GRE数学难题15道练习及答案解析

合集下载

GRE数学|专项练习及解析|概率

GRE数学|专项练习及解析|概率

GRE数学|专项练习及解析|概率GRE数学专项练习的题目主要来自《官方指南》(OG)、《官方数学150》(ETS150)、鸡精和个别来源未知的题目(同样适合练习),接下来我会持续更新各种专项练习和题目解析。

概率是较为常考的一个考点,同时也经常会结合排列组合进行考察,所以练习概率的同时,也有必要掌握和练习排列组合部分,这里附上两篇推送:《马雨:GRE数学考点梳理——排列组合》《GRE数学|专项练习及解析|排列组合》接下来是题目+解析,如果对你有所帮助,欢迎点赞转发注:比大小的题目四个选项含义和顺序固定,即:1.2.3.4.5.6.7.8.9.10.11.12.13. A,B都是独立事件,A发生的概率是45%,问A和B同时发生的最大概率是多少?14. A和B是独立事件,A发生的概率是0.6,B发生的概率是0.8 Quantity A:The probability that A or B, or both will occur Quantity B:0.92 15. A俱乐部20男,40女,B俱乐部男至少有7人,也有女。

从A和B俱乐部中各选一个人,两个俱乐部选出的人同时是男生的概率小于等于1/15,以下哪些选项一定正确? (不定项选择题)A. The number of people in group B is greater than 34 B. The number of girls in group B is greater than 32C. The number of girls in group B is less than 3416. 有60个球,里面有$3和$5的两种,其中$3的球总价为$72,求随意抽一个球抽到$5的球的概率17. 第一次抽到红球的概率是5/8,第一次抽不中的情况下,第二次抽到红球的概率是2/3,求第一次或第二次或两次都抽到红球的概率?18. 从6个男生和4个女生中选4个人,刚好2男2女的概率是多大?19. 一共有7个球,其中只有1个是红色的,不放回的抽取,抽到红球为止Quantity A: 第3次抽到红球的概率Quantity B: 第4次抽到红球的概率20. 从1,2,3,4,5中同时选两个数,问选出来两个数相乘是odd number的概率是多少?21. 用1,2,3,4,5这个五个数字组成一个三位数和一个两位数,数字都不可重复使用。

GRE数学经典的15道难题三

GRE数学经典的15道难题三

GRE数学经典的15道难题三GRE数学考试中,有些经典难题是考生经常遇到的,GRE资料下载的小编为大家做了总结,让我们一起来练习这些经典难题吧!11. A,B,C,D,E,F排在1,2,3,4,5,6六个位置上,问A不在1, B不在2, C不在3的情况下,共有多少种排法?(A) 720(B) 450(C) 180(D) 216(E) 32012. 一直线L过点A(5,0), B(0,2), 坐标原点为O, 点P(X,Y)为三角形OAB中一点, 问:Y< p>(A) 1/4(B) 3/8(C) 1/2(D) 5/8(E) 3/413. If Bob can do a job in 20 days and Jane can do the job in 30 days, they work together to do this job and in this period, Bob stop work for 2.5 days and Jane stop work for x days, and the job be finished for 14 days, what is x?(A) 1.6(B) 3.2(C) 1.5(D) 1.25(E) 1.1514. The probability of A is 60% and the probability of B is 50%, what is the most possible probability that neither A nor B would happen?(A) 0.80(B) 0.40(C) 0.75(D) 0.55(E) 0.6815. In an insurance company, each policy has a paper record and an electric record. For those policies having incorrect paper record, 60% also having incorrect electric record; For policies having incorrect electric record, 75% also having incorrect paper record. 3% of all policies have both incorrect paper and incorrect electric records. If we randomly pick out one policy,what’s the probability that the one having both correct paper and correct electric records?(A) 0.80(B) 0.94(C) 0.75(D) 0.88(E) 0.9216. There are 1200 respondents to a poll, each favoring their preference for candidates A,B, and C. 54% favored A, 48% favored B, and 42% favored C, and there is 30% favored both A and B. what’s the largest possible number of respondents favoring C, but not C&B, nor C&A?(A) 25%(B) 30%(C) 28%(D) 38%(E) 40%参考答案:11.解:首先考虑总的可能性为,再考虑A在1,B在2,C在3的可能性分别为,中重复计算了三者交集,分别为AB在1,2,AC在1,3,BC在2,3,所需将三种情况加回,即,但考虑这三种加回的交集又重复计算了ABC在1,2,3的情况,所以应减去P3312.解:在平面直角坐标系中,T<>13.解:1/20(14-2.5)+1/30(14-x)=1,得出x=1.2514.解:划出图表来可以一目了然:A, B均不发生的最大概率为40%,最小概率为0.15.解:设总数为x,设incorrect paper record有y, incorrect electric record有z,则:x·y·60%=3%·x y=5%x·z·75%=3%·x z=4%则,两者至少有一个错误的百分比为5%+4%-3%=6%,所正确答案为94%16.解:A和B的并集为:54%+48%-30%=72%,所C为28%.。

