (2)若将它们并联相接,则又可得到几种稳压值?各为多少?解:(1)串联相接可得4种:1.4V ;14V ;6.7V ;8.7V 。
1、两个管子都正接。
(1.4V )2、6V 的管子反接,8V 的正接。
模拟电子技术基础学习指导与习题解答(谢红主编)第三章思考题与习题解答
模拟电⼦技术基础学习指导与习题解答(谢红主编)第三章思考题与习题解答第三章思考题与习题解答3-1 选择填空(只填a 、b 、c 、d)(1)直接耦合放⼤电路能放⼤,阻容耦合放⼤电路能放⼤。
(a.直流信号,b.交流信号,c.交、直流信号)(2)阻容耦合与直接耦合的多级放⼤电路之间的主要不同点是。
(a.所放⼤的信号不同,b.交流通路不同,c.直流通路不同)(3)因为阻容耦合电路 (a1.各级Q 点互相独⽴,b1.Q 点互相影响,c1.各级Au 互不影响,d1.Au 互相影响),所以这类电路 (a2.温漂⼩,b2.能放⼤直流信号,c2.放⼤倍数稳定),但是 (a3.温漂⼤,b3.不能放⼤直流信号,c3.放⼤倍数不稳定)。
⽬的复习概念。
解 (1)a 、b 、c ,b 。
(2)a 、c 。
(3)a1,a2,b3。
3-2 如图题3-2所⽰两级阻容耦合放⼤电路中,三极管的β均为100,be1 5.3k Ωr =,be26k Ωr =,S 20k ΩR =,b 1.5M ΩR =,e17.5k ΩR =,b2130k ΩR =,b2291k ΩR =,e2 5.1k ΩR =,c212k ΩR =,1310µF C C ==,230µF C =,e 50µF C =,C C V =12 V 。
图题3-2(a)放⼤电路;(b)等效电路(答案)(1)求i r 和o r ;(2)分别求出当L R =∞和L 3.6k ΩR =时的S u A 。
⽬的练习画两级放⼤电路的微变等效电路,并利⽤等效电路求电路的交流参数。
分析第⼀级是共集电路,第⼆级是分压供偏式⼯作点稳定的典型电路,1V 、2V 均为NPN 管。
解 (1)求交流参数之前先画出两级放⼤电路的微变等效电路如图题3-2(b)所⽰。
注意图中各级电流⽅向及电压极性均为实际。
第⼀级中b1I 的⽅向受输⼊信号i U 极性的控制,⽽与1V 的导电类型(NPN 还是PNP)⽆关,i U 上正下负,因此b1I 向⾥流,输出电压o1U 与i U 极性相同;第⼆级中b 2I 的⽅向受o1U 极性的控制,o1U 上正下负,因此b 2I 向⾥流,也与2V 的导电类型⽆关,或者根据c1I 的⽅向(由1c 流向1e )也能确定b 2I 的⽅向是向⾥流。
模拟电子技术基础学习指导与习题解答谢红主编第六章思考题与习题解答
第六章思考题与习题解答6-1 要满足下列要求,应引入何种反馈?(1)稳定静态工作点;(2)稳定输出电压;(3)稳定输出电流;(4)提高输入电阻;(5)降低输入电阻;(6)降低输出电阻、减小放大电路对信号源的影响;(7)提高输出电阻、提高输入电阻。
目的复习引入反馈的原则。
解(1)欲稳定静态工作点应引入直流负反馈,因为静态工作点是个直流问题。
(2)稳定输出电压应引入电压负反馈。
输出电压是交流参量,电压负反馈属于交流反馈组态。
在四种交流负反馈组态中,电压串联负反馈和电压并联负反馈均能达到稳定输出电压的目的。
(3)稳定输出电流应引入电流负反馈。
输出电流也是交流参量,在四种组态中,引电流串联负反馈或电流并联负反馈均可。
(4)提高输入电阻应引入串联负反馈,如电压串联负反馈或者电流串联负反馈。
(5)降低输入电阻应引入并联负反馈,如电压并联负反馈或者电流并联负反馈。
(6)降低输出电阻、减小放大电路对信号源的影响是一个减小输出电阻并提高输入电阻的问题,应引入电压串联负反馈。
(7)输入、输出电阻均提高应引入电流串联负反馈。
6-2 负反馈放大电路为什么会产生自激振荡?产生自激振荡的条件是什么?解在负反馈放大电路中,如果把负反馈引的过深会将负反馈变成正反馈,于是自激振荡就产生了。
