第七讲 Matlab & 最优化
matlab教学PPT第7讲MATLAB仿真SIMULINK
第7讲 SIMULINK 图2-18 通过命令启动Simulink仿真
第7讲 SIMULINK
可见,仿真完成之后,工作空间中出现了“ScopeData” 结构变量,其中包含了示波器显示的全部波形数据。通过 “plot”命令可以作出这些数据对应的波形,
组建用户自定义模块库如果建立了许多自定义的子系统并且已经封装好了而这些已经封装的自定义模块又是会反复使用的就像simulink提供的模块库中那些模块一样在这种情况下就有必要对这些自定义的重用性较好的模块进行建库以方便管理和反复使用同时也可以作为新的专业库提供给其他用户使用
第7讲 SIMULINK
第7讲 MATLAB仿真_SIMULINK
第7讲 SIMULINK
• Simulink全方位地支持动态系统的建模仿真,它支持连 续系统、离散系统、连续离散混合系统、线性系统、非 线性系统、时不变系统、时变系统的建模仿真,也支持 具有多采样速率的多速率系统。可以说,在通用系统仿 真领域,Simulink是无所不包的。
• 结合MATLAB编程和Simulink可视化建模仿真各自的特 点,可以构建更为复杂的系统模型,并进行自动化程度 更高的仿真和仿真结果的数据分析,这是MATLAB的高 级应用方面。
第7讲 SIMULINK 图2-15 仿真结果
第7讲 SIMULINK
• 更换信号源为Sources子模块库中的SignalGenerator,并设置 信号源为0.2Hz的方波,幅度为1,如图2-16左边对话框所示。
• 设置示波器显示窗口的属性(Parameters),使之成为双踪 显示,然后将示波器第二输入节点与信号源输出相连,这 样我们就可以同时观察系统的输入输出波形了。系统建模 如图2-16中间窗口所示。
matlab教程ppt(完整版)
数据处理
应用MATLAB的信号处理和统计 分析函数库,进行数据预处理、
特征提取和模型训练。
机器学习与深度学习
机器学习
介绍MATLAB中的各种机器学习算法,如线性回归、决策 树、支持向量机等,以及如何应用它们进行分类、回归和 聚类。
深度学习
介绍深度学习框架和网络结构,如卷积神经网络(CNN) 、循环神经网络(RNN)等,以及如何使用MATLBiblioteka B进行 训练和部署。感谢观看
THANKS
符号微积分
进行符号微分和积分运算,如极限、导数和 积分。
符号方程求解
使用solve函数求解符号方程。
符号矩阵运算
进行符号矩阵的乘法、转置等运算。
05
MATLAB应用实例
数据分析与可视化
数据分析
使用MATLAB进行数据导入、清 洗、处理和分析,包括描述性统
计、可视化、假设检验等。
可视化
利用MATLAB的图形和可视化工 具,如散点图、柱状图、3D图等
数值求和与求积
演示如何对数值进行求和与求积 操作。
数值计算函数
介绍常用数值计算函数,如sin、 cos、tan等。
方程求解
演示如何求解线性方程和非线性方 程。
03
MATLAB编程基础
控制流
01
02
03
04
顺序结构
按照代码的先后顺序执行,是 最基本的程序结构。
选择结构
通过if语句实现,根据条件判 断执行不同的代码块。
数据分析
数值计算
MATLAB提供了强大的数据分析工具,支 持多种统计分析方法,可以帮助用户进行 数据挖掘和预测分析。
MATLAB可以进行高效的数值计算,支持 多种数值计算方法,包括线性代数、微积 分、微分方程等。
第七讲 MATLAB中求方程的近似根(解)
第七讲 MATLAB 中求方程的近似根(解)教学目的:学习matlab 中求根命令,了解代数方程求根求解的四种方法,即图解法、准解析法、数值方法以及迭代方法,掌握对分法、迭代法、牛顿切法线求方程近似根的基本过程;掌握求代数方程(组)的解的求解命令.教学重点:求方程近似解的几种迭代方法,代数方程(组)的解的求解命令的使用方法.利用所学的编程知识,结合具体的实例,编制程序进行近似求根.掌握相关的代数方程(组)的求解命令及使用技巧.教学难点:方程的近似求解和非线性方程(组)的求解.一、问题背景和实验目的求代数方程0)(=x f 的根是最常见的数学问题之一(这里称为代数方程,主要是想和后面的微分方程区别开.为简明起见,在本实验的以下叙述中,把代数方程简称为方程),当)(x f 是一次多项式时,称0)(=x f 为线性方程,否则称之为非线性方程.当0)(=x f 是非线性方程时,由于)(x f 的多样性,尚无一般的解析解法可使用,但如果对任意的精度要求,能求出方程的近似根,则可以认为求根的计算问题已经解决,至少能满足实际要求.同时对于多未知量非线性方程(组)而言,简单的迭代法也是可以做出来的,但在这里我们介绍相关的命令来求解,不用迭代方法求解.通过本实验,达到下面目的:1. 了解对分法、迭代法、牛顿切线法求方程近似根的基本过程;2. 求代数方程(组)的解.首先,我们先介绍几种近似求根有关的方法: 1. 对分法对分法思想:将区域不断对分,判断根在某个分段内,再对该段对分,依此类推,直到满足精度为止.对分法适用于求有根区间内的单实根或奇重实根.设)(x f 在],[b a 上连续,0)()(<⋅b f a f ,即 ()0f a >,()0f b <或()0f a <,()0f b >.则根据连续函数的介值定理,在),(b a 内至少存在一点 ξ,使()0f ξ=.下面的方法可以求出该根:(1) 令0()/2x a b =+,计算0()f x ;(2) 若0()0f x =,则0x 是()0f x =的根,停止计算,输出结果0x x =.若 0()()0f a f x ⋅<,则令1a a =,10b x =,若0()()0f a f x ⋅>,则令10a x =,1b b =;111()/2x a b =+.……,有k a 、k b 以及相应的()/2k k k x a b =+.(3) 若()k f x ε≤ (ε为预先给定的精度要求),退出计算,输出结果()/2k k k x a b =+; 反之,返回(1),重复(1),(2),(3).以上方法可得到每次缩小一半的区间序列{[,]}k k a b ,在(,)k k a b 中含有方程的根. 当区间长k k b a -很小时,取其中点()/2k k k x a b =+为根的近似值,显然有2111()/2()/(2)()/2k k k k k k x b a b a b a ξ+---≤-=-==-以上公式可用于估计对分次数k .分析以上过程不难知道,对分法的收敛速度与公比为12的等比级数相同.由于1021024=,可知大约对分10次,近似根的精度可提高三位小数.