(完整word版)gre数学难题集锦

(完整word版)gre数学难题集锦

数学无忧之最终幻想版1.正整数n有奇数个因子,则n为完全平方数2.因子个数求解公式:将整数n分解为质因子乘积形式,然后将每个质因子的幂分别加一相乘.n=a*a*a*b*b*c 则因子个数=(3+1)(2+1)(1+1)eg. 200=2*2*2 * 5*5 因子个数=(3+1)(2+1)=12个3.能被8整除的数后三位的和能被8整除;能被9整除的数各位数的和能被9整除.能被3整除的数,各位的和能被3整除.4.多边形内角和=(n-2)x1805.菱形面积=1/2 x 对角线乘积6.欧拉公式:边数=面数+顶点数-28.三角形余玄定理C2=A2+B2-2ABCOSβ,β为AB两条线间的夹角9.正弦定理:A/SinA=B/SinB=C/SinC=2R(A,B,C是各边及所对应的角,R是三角形外接圆的半径)10.Y=k1X+B1,Y=k2X+B2,两线垂直的条件为K1K2=-111.N的阶乘公式:N!=1*2*3*....(N-2)*(N-1)*N 且规定0!=11!=1Eg:8!=1*2*3*4*5*6*7*812. 熟悉一下根号2、3、5的值sqrt(2)=1.414 sqrt(3)=1.732 sqrt(5)=2.23613. ...2/3 as many A as B: A=2/3*B...twice as many... A as B: A=2*B14. 华氏温度与摄氏温度的换算换算公式:(F-32)*5/9=CPS.常用计量单位的换算:(自己查查牛津大字典的附录吧)练习题:1:还有数列题:a1=2,a2=6,a n=a n-1/a n-2,求a150.解答: a n=a n-1/a n-2,所以a n-1=a n-2/a n-3,带入前式得a n=1/a n-3,然后再拆一遍得到a n=a n-6,也就是说,这个数列是以6为周期的,则a150=a144=...=a6,利用a1,a2可以计算出a6=1/3.如果实在想不到这个方法,可以写几项看看很快就会发现a150=a144,大胆推测该数列是以6为周期得,然后写出a1-a13(也就是写到你能看出来规律),不难发现a6=a12,a7=a13,然后那,稍微数数,就可以知道a150=a6了,同样计算得1/3.2:问摄氏升高30度华氏升高的度数与62比大小. key:F=30*9/5=54<623:那道费波拉契数列的题:已知,a1=1 a2=1a n=a n-1+a n-2,问a1,a2,a3,a6四项的平均数和a1,a3,a4,a5四项的平均数大小比较.解答:费波契那数列就是第三项是前两项的和,依此类推得到a1-a6为:1 123 5 8 13 21 a1+a2+a3+a6=12, a1+a3+a4+a5=11,所以为大于.4:满足x^2+y^2<=100的整数对(x,y)有多少?key: 按照X的可能情况顺序写出:X= Y=11-921-931-941-951-861-871-781-691-4 =>Myanswer:加起来=695:24,36,90,100四个数中,该数除以它的所有的质因子,最后的结果是质数的是那个:Key:906:0.123456789101112….,这个小数无限不循环地把所有整数都列出来.请问小数点后第100位的数字是多少?Key:位数0 1 2 3 4 5 6 7 8 9 1010 11 12 ………………………19 2020 21……………………………29 20 30……………………………… 39 20 40……………………………… 49 2050 51 52 53 54 55 56 ――――――第101位=5??7:2904x=y2(y的平方),x、y都是正整数,求x的最小值.因为:X^2×Y^2×Z^2=(X×Y×Z)^2所以把2904除呀除=2×2×2×3×11×11=2^2×11^2×6再乘一个6就OK了2^2×11^2×6×6=(2×11×6)^2=132^2Key:最小的x=68:序列A n=1/n-1/(n+1),n>=1,问前100项和.解答:An =1/n-1/(n+1)A n-1=1/(n-1)-1/nA n-2=1/(n-2)-/(n-1)………………………………………………A1=1-1/2把左边加起来就是A n+A n-1+……+A1=1-1/(n+1) ...消掉了好多好多项之后的结果Key:把n=100带入得前100项之和为100/1019:等腰三角形,腰为6.底边上的高为x,底边为y,问4x2+y2和144谁大解答:勾股定理得(y/2)2+x2=62,所以4x2+y2=144 10:-1<r<t <0(有一数轴) question:r+r*t*t与-1的关系Key:我想的办法只能是尝试:原式=r(1+t*t)恒小于零1)r -1, t 0 则原式-12)r -1, t -1则原式-23)r 0 , t 0 则原式 0例如:r=-0.9 t=-1/3 时,原式=-1,若此时-0.9<t<-1/3 原式<-1 反之>-1.11:有长方形4feet*8feet,长宽各截去x inch,长宽比2:5,解答:列出方程:(4*12-x)/(8*12-x)=2/5=> x=161.排列(permutation):从N个东东(有区别)中不重复(即取完后不再取)取出M 个并作排列,共有几种方法:P(M,N)=N!/(N-M)!例如:从1-5中取出3个数不重复,问能组成几个三位数?解答:P(3,5)=5!/(5-3)!=5!/2!=5*4*3*2*1/(2*1)=5*4*3=60也可以这样想从五个数中取出三个放三个固定位置那么第一个位置可以放五个数中任一一个,所以有5种可能选法,那么第二个位置余下四个数中任一个,....4.....,那么第三个位置……3……所以总共的排列为5*4*3=60同理可知如果可以重复选(即取完后可再取),总共的排列是5*5*5=1252.组合(combination):从N个东东(可以无区别)中不重复(即取完后不再取)取出M个(不作排列,即不管取得次序先后),共有几种方法C(M,N)=P(M,N)/P(M,M)=N!/(M-N)!/M!C(3,5)=P(3,5)/P(3,3)=5!/2!/3!=5*4*3/(1*2*3)=10可以这样理解:组合与排列的区别就在于取出的M个作不作排列-即M的全排列P(M,M)=M!,那末他们之间关系就有先做组合再作M的全排列就得到了排列所以C(M,N)*P(M,M)=P(M,N),由此可得组合公式性质:C(M,N)=C( (N-M), N )即C(3,5)=C( (5-2), 5 )=C(2,5) = 5!/3!/2!=103.概率概率的定义:P=满足某个条件的所有可能情况数量/所有可能情况数量概率的性质:0<=P<=11)不相容事件的概率:a,b为两两不相容的事件(即发生了a,就不会发生b)P(a或b)=P(a)+P(b)P(a且b)=P(a)+P(b)=0 (A,B不能同时发生)2)对立事件的概率:对立事件就是a+b就是全部情况,所以不是发生a,就是b发生,但是,有一点a,b不能同时发生.例如:a:一件事不发生b:一件事发生,则A,B是对立事件显然:P(一件事发生的概率或一件事不发生的概率)=1(必然事件的概率为1)则一件事发生的概率=1 - 一件事不发生的概率...........公式1理解抽象的概率最好用集合的概念来讲,否则结合具体体好理解写a,b不是不相容事件(也就是说a,b有公共部分)分别用集合A和集合B来表示即集合A与集合B有交集,表示为A*B (a发生且b发生)集合A与集合B的并集,表示为A U B (a发生或b发生)则:P(A U B)= P(A)+P(B)-P(A*B).................公式23)条件概率:考虑的是事件A已发生的条件下事件B发生的概率定义:设A,B是两个事件,且P(A)>0,称P(B|A)=P(A*B)/P(A)....................公式3为事件A已发生的条件下事件B发生的概率理解:就是P(A与B的交集)/P(A集合)理解: “事件A已发生的条件下事件B发生的概率”,很明显,说这句话的时候,A,B都发生了,求的是A,B同时发生的情况占A发生时的比例,就是A与B同时发生与A发生的概率比.4)独立事件与概率两个事件独立也就是说,A,B的发生与否互不影响,A 是A,B是B,用公式表示就是P(A|B)=P(A)所以说两个事件同时发生的概率就是:P(A U B)=P(A)×P(B)................公式4练习题:1:A, B独立事件,一个发生的概率是0.6 ,一个是0.8,问:两个中发生一个或都发生的概率?解答:P=P(A且!B)+P(B且!A)+P(A且B)=0.6*(1-0.8)+0.8*(1-0.6)+0.6*0.8=0.92另一个角度,所求概率P=1-P(A,B都不发生)=1-(1-0.8)*(1-0.6)=0.922:一道概率题:就是100以内取两个数是6的整倍数的概率.解答:100以内的倍数有6,12,18,...96共计16个所以从中取出两个共有16*15种方法,从1-100中取出两个数的方法有99*100种,所以P=(16*15)/(99*100)=12/505=0.0243:1-350 inclusive 中,在100-299inclusive之间以3,4,5,6,7,8,9结尾的数的概率.因为100-299中以3,4,5,6,7,8,9结尾的数各有20个,所以Key:(2*10*7)/350=0.44.在1-350中(inclusive),337-350之间整数占的百分比Key:(359-337+1)/350=4%5.在E发生的情况下,F发生的概率为0.45,问E不发生的情况下,F发生的概率与0.55比大小解答:看了原来的答案,我差点要不考G了.无论柳大侠的推理还是那个哥哥的图,都太过分了吧?其实用全概率公式是很好解决这个问题的,还是先用白话文说一遍吧:某一个事件A的发生总是在一定的其它条件下如B,C,D发生的,也就是说A的概率其实就是在,B,C,D发生的条件下A发生的概率之和.A在B发生时有一个条件概率,在C发生时有一个条件概率,在D发生时有一个条件概率,如果B,C,D包括了A发生的所有的条件.那么,A 的概率不就是这几个条件概率之和么.P(A)=P(A|B)+P(A|C)+P(A|D)好了,看看这个题目就明白了.F发生时,E要么发生,要么不发生,OK?所以,P(F)=P(F|E)+P(F|!E) 感觉上也没错吧? 给了P(F|E)=0.45,所以P(F|!E)= P(F)-P(F|E)= P(F)-0.45如果P(F)=1,那么P(F|!E)=0.55如果0.45=<P(F)<1,那么0=<P(F|!E)<0.55如果…………,唉,我就不说你什么了…………sigh1.mode(众数)一堆数中出现频率最高的一个或几个数e.g. mode of 1,1,1,2,3,0,0,0,5 is 1 and 02.range(值域)一堆数中最大和最小数之差 ,所以统计学上又称之为极差.(两极的差)e.g. range of 1,1,2,3,5 is 5-1=43.mean(平均数)arithmatic mean(算术平均数): n个数之和再除以ngeometric mean (几何平均数): n个数之积的n次方根4.median(中数)将一堆数排序之后,正中间的一个数(奇数个数字),或者中间两个数的平均数(偶数个数字)e.g. median of 1,7,4,9,2,2,2,2,2,5,8 is 2 median of 1,7,4,9,2,5 is (5+7)/2=65.standard error(标准偏差)一堆数中,每个数与平均数的差的绝对值之和,除以这堆数的个数(n)e.g. standard error of 0,2,5,7,6 is:(|0-4|+|2-4|+|5-4|+|7-4|+|6-4|)/5=2.46.standard variation一堆数中,每个数与平均数之差的平方之和,再除以n标准方差的公式:d2=[(a1-a)2+(a2-a)2+....+(an-a)2 ]/ne.g. standard variation of 0,2,5,7,6 is: average=4((0-4)2 +(2-4)2+(5-4)2+(7-4)2+(6-4)2)/5=6.87.standard deviation就是standard variation的平方根 d8.the calculation of quartile(四分位数的计算)Quartile(四分位数):第0个Quartile实际为通常所说的最小值(MINimum);第1个Quartile(En:1st Quartile);第2个Quartile实际为通常所说的中分位数(中数、二分位分、中位数:Median);第3个Quartile(En:3rd Quartile);第4个Quartile实际为通常所说的最大值(MAXimum);我想大家除了对1st、3rd Quartile不了解外,对其他几个统计值的求法都是比较熟悉的了,而求1st、3rd是比较麻烦的.下面以求1rd为例:设样本数为n(即共有n个数),可以按下列步骤求1st Quartile:1.n个数从小到大排列,求(n-1)/4,设商为i,余数为j2.则可求得1st Quartile为:(第i+1个数)*(4-j)/4+(第i+2个数)*j/4例(已经排过序啦!):1).设序列为{5},只有一个样本则:(1-1)/4 商0,余数01st=第1个数*4/4+第2个数*0/4=52).设序列为{1,4},有两个样本则:(2-1)/4 商0,余数11st=第1个数*3/4+第2个数*1/4=1.753).设序列为{1,5,7},有三个样本则:(3-1)/4 商0,余数2 1st=第1个数*2/4+第2个数*2/4=34).设序列为{1,3,6,10},四个样本:(4-1)/4 商0,余数21st=第1个数*1/4+第2个数*3/4=2.55).其他类推!因为3rd与1rd的位置对称,这是可以将序列从大到小排(即倒过来排),再用1rd的公式即可求得:例(各序列同上各列,只是逆排):1.序列{5},3rd=52.{4,1},3rd=4*3/4+1*1/4=3.253.{7,5,1},3rd=7*2/4+5*2/4=64.{10,6,3,1},3rd=10*1/4+6*3/4=79.The calculation of Percentile设一个序列供有n个数,要求(k%)的Percentile:(1)从小到大排序,求(n-1)*k%,记整数部分为i,小数部分为j可以如此记忆:n个数中间有n-1个间隔,n-1/4就是处于前四分之一处,(2)所求结果=(1-j)*第(i+1)个数+j*第(i+2)个数特别注意以下两种最可能考的情况:(1)j为0,即(n-1)*k%恰为整数,则结果恰为第(i+1)个数(2)第(i+1)个数与第(i+2)个数相等,不用算也知道正是这两个数.注意:前面提到的Quartile也可用这种方法计算,其中1st Quartile的k%=25%2nd Quartile的k%=50%3rd Quartile的k%=75%计算结果一样.例:(注意一定要先从小到大排序的,这里已经排过序啦!){1,3,4,5,6,7,8,9,19,29,39,49,59,69,79,80}共16个样本要求:percentile=30%:则(16-1)*30%=4.5=4+0.5 i=4,j=0.5(1-0.5)*第5个数+0.5*第6个数=0.5*6+0.5*7=6.510.To find median using Stem-and-Leaf (茎叶法计算中位数)Stem-and-Leaf method 其实并不是很适用于GRE考试,除非有大量数据时可以用这种方法比较迅速的将数据有序化.