产生自激振荡的条件是AF=-1幅度条件AF=1相位条件arg AF=±(2n+1)π,n为整数∆=±180°或者附加相移φ6-3 判断下列说法是否正确,用√或×号表示在括号内。
(1)一个放大电路只要接成负反馈,就一定能改善性能。
( )(2)接入反馈后与未接反馈时相比,净输入量减小的为负反馈。
( )(3)直流负反馈是指只在放大直流信号时才有的反馈;( )交流负反馈是指交流通路中存在的负反馈。
( )。
(4)既然深度负反馈能稳定放大倍数,那么电路所用各个元件都不必选用性能稳定的。
( )(5)反馈量越大,则表示反馈越强。
模拟电子技术第五版基础习题与解答
模拟电子技术第五版基础习题与解答在电子技术的领域中,模拟电子技术一直占据着重要的地位。
它是电子信息工程、通信工程、自动化等专业的基础课程之一。
《模拟电子技术第五版》作为一本经典教材,其中的基础习题对于学生理解和掌握这门课程的知识具有至关重要的作用。
首先,让我们来看看一些关于半导体基础知识的习题。
半导体器件是模拟电子技术的基石,理解其工作原理和特性是学好这门课程的关键。
例如,有这样一道习题:“解释为什么在纯净的半导体中掺入少量杂质可以显著改变其导电性能?”对于这道题,我们需要明白,纯净的半导体中载流子浓度很低,而掺入杂质后会形成施主能级或受主能级,从而增加了载流子的浓度,使得导电性能得到改善。
再比如,“比较 N型半导体和 P 型半导体在导电机制上的差异。
”这道题要求我们清楚 N型半导体中主要是电子导电,P 型半导体中主要是空穴导电,并且要能够详细阐述其形成原因和导电过程。
在二极管这一章节,也有不少具有代表性的习题。
“分析二极管在正向偏置和反向偏置时的电流特性,并解释其原因。
”在解答这道题时,我们要知道在正向偏置时,二极管的 PN 结变薄,电阻减小,电流容易通过;而在反向偏置时,PN 结变厚,电阻增大,只有极小的反向饱和电流。
还有“利用二极管的单向导电性,设计一个简单的整流电路,并计算其输出电压和电流。
”这样的题目则需要我们将理论知识应用到实际电路设计中,通过计算来确定电路的性能参数。
三极管是模拟电子技术中的核心器件,相关的习题更是复杂多样。
“阐述三极管的放大作用原理,以及如何判断三极管的工作状态。
”这道题要求我们深入理解三极管的结构和工作原理,知道三极管通过控制基极电流来实现对集电极电流的放大作用。
判断工作状态时,需要根据基极电流、集电极电流和发射极电流之间的关系,以及各极之间的电压来确定。
又如“设计一个共射极放大电路,计算其电压放大倍数、输入电阻和输出电阻。
”这就需要我们综合运用三极管的放大原理、电路分析方法以及相关的计算公式来完成。
模拟电子技术基础(学习指导及习题详解)
(4)图1-1(d)中,二极管VD1、VD2开路时,VD1端电压UD1=12V,VD2端电压UD2=-5V+12V=7V,UD1>UD2,故VD1优先导通,则A、B两端电压UAB=-0.7V,若以B点为参考点,A点电位UA=-0.7V,C点电位UC=-5V,VD2阳极电位低于阴极电位,将VD2钳制在截止状态。
UO1010UI21012UI12633
当-10V≤UI≤12V时,VD1 、VD2都截止,输出电压UO=UI;
当UI>12V时,VD1导通,VD2截止,输出电压
UO12UI12212UI41263。 电路的电压传输特性(UO~UI)如图1-4(b)所示。
5.电路如图1-5(a)所示,R=1kΩ,UREF=3V。(1)UI=0V、4V、6V时,求相应的输出电压值;(2)当ui=6sinωt(V)时,绘出相应的输出电压uo的波形。
UABUD12V0.7V12V12.7V
(2)在图1-1(a)中先假设二极管VD断开,求得二极管两端电压为
UD6
62
24V0.7V22
二极管工作在导通状态,导通后二极管两端电压UD=Uon=0.7V,A、B两端电压为
UAB
20.2
2.35V
212
(3)在图1-1(c)中,二极管VD1、VD2开路时,VD1端电压UD1=5V,VD2端电压
解:设二级管的Uon=0.5V,rD=200Ω。图1-5(a)的等效电路如图1-5(b)所示。