对分法的收敛速度较慢,它常用来试探实根的分布区间,或求根的近似值. 2. 迭代法a) 松弛法:由方程()0f x =构造一个等价方程()x x φ=.则迭代方程是:1(1)()k k k k k x x x ωωφ+=-+,1/(1'())k k x ωφ=-,其中'()1x φ≠.松弛法的加速效果是明显的 (见附录4),甚至不收敛的迭代函数经加速后也能获得收敛.b) Altken 方法:松弛法要先计算'()k x φ,在使用中有时不方便,为此发展出以下的 Altken 公式:(1)()k k x x φ= ;(2)(1)()k k x x φ=;(2)(2)(1)2(2)(1)1()/(2)k k k k k k k x x x x x x x +=---+, ,2,1,0=k这就是Altken 公式,它的加速效果也是十分明显的,它同样可使不收敛的迭代格式获得收敛(见附录5).3. 牛顿(Newton)法(牛顿切线法)()0f x =是非线性方程其迭代公式为:1(()/'())k k k k x x f x f x +=- ,2,1,0=k即为牛顿法公式.牛顿法的缺点是:(1)对重根收敛很慢;(2)对初值0x 要求较严,要求0x 相当接近真值*x .因此,常用其他方法确定初值0x ,再用牛顿法提高精度. 以下是本实验中的几个具体的实验 具体实验1:对分法先作图观察方程:3310x x -+=的实根的分布区间,再利用对分法在这些区间上分别求出根的近似值.程序如下: function [y,p]=erfen()clc, x=[];a=[];b=[]; a(1)=1;b(1)=2; i=1;x(i)=(a(i)+b(i))/2; e=abs(f(x(i))); ezplot('x^3-3*x+1',[a(1),b(1)]);hold on, plot([a(i),b(i)],[0,0]) while e>10^(-5)plot([a(i),a(i)],[0,100],[x(i) x(i)],[0 100],[b(i) b(i)],[0 100]),pause(0.5) if f(a(i))*f(x(i))<0a(i+1)=a(i);b(i+1)=x(i);x(i+1)=(a(i+1)+b(i+1))/2; elsea(i+1)=x(i);b(i+1)=b(i);x(i+1)=(a(i+1)+b(i+1))/2; ende=abs(f(x(i)));i=i+1; endy=x(i);p=[a;x;b]' function u=f(x) u=x^3-3*x+1; end end图形如下:结果为:1.5321具体实验2:普通迭代法采用迭代过程:1()k k x x φ+=求方程3310x x -+=在 0.5 附近的根,精确到第 4 位小数.构造等价方程:3(1)/3x x =+用迭代公式: 31(1)/3k k x x +=+, ,2,1,0=k 具体实验3:迭代法的加速1——松弛迭代法3()(1)/3x x φ=+,2()'x x φ=,21/(1)k k x ω=-迭代公式为31(1)(1)/3k k k k k x x x ωω+=-++clc;x=[];w=[]; x(1)=1;w(1)=1/(1-x(1)); for i=1:10w(i)=1/(1- x(i)); x(i+1)=(1-w(i))*x(i)+ w(i)*(x(i)^3+1)/3; end x另外有程序可以参考,详见参见附录4. 具体实验4:迭代法的加速2——Altken 迭代法迭代公式为:(1)3(1)/3k k x x =+,(2)(1)3(1)/3k k x x =+(2)(2)(1)2(2)(1)1()/(2)k k k k k k k x x x x x x x +=---+, ,2,1,0=k%(符号计算)syms x fx gx;gx=(x^3+1)/3;fx=x^3-3*x+1; disp('k x x1 x2') x=0.5;k=0; ffx=subs(fx, 'x', x); while abs(ffx)>0.0001;u=subs(gx, 'x', x);v=subs(gx, 'x', u);disp([num2str(k), ' ', num2str(x), ' ', num2str(u), ' ', num2str(v)]) x=v-(v-u)^2/(v-2*u+x);k=k+1;ffx=subs(fx, 'x', x); enddisp([num2str(k), ' ', num2str(x), ' ', num2str(u), ' ', num2str(v)]) %(数值计算)function [y,p]=althken() % 求方根的迭代程序 clc,format long e , x(1)=6; i=1;p=[];ezplot('x^3-3*x+1',[x(1)-9,x(1)+1]);hold on plot([x(1)-20,x(1)+2],[0,0]) while abs(f(x(i)))>=10^(-5) plot(x(i),0,'*')t1=phi(x(i));t2=phi(t1); x(i+1)=t2-(t2-t1)^2/(t2-2*t1+x(i)+eps); p=[p;[i, x(i),t1,t2]]; i=i+1; pause(0.1) endp,y=x(i), i, format function u=phi(x) u=(x^3+1)/3; endfunction u=f(x) u=x^3+1-3*x; end end具体实验5:牛顿法用牛顿法计算方程3310x x -+=在-2到2之间的三个根. 提示:3()31f x x x =-+,2'()33f x x =-迭代公式:2321(31)/(33)k k k k k x x x x x +=--+-function [y,p]=newton() % 求方根的迭代程序 clc,format long e , x(1)=6; i=1; p=[]; ezplot('x^3-3*x+1',[x(1)-9,x(1)+1]);hold on plot([x(1)-20,x(1)+2],[0,0]) while abs(f(x(i)))>=10^(-5)plot(x(i),0,'*'), x(i+1)=x(i)-f(x(i))/(df(x(i))+eps); p=[p;[i, x(i)]]; i=i+1; pause(0.1) endformat short , p,y=x(i), i, function u=df(x) u=3*x^2-3; endfunction u=f(x) u=x^3+1-3*x; end end 结果:结果为: 1.5321※进一步思考:用迭代法求3的平方根. 