一般GRE给出的数据在10个左右,茎叶法有点大材小用.Stem-and-Leaf 其实就是一种分级将数据分类的方法.Stem就是大的划分,如可以划分为1~10,11~20,21~30…,而Leaf就是把划分到Stem一类中的数据再排一下序.看了例子就明白了.Example for Stem-and-Leaf method:Data:23,51,1,24,18,2,2,27,59,4,12,23,15,200| 1 2 2 41| 12 15 182| 20 23 23 24 275| 51 59Stem (unit) = 10Leaf (unit) = 1分析如下:最左边的一竖行 0, 1, 2, 5叫做Stem, 而右边剩下的就是Leaf(leaves). 上面的Stem-and-Leaf 共包含了14个data, 根据Stem及leaf的unit, 分别是: 1, 2, 2, 4 (first row), 12, 15, 18 (second row), 20, 23, 23, 24, 27(third row), 51, 59 (last row). Stem and Leaf其实就是把各个unit,比如个位,十位等归类了而已,一般是从小到大有序排列,所以在找Stem-and Leaf 找median的时候,一般不需要你自己把所有的数写出来从新排序.所以只要找到中间的那个数 (如果data个数是偶,则取中间两数的平均数), 就是median 了.这道题的median是18和20的平均值 =19. 大家在碰到这种题的时候都可以用上面的方法做,只要注意unit也就是分类的数量级就行了.为什么用Stem-and-Leaf 方法?可能你觉得这样做太麻烦了,其实Stem-and-Leaf 方法好处就是:你不必从一大堆数里去按大小挑数了,按照data给出的顺序填到表里就可以了.但是,GRE考试这样做是否值自己斟酌.我的方法,不就是找十来个数么?排序!在先浏一眼数据看看大致范围,然后在答题纸上按个的写,觉得小的写前面,大的写后面,写了几个数之后,就是把剩下的数儿们,一个个的插到已写的数中间么!注意尽可能的把数之间的距离留大一些,否则,如果某些数比较密集,呵呵,你会死的很惨的.11.To find the median of data given by percentage(按比例求中位数)给了不同年龄range, 和各个range的percentage, 问median 落在哪个range里. 把percentage加到50%就是median的range了.担小心一点,range首先要保证是有序排列.Example for this:Given: 10~20 = 20%, 30~50 = 30%, 0~10 = 40%, 20~30 = 10%, 问median在哪个range里.分析:千万不要上来就加,要先排序,切记!!重新排序为: 0~10 = 40%, 10~20 = 20%, 20~30 = 10%, 30~50 = 40%. 然后从小开始加, median(50%)落在 10~20这个range里.如果觉得比较玄乎,我的方法,GRE大部分的题都可以这么搞.0~10岁 40匹ETS猪,10~20岁 20匹ETS 猪,20~30岁匹ETS猪,30~50岁匹ETS猪,这100匹ETS猪按着年龄排下来,你说第五十匹ETS猪的年龄落在那个范围.(原题: 说一堆人0-10岁占 10%,11-20岁占12%,21-30岁占 23%,31-40岁占 20%,〉40岁占 35%,问median 在什么范围?)12:比较,当n<1时,n,1,2 和1,2,3的标准方差谁大standard error 和 standard variation (作用=standard deviation)都是用来衡量一组数据的离散程度的统计数值,只不过由于standard error中涉及绝对值,在数学上是很难处里的所以,都用标准方差,实际上standard error更合理一些,它代表了数据和平均值的平均距离.很明显题目中如果n=0的话,0,1,2的离散程度应该和1,2,3的离散程度相同.如果n<0,则n,1,2,的离散程度大于后者,而0<n<1的话,则后者大于前者,但是n为整数,这种情况不成立.故而Key:n是整数,前〉=后(n=0,等;n=-1,-2,……大于)13.算数平均值和加权平均值三组数据的频数分布FREQUENCY DISTRIBUTION:1(6),2(4),3(1),4(4),5(6)1(1),2(4),3(6),4(4),5(1)1(1),2(2),3(3),4(4),5(5)其中括号里的是出现的频率,问MEAN和AVERAGE相等的有那些.答案:只有第二个.mean-arithmetic mean 1+2+3+4+5)/ 5 = 3average-weighted average 加权平均值:(1*1+2*4+...5*1)/(1+4+6+4+1)=48/16=314.正态分布题.一列数从0到28,给出正态分布曲线.75%的percentile 是20,85%的percentile是r,95%的percentile是26,问r与23的大小.Key:r<23下面是来自柳大侠的七种武器中的正态分布15.正态分布高斯分布(Gaussian)(正态分布)的概率密度函数为一钟型曲线,即222)(221)(σπσaxexp--=a为均值,σ为标准方差,曲线关于x=a的虚线对称,σ决定了曲线的“胖瘦”,形状为:如果把曲线的片段放大就比较清楚了.O为AB的中点. A(20, 75%)B(26, 95%)O(23, 85%)C(r, 85%)由于曲线上凸,显然C的横坐标小于O,所以r<23. 只要画一下图就很easy了.2) 正态分布题好象是:有一组数平均值9,标准方差2,另一组数平均值3,标准方差1,问分别在(5,11)和(1,4)中个数(概率)谁大,应该是相等.解:令图1中的曲线a=0, 1=σ, 就得到了标准正态分布,曲线如图3.此时问分布在区间(x1, x2)的概率,就是图中的阴影ABOCax1 x2图3面积.注意此时的曲线关于x=0对称.(★)对于一般的正态分布,可以通过变换,归一化到标准的正态分布,算法为: 设原正态分布的期望为a ,标准方差为σ,欲求分布在区间(y1, y2)的概率,可以变换为求图3中分布在(x1, x2)间的概率.其中σay x -=.比如题目中a=9,2=σ, 区间为(5, 11),则区间归一化为(-2,1),即22951-=-=x 129112=-=x同理,a=3,1=σ, 区间为(1, 4),则区间归一化后也为(-2,1).所以两者的分布概率相等.估计最难的题也就是利用钟型曲线的对称性,比如归一化后的区间并不相同,而是(-2,1)和(-1,2),但根据对称性,仍然可以比较概率的大小.代数部分 1. 有关数学运算add ,plus subtract difference multiply, times product divide divisible 可被整除 divided evenly 被整除dividend divisor 因子,除数 quotient 商 remainder factorial power radical sign, root sign 根号round toto the nearest 四舍五入 2. 有关集合 unionproper subsetsolution set3.algebraic term 代数项 like terms, similar termsnumerical coefficientliteral coefficientinequality 不等triangle inequality range值 original equationequivalent equationlinear equation 线性方程(e.g. 5x +6=22)4.proper fraction improper fraction 假分数mixed number vulgar fraction ,common fraction simple fraction complex fraction numerator denominator(least) common denominatorquarter decimalfraction infinite decimal 无穷小recurring decimal tenths unit 十分位5.arithmetic mean weighted average 加geometric meanexponent base 乘幂的底数, cubesquare root cube root common logarithm digit constant variable inverse function complementary functionlinear factorizationabsolute value 绝对值, e.g.|-32|=32round off 四舍五入 6.natural number positive numbernegative number odd integer, odd number 奇even integer, even number integer, whole number positive whole number 正整数 negative whole number consecutivenumber real number, rational number 实数, irrational (number ) inverse composite number 合数 prime number 质数reciprocal common divisor 公multiple (least)common multiple (最小) (prime) factor (质) common factor ordinary scale, decimal scale nonnegative tens 十位 units mode median common ratio7.arithmetic progression(sequence) geometric progression(sequence)8.approximate (anti)clockwise (逆) 顺时针cardinal ordinal direct proportion distinct estimationparentheses proportion 比例permutation combination tabletrigonometric function unit 单位, 几何部分 1. 所有的角alternate angle corresponding angle 同vertical angle central angle 圆 interior angle exterior angle 外角 supplementary angles complementary angle adjacent angle acute angleobtuse angle right angle round anglestraight angleincluded angle 2.equilateral triangle scalene triangle isosceles triangle 等腰right triangle oblique 斜 inscribed triangle3.semicircle concentric circles quadrilateral pentagon hexagon heptagon octagon 八边nonagon decagon polygonparallelogram equilateral plane squarerectangle regular polygon 正多边 rhombus trapezoid 4.arcline, straight line line segment parallel lines segment of acircle5.cuberectangular solidregular solid/regular polyhedron circular cylinder cone sphere 球solid6.altitude depth side circumference, perimeter radian surface area volume arm 直角三角cross section center of acircle chord radius angle bisector diagonal diameteredge face of a solid hypotenuse included side leg 三角median of a trianglebase 底边,底数(e.g. 2的5次方,2 opposite midpoint endpoint vertex (复数形式vertices) tangent transversalintercept7.coordinate system rectangularcoordinate origin abscissaordinate number linequadrant slope complex plane 复平面8.plane geometry trigonometrybisect circumscribe inscribe 内切 intersectperpendicular pythagorean theorem congruent 全等的 multilateral1.cent penny 一美分硬币 nickel 5美分硬币 dime dozen 打(12 score 廿(20个) Centigrade Fahrenheit quart gallon 加仑(1 gallon = 4 quart) yard 码 meter micron inch foot 英 minute 分(角度的度量单位,60分=1度)square measure cubic meterpint 品脱(干量或液量的单位)2.intercalary year(leap year) 闰年(366天) common year 平年(365天) depreciation down payment discount margin 利润 profit interest simple interest compounded interest dividend 红利 decrease to decrease byincrease to increase by denote list price markup per capita ratio retail pricetie 打平救命三招1.代数法往变量里分别代三个数(最大,最小,中间值)看看满足不满足2.穷举法分别举几个特例,不妨从最简单的举起,然后总结一下规律3.圆整法对付计算复杂的图表题,不妨四舍五入舍去零头,算完后看跟那个答案最接近即可无论你赞同何种观点,形成一套自己的解题思路是尤为重要的。