(1)当UI=0时,二极管反偏截止,相当于等效电路中开关断开,相应的输出电压UO=0; 当UI=4V时,二极管导通,相当于等效电路中开关闭合,相应的输出电压
模拟电子技术第五版基础习题与解答
模拟电子技术第五版基础习题与解答在电子技术的领域中,模拟电子技术一直占据着重要的地位。
它是许多电子系统的基础,对于理解和设计电子电路具有至关重要的作用。
《模拟电子技术第五版》作为这一领域的经典教材,其中的基础习题更是帮助学习者巩固知识、提升能力的重要工具。
首先,让我们来看看一些关于半导体器件的习题。
半导体器件是模拟电子技术的基础,其中二极管和三极管的特性是重点。
比如,有这样一道习题:已知一个二极管在电路中的工作条件,计算其导通电压和电流。
解答这类问题,需要我们熟练掌握二极管的伏安特性曲线,明确其导通条件和截止条件。
通过分析电路中的电压和电阻关系,运用欧姆定律来计算电流。
在解答过程中,要注意二极管的正向压降和反向饱和电流等参数的影响。
三极管的习题则更加复杂一些。
例如,给出一个三极管放大电路的参数,计算其放大倍数、输入电阻和输出电阻。
这就要求我们对三极管的工作原理有深入的理解,知道如何判断三极管的工作状态(截止、放大、饱和),并且能够运用等效电路的方法来简化计算。
同时,还需要考虑电路中的电容对信号的影响,以及偏置电阻的设置对三极管工作点的影响。
在集成运算放大器这一章节,也有许多具有挑战性的习题。
比如,设计一个基于集成运放的放大器,满足特定的增益和带宽要求。
解答这类题目,首先要根据需求确定放大器的类型(反相放大器、同相放大器或者差分放大器),然后选择合适的电阻值来实现给定的增益。
同时,要考虑运放的带宽限制,确保在工作频率范围内放大器能够正常工作。
反馈电路的习题也是常见的类型。
例如,判断一个电路中存在的反馈类型(正反馈、负反馈),并计算反馈系数和对电路性能的影响。
解答这类问题,需要我们清楚地了解各种反馈类型的特点和判断方法。
对于负反馈,要能够分析其对放大器增益稳定性、输入输出电阻、带宽等性能的改善作用;对于正反馈,则要注意其可能导致的自激振荡现象。
在信号处理和滤波电路方面,习题通常会涉及到滤波器的设计和性能分析。
模拟电子技术第五版基础习题与解答
模拟电子技术第五版基础习题与解答在学习模拟电子技术这门课程时,做习题是巩固知识、加深理解的重要途径。
《模拟电子技术第五版》为我们提供了丰富的习题资源,下面将对一些基础习题进行详细的解答和分析,帮助大家更好地掌握这门课程的核心内容。
首先,让我们来看一道关于二极管的习题。
题目:已知二极管的伏安特性方程为\(I = I_s (e^{\frac{U}{U_T}} 1)\),其中\(I_s\)为反向饱和电流,\(U_T\)约为 26 mV(室温下)。
若二极管的反向饱和电流\(I_s = 10^{-13}\) A ,正向电压\(U = 07\) V ,求通过二极管的电流\(I\)。
解答:将已知值代入伏安特性方程可得:\\begin{align}I&= 10^{-13} (e^{\frac{07}{0026}} 1)\\&= 10^{-13} (e^{2692} 1)\\&\approx 10^{-13} \times 338×10^{11}\\&\approx 338\ mA\end{align}\这道题主要考查了对二极管伏安特性方程的理解和应用。
通过计算,我们可以清楚地看到,当正向电压达到一定值时,二极管的电流会迅速增加。
接下来,看一道关于三极管放大电路的习题。
题目:在一个共发射极三极管放大电路中,三极管的电流放大系数\(β = 100\),基极电流\(I_B = 20\ μA\),求集电极电流\(I_C\)和发射极电流\(I_E\)。
解答:根据三极管的电流关系\(I_C =βI_B\),可得\(I_C= 100 × 20 × 10^{-6} = 2\ mA\)。
又因为\(I_E = I_B + I_C\),所以\(I_E = 20 × 10^{-6}+ 2 × 10^{-3} = 202\ mA\)。