迭代公式为1(3/)/2n n n x x x +=+. 编写M 函数文件My_sqrt.m, 求3正的平方根x . 要求误差小于510-.仅要求写出源程序.试使用以上介绍的迭代法来相互比较 参考程序:function y=my_sqrt(a) % 求方根的迭代程序if nargin~=1|~isa(a,'double') , error('输入数字为一个正数!'),end if a<0, error('输入数字为正数!'), endif a>0format long e , x(1)=0; x(2)=1; i=1; while abs(x(i+1)-x(i))>=10^(-5)i=i+1;x(i+1)=1/2*(x(i)+a/(x(i)+eps));endy=x(i+1);i,format end现在我们简单介绍图解法如何来求解一元方程和二元方程的根: 例:exp(-3*t)*sin(4*t+2)+4*exp(-0.5*t)*cos(2*t)=0.5>>ezplot('exp(-3*t)*sin(4*t+2)+4*exp(-0.5*t)*cos(2*t)-0.5',[0 5]) >>hold on, line([0,5],[0,0])验证:t=3.5203 >>syms x; t=3.5203;vpa(exp(-3*t)*sin(4*t+2)+4*exp(-0.5*t)*cos(2*t)-0.5) ans =-.43167073997540938989914138801396e-4例::x^2*exp(-x*y^2/2)+exp(-x/2)*sin(x*y)=0y^2 *cos(y+x^2) +x^2*exp(x+y)=0>> ezplot('x^2*exp(-x*y^2/2)+exp(-x/2)*sin(x*y)')>> hold onezplot('y^2 *cos(y+x^2) +x^2*exp(x+y)')具体的结果请大家自己下来运行二、关于直接利用函数(命令)求解方程及简介(1) solve('f(x)'),f(x)为一个具体的表达式.(2) roots(A),A为某个多项式按x降幂排列的系数矩阵(3) fzero('f(x)', x0),f(x)为一个具体的表达式,x0为一个具体的数值(4) linsolve(A,b),A为一方程组的系数矩阵,b为方程组右端的常数矩阵.1.单变量的多项式方程求根:命令格式:roots(A)例:x^3-6*(x^2)-72*x-27=0;>>p=[1 -6 -72 -27]>>r=roots(p)r=12.1229-5.7345-0.38842. 多项式型方程的准解析解法命令格式:[x,…]=solve(eqn1,eqn2,…)例:x^2+y^2-1=00.75*x^3-y+0.9=0>>syms x y;>> [x,y]=solve('x^2+y^2-1=0', '75*x^3/100-y+9/10=0')检验:>>[eval('x.^2+y.^2-1'), eval('75*x.^3/100-y+9/10')]具体结果就请大家下来自己运行3. 线性方程组的求解例:求线性方程组b⋅的解,已知m=[1 2 3 4 5;2 3 4 5 6;3 4 5 6 7 8;4 5 6 7 8 ;5 6 7 8 0],m=xb=[1;2;3;4;5]for i=1:5for j=1:5m(i, j)=i+j-1;endendm(5, 5)=0;b=[1:5]'; linsolve(m, b)4. 非线性方程数值求解(1)单变量非线性方程求解在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根.该函数的调用格式为:z=fzero('fname',x0,tol,trace)其中fname是待求根的函数文件名,x0为搜索的起点.一个函数可能有多个根,但fzero 函数只给出离x0最近的那个根.tol控制结果的相对精度,缺省时取tol=eps,trace•指定迭代信息是否在运算中显示,为1时显示,为0时不显示,缺省时取trace=0.例:求f(x)=x-10x+2=0在x0=0.5附近的根.步骤如下:(a) 建立函数文件funx.m.function fx=funx(x)fx=x-10.^x+2;(b)调用fzero函数求根.z=fzero('funx',0.5)z = 0.3758(2)非线性方程组的求解对于非线性方程组F(X)=0,用fsolve函数求其数值解.fsolve函数的调用格式为: X=fsolve('fun',X0,option)其中X为返回的解,fun是用于定义需求解的非线性方程组的函数文件名,X0是求根过程的初值,option为最优化工具箱的选项设定.最优化工具箱提供了20多个选项,用户可以使用optimset命令将它们显示出来.如果想改变其中某个选项,则可以调用optimset()函数来完成.例如,Display 选项决定函数调用时中间结果的显示方式,其中‘off’为不显示,‘iter’表示每步都显示,‘final’只显示最终结果.optim set(‘Display’,‘off’)将设定Display 选项为‘off’. 例: 求下列非线性方程组在(0.5,0.5) 附近的数值解.(a) 建立函数文件myfun.m . function q=myfun(p) x=p(1);y=p(2);q(1)=x-0.6*sin(x)-0.3*cos(y);q(2)=y-0.6*cos(x)+0.3*sin(y); (b) 在给定的初值x0=0.5,y0=0.5下,调用fsolve 函数求方程的根. x=fsolve('myfun',[0.5,0.5]',optimset('Display','off')) x = 0.6354 0.3734将求得的解代回原方程,可以检验结果是否正确,命令如下: q=myfun(x) q = 1.0e-009 * 0.2375 0.2957 可见得到了较高精度的结果.精品案例:螺旋线与平面的交点问题:螺旋线与平面相交的情况多种多样, 根据螺旋线与平面方程的不同可以相交, 也可以不相交. 在相交的情况下, 可以交于一点, 也可以交于好多点. 对于各种相交的情况, 要求其交点的坐标并不是一件容易的事. 本次实验就以此为背景讨论下面的具体问题:已知螺旋线的参数方程为4cos ,4sin ,,08x y z θθθθπ===≤≤.平面的方程为:0.520x y z ++-=. 求该螺旋线与平面的交点. 要求:1)求出所有交点的坐标;2)在同一图形窗口画出螺旋线、平面和交点. 