GRE考试题目及解析

GRE考试题目及解析

GRE考试题目及解析GRE考试题目及解析1、2解:不确定2、X~3 * y = 10 ~6 (y 1),问X 与10~2比大小解:x=10~2/y~1/3y1则y~1/31 所以还是10~2大选B3、数列:a1=3,a2=6,a(n)= a(n-1)/a(n-2),问:a(150)=?解:3,6,2,1/3,1/6,1/2,3,6,(每6次一个循环,答案应当是1/2吧)另一版本:前人几经有误,我的是:a1=2,a2=6,an=a(n-1)/a(n-2),求a1502,6,3,1/2,1/6,1/3 ,2,6,3,…所以我的答案是1/3(大家看清晰A1的值,自己推断吧)4、125w+25x+5y+z=264,x,y,z,w,are nonnegative integrate,and no more than 5,what is w+x+y+z?解:用短除法把256写成五进制就是2024,则得到x+y+z+w=2+0+2+4=85、a * x平方+B*X+k=0(a和b已知,k未知),给出一个X的.值,问另一个。

简洁,解出K后,再解出X26、a,b,c,-5,-10的平均数和a,b,c,5,10的平均数之差是多少?解:在考场遇到时看清晰谁在前。

答案是-6 ,或许是6。

7、F(X)=2的2X-1方,求F(3+X)F(3-X)解:2的10次方8、-7解:当X= -7 ,Y= 0 时最大,49。

9、有个公式很重要。

求M到N之间是Q的倍数的数有多少个?公式是:[(该范围内Q的最大倍数-该范围内Q的最小倍数)/Q ] +1今日我遇到两个这样的题,多亏有这个公式,要不然就费劲了10、一个数,被9整除得x1+x2+x3,被12整除得x2+x3,则这个数至少为?能被x1整除?答案:369(x1+x2+x3)=12(x2+x3) x1=3(x2+x3)……、、11、数列a1,a2,、、、a10、除了第一项外的各项都是其前一项的1/2。

GRE数学难题解析(1)

GRE数学难题解析(1)

GRE数学难题解析(1)1.Sixty-eight people are sitting in 20 cars and each car contains at most 4 people. What is the maximum possible number of cars that could contain exactly 1 of the 68 people?A.2B.3C.4D.8E.122.if n is any prime number greater than 2, which of the following cannot be a prime number?A.n-4B.n-3C.n-1D.n+2E.n+53.In 1988 Mr. Smith’s annual income was greater than Mrs. Smith’s annual income. In 1989 Mr. Smith’s annual income decreased by p percent, whereas Mrs. Smith’s annual income increased by p percent. (p>0)Column A: Mr. and Mrs. Smith’s combined annual income in 1988Column B: Mr. and Mrs. Smith’s combined annual income in 19894.How many integers between 101 and 201 are equal to the square of some integer?A. TwoB. ThreeC. FourD. FiveE. Six5. The price of a certain stock was 12*1/2 dollars per share.The price increased x percent to 15*5/8 dollars per share.Column A: xColumn B: 206. The “reflection” of a positive integer is obtained by reversing its digits. For example, 321 is the reflection of 123. The difference between a five-digit integer and its reflection must be divisible by which of the following?A.2B.4C.5D.6E.97. Column A: 1/(1-0.03)Column B: 1.038.The original value of machine X is V dollars, while the original value of machine Y is 2V dollars. Both machines depreciate in value at a constant rate of 10 percent of their original value per year.Column A: The value of machine X after 3 yearsColumn B: The value of machine X after 6 years9. If n is an odd integer, which of the following is the square of the next larger odd integer?A. n*n+1B. n*n+4C. n*n+2n+1D. n*n+4n+1E.n*n+n+110. If 55 percent of a group of people have brown hair and 80 percent of the same group do not have red hair, what fraction of those who do not have brown hair red hair?A. 1/4B.4/11C.4/9D.5/9E.4/5。

(完整word版)GRE考试105道数学易错难题

(完整word版)GRE考试105道数学易错难题

1、n个数从小到大排列,求(n-1)/4,设商为i,余数为j,则可求得1st Quartile为:(第i+1个数)*(4-j)/4+(第i+2个数)*j/42、4个*,2个·的排列方式15(=)3、5双袜子,同时去2只,刚好配对的概率。

1/94. 40人说French,60人说Russian,80人说Italy,说两种语言的有50人,说三种语言的有10人.。

共有125人,问不说这些语言的有几人。

Key:125-(40+60+80-50-10*2)=155、等腰直角三角形边长2加2倍根号2,求面积。

6、某种溶液浓度为125gram per liter,转换成ounce per gallon,求表达式。

已知1 ounce=28.xxx gram and 1 gallon=3.875 liter7、x,y,z 均方差为d, 求x+10,y+10,z+10的均方差(d)8、1的概率是0.8,2的概率是0.6,问是1或是2或是both的概率,1-0.6*0.8(数字瞎编)=0.929、一组测量数据中,12.1比mean低1.5个标准差,17.5比mean高3.0个标准方差,问mean是多少。

13.9(设标准差为X12.1+1.5X=M,17.5-3X=M)10、图表题:1992年总和是50,96年是60,每年至少增长1,问最大的年增长?7.011、x+y=5&2x+2y=8之间最短距离与1比较<112、以40miles/hour速度经过一1.5miles的路,若超速则罚款fine=50+(速度-40)*10,现一人用108秒通过此路,问她的fine=? key 15013、xyz together finish the task for 9 hour, xy togather need 12 hour,z alone needs ? hour. key 3614、直线l,在X轴截距是3,在Y轴截距是4。

GRE数学难题汇总(下)

GRE数学难题汇总(下)

GRE数学难题汇总(下)51. n>4 从2到n的奇数与从2到n的素数比大小 .(不定吧)52. q(-3,-6,-9,-12)r(-3,-6,-9,-12,-15)a:the number 一个集合里有,另一个没有的。

b:a number 两个集合里有的注意了,the number 值得是个数,应是1,而a number 只得是具体的数,-3,-6,-9,-12都为负数,应为a大。

53.第一天下雨的概率是70%,第二天下雨的概率是40%(不管第一天是否下雨),两天均不下雨的概率(0.18),54.斜率(slope)为3的一条直线,经过(k,5)。

比较k与2的大小。

d55. 3^100-3^97,问GREATEST PRIME FACTOR,选 1356 .两个事件E , F, P(F|E)=0.45, 比较P(~F|E) 与 0.55的大小小于57.以等边三角形(边长为2)的各顶点为圆心,以1为半径画圆,3圆弧围成的部分的面积与3*(3)1/2 /4比较大小58 .28只人,14只男人,男人中有7只为50岁以下的,这群人中50岁以下的的百分比与40%教. D59. wxyz四人排队,问w在z前面的几率和1/2比较大小,我选相等(sure)60. x 的值为0的frequency 为 n 为1的frequency为100-n, 为x 的 arithmatic average less than 0.5 时n 的值与50的比较(0*n+(100-n)*1)/1005061.还有9^17/8^17 与 9^17+5^9/8^17+5^9 比较大小(前大于后)62.圖表題1﹕一個餅圖表示支持x,y的百分比﹐另一個表示支持者收入的百分比﹕5000,18%.Q1:支持y且收入>5000的百分比(兩者取小﹐18%)Q2:羅馬數字題1﹒收入的mean1/384.某种溶液浓度为125gram per liter, 转换成 ounce per gallon,求表达式已知 1 ounce=28.xxx gram and 1 gallon=3.875 liter85. (x-3)/(x-1)=0,比较x与1(没说x≠1)大于86.满足方程x/13+y/39=1的正整数对(x,y)有多少对。

gre数学练习题及答案

gre数学练习题及答案

gre数学练习题及答案1. 集合问题:设集合A={1, 2, 3},集合B={2, 3, 4},求A∩B(A 与B的交集)。

2. 概率问题:一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?3. 几何问题:一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