这道题让我们对三极管的电流放大作用有了更直观的认识,同时也巩固了三极管三个电极电流之间的关系。
模拟电子技术第五版基础习题与解答
模拟电子技术第五版基础习题与解答近年来,随着电子技术的飞速发展,模拟电子技术成为了电子领域中不可或缺的一部分。
针对这一现象,本文将为读者介绍《模拟电子技术第五版》的基础习题与解答。
第一章:放大电路基础知识习题一:1. 解释放大电路中的增益概念。
2. 请说明共射放大电路的特点及其适用范围。
3. 对于共集放大电路,它的输出特点是什么?如何计算其电压增益?解答一:1. 放大电路的增益是指输出信号与输入信号之间的比例关系。
通常用电压增益(Av)和功率增益(Ap)来表示。
2. 共射放大电路输入阻抗较高,输出阻抗较低,适用于信号放大和阻抗匹配。
3. 共集放大电路的输出电压与输入电压具有相同的相位,但电压增益小于1,计算公式为Av = (1+β)*Rc / (Re + (1+β)*Rc)。
第二章:场效应管习题二:1. 解释场效应管的工作原理。
2. 请列举并描述几种常见的场效应管类型及其特点。
3. 对于n沟道增强型MOSFET,如何进行静态工作点分析与计算?解答二:1. 场效应管是一种电压控制器件,根据栅极电压的大小来调节电流。
其工作原理主要有MOSFET和JFET两种。
2. 常见的场效应管类型包括MOSFET(金属氧化物半导体场效应管)和JFET(结型场效应管)。
MOSFET具有输入阻抗高、功耗低等特点;而JFET具有低噪声、电压放大倍数高等特点。
3. 对于n沟道增强型MOSFET,静态工作点分析与计算需要考虑栅极电流与漏极电流之间的关系,以及沟道导电性等因素。
第三章:运算放大器习题三:1. 解释运算放大器的原理。
2. 请列举并描述几种典型的运算放大器电路。
3. 对于反相运算放大器,它的电压增益如何计算?解答三:1. 运算放大器是一种增益很大的差分放大电路,它可以将微弱的输入信号放大成较大的输出信号。
2. 典型的运算放大器电路包括反相运算放大器、非反相运算放大器、综合运算放大器等。
它们分别具有不同的输入输出关系和放大性能。
模拟电子技术习题及解答
模拟电子技术基础第一章1.1 电路如题图1.1所示,已知)5sin i u t V ω=,二极管导通电压降D 0.7V U =。
试画出i u 和o u 的波形,并标出幅值。
解:通过分析可知:(1) 当37V i u .>时,37o u .V = (2) 当37V 37V i .u .-≤≤时,o i u u = (3) 当37V i u .<-时,37o u .V =- 总结分析,画出部分波形图如下所示:1.2 二极管电路如题图1.2所示。
(1)判断图中的二极管是导通还是截止?(2)分别用理想模型和横压降模型计算AO 两端的电压AO U 。
解:对于(a )来说,二极管是导通的。
采用理想模型来说,6V AO U =- 采用恒压降模型来说,67V AO U .=-对于(c )来说,二极管1D 是导通的,二极管2D 是截止的。
采用理想模型来说,0AO U = 采用恒压降模型来说,07V AO U .=-1.3 判断题图1.3电路中的二极管D 是导通还是截止?用二极管的理想模型计算流过二极管的电流D ?I =解:(b )先将二极管断开,由KVL 定律,二极管左右两端电压可求出:25101515V 182255U .-⨯+⨯++左==10151V 14010U ⨯+右==故此二极管截止,流过的电流值为0D I =(c )先将二极管断开,由KVL 定律,二极管左右两端电压可求出:151525V 255U .⨯+左==,2252005V 182U ..-⨯+左==10151V 14010U ⨯+右==由于05V U U .-=右左,故二极管导通。
运用戴维宁定理,电路可简化为05327μA 153D .I ..==1.6 测得放大电路中六只晶体管的电位如题图1.6所示,在图中标出三个电极,并说明它们是硅管还是锗管。