实验过程: 1.1 问题分析可以采用多种方法求螺旋线与平面的交点坐标, 包括fsolve 等. 先对方程化简,减少变量个数,使用图解方法求方程的根.再分别画出螺旋线,平面,及其交点. 1.2 算法描述与分析先对方程化简,减少变量个数,再利用fsolve, 选择适当的初值, 求其数值解;再分别会出图形;最后对图形作出必要的修饰. 1.3 源程序及注释将螺旋线的参数方程代入平面方程后可得: 等价变形得 : 建立下面M 文件intersect_point.m %使用图解法求交点,并且三维图 %画图确定解的个数和大概位置 theta=0:0.01:8*pi;y1=4*(cos(theta)+sin(theta)); y2=2-0.5*theta;plot(theta,y1,theta,y2) %画出两个函数的图形%画螺旋线%theta=0:pi/100:8*pi; x=4*cos(theta); y=4*sin(theta); z=theta;figure %新建图形窗口plot3(x,y,z) %画含有参数的空间曲线 hold on %透明的画平面%x1=-5:0.1:5; %取值和螺旋线的范围[-4,4]有关. y1=x1;[X1 Y1]=meshgrid(x1,y1);%网格化,画曲面 Z1=4-2*X1-2*Y1;surf(X1,Y1,Z1) %或者使用mesh(X1,Y1,Z1)25.0sin 4cos 4=-++θθθθθθ5.02sin 4cos 4-=+shading flatalpha(0.5) %设置透明度alpha('z') %设置透明度方向%求交点坐标,为避免变量混淆和覆盖,这里用t 代替theta%i=1for n=[2,5,9,11] %根据画图确定解的大概位置作为初值t(i)=fsolve(inline('4*cos(t)+4*sin(t)+0.5 *t-2'),n)%选择不同初值求交点 x0(i)=4*cos(t(i));y0(i)=4*sin(t(i));z0(i)=t(i);i=i+1;endplot3(x0,y0,z0,'ro')1.4 测试结果(写清输入输出情况)从图形可见在 内与三角曲线有4个交点.交点坐标为:theta 的数值解为:t=[2.1961 5.3759 9.1078 11.1023]四个交点的近似坐标为:x0 =[-2.3413 2.4635 -3.8007 0.4261]y0 =[3.2432 -3.1514 1.2468 -3.9772] z0 =[2.1961 5.3759 9.1078 11.1023]1.5 调试和运行程序过程中产生的问题及采取的措施求交点的时候会出现重根和漏根的情形,通过选择适当的初值避免了上述情况.1.6 对算法和程序的讨论、分析, 改进设想及其它经验教训solve 函数只能求解一个数值解,不能全部求出;用fsolve 函数好; 为了满足更好的视觉πθ80≤≤效果,可以对图形进行进一步的修饰.习题1.已知多项式323)(2345+++-=x x x x x f2.解方程组:sin()0x x y ye +-=(1)22x y -= (2)3.求解方程: ex x x =)cos( 4.求解多项式方程 0189=++x x5.求下列代数方程(组)的解:(1) 510x x -+=(2) 230x y += ①2431x y += ②6.选择适当的迭代过程,分别使用:(1)普通迭代法;(2)与之相应的松弛迭代法和 Altken 迭代法.求解方程0133=+-x x 在 1.4 附近的根,精确到4位小数,请注意迭代次数的变化.7.分别用对分法、普通迭代法、松弛迭代法、Altken 迭代法、牛顿切法线等5种方法,求方程 sin()t x x ⋅= 的正的近似根,10≤<t .(建议取 5.0=t .时间许可的话,可进一步考虑 25.0=t 的情况.)五、附录为供近似求根的算法附录1:对分法程序(fulu1.m )syms x fx; a=0;b=1;fx=x^3-3*x+1;x=(a+b)/2;k=0;ffx=subs(fx, 'x', x);if ffx==0;disp(['the root is:', num2str(x)])else disp('k ak bk f(xk)')while abs(ffx)>0.0001 & a<b;disp([num2str(k), ' ', num2str(a), ' ', num2str(b), ' ', num2str(ffx)]) fa=subs(fx, 'x', a);ffx=subs(fx, 'x', x);if fa*ffx<0b=x;elsea=x;endk=k+1;x=(a+b)/2;enddisp([num2str(k), ' ', num2str(a), ' ', num2str(b), ' ', num2str(ffx)])end注:实验时,可将第 2 行的 a、b 改为其它区间端点进行其它实验.附录2:普通迭代法(fulu2.m)syms x fx gx; gx=(x^3+1)/3;fx=x^3-3*x+1; disp('k x f(x)')x=0.5;k=0; ffx=subs(fx, 'x', x);while abs(ffx)>0.0001;disp([num2str(k), ' ', num2str(x), ' ', num2str(ffx)]);x=subs(gx, 'x', x);ffx=subs(fx, 'x', x);k=k+1;enddisp([num2str(k), ' ', num2str(x), ' ', num2str(ffx)])附录3:收敛/发散判断(fulu3.m)syms x g1 g2 g3 dg1 dg2 dg3;x1=0.347;x2=1.53;x3=-1.88;g1=(x^3+1)/3;dg1=diff(g1, 'x');g2=1/(3-x^2);dg2=diff(g2, 'x');g3=(3*x-1)^(1/3);dg3=diff(g3, 'x');disp(['1 ', num2str(abs(subs(dg1, 'x', x1))), ' ', ...num2str(abs(subs(dg1, 'x', x2))), ' ', num2str(abs(subs(dg1, 'x', x3)))]) disp(['2 ', num2str(abs(subs(dg2, 'x', x1))), ' ', ...num2str(abs(subs(dg2, 'x', x2))), ' ', num2str(abs(subs(dg2, 'x', x3)))]) disp(['3 ', num2str(abs(subs(dg3, 