4. 函数问题:给定函数f(x) = 2x + 3,求f(-1)的值。

5. 统计问题:一组数据的平均数是5,中位数是6,众数是7,求这组数据可能的值。

6. 百分比问题:如果一个商品的价格从100元上涨到120元,求价格上涨的百分比。

7. 代数问题:解方程2x - 3 = 7。

8. 面积问题:一个矩形的长是10厘米,宽是5厘米,求这个矩形的面积。

9. 速度问题:如果一个人以每小时5公里的速度行走,他需要多少时间才能走完20公里的距离。

10. 比率问题:如果3个苹果的重量等于2个橙子的重量,且一个苹果的重量是150克,求一个橙子的重量。

答案:1. A∩B = {2, 3}。

2. 概率 = 红球数量 / 总球数 = 5/8。

3. 斜边长度= √(3² + 4²) = √(9 + 16) = √25 = 5。

4. f(-1) = 2(-1) + 3 = -2 + 3 = 1。

5. 数据可能为:7, 7, 6, 5, 4, 3, 2, 1(满足平均数、中位数和众数的条件)。

6. 上涨百分比 = (新价格 - 原价格) / 原价格× 100% = (120 - 100) / 100 × 100% = 20%。

7. 2x - 3 = 7,解得 x = 5。

8. 面积 = 长× 宽= 10 × 5 = 50平方厘米。

9. 时间 = 距离 / 速度 = 20 / 5 = 4小时。

10. 3个苹果 = 2个橙子,即3 × 150克= 2 × 橙子重量,解得橙子重量 = 225克。

GRE数学难题

GRE数学难题

GRE数学--难题解析(一)1. On a certain number line, if -7 is a distance of 4 from n and 7 is a distance of 18 from n then n=(A) 25 (B) 11 (C)- 3 (D) 11 (E)-112. The diagram represents a rectangular garden. The shaded regions are planted in flowers, and the unshaded region is a walk 2 feet wide. All angles are right angles. The sum of the of the feet shaded regions 2,800 square areas3.The map shows the only roads that connect the four towns and shows the distance along each road.The road distance between Austen The road distance between Coaltownand Seburg and Woodland4.How many positive integers less than 20 are equal to the sum of a positive multiple of 3 and a positive multiple of 4?(A) Two (B) Five (C) Seven (D) Ten (E) Nineteen5.Which of the following symbols should be substituted for to make both of thestatements above true for all integers n such that -2< n≤3?(A) ≤ (B) < (C) = (D) > (E) ≥6.In a soccer league, If there were 10 teams and each team played each of the other teams 16 times, how many games did each team play?(A) 144 (B) 140 (C) 134 (D) 125 (E) 1067.In 1984 median income for a person in the 55-64 age category was in which of the following intervals?(A) less than $10,000 (B) $10,000-$19,999 (C) $20,000-$24,999(D) $25,000-$34,999 (E) $35,000-$49,999A sample of employees were tested on data-entry skills for one hour, and the number of errors (x) they made and the percent of employess (p) making x errors were recorded as follows.8. What was the median number of errors in the sample?(A) 3 (B) 3.5 (C) 4 (D) 4.5 (E) It cannot be determined from the information given.d=7.56872 and d1 is the decimal expression for d rounded to the nearest thousandth.9. The number of decimal places where d and d1 differ 410. In a certain country, a person is born every 3 seconds and a person dies every 10 seconds. Therefore, the birth and death rates account for a population growth rate of one person every11. Of the positive integers that are multiples of 30 and are less than or equal to 360, what fraction are multiples of 12?12. The figure above shows a large square formed by fitting three L-shaped tiles and one small square title together. If a rectangular floor 10 feet by 12 feet is to be tiled in large squares of this design, how many L-shaped tiles will be needed?(A) 810 (B) 405 (C) 270 (D) 135 (E) 4513. The daily rate for a hotel room that sleeps 4 people is $39 for one person and x dollars for each additional person. If 3 people take the room for one day and each pays $21 for the room, what is the value of x?(A) 6 (B) 8 (C) 12 (D) 13 (E) 2414. A positive integer with exactly two different divisors greater than 1 must be(A) a prime (B) an even integer (C) a multiple of 3(D) the square of a prime (E) the square of an odd integerx>zy>z15. x+y zx > y and xy≠02AF=AB=BD=DE=AE17. The sum of the area of triangular The area of rectangularregion ABF and area of region BCEFtriangular region CDE18. Each of the following numbers has two digits blotted out. Which of the numbers could be the number of hours in x days, where x is an integer?(A)25, 06(B)50, 26(C)56, 02(D)62, 50(E)65, 2020. The median score for the class is(A)76 (B)77 (C)78 (D)79 (E)8021. If 5 points were added to each score, which of the following would NOT be affected?(A)The highest score(B)The mean for all scores(C)The median for the seniors' scores(D)The mode for the juniors' scores(E)The standard deviation for all scores22. If the mean score for the juniors were known, which of the following could be calculated from the information given?I. The range of the scores for the seniorsII. The median score for the juniorsIII. The mean score for the seniors(A)None (B)I only (C)III only (D)I and II (E)II and III23. If in an experiment the probabilities of obtaining the valuesare, respectively, then the expected value is definedas For the values and their correspondingprobabilities in the table above, what is the expected value?(A)350 (B)320 (C)300 (D)270 (E)25024. The standard deviation of the sample The standard deviation of the sample measurements 0, 1, 2, 4, and 8 measurements 0, 1, 3, 5, and 925. What is the total number of different 5-digit numbers that contain all of the digits 2, 3,4,7 and 9 and in which none of the even digits occur next to each other?(A)72 (B)100 (C)120 (D)60 (E)48Water is to be poured at a rate of 2.5 gallons per minute into a 500-gallon tank that initially contains 50 gallons of water.28. The percent of the tank's capacity 60 percentthat will be filled 1 hour after waterbegins to be poured in29. In the figure above, if x, y, and z are integers such that x<y<z, then the least and the greatest possible values of x+z are(A)59 and 91 (B)69 and 135 (C)91 and 178 (D)120 and 135 (E)120 and 17830. The figure above shows the dimensions of rectangular box that is to be completely wrapped with paper. If a single sheet of paper is to be used without patching, then the dimensions of the paper could be(A)17 in by 25 in (B)21 in by 24 in (C)24 in by 12 in (D)24 in by 14 in(E)26 in by 14 in31. In the table above, what is the least number of table entries that are needed to show the mileage between each city and each of the other five cities?(A)15 (B)21 (C)25 (D)30 (E)3632. A store currently charges the same price for each towel that it sells. If the current price of each towel was to be increased by $1, 10 fewer of the towels could be bought for $120, excluding sales tax. What is the current price of each towel?(A)$ 1 (B)$ 2 (C)$3 (D)$ 4 (E)$ 12GRE数学--难题解析(二)33. Pat will walk from intersection X to intersection Y along a route that is confined to the square grid of four streets and three avenues shown in the map above. How many routes from X to Y can Pat take that have the minimum possible length? (A)Six (B)Eight (C)Ten (D)Fourteen (E)Sixteen34.In an insurance company, each policy has a paper record and an electric record. For those policies having incorrect paper record, 60% also having incorrect electricrecord; For those policies having incorrect electric record, 75% also having incorrect electric record. 3% of all policies have both incorrect paper and incorrect electric records. If we randomly pick out one policy, what's the probability that the one having both correct paper and correct electric records?(A)0.80 (B)0.94 (C)0.75 (D)0.88 (E)0.9235. There are 1200 respondents to a poll, each favoring their preference for candidates A, B,and C. 54% favored A, 48% favored B, and 42% favored C, and there is 30% favored both A and B. what's the largest possible number of respondents favoring C, but not C & B, nor C & A?(A)25% (B)30% (C)28% (D)38% (E)40%36. Out of 100 ladies attending the church fete, 85 had a white handbag; 75 had black shoes;60 carried an umbrella; 90 wore a ring. How many ladies must have had all four items?(A)15 (B) 35 (C)5 (D)10 (E)2537. The sergeant had fewer than 500 men to line up on parade. He tried arranging them in rows of three, but found there was one leftover. Then he tried them in rows of four, then five and six, but always there was one leftover. Finally, he tried them in rows of seven, and, to his relief, saw that the rows were exactly even. How many soldiers were lined up on parade?(A)308 (B)241 (C)296 (D)245 (E)30138. The vicar returns from his allotment with a small bag of tomatoes. To the first parishioner he meets he gives half the tomatoes plus half a tomato, to the second he gives half what he has left plus half a tomato and to the third he gives half what he has left plus half a tomato. He has then distributed all his bag of tomatoes. How many tomatoes did he initially have in the bag?39. The median salary of A, B, C, D, E is $20000, the range of these five people's salary is less than $50000. We have already known that the salaries of A, B, C are $20000, $40000, $50000, respectively. What is the probable average salary of these five people?(A)$20000 (B)$32000 (C)$18000 (D)$23000 (E)$3100040. 一个样本在一个标准方差内的概率是0.68, 两个标准方差内的概率是0.95。

gre数学考题附答案

gre数学考题附答案

gre数学考题附答案
gre数学考题附答案
虽然新gre数学难度增加对我们造成的威胁不大,但是我们也不能忽略了gre数学解题技巧的积累,以下是gre数学解题概率部分的内容介绍,希望对大家的新gre数学备考有所帮助。

1、一个BOX里面有红,蓝,绿球,绿球有4个,篮球和红球相加21个。

1)问随便摸一个不是篮球的几率。

答案是0.84
2) 红绿蓝 18:4:3 问不是绿球概率
2、靶子有四个环,阴影部分总概率0.4,非阴影总概率0.6.。

答案24%
3、200-999中,选择尾数是03的'概率。

答案应为1%
4、有个东西第一周内fail的概率是0.05,如果第一周没有fail第二周继续用,一年没有fail的概率是0.8,比较大小:用一年的概率和0.76
答案: 相等
5、5个人站一排,Alice, Bruce要相邻,问有几种站法?
答案:48
解析:4!2=163=48 解释:5人中有2人捆绑,先当做1个人看,这样就是4人排列顺序,也就是4!,然后这捆绑的2人实际上可以互换位置所以在当做4人排列的基础上乘以2倍)
6、从X包中拿出兰球的概率是P1,从Y包中拿出黄球的概率是P2,求分别取球同时拿出黄球和兰球的概率。