解: T1: 硅管,PNP ,11.3V 对应b, 12V 对应e, 0V 对应cT2: 硅管,NPN ,3.7V 对应b, 3V 对应e, 12V 对应c T3: 硅管,NPN ,12.7V 对应b, 12V 对应e,15V 对应c T4: 锗管,PNP ,12V 对应b, 12.2V 对应e, 0V 对应c T5: 锗管,PNP ,14.8V 对应b, 15V 对应e, 12V 对应c T6: 锗管,NPN ,12V 对应b, 11.8V 对应e, 15V 对应c模拟电子技术基础 第二章2.2 当负载电阻L 1k R =Ω时,电压放大电路输出电压比负载开路(L R =∞)时输出电压减少20%,求该放大电路的输出电阻o r 。
模拟电子技术基础学习指导与习题解答(谢红主编)第七章 思考题与习题解答
第七章 思考题与习题解答※7-3 分别按下列要求设计一个比例放大电路:(要求画出电路,并标出各电阻) (1)电压放大倍数等于-5,输入电阻约为20k Ω;(2)电压放大倍数等于+5,且当i U =0.75 V 时,反馈电阻F R 中的电流等于0.1mA 。
目的 反算比例器的参数。
解 (1)设计一个反相比例器。
当1R =20k Ω,由o F i 1u U RA U R ==-=-5 即 F20R -=-5 则 F R =20×5=100k Ω,100//20R '=≈16.7k Ω 电路如图题7-3答案图(a)所示。
图题7-3答案图(2)设计一个同相比例器 第一步 先求o U :o i 5u U A U =⨯=⨯0.75=3.75 V第二步 求F R 和1R : 解联立方程组1F1F 13.750.1mA (1)5 (2)R R R R R ⎧=⎪+⎪⎨+⎪=⎪⎩ 由(2)式得 1F 15R R R += 即 F 14R R =取F R =40k Ω,则1404R ==10k Ω。
第三步 确定平衡电阻R ':1F //10//40R R R '===8k Ω电路如图题7-3答案图(b)所示。
※7-4 设图题7-4各电路中的集成运放是理想的,试分别求出它们的输出电压与输入电压的函数关系式。
图题7-4目的 求输出与输入的函数关系。
说明 这种类型题非常多,应掌握到熟练的程度。
先看懂电路图再计算。
解 图(a),这是一个双端输入运放(一般差放),但不是差放的典型形式,因此不能套用差放公式计算。
解题的方法不是惟一的。
法一:利用虚断(I -≈0)及虚短(2U U U -+≈=)概念列电流方程式求解。
2o1222220U U U U --= 解出o 211110U U U =-法二:因为有两个信号同时作用,可利用叠加原理求解。
1U 单独作用时(令2U =0),电路相当于反相比例器,F o11112201022R U U U U R -'==-=- 当2U 单独作用(令1U =0)时,电路相当于同相比例器,F o2221220(1)(1)1122R U U U U R ''=+=+= 叠加o oo 211110U U U U U '''=+=- 图(b),电路有三个输入信号同时作用,利用叠加原理求解。
模拟电子技术基础学习指导与习题解答谢红主编第二章
第二章思考题与习题解答2-1 判断正确(√)与错误(×)。
电路的静态是指:(1)输入交流信号的幅值不变时的电路状态。
( )(2)输入交流信号的频率不变时的电路状态。
( )(3)输入交流信号且幅值为零时的状态。
( )(4)输入端开路时的状态。
( )(5)输入直流信号时的状态。
( )目的澄清静态的概念。
解(1) ×。
因为这是动态概念。
(2) ×。
理由与(1)相同。
(3) √。
即当i 0U=时的状态,也就是正弦波过零点对应的状态就是静态。
(4) ×。
输入端开路时不能保证i 0U=的条件,可能有干扰信号从输入端窜入,因此不能保证静态。
(5) ×。
这仍然是动态概念。
2-2 试判断图题2-2(a)~(i)所示各电路对交流正弦电压信号能不能进行正常放大,并说明理由。