'x', x1))), ' ', ...num2str(abs(subs(dg3, 'x', x2))), ' ', num2str(abs(subs(dg3, 'x', x3)))])附录4:松弛迭代法(fulu4.m)syms fx gx x dgx;gx=(x^3+1)/3;fx=x^3-3*x+1;dgx=diff(gx, 'x');x=0.5;k=0;ggx=subs(gx, 'x', x);ffx=subs(fx, 'x', x);dgxx=subs(dgx, 'x', x);disp('k x w')while abs(ffx)>0.0001;w=1/(1-dgxx); disp([num2str(k), ' ', num2str(x), ' ', num2str(w)]) x=(1-w)*x+w*ggx;k=k+1;ggx=subs(gx, 'x', x);ffx=subs(fx, 'x', x);dgxx=subs(dgx, 'x', x);enddisp([num2str(k), ' ', num2str(x), ' ', num2str(w)])附录5: Altken 迭代法(fulu5.m)syms x fx gx; gx=(x^3+1)/3;fx=x^3-3*x+1;disp('k x x1 x2') x=0.5;k=0;ffx=subs(fx, 'x', x);while abs(ffx)>0.0001;u=subs(gx, 'x', x);v=subs(gx, 'x', u);disp([num2str(k), ' ', num2str(x), ' ', num2str(u), ' ', num2str(v)]) x=v-(v-u)^2/(v-2*u+x);k=k+1;ffx=subs(fx, 'x', x);enddisp([num2str(k), ' ', num2str(x), ' ', num2str(u), ' ', num2str(v)])附录6:牛顿法(fulu6.m)syms x fx gx;fx=x^3-3*x+1;gx=diff(fx, 'x');x1=-2;x2=0.5;x3=1.4;k=0;disp('k x1 x2 x3')fx1=subs(fx, 'x', x1);fx2=subs(fx, 'x', x2);fx3=subs(fx, 'x', x3);gx1=subs(gx, 'x', x1);gx2=subs(gx, 'x', x2);gx3=subs(gx, 'x', x3);while abs(fx1)>0.0001|abs(fx2)>0.0001|abs(fx3)>0.0001;disp([num2str(k), ' ', num2str(x1), ' ', num2str(x2), ' ', num2str(x3)])x1=x1-fx1/gx1;x2=x2-fx2/gx2;x3=x3-fx3/gx3;k=k+1;fx1=subs(fx, 'x', x1);fx2=subs(fx, 'x', x2);fx3=subs(fx, 'x', x3);gx1=subs(gx, 'x', x1);gx2=subs(gx, 'x', x2);gx3=subs(gx, 'x', x3);enddisp([num2str(k), ' ', num2str(x1), ' ', num2str(x2), ' ', num2str(x3)])。
matlab教程ppt(完整版)
可以使用`'`运算符对矩阵进行 转置。
矩阵高级运算
01
逆矩阵
可以使用`inv`函数求矩阵的逆矩阵 。
行列式
可以使用`det`函数求矩阵的行列式 。
03
02
特征值和特征向量
可以使用`eig`函数求矩阵的特征值 和特征向量。
秩
可以使用`rank`函数求矩阵的秩。
04
04
matlab绘图功能
绘图基本命令
控制设计
MATLAB提供了控制系统设计和分析 工具箱,可以方便地进行控制系统的 建模、分析和优化。
03
信号处理
MATLAB提供了丰富的信号处理工具 箱,可以进行信号的时域和频域分析 、滤波器设计等操作。
05
04
图像处理
MATLAB提供了图像处理工具箱,可 以进行图像的增强、分割、特征提取 等操作。
02
matlab程序调试技巧分享
01
调试模式
MATLAB提供了调试模式,可以 逐行执行代码,查看变量值,设 置断点等。
日志输出
02
03
错误处理
通过使用fprintf函数,可以在程 序运行过程中输出日志信息,帮 助定位问题。
MATLAB中的错误处理机制可以 帮助我们捕获和处理运行时错误 。
matlab程序优化方法探讨
显示结果
命令执行后,结果将在命令窗口中显示。
保存结果
可以使用`save`命令将结果保存到文件中。
matlab变量定义与赋值
定义变量
使用`varname = value`格式定义变 量,其中`varname`是变量名, `value`是变量的值。
赋值操作
使用`=`运算符将值赋给变量。例如 ,`a = 10`将值10赋给变量a。
matlab第七讲教案
西南科技大学本科生课程备课教案计算机技术在安全工程中的应用——Matlab入门及应用授课教师:徐中慧班级:专业:安全技术及工程第七章逻辑函数与控制结构课型:新授课教具:多媒体教学设备,matlab教学软件一、目标与要求能够正确使用函数find,正解和正确使用if/else系列命令,理解switch/case结构,正确使用for循环和while循环。
二、教学重点与难点本堂课教学的重点在于引导学生在编写matlab程序时能够熟练运用控制结构的相关函数实现相应的功能。
三、教学方法本课程主要通过讲授法、演示法、练习法等相结合的方法来引导学生掌控本堂课的学习内容。
四、教学内容课后习题讲解%% onea=[15 3 22;3 8 5;14 3 82];b=[1 5 6]';c=[12 18 5 2];d=a(:,3)%% twoe=[b,d]%% threef=[b;d]%% fourg=[c(1:3);a]%% five%% Variable DefinitionDensity_mercury=13560;g=9.81;p=0:10000:100000;%% mercuryh_mercury=p./(Density_mercury*g)%% waterh_water=h_mercury.*13560/1000%% outputh=[h_mercury',h_water'](3)已知下列矩阵:1104265878235645913232289x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 1234101272127y ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ []1022513z =①查找各矩阵中所有大于10的元素的序号,输出结果用单序号方法表示。