7. k ,k是1到100整数,求能被20整除的概率和1比较。

答案:相等
【gre数学考题附答案】。

GRE考试数学部分试题库及答案

GRE考试数学部分试题库及答案

GRE考试数学部分试题库及答案GRE(研究生入学考试)是全球范围内广泛接受且广泛使用的标准化考试之一,用于评估申请者在数学、阅读和写作等领域的能力。

数学部分是GRE考试的核心部分之一,它旨在测试考生的数学推理能力和解决实际问题的能力。

为了帮助考生更好地准备数学部分,以下是一些GRE数学部分的试题库及答案:1. 题目:如果x + 4 = 8,那么x的值是多少?答案:x = 42. 题目:如果12x = 36,那么x的值是多少?答案:x = 33. 题目:A、B、C三个人一起完成一项工作,A单独完成该工作需要5小时,B单独完成需要8小时,C单独完成需要10小时。

如果他们三个人一起工作,那么完成该工作需要多少小时?答案:A、B、C三个人一起工作的效率为1/5 + 1/8 + 1/10 = 37/40。

完成整个工作需要的时间为1 / (37/40) = 40/37小时。

4. 题目:本金为P的债券到期后,变为金额为A的债券,经过了n 年。

如果利率为r,那么本金P可以用以下公式计算:P = A / (1 + r)^n。

如果一笔本金为$5000的债券到期后变为$6500的债券,经过了5年,且利率为4%,那么最初的本金P是多少?答案:P = 6500 / (1 + 0.04)^5 = $5654.975. 题目:已知两条直线的斜率分别为m1和m2,那么这两条直线的夹角θ可以通过以下公式计算:θ = arctan((m2 - m1) / (1 + m1 * m2))。

如果直线1的斜率m1为1/2,直线2的斜率m2为2/3,那么这两条直线的夹角θ是多少?答案:θ = arctan((2/3 - 1/2) / (1 + 1/2 * 2/3)) = arctan(1/7) ≈ 8.13°以上是一些GRE数学部分试题库及答案的示例。

考生们可以通过解题练习和模拟考试来提高数学推理和解题能力,从而在GRE数学部分取得良好的成绩。

2024 GRE考试专题数学历年真题集锦

2024 GRE考试专题数学历年真题集锦

2024 GRE考试专题数学历年真题集锦GRE考试是对申请美国研究生院的学生进行综合能力测试的重要方式之一。

其中,数学部分是考生必须重点准备和应对的内容之一。

为了帮助考生更好地备考,本文整理了2024年GRE考试数学部分的历年真题集锦,供考生参考和复习使用。

一、整数和1. 如果a和b都是正整数,且a + b = 8,那么a和b可能的取值有哪些?答案:(1, 7), (2, 6), (3, 5), (4, 4)2. 如果m和n都是正整数,且m - n = 14,那么m和n的最小公倍数是多少?答案:28二、几何1. 一根长为10英尺的绳子被剪成两段,使得其中一段的长度是另外一段的2倍。

求较短一段的长度。

答案:4英尺2. 一个半径为5的圆与一个半径为8的圆相切于一点,并且两个圆的圆心之间的距离为13。

求两个圆相切点之间的距离。

答案:12三、代数1. 如果a是一个正整数,并且a^2 - 5a + 6 = 0,那么a的值是多少?答案:2或32. 设a、b、c是正整数,且满足a + b = c。

若a能被5整除,c能被9整除,那么b能被几整除?答案:4四、概率与统计1. 在一个有10个数字的集合中,每一个数字都是从1到10中随机选取的,那么从这个集合中选取一个数字,并且这个数字是偶数的概率是多少?答案:1/22. 一张标准扑克牌中红桃的数量为13,黑桃的数量为13。

从扑克牌中随机抽取一张牌,那么这张牌为红桃或黑桃的概率是多少?答案:26/52 = 1/2通过以上历年真题的集锦,考生可以更好地理解GRE数学部分的题目类型和解题思路。

每个题目的解答都提供了详细的答案,考生可以通过演算来验证答案的正确性,并进行自我评估。

为了顺利完成GRE考试,考生需要做到以下几点:首先,掌握基础知识。

GRE数学部分主要考察考生对数学基本概念和方法的理解和运用能力。

因此,考生需要熟悉数学基本概念和公式,同时要能够快速准确地运用这些概念和公式解题。

2023年GRE考试资料分析数学题及答案

2023年GRE考试资料分析数学题及答案

2023年GRE考试资料分析数学题及答案
引言
本文档旨在分析2023年GRE考试的数学题目及其答案。

通过对这些题目的深入剖析,考生将能够更好地理解数学部分的考试内容与难度。

数学题目分析
以下是一些2023年GRE考试数学题目的分析:
1. 题目:在平面直角坐标系中,两条直线l和m的斜率分别为3和-2,而y轴截距分别为4和-5。

求直线l和直线m的交点坐标。

- 答案:直线l和直线m的交点坐标为(3, 4)。

2. 题目:有一个等腰直角三角形,其中两条边的长度分别为5和5√2。

求三角形的斜边长度。

- 答案:三角形的斜边长度为5√3。

3. 题目:一个中装有30个红球和40个蓝球。

从中随机取出一个球,求取得红球的概率。

- 答案:取得红球的概率为3/7。

4. 题目:已知f(x) = 2x^2 + 3x + 1,求f(2)的值。

- 答案:f(2)的值为15。

5. 题目:若a + b = 7,且a^2 + b^2 = 29,求ab的值。

- 答案:ab的值为-6。

结论
通过本文档对2023年GRE考试的数学题目进行分析,我们可以看出其中的一些常见题型和解题方法。

对于考生来说,通过熟悉并掌握这些题目的解题思路和答案,将有助于提高他们在数学部分的得分。

同时,这也提醒考生在备考过程中要牢固掌握数学基础知识,并注重对题目要求的准确理解及逻辑推理能力的培养。

2023年GRE数学考试题目及解析(完整打印版)

2023年GRE数学考试题目及解析(完整打印版)

2023年GRE数学考试题目及解析(完整打印版)第一部分:数学基础1. 题目:求解方程给定方程:2x + 5 = 11,求解x的值。

解析:将方程重写为:2x = 11 - 5。

计算得出:2x = 6。

继续计算得出:x = 6 / 2。

最终解得:x = 3。

2. 题目:求解等差数列的和已知等差数列的首项为3,公差为2,共有10个项,求该等差数列的和。

解析:首先,可以使用公式求解等差数列的和:Sn = n/2 * [2a + (n-1)d]。

代入已知值:n = 10,a = 3,d = 2。

计算得出:Sn = 10/2 * [2*3 + (10-1)*2]。

继续计算得出:Sn = 5 * (6 + 18)。

最终解得:Sn = 120。

第二部分:几何图形3. 题目:计算三角形面积已知三角形的底边长为5,高为8,求三角形的面积。

解析:三角形的面积可以通过公式计算:A = 1/2 * 底边长 * 高。

代入已知值:底边长 = 5,高 = 8。

计算得出:A = 1/2 * 5 * 8。

最终解得:A = 20。

4. 题目:计算圆的周长已知圆的半径为4,求圆的周长。

解析:圆的周长可以通过公式计算:C = 2 * π * 半径。

代入已知值:半径 = 4,π取3.14。

计算得出:C = 2 * 3.14 * 4。

最终解得:C = 25.12。

第三部分:数据分析5. 题目:计算平均数已知一组数据为:5, 8, 6, 12, 9,求这组数据的平均数。

解析:计算平均数的公式为:平均数 = 数据总和 / 数据个数。

代入已知值:数据总和 = 5 + 8 + 6 + 12 + 9,数据个数 = 5。

计算得出:平均数 = (5 + 8 + 6 + 12 + 9) / 5。

最终解得:平均数 = 8。

6. 题目:计算中位数已知一组数据为:2, 5, 8, 11, 15,求这组数据的中位数。

解析:首先对数据进行排序:2, 5, 8, 11, 15。

GRE数学

GRE数学

GRE数学例题GRE数学难题解析第一部分数学的基础知识(I)一、代数Algebra例1 请比较大小:.The number of distinct positive factors of n 14比较大小例2:252因子的个数是多少?例3 比较大小:A printer numbered consecutively the pages of a book, beginning with 1 on the first page. In numbering the page, he printed a total of 204 digits.The number of pages in the book 105例4 比较大小:In a certain two-digit number,the units' digit is twice the tens' digit. 5The tens' digit例5比较大小:二、描述统计descriptive statistics例6 比较大小:某长方形的周长为40,该长方形的最大面积100例7 比较大小:空间5个点能够构成的直线数目10例8:求3,13,17的标准方差。

三、排列组合combination、概率probability1.排列组合排列计算公式:,组合计算公式:。

2.概率例9:假如世界杯比赛共有32支球队,分成8个组,每组4个队,每组前两名出线,然后成对进行淘汰赛,直至决赛决出冠军,并且淘汰队不参加比赛,从中间任选出一场比赛观看是半决赛的机会有多大?例10:有4对男女,每对中有1男1女,从每对中选出1人,选出2男2女的概率是多少?例11:有3个打字员为4家公司服务,如果4家公司各有1份文件要录入,他们只能找到这3个打字员录入,且各公司对打字员的要求是随机的。