图题2-2目的 检查放大电路是否能正常放大。
分析 一个能正常工作的放大电路应该同时满足四个原则,缺一不可。
这就是:①e 结正偏,c 结反偏。
由直流电源CC V 与BB V 保证。
②信号能输入。
③信号能输出。
④波形基本不失真。
由合适的工作点保证。
检查一个电路,只要有一个原则不满足就不能正常放大。
解 图(a)不能正常放大。
因为BB V 的极性接反了,使e 结反偏。
图(b)不能放大。
原因是CC V 极性接反了,使c 结正偏。
图(c)不能放大。
因为b R =0,使信号i U 通过短路线以及CC V 对地交流短路,加不到晶体管上,从而o U =0。
图(d)不能放大。
因为e 结处于零偏置。
图(e)能正常工作。
因为四个原则均满足。
图(f)不能放大。
因为电容C 有隔直作用,使BB V 不能在b R 上产生偏置电流,即BQ I =0,工作点不合理。
图(g)不能放大。
因为BB V 将信号i U 对地直接短路,不能输入到晶体管上。
图(h)不能放大。
因为c R =0,信号不能输出。
图(i)能放大。
四个原则均满足。
其中二极管起温度补偿作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章绪论1.1 教学要求本章是模拟电子技术课程教学的开篇,旨在让学生对这门课程的发展历程、课程内容、特点和学习方法进行了解,以唤醒学生的学习兴趣,激发学生的学习欲望。
1.2 基本概念1. 信号及其分类信号是携带信息的载体,可以分为模拟信号和数字信号两大类。
模拟信号是指在时间上和幅度上均具有连续性的信号,从宏观上看,我们周围的大多数物理量都是时间连续、数值连续的变量,如压力、温度及转速等。
这些变量通过相应的传感器都可转换为模拟信号。
数字信号是指幅度随时间不连续变化的、离散的信号,如电报码和用电平的高与低表示的二值逻辑信号等。
2. 电子线路及其分类用于产生、传输和处理模拟信号的电子电路称为模拟电路,如放大电路、滤波电路、电压/电流变换电路等,典型设备有收音机、电视机、扩音机等;用于产生、传输和处理数字信号的电子电路称为数字电路,典型设备是电子计算机等。
模拟电路和数字电路统称为电子线路。
目前,模拟电路和数字电路的结合越来越广泛,在技术上正趋向于把模拟信号数字化,以获取更好的效果,如数码相机、数码电视机等。
3. 电子技术及其分类电子技术是研究电子器件、电子电路和电子系统及其应用的科学技术,可分为模拟电子技术和数字电子技术。
研究模拟电路的电子技术就是模拟电子技术,研究数字电路的电子技术就是数字电子技术。
4. 电子管电子管就是一个特殊的灯泡,不过除灯丝以外,还有几个“极”,里面的灯丝与极都有连线与各自的管脚相连。
最简单的电子管是二极管,它有两个极(阴极和阳极,有的灯丝还兼作阴极),其中,阴极有发射电子的作用,阳极有接收电子的作用。
二极管具有单向导电的特性,可用作整流和检波。
在二极管的基础上增加一个栅极就成了电子三极管,栅极能控制电流,栅极上很小的电流变化,都会引起阳极很大的电流变化,所以,电子三极管有放大作用。
5. 晶体管和集成电路1) 晶体管通俗地说,晶体管是半导体做的固体电子元件。
像金、银、铜、铁等金属,它们导电性能好,叫做导体。
木材、玻璃、陶瓷、云母等不易导电,叫做绝缘体。
导电性能介于导体和绝缘体之间的物质,叫半导体。
晶体管就是用半导体材料制成的,这类材料中最常见的便是锗和硅两种。
晶体管的出现是电子技术之树上绽开的一朵绚丽多彩的奇葩。
与电子管相比,晶体管具有诸多优越性:①晶体管的构件是没有消耗的;②晶体管消耗电子极少,仅为电子管的十分之一或几十分之一;③晶体管不需预热,一开机就工作;④晶体管结实可靠,比电子管可靠100倍,耐冲击、耐振动。
2) 集成电路集成电路是一种微型电子器件或部件。