②查找各矩阵中所有大于10的元素的序号,输出结果用该元素的下标表示。
③查找各矩阵中所有大于10的元素。
④查找各矩阵中所有大于10小于40的元素的序号,输出结果用单序号方法表示。
第七讲MATLAB图形用户界面(GUI)设计
第七讲MATLAB图形⽤户界⾯(GUI)设计第7讲MATLAB图形⽤户界⾯(GUI)设计图形⽤户界⾯(GUI, Graphical User Interface)是由图形控件构建的⽤于⼈与计算机交互信息的界⾯。
在图形⽤户界⾯上,⽤户可以根据界⾯上的提⽰信息完成⾃⼰的⼯作,⽽不需要记忆⼤量繁琐的命令,只需通过⿏标、键盘等便捷的⽅式与计算机交互信息、选择想要运⾏的程序、控制程序的运⾏、实时显⽰图形信息。
MATLAB创建的图形⽤户界⾯对象有三类:⽤户界⾯控件,如按钮、列表框、编辑框等;下拉菜单,如菜单、⼦菜单;内容菜单,如弹出式菜单。
⼀、命令⾏建⽴⽤户界⾯的⽅法1、创建控件命令:uicontrol调⽤格式:1)uicontrol(‘PropertyName1’,value1, ‘PropertyName2’,value2,……)功能:在当前图形⽤户的界⾯上,应⽤当前制定的属性值创建控件;2)h=uicontrol(‘PropertyName1’,value1, ‘PropertyName2’,value2,……)功能:在当前图形⽤户的界⾯上,应⽤当前制定的属性值创建控件,并返回控件的句柄;3)uicontrol(FIG, ‘PropertyName1’,value1, ‘PropertyName2’,value2,……)功能:在句柄FIG指定的图形⽤户界⾯上,创建控件;4)h=uicontrol(FIG, ‘PropertyName1’,value1, ‘PropertyName2’,value2,……) 功能:在句柄FIG指定的图形⽤户界⾯上,创建控件,并返回控件的句柄。
说明:函数中的PropertyName参数的参数值有:Push buttons(命令按钮)、sliders (滚动条控件)、Radio button(单选按钮)、Check box(复选框)、Edit text (可编程⽂本框)、Static text(静态⽂本框)、Pop_up menus(弹出式菜单)、listbox(列表框)、Toggle button(开关按钮)、Axes(坐标轴)、Panel(⾯板控件)、Button group(按钮组框)、ActiveX control(ActiveX 控件)。
《Matlab教案》课件
《MATLAB教案》PPT课件第一章:MATLAB概述1.1 MATLAB简介介绍MATLAB的历史和发展解释MATLAB的含义(Matrix Laboratory)强调MATLAB在工程和科学计算中的应用1.2 MATLAB界面介绍MATLAB的工作空间解释MATLAB的菜单栏和工具栏演示如何创建、打开和关闭MATLAB文件1.3 MATLAB的基本操作介绍MATLAB的数据类型演示如何进行矩阵运算解释MATLAB中的向量和矩阵运算规则第二章:MATLAB编程基础2.1 MATLAB脚本编程解释MATLAB脚本文件的结构演示如何编写和运行MATLAB脚本强调注释和代码的可读性2.2 MATLAB函数编程介绍MATLAB函数的定义和结构演示如何创建和使用MATLAB函数强调函数的重用性和模块化编程2.3 MATLAB编程技巧介绍变量和函数的命名规则演示如何进行错误处理和调试强调代码的优化和性能提升第三章:MATLAB数值计算3.1 MATLAB数值解算介绍MATLAB中的数值解算工具演示如何解线性方程组和不等式解释MATLAB中的符号解算和数值解算的区别3.2 MATLAB数值分析介绍MATLAB中的数值分析工具演示如何进行插值、拟合和数值积分解释MATLAB中的误差估计和数值稳定性3.3 MATLAB优化工具箱介绍MATLAB优化工具箱的功能演示如何使用优化工具箱进行无约束和约束优化问题解释MATLAB中的优化算法和参数设置第四章:MATLAB绘图和可视化4.1 MATLAB绘图基础介绍MATLAB中的绘图命令和函数演示如何绘制二维和三维图形解释MATLAB中的图形属性设置和自定义4.2 MATLAB数据可视化介绍MATLAB中的数据可视化工具演示如何绘制统计图表和散点图解释MATLAB中的数据过滤和转换4.3 MATLAB动画和交互式图形介绍MATLAB中的动画和交互式图形功能演示如何创建动画和交互式图形解释MATLAB中的图形交互和数据探索第五章:MATLAB应用案例5.1 MATLAB在信号处理中的应用介绍MATLAB在信号处理中的基本概念演示如何使用MATLAB进行信号处理操作解释MATLAB在信号处理中的优势和应用场景5.2 MATLAB在控制系统中的应用介绍MATLAB在控制系统中的基本概念演示如何使用MATLAB进行控制系统分析和设计解释MATLAB在控制系统中的优势和应用场景5.3 MATLAB在图像处理中的应用介绍MATLAB在图像处理中的基本概念演示如何使用MATLAB进行图像处理操作解释MATLAB在图像处理中的优势和应用场景《MATLAB教案》PPT课件第六章:MATLAB Simulink基础6.1 Simulink简介介绍Simulink作为MATLAB的一个集成组件解释Simulink的作用:模型化、仿真和分析动态系统强调Simulink在系统级设计和多领域仿真中的优势6.2 Simulink界面介绍Simulink库浏览器和模型窗口演示如何创建、编辑和运行Simulink模型解释Simulink中的块和连接的概念6.3 Simulink仿真介绍Simulink仿真的基本过程演示如何设置仿真参数和启动仿真解释Simulink仿真结果的查看和分析第七章:MATLAB Simulink高级应用7.1 Simulink设计模式介绍Simulink的设计模式,包括连续、离散、混合和事件驱动模式演示如何根据系统特性选择合适的设计模式解释不同设计模式对系统性能的影响7.2 Simulink子系统介绍Simulink子系统的概念和用途演示如何创建和管理Simulink子系统解释子系统在模块化和层次化设计中的作用7.3 Simulink Real-Time Workshop介绍Simulink Real-Time Workshop的功能演示如何使用Real-Time