问每个打字员都收到文件的概率是多少?例12:两个骰子,六面的值分别为1,2,3,4,5,6,投掷这两个骰子,问其中一个骰子的值比另一个的值大2的概率为多大?四、几何(Geometry)例13 比较大小:R is a point in the rectangular coordinate system and OR=5.The x-coordinate of point R4.9例14 比较大小:(RS)2+(ST)2 (RT)2 例15: According to the graph above, when x=3, y is most nearly:(A) -1 (B) -1/2 (C) 0 (D) 1/2 (E) 1五、文字题(Word Problem) 1. 利息问题(interest)单利 simple interest 复利 compound interest例16: If $ 8000 is invested at 6 percent simple annual interest, how much interest is earned after 3 months?例17:If $ 10,000 is invested at 10 percent simple annual interest, compound semiannually, what is the balance after 1 year? 2. 折扣问题(discount)例18:The price of an item is discounted by 20 percent and then this reduced price is discounted by an additional 30 percent. These two discounts are equal to an overall discount of what percent? 3. 英美常识问题GRE 难题解析例1:On a certain number line, if -7 is a distance of 4 from n and 7 is a distance of 18 from n ,then n=?(A) 25 (B) 11 (C)- 3 (D) 11 (E)-11例2:The diagram represents a rectangular garden. The shaded regions are planted in flowers, and the unshaded region is a walk 2 feet wide. All angles are right angles.The sum of the areas of the 2,800 square feet shaded regions例3:The map shows the only roads that connect the four towns and shows the distance along each road.The road distance between Austen and Seburg The road distance between Coaltown and Woodland例4:How many positive integers less than 20 are equal to the sum of a positive multiple of 3 and a positive multiple of 4?(A) Two (B) Five (C) Seven (D) Ten (E) Nineteen例5:Which of the following symbols should be substituted forto makeboth of the statements true for all integers n such that -2< n ≤3?(A) ≤ (B) < (C) = (D) > (E) ≥4-n 64-n 5例6:In a soccer league, If there were 10 teams and each team played each of the other teams 16 times, how many games did each team play?(A) 144 (B) 140 (C) 134 (D) 125 (E) 106例7:(NOTE: DRAWN TO SCALE)POPULATION OF THE U.S. AGE 55 AND OVER1984 AND PROJECTIONS FOR 1995INCOME DISTRIBUTION FOR POPULATIONOF THE U.S. AGE 55 AND OVER,1984In 1984 median income for a person in the 55~64 age category was in which of the following intervals?(A) less than $10,000 (B) $10,000~$19,999 (C) $20,000~$24,999 (D) $25,000~$34,999 (E) $35,000~$49,999例8:A sample of employees were tasted on data-entry skills for one hour , and the number of errors (x) they made and the percent of employees (p) making x errors were recorded as(A) 3 (B) 3.5 (C) 4 (D) 4.5 (E) It cannot be determined from the information given.例9:d=7.56872 and D is the decimal expression for d rounded to the nearest thousandth. The number of decimal place where d and D differ 4例10:In a certain country, a person is born every 3 seconds and a person dies every 10 seconds. Therefore, the birth and death rates account for a population growth rate of one person every例11:Of the positive integers that are multiples of 30 and are less than or equal to 360, what fraction are multiples of 12?(A) 1/6 (B) 1/5 (C) 1/3 (D) 2/5 (E) 1/2例12:The figure shows a large square formed by fitting three L-shaped tiles and one small square tile together . If a rectangular floor 10 feet by 12 feet is to be tiled in large squares of this design, how many L-shaped tiles will be needed?(A) 810 (B) 405 (C) 270 (D) 135 (E) 45例13:The daily rate for a hotel room that sleeps 4 people is $39 for one person and x dollars for each additional person. If 3 people take the room for one day and each pays $21 for the room, what is the value of x?(A) 6 (B) 8 (C) 12 (D) 13 (E) 24例14:A positive integer with exactly two different divisors greater than 1 must be(A) a prime (B) an even integer (C) a multiple of 3(D) the square of a prime (E) the square of an odd integer例15:x>z, y>z x + y z例16:x>y and xy≠0 (x + y)/x (x + y)/y例17:2AF=AB=BD=DE=AEThe sum of the area of triangularThe area of rectangular region BCEFregion ABF and area of triangularregion CDE例18:Each of the following numbers has two digits blotted out. Which of the numbers could be the number of hours in x days, where x is an integer?(A)25,06 (B)50,26 (C)56,02 (D)62,50 (E)65,20例19:There are 1200 represents to a poll, each favoring their preference for candidates A, B, and C. 54% favored A, 48% favored B, and 42% favored C, and there is 30% favored both A and B. What’s the largest possible number of represents favoring c, but not C&B, nor C&A? (A)25% (B)30% (C)28% (D)38% (E)40%例20:Out of 100 ladies attending the church fete, 85 had a white handbag; 75 had black shoes;60 carried an umbrella; 90 wore a ring, How many ladies must have had all four items?(A)15 (B)35 (C)5 (D)10 (E)25例21:In an insurance company, each policy has a paper record and an electric record. For those policies having incorrect paper record, 60% also having incorrect electric record; For those policies having incorrect electric record, 75% also having incorrect paper record. 3% of all policies have both incorrect paper and incorrect electric record. If we randomly pick out one policy, what’s the probability that the one having both correct paper and correct electric record?(A)0.80 (B)0.94 (C)0.75 (D)0.88 (E)0.92例22:If in an experiment the probabilities of obtaining the values a12345are p1,p2,p3,p4,p5 , respectively, then the expected value is defined as a1 p1+ a2 p2+a3 p3+ a4 p4+ a5p5.For the values and their corresponding probabilities in the table above, what is the expected value?(A)350 (B)320 (C)300 (D)270 (E)250例23:The standard deviation of the The standard deviation of the samplemeasurements 1, 3, 5, 7, and 9例24:What is the total number of different 5-digit numbers that contain all of the digits 2, 3,4,7 and 9 and in which none of the even digits occur next to each other?(A)72 (B)100 (C)120 (D)60 (E)48例25:Water is to be poured at a rate of 2.5 gallons per minute into a 500-gallon tank that initially contains 50 gallons of water.The percent of the tank's capacity that will be60 percentfilled 1 hour after water begins to be poured in例26:In the figure, if x, y, and z are integers suchthat x<y<z, then the least and the greatest possiblevalues of x+z are(A)59 and 91 (B)69 and 135 (C)91 and 178(D)120 and 135 (E)120 and 178例27:The figure shows the dimensions ofrectangular box that is to be completelywrapped with paper. If a single sheet ofpaper is to be used without patching, thenthe dimensions of the paper could be(A)17 in by 25 in (B)21 in by 24 in (C)24 in by 12 in(D)24 in by 14 in (E)26 in by 14 in例28:In the table, what is the least number of tableentries that are needed to show the mileagebetween each city and each of the other five cities?(A)15 (B)21 (C)25 (D)30 (E)36例29:A store currently charges the same price for each towel that it sells. If the current price of each towel was to be increased by $1, 10 fewer of the towels could be bought for $120, excluding sales tax. What is the current price of each towel?(A)$ 1 (B)$ 2 (C)$3 (D)$ 4 (E)$ 12GRE数学常用符号及术语一.数学中常用符号+: plus X:multiply-:subtract÷:divideV~:square root|...|:absolute value=: is equal to=/=: is not equal to>: is greater than<: is less than//:is parallel to_|_:is perpendicular to>=:is greater than or equal to(或no less than)<=:is less than or equal to(或no more than)二.表达相应数目的前缀1:uni-,mono- 2:bi-,du-,di- 3:tri-,ter-, 4:tetra-,quad-, 5:penta-,quint, 6:hex-,sex-, 7:sept-,hapta-, 8:oct, 9:enn-, 10:dec-,deka-,三.数学中常用单词术语abscissa 横坐标absolute value 绝对值acute angle 锐角adjacent angle 邻角addition 加algebra 代数altitude 高angle bisector 角平分线arc 弧area 面积arithmetic mean 算术平均值(总和除以总数)arithmetic progression 等差数列(等差级数)arm 直角三角形的股at 总计(乘法)average 平均值base 底be contained in 位于...上bisect 平分center 圆心chord 弦circle 圆形circumference 圆周长circumscribe 外切,外接clockwise 顺时针方向closest approximation 最相近似的combination 组合common divisor 公约数,公因子common factor 公因子complementary angles余角(二角和为90度)Composite number 合数(可被除1及本身以外其它的数整除)concentric circle 同心圆cone 圆锥(体积=1/3*∏*r*r*h)congruent 全等的consecutive integer 连续的整数coordinate 坐标的cost 成本counterclockwise 逆时针方向cube 1.立方数2.立方体(体积=a*a*a表面积=6*a*a)cylinder 圆柱体decagon 十边形decimal 小数decimal point 小数点decreased 减少decrease to 减少到decrease by 减少了degree 角度define 1.定义 2.化简denominator 分母denote 代表,表示depreciation 折旧distance 距离distinct 不同的dividend 1.被除数 2.红利divided evenly 被除数divisible 可整除的division 1.除 2.部分divisor 除数down payment 预付款,定金equation 方程equilateral triangle 等边三角形even number 偶数expression 表达exterior angle 外角face (立体图形的)某一面factor 因子fraction 1.分数 2.比例geometric mean 几何平均值(N个数的乘积再开N次方)geometric progression 等比数列(等比级数)have left 剩余height 高hexagon 六边形hypotenuse 斜边improper fraction 假分数increase 增加increase by 增加了increase to 增加到inscribe 内切,内接intercept 截距integer 整数interest rate 利率in terms of... 用...表达interior angle 内角intersect 相交irrational 无理数isosceles triangle 等腰三角形least common multiple 最小公倍数least possible value 最小可能的值leg 直角三角形的股length 长list price 标价margin 利润mark up 涨价mark down 降价maximum 最大值median, medium 中数(把数字按大小排列,若为奇数项,则中间那项就为中数,若为偶数项,则中间两项的算术平均值为中数。

最新gre猴哥数学难题解析(二)

最新gre猴哥数学难题解析(二)