采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及连线,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,便成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体。
集成电路具有体积小、重量轻、引出线和焊接点少、寿命长、可靠性高、性能好等优点,同时成本低,便于大规模生产。
它不仅在工用、民用电子设备如收录机、电视机、计算机等方面得到了广泛的应用,同时在军事、通信、遥控等方面也得到了广泛的应用。
用集成电路来装配电子设备,其装配密度可比晶体管提高几十倍至几千倍,设备的稳定工作时间也可大大提高。
1.3 学习方法指导第1章属于综述类型,是本课程的开篇。
在学习本章时,主要了解电子技术的作用、功能与发展阶段及各发展阶段的特点。
第1章FPGA及其硬件描述语言VHDL 第2章二极管及其电路2.1 教学要求半导体二极管是模拟电路的基本构件之一,在学习电子电路之前,必须对它的结构、工作原理、特性及其应用有充分的了解。
本章教学要求如下。
(1) 理解半导体中两种载流子——电子和空穴的物理意义。
理解N型和P型半导体的物理意义及PN结的形成机理。
(2) 熟练掌握PN结的单向导电性,理解PN结的伏安特性方程的物理意义。
(3) 掌握半导体二极管的特性及主要参数,熟练掌握半导体二极管的模型对基本应用电路的分析。
(4) 掌握稳压管的特性及主要参数,以及稳压管构成的稳压电路。
2.2 基本概念1. 半导体的基本知识半导体是一种导电能力介于导体和绝缘体之间的物质。
它的导电能力与温度、光照和掺杂浓度有关。
1) 本征半导体硅(Si)和锗(Ge)是具有四个共价键结构的半导体材料,如图2.1所示。
纯净且具有完整晶体结构的半导体称为本征半导体。
在一定的温度下,本征半导体内最重要的物理现象是本征激发(又称热激发或产生),如图2.2所示。
本征激发产生两种带电性质相反的载流子——自由电子和空穴。
温度越高,本征激发越强。
图2.1 本征硅或锗的晶体结构图2.2 本征激发产生自由电子空穴对2) 杂质半导体在本征硅(或锗)中掺入微量五价(或三价)元素后形成N型(或P型)杂质半导体。
N型半导体如图2.3所示,P型半导体如图2.4所示。
图2.3 N型半导体图2.4 P 型半导体N型(P型)半导体产生自由电子和杂质正离子对(空穴和杂质负离子对)。
由于杂质电离,N型半导体中的多子是自由电子,少子是空穴;而P型半导体中的多子是空穴,少子是自由电子。
在常温下,多子>>少子。
多子浓度和掺杂浓度有关,几乎等于杂质浓度,与温度无关;而少子浓度是温度的敏感函数。
杂质半导体的电导率比本征半导体高很多。
3) 半导体中的两种电流半导体中存在因内电场作用产生的少数载流子漂移电流(这与金属导电一致),以及因载流子浓度差而产生的多数载流子扩散电流。
2. PN结的基本知识1) PN结在具有完整晶格的P型和N型材料的物理界面附近,会形成一个特殊的薄层——PN 结,如图2.5所示。
图2.5 PN结的形成当浓度差引起的多子的扩散运动和内电场引起的少子的漂移运动达到动态平衡时,就形成了PN结。
第1章 FPGA 及其硬件描述语言VHDL2) PN 结的单向导电性PN 结加正向偏置时,能形成较大的正向电流,PN 结正向电阻很小;加反向偏置时,反向饱和电流很小,PN 结呈高阻这就是PN 结的单向导电性。
3. 半导体二极管普通二极管内部就是一个PN 结,P 区引出正电极,N 区引出负电极。
1) 二极管的伏安特性 二极管的伏安特性方程为D T D S (e 1)v V i I =-。
在低频下,二极管具有单向导电特性,正偏时导通;反偏时截止。
S I 称为反向饱和电流。
2) 二极管的主要参数二极管的主要参数有:最大整流电流;最大反向工作电压;反向电流R I (反向饱和电流S I );最高工作频率。
4. 二极管电路的分析方法二极管是一种非线性器件,可以采用图解法和等效模型分析法。
1) 图解法把电路分成两个部分,一部分是由二极管组成的非线性电路,另一部分则是由电源、电阻等线性元件组成的线性部分。