Workshop进行代码解释代码对于硬件在环仿真和嵌入式系统开发的重要性第八章:MATLAB Simulink库和工具箱8.1 Simulink库介绍Simulink库的结构和分类演示如何访问和使用Simulink库中的块解释Simulink库对于模型构建和功能复用的意义8.2 Simulink工具箱介绍Simulink工具箱的概念和功能演示如何安装和使用Simulink工具箱解释Simulink工具箱在特定领域仿真和分析中的作用8.3 自定义Simulink库介绍如何创建和维护自定义Simulink库演示如何将自定义块添加到库中解释自定义库对于个人和组织级模型共享的重要性第九章:MATLAB Simulink案例分析9.1 Simulink在控制系统中的应用介绍控制系统模型在Simulink中的构建演示如何使用Simulink进行控制系统设计和分析解释Simulink在控制系统教育和研究中的应用9.2 Simulink在信号处理中的应用介绍信号处理模型在Simulink中的构建演示如何使用Simulink进行信号处理仿真解释Simulink在信号处理领域中的优势和实际应用9.3 Simulink在图像处理中的应用介绍图像处理模型在Simulink中的构建演示如何使用Simulink进行图像处理仿真解释Simulink在图像处理领域中的优势和实际应用第十章:MATLAB Simulink项目实践10.1 Simulink项目实践流程介绍从需求分析到模型验证的Simulink项目实践流程演示如何使用Simulink进行项目规划和实施解释Simulink在项目管理和协作中的作用10.2 Simulink与MATLAB的交互介绍Simulink与MATLAB之间的数据交互方式演示如何在Simulink中使用MATLAB函数和脚本解释混合仿真模式对于复杂系统仿真的优势10.3 Simulink项目案例分析具体的Simulink项目案例演示如何解决实际工程问题解释Simulink在工程教育和项目开发中的应用价值《MATLAB教案》PPT课件第十一章:MATLAB App Designer入门11.1 App Designer简介介绍App Designer作为MATLAB中的应用程序开发环境解释App Designer的作用:快速创建跨平台的MATLAB应用程序强调App Designer在简化MATLAB代码部署和用户交互中的优势11.2 App Designer界面介绍App Designer的用户界面和工作流程演示如何创建新应用和编辑应用界面解释App Designer中的组件和布局的概念11.3 App Designer编程介绍App Designer中的MATLAB编程模式演示如何使用App Designer中的MATLAB代码块解释App Designer中事件处理和应用程序生命周期管理的重要性第十二章:MATLAB App Designer高级功能12.1 App Designer用户界面设计介绍App Designer中用户界面的定制方法演示如何使用样式、颜色和主题来美化应用界面解释用户界面设计对于提升用户体验的重要性12.2 App Designer数据模型介绍App Designer中的数据模型和模型视图概念演示如何创建、使用和绑定数据模型和视图解释数据模型在应用程序中的作用和重要性12.3 App Designer部署和分发介绍App Designer应用程序的部署和分发流程演示如何打包和发布应用程序解释如何为不同平台安装和运行App Designer应用程序第十三章:MATLAB App Designer案例研究13.1 图形用户界面(GUI)应用程序设计介绍使用App Designer设计的GUI应用程序案例演示如何创建交互式GUI应用程序来简化MATLAB脚本解释GUI应用程序在数据输入和结果显示中的作用13.2 数据分析和可视化应用程序设计介绍使用App Designer进行数据分析和可视化的案例演示如何创建应用程序来处理和显示大型数据集解释App Designer在数据分析和决策支持中的优势13.3 机器学习和深度学习应用程序设计介绍使用App Designer实现机器学习和深度学习模型的案例演示如何将MATLAB中的机器学习和深度学习算法集成到应用程序中解释App Designer在机器学习和深度学习应用部署中的作用第十四章:MATLAB App Designer实战项目14.1 App Designer项目规划和管理介绍App Designer项目的规划和管理方法演示如何组织和维护大型应用程序项目解释项目管理和版本控制对于团队协作的重要性14.2 App Designer与MATLAB的集成介绍App Designer与MATLAB之间的数据和功能集成演示如何在App Designer中调用MATLAB函数和脚本解释集成MATLAB强大计算和分析能力的重要性14.3 App Designer项目案例实现分析具体的App Designer项目案例实现过程演示如何解决实际工程项目中的问题解释App Designer在工程项目实践中的应用价值第十五章:MATLAB App Designer的未来趋势15.1 App Designer的新功能和技术介绍App Designer的最新功能和技术发展演示如何利用新功能和技术提升应用程序的性能和用户体验强调持续学习和适应新技术的重要性15.2 App Designer在跨平台开发中的应用介绍App Designer在跨平台应用程序开发中的优势演示如何创建适用于不同操作系统的应用程序解释跨平台开发对于扩大应用程序市场的重要性15.3 App Designer的未来趋势和展望讨论App Designer在未来的发展趋势和潜在应用领域激发学生对于应用程序开发和创新的兴趣强调持续探索和创造新应用的重要性重点和难点解析本文档为您提供了一份详尽的《MATLAB教案》PPT课件,内容涵盖了MATLAB 的基本概念、编程基础、数值计算、绘图和可视化、应用案例、Simulink的基础知识、高级应用、库和工具箱的使用、案例分析以及项目实践、App Designer 的基础知识、高级功能、案例研究、实战项目和未来趋势等方面的内容。
《MATLAB程序设计与应用》教学大纲
《MATLAB程序设计与应用》教学大纲一、课程介绍1.课程名称:MATLAB程序设计与应用2.适用对象:计算机科学与技术、软件工程、自动化等专业的本科生3.课程学分:3学分4.课程时长:36学时二、课程目标1.掌握MATLAB环境的基本操作和界面布局;2.理解MATLAB程序的基本语法和编程思想;3.能够利用MATLAB解决实际问题,并进行数据可视化;4.了解MATLAB在科学计算、图像处理、信号处理等领域的应用。