智 课 网 G R E 备 考 资 料最新gre猴哥数学难题解析(二)下面为大家总结了最新的gre猴哥数学难题。

有很多gre考生对gre 数学考试十分苦恼,其实最有效的方法就是多练习,把数学基础知识记牢,这样才能在考试中对答如流。

而gre数学考试中也会出现一些难题,想拿高分也十分不容易。

11. In the equation above, k, r, s, t, and v represent positive numbers. Multiplying which one of these numbers by 2 will reduce the value of n to 1/2 of its present value?A. kB. rC.sD. tE. v12. A certain money market account that had a balance of $48,000 during all of last month earned $360 in interest for the month. At what simple annual interest rate did the account earn interest last month?A. 7%B.7.5%C.8%D.8.5%E.9%13. Column A: The two-digit integer that equals twice the sum of its digitsColumn B: 1614. A car travels at an average speed of 80 kilometers per hour during a 6 - hour trip and averages 75 kilometers per hour for the first 4 hours of the trip. Which of the followingdistance-versus-time graphs is consistent with this information?15. The number of households receiving monthly benefits in 1960 was approximately what fraction of the number receiving monthly benefits in 1975?A. 9/10B.5/6C.16/27D.11/32E.8/3516. When the even integer n is divided by 7, the remainder is 3.Column A: The remainder when n is divided by 14Column B : 10answer: C17. The “combined age” of a group of people is the sum of the ages of all the people in the group. Which of the following groups had the greatest combined age in 1986?A. 20-year-old malesB. 20-year-old femalesC. 60- year-old malesD. 60-year-old femalesE. 80-year-old females18. Approximately how many more 10-year-old children were there in 1980 than in 1986?A. 100,000B.200,000C.300,000D. 400,000E.1,000,00019. The population of females was greater in 1980 than in 1986 for approximately what percent of the ages from 0 to 100 years?A. 15%B.25%C.55%D.75%E.85%20. In 1980 the ratio of the number of males to the number of females was greatest for which of the following ages?A. 10B. 30C.50D.70E.90最新的gre猴哥数学难题中有很多gre数学考试中常见的难题,而且难题涉及的范围也比较广泛,考生在复习时一定要多注意日常的练习和积累。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智 课 网 G R E 备 考 资 料GRE数学难题15道练习及答案解析gre数学题对大路考生来说难度不大,不过,为了保险起见,考生仍然需要整体复习一下高中数学的相关概念、公式,并且找出gre数学常考题目进行模拟练习。

一些经常在gre数学考卷上出现的难题类型也需要大家重点关注。

下面,智课留学为大家整理gre数学中的15道难题,希望对大家的gre数学备考有所帮助。

●●点击获取更多专业名师一对一咨询、免费网上增值服务●●1. A,B,C,D,E五个人的薪水的median是20000,range不超过50000,其中A,B,C的薪水分别是20000, 40000,50000,问五个人薪水的平均值可能是多少?(A) 20000(B) 32000(C) 18000(D) 23000(E) 310002. 一个样本在一个标准方差内的概率是0.68,两个标准方差内的概率是0.95.一样本,mean=18.6,标准方差是6,求:该样本在6.6-12.6内占多少?(A) 0(B) 0.68(C) 0.27(D) 0.36(E) 0.1353. 一组数平均值9,标准方差2,另外一组数平均值3,标准方差1,问第一组数在(5,11)中的数占总数的比例和第二组数在(1,4)中的数占总数的比例哪个大?4. 有100个人都对A,B两个人进行评价,每个人只有两种选择,即好或不好,说A不好的有59个,说B不好的有65个,问:同时说AB都好的人数和35比较,哪个大?5. 两个集合: A=[-1,-2,-3,-4]B=[-2,3,4,5],问B的A次方有多大的概率是正数?(A) 0(B) 0.5(C) 0.625(D) 0.875(E) 0.135参考答案1.解: median为20000 , range为50000,则本题剩下两数的最小值为0 ,0 ,最大 值为 20000 ,2000,则平均值最小值为:(0+0+20000+40000+50000)/5=22000。

平均最大值为:(20000+20000+20000+40000+50000)/5=30000。

所以五人薪水平均值应在 22000和30000之间。

2.解:本题应加入限制条件:应在正态分布中,否则无解。

Weight指平均值,6.6-12.6 指 -2个方差与-1个方差之间的概率,所以算发为:(0.95-0.68)/2=0.135 3.解:本题同上题,需在正态分布中讨论,(5,11)中的数是1. 5个方差中的数,同样(1,4)中的数也是1.5个方差中的数,所以两组数占总数的比例一样大。

4.解:这种交集的题目列个哥看起来更清楚。

所以说AB好的更大交集的35,最小交集为0,所以本题无法判断。

5.解:B的A次方一共有16个,其中只有-2的-1次方和-3次方是负数,所以正数是14个,所以14/16=7/86. 符合 X^2+Y^2<=100的整数解共有多少对?7. Right triangle PQR is to be constructed in the xy-plane so that the right angle is at P and PR is parrallel to the x-axis. Thex-and y-coordinates of P,Q,and Rare to be integers that satisfy the inequalities -4<=x<=5,6<=y<=16,how many different triangles with these properties could be constructed?(A) 110(B) 1100(C) 9900(D) 10000(E) 121008. A box contains 100 balls, numbered from 1 to 100. If three balls are selected at random and with replacement from thebox,what is the probability that the sum of the three numbers onthe balls selected from the box will be odd?(A) 1/4(B) 3/8(C) 1/2(D) 5/8(E) 3/49. (0-9) 要组成三位电话号码,第一位不能是0或1,三位数中相邻两位不能为同一数. (e.g. 227 not acceptable, but 272acceptable),求可以组成多少个这样的电话号码?10. 从1,2,3,4,5,6,7,8,9中选出三个数字组成一个三位数,这个三位数的digits中有两个相同,另一个digit与其它两个都不同,问共有多少个这样的三位数?(A) 72(B) 144(C) 180(D) 216(E) 54参考答案:6.解:本题的意为一个半径为10的圆中的整数对有多少对。

首先,(0,0)是一种特殊情况,另四个坐标轴上各有10对解,共41对,对1至7之间的数字而言,任一对均满足条件,则对,对于8,满足条件的有1,2,3,4,5,6六个数,则:6×2×4=48对解对于9,满足条件的有1,2,3,4四个数,则:4×2×4=32所以总数为41+196+48+32=317对解。

7.解:本题首先应考虑赵有三条形的构成,对于-4<=X<=5 10个数而言,须取两个点构成直角边,且有顺序问题,因为直角可在两边,则应为;对于6<=6<=16,也应取两个点构成另一直角边,也存在顺序 问题8.解:本题因为奇数和偶数个数相同,和也只有两种方式,所以三个数的和为奇数的可能性为1/2。

也可以考虑从这100个数中任取三个数的奇偶,可能性为:奇奇奇,奇偶偶,奇奇偶和偶偶偶,其中奇奇奇和奇偶偶两种情况的和为奇数,所以也得到可能性为1/29.解:第一位只能选2-9,有8个可能性第二位只能选不是第一位的数,有9个可能性第三位只能选不是第二位的数,有9个可能性因此共有8×9×9=648种方法10.解:因为三个数中两个数相同,所以从9个数中取出两个的可能性为,三个数中那个不同的数和可能位置为3个,取出的两个数哪个做不同的数的可能性为两种。

11. A,B,C,D,E,F排在1,2,3,4,5,6六个位置上,问A不在1, B不在2,C不在3的情况下,共有多少种排法?(A) 720(B) 450(C) 180(D) 216(E) 32012. 一直线L过点A(5,0), B(0,2), 坐标原点为O,点P(X,Y)为三角形OAB中一点, 问:Y(A) 1/4(B) 3/8(C) 1/2(D) 5/8(E) 3/413. If Bob can do a job in 20 days and Jane can do the job in 30 days, they work together to do this job and in this period, Bob stop work for 2.5 days and Jane stop work for x days, and the job be finished for 14 days, what is x?(A) 1.6(C) 1.5(D) 1.25(E) 1.1514. The probability of A is 60% and the probability of B is 50%, what is the most possible probability that neither A nor B would happen?(A) 0.80(B) 0.40(C) 0.75(D) 0.55(E) 0.6815. In an insurance company, each policy has a paper record and an electric record. For those policies having incorrect paper record, 60% also having incorrect electric record; For policies having incorrect electric record, 75% also having incorrect paper record. 3% of all policies have both incorrect paper and incorrect electric records. If we randomly pick out one policy,what’s the probability that the one having both correct paper and correct electric records?(A) 0.80(B) 0.94(C) 0.75(D) 0.88(E) 0.9216. There are 1200 respondents to a poll, each favoring their preference for candidates A,B, and C. 54% favored A, 48% favored B, and 42% favored C, and there is 30% favored both A and B. what’s the largest possible number of respondents favoring C, but not C&B;, nor C&A;?(A) 25%(B) 30%(D) 38%(E) 40%参考答案:11.解:首先考虑总的可能性为,再考虑A在1,B在2,C在3的可能性分别为,中重复计算了三者交集,分别为AB在1,2,AC在1,3,BC 在2,3,所需将三种情况加回,即,但考虑这三种加回的交集又重复计算了ABC在1,2,3的情况,所以应减去P3312.解:在平面直角坐标系中,T13.解:1/20(14-2.5)+1/30(14-x)=1,得出x=1.2514.解:划出图表来可以一目了然:A,B均不发生的最大概率为40%,最小概率为0.15.解:设总数为x,设incorrect paper record有y, incorrect electric record有z,则:x·y·60%=3%·x y=5%x·z·75%=3%·x z=4%则,两者至少有一个错误的百分比为5%+4%-3%=6%,所正确答案为94%16.解:A和B的并集为:54%+48%-30%=72%,所C为28%.。

相关文档
最新文档