分别画出非线性部分(二极管)的伏安特性曲线和线性部分的特性曲线,两条特性曲线的交点即为电路的工作电压和电流。
2) 等效模型分析法二极管的等效模型有四种:理想、恒压降、折线和微变等效模型。
一般情况下,理想模型和恒压降模型用得较多。
5. 二极管的应用二极管广泛用于整流电路(半波整流、全波整流、桥式整流)、限幅电路(顶部限幅、底部限幅、双向限幅)、开关(嵌位)电路以及通信电路(检波器、混频器)等中。
6. 特殊二极管及其应用1) 稳压二极管稳压二极管(简称稳压管)具有稳压作用,其稳压特性表现在反向击穿的状态下。
稳压管反向击穿后的曲线越陡,则稳压性能越好。
当稳压管工作在正向偏置或反向偏置但未到击穿值时,则其状况相当于普通二极管。
稳压管的符号、伏安特性及反向击穿时的模式如图2.6所示。
稳压管的主要参数有:Z V ——稳压值;ZM I ——最大稳定电流值;Z r ——动态电阻,Z /r v i =∆∆;Z P ——额定功耗,Z Z ZM P V I =⨯;α——温度系数。
2) 稳压管稳压电路稳压二极管具有很陡的反向击穿特性,当反向电流有很大变化时,稳压管两端的电压几乎保持不变,利用该原理可设计稳压电路。
稳压管的稳压功能是靠稳压管稳压特性和限流电阻的电压调节作用相互配合来实现的。
图2.6 稳压管的符号、伏安特性及反向击穿时的模型2.3 重点难点分析(1) 本征半导体是指完全纯净的、结构完整的半导体晶体。
半导体中有两种载流子参与导电(这也是其与导体区别的一个重要特征)。
自由电子与空穴的电量相等,极性相反,迁移方向相反。
半导体中的载流子数目越多,导电电流就可能越大。
半导体的一个重要特性就是其导电性能对温度很敏感。
本征半导体的导电能力很弱(载流子浓度低),不能满足电子电路的要求。
在本征半导体中掺入微量的不同价的其他元素(杂质),可大大提高载流子的浓度,从而改善导电性能。
常在硅或锗半导体中掺入五价元素(磷、锑)形成N型半导体。
N型半导体中:多子为电子;少子为空穴。
提供电子的杂质元素称为“施主杂质”。
在硅或锗半导体中掺入三价元素(硼、铟)形成P型半导体。
P型半导体中:多子为空穴;少子为电子。
提供空穴的杂质元素称为“受主杂质”。
多数载流子的浓度决定于掺杂浓度,少数载流子的浓度与温度有关。
(2) PN结是构成各种半导体器件的基础。
PN结的形成原理是:由于掺杂不同,P、N 间存在多子浓度的差异(P区的多子为空穴;N区的多子为电子);浓度差引起多子的扩散运动,且其在交界处产生复合,留下由于晶格化而不能运动的正负离子(不参与导电),称为空间电荷。
空间电荷区平衡时,产生的电压一般为零点几伏,又称为“接触电位差”。
扩散运动继续进行,空间电荷区加宽。
同时空间电荷区产生内电场(方向为正离子区指向负离子区),其作用是阻止扩散,而使少子产生漂移运动。
最终达到动态平衡(这时电场力等于扩散力),空间电荷区不再加宽。
空间电荷区的几种称谓包括:耗尽层、阻挡层、势垒区。
从半导体的导电角度来看,非空间电荷区呈现低电阻特性,而空间电荷区则具有阻止电流的作用,呈现高阻特性。
空间电荷区越宽,电阻值越大,反之亦然。
PN结外加正向电压——正向偏置时,由于是多子导电,因而外加电压的微小变化将使电流有较大的变化。
结果,扩散力大于电场力——由多子形成的扩散(正向)电流起主导地位,而少子形成的漂移电流可忽略不计,空间电荷区变窄,电阻变小。
当外加负向电压——反向偏置时,电场力大于扩散力——由少子形成的漂移(反向)电流起主导地位,而多子形成的扩散电流可忽略不计,空间电荷区变宽,电阻变得很大。
即PN结有单向导电特性(正偏导通,反偏截止)。
当PN结的外加电压进一步增加时,会产生反向击穿(电击穿),有齐纳击穿和雪崩击穿第1章 FPGA 及其硬件描述语言VHDL两种。
电击穿具有“自愈性”(可逆性)。
对硅材料而言,一般来说,外加电压大于6V 时的击穿为雪崩击穿,呈正温度系数;小于4V 时的击穿为齐纳击穿,呈负温度系数;介于4V 和6V 之间时的温度系数很小。