等腰三角形典型例题练习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形典型例题练习

一.选择题(共2小题)

1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为()

A.5cm B.3cm C.2cm D.不能确定

2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:

①AE=BD

②CN=CM

③MN∥AB

其中正确结论的个数是()

A.0B.1C.2D.3

二.填空题(共1小题)

3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于_________.

三.解答题(共15小题)

4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证

DE=DF.

5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.

6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC

是什么三角形并说明理由.

7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE.

(1)∠E等于多少度

(2)△DBE是什么三角形为什么

8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD.

9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.

10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.

11.(2012牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:

如图①,连接AP.

∵PE⊥AB,PF⊥AC,CH⊥AB,

∴S△ABP=ABPE,S△ACP=ACPF,S△ABC=ABCH.

又∵S△ABP+S△ACP=S△ABC,

∴ABPE+ACPF=ABCH.

∵AB=AC,

∴PE+PF=CH.

(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系请写出你的猜想,并加以证明:

(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB 边上的高CH=_________.点P到AB边的距离PE=_________.

12.数学课上,李老师出示了如下的题目:

“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.

小敏与同桌小聪讨论后,进行了如下解答:

(1)特殊情况,探索结论

当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE_________DB(填“>”,“<”或“=”).

(2)特例启发,解答题目

解:题目中,AE与DB的大小关系是:AE_________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)

(3)拓展结论,设计新题

在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长

(请你直接写出结果).

13.已知:如图,AF平分∠BAC,BC⊥AF于点E,点D在AF上,ED=EA,点P在CF上,连接PB交AF于点M.若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.

14.如图,已知△ABC是等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.

(1)线段AD与BE有什么关系试证明你的结论.

(2)求∠BFD的度数.

15.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF,求证:AE=CF.

16.已知:如图,在△OAB中,∠AOB=90°,OA=OB,在△EOF中,∠EOF=90°,OE=OF,连接AE、BF.问线段AE 与BF之间有什么关系请说明理由.

17.(2006郴州)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.

(1)DE,DF,CG的长之间存在着怎样的等量关系并加以证明;

(2)若D在底边的延长线上,(1)中的结论还成立吗若不成立,又存在怎样的关系请说明理由.

18.如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系写出你的猜想并加以证明.

等腰三角形典型例题练习

参考答案与试题解析

一.选择题(共2小题)

1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为()

A.5cm B.3cm C.2cm D.不能确定

考点:角平分线的性质.

分析:由已知条件进行思考,结合利用角平分线的性质可得点D到AB的距离等于D到AC的距离即CD的长,问题可解.

解答:解:∵∠C=90°,AD平分∠BAC交BC于D

∴D到AB的距离即为CD长CD=5﹣3=2故选C.

2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:

①AE=BD②CN=CM③MN∥AB其中正确结论的个数是()

A.0B.1C.2D.3

考点:平行线分线段成比例;全等三角形的判定与性质;等边三角形的性质.

分析:由△ACD和△BCE是等边三角形,根据SAS易证得△ACE≌△DCB,即可得①正确;由△ACE≌△DCB,可得∠EAC=∠NDC,又由∠ACD=∠MCN=60°,利用ASA,可证得△ACM≌△DCN,即可得②正确;

又可证得△CMN是等边三角形,即可证得③正确.

解答:解:∵△ACD和△BCE是等边三角形,∴∠ACD=∠BCE=60°,AC=DC,EC=BC,

∴∠ACD+∠DCE=∠DCE+∠ECB,即∠ACE=∠DCB,∴△ACE≌△DCB(SAS),

∴AE=BD,故①正确;

∴∠EAC=∠NDC,∵∠ACD=∠BCE=60°,∴∠DCE=60°,∴∠ACD=∠MCN=60°,

∵AC=DC,∴△ACM≌△DCN(ASA),∴CM=CN,故②正确;

又∠MCN=180°﹣∠MCA﹣∠NCB=180°﹣60°﹣60°=60°,

∴△CMN是等边三角形,∴∠NMC=∠ACD=60°,∴MN∥AB,故③正确.故选D.

二.填空题(共1小题)

3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于1:3.

相关文档
最新文档