三、教学内容和安排1.第一讲:MATLAB入门-MATLAB环境介绍和基本操作;-MATLAB界面布局和常用工具;-MATLAB变量和数据类型。
2.第二讲:MATLAB基本算法-MATLAB算术运算和逻辑运算;-MATLAB矩阵和向量的操作;-MATLAB函数和脚本文件的编写。
3.第三讲:MATLAB流程控制-MATLAB条件语句和循环语句;-MATLAB函数和脚本文件的调用;-MATLAB调试和错误处理。
4.第四讲:MATLAB数据处理-MATLAB数据输入和输出;-MATLAB数据结构和文件操作;-MATLAB数据预处理和清洗。
5.第五讲:MATLAB数据可视化-MATLAB绘图命令和参数调整;-MATLAB二维和三维图像的绘制;-MATLAB图像保存和发布。
6.第六讲:MATLAB科学计算-MATLAB基本数值计算函数;-MATLAB数值积分和微分;-MATLAB符号计算和矩阵运算。
7.第七讲:MATLAB图像处理-MATLAB图像读取和显示;-MATLAB图像增强和滤波;-MATLAB图像分割和识别。
8.第八讲:MATLAB信号处理-MATLAB信号生成和频谱分析;-MATLAB滤波器设计和滤波;-MATLAB音频处理和语音识别。
9.第九讲:MATLAB应用拓展-MATLAB工具箱和函数库的使用;-MATLAB应用案例分析;-MATLAB与其他编程语言的集成。
四、教学方法和评价方式1.教学方法-讲述理论知识,引导学生动手实践;-组织实例演示和案例讨论;-提供课后练习和编程作业。
第7讲matlab部分智能优化算法
铜 陵 学 院
function f=fitnessfun(x) f=f(x); 当求解有约束条件用 逻辑语句写进上述 fitnessfun 函数。如 function f=fitnessfun(x) if (x<=0|x>4), f=inf; else, f=f(x); end %即上述优化问题有约束x>0和x<=4. 即上述优化问题有约束x>0和
铜 陵 学 院
人工神经网络是由若干个人工神经元相互连接 组成的广泛并行互联的网络,见下图。因联结 方式的不同,有“前馈神经网络” 简称BP网 方式的不同,有“前馈神经网络”(简称BP网 络)和“反馈神经网络”。 反馈神经网络” 下图是BP网络拓扑结构图。 下图是BP网络拓扑结构图。
铜 陵 学 院
铜 陵 学 院
第七讲
Matlab部分智能 Matlab部分智能 优化算法
铜 陵 学 院
本章主要学习matlab中三个智能优化算法 本章主要学习matlab中三个智能优化算法 及其实现. 及其实现. 一、遗传算法 1、算法的相关知识 2、ga及gatool ga及 二、人工神经网络 1、算法的相关知识 2、newff,newlvq,train,sim及nntool newff,newlvq,train,sim及 三、粒子群算法
铜 陵 学 院
进行了上述三个操作所产生的染色体称为后 进行了上述三个操作所产生的染色体称为后 代。对后代重复进行选择、交叉、变异操作, 经过给定次数的迭代处理以后,把最好的染色 经过给定次数的迭代处理以后,把最好的染色 体作为优化问题的最优解。 2 matlab指令与计算举例 matlab指令与计算举例 格式一:x=ga(@fitnessfun,nvars) 格式一:x=ga(@fitnessfun,nvars) 求解:优化问题 min f(x),其中 nvar 为优化 f(x),其中 问题中变量的个数. 问题中变量的个数. fitnessfun 写成如下的m函 写成如下的m 数形式(fitnessfit.m): 数形式(fitnessfit.m):
第七讲-空间计量经济学模型的matlab估计教学提纲
空间计量经济学基本模型的matlab估计一、空间滞后模型sar ()==================================================== ➢ 函数功能估计空间滞后模型(空间自回归-回归模型)),0(~2n I N x Wy y σεεβρ++=中的未知参数ρ、β和σ2。
==================================================== ➢ 使用方法res=sar(y ,x ,W ,info )*********************************************************** res : 存储结果的变量;y : 被解释变量;x : 解释变量;w : 空间权重矩阵;info :结构化参数,具体可使用help sar语句查看====================================================➢注意事项1)WW为权重矩阵,因为是稀疏矩阵,原始数据通常以n×3的数组形式存储,需要用sparse函数转换为矩阵形式。
***********************************************************2)ydev(不再需要)sar函数求解的标准模型可以包含常数项,被解释变量(因变量)y,不再需要转换为离差形式(ydev)。
***********************************************************3)x需要注意x的生成方式,应将常数项包括在内。
***********************************************************4)infoinfo为结构化参数,事前赋值;通常调整info.lflag(标准n?1000)、info.rmin和info.rmax。
matlab-常微分方程数值解法
y(xn1) y(xn)
xn1 xn
f (x, y)dx
y(xn)h f xn1, yxn1
向后的欧拉方法递推公式为
yn y(xn)
yn 1ynhf(xn 1,yn 1)
matlab-常微分方程数值解法
向后的欧拉方法(隐式方法):预报---校正法 1. 用欧拉方法预报 2. 用向后的欧拉方法校正
f=feval(fun,x(k),y(k,:));%计算f(x,y)在每个迭代点的值 f=f(:)'; y(k + 1,:) =y(k,:) +h*f; %对于所取的点x迭代计算y值 end outy=y; outx=x; %plot(x,y)%画出方程解的函数图
matlab-常微分方程数值解法
例题: y ' sin x y y(x0) 1, x0 0
ode23 非刚性 单步法;2,3 阶 R-K 方法; 使用于精度较低的情形
累计截断误差为 (△x)3
ode113 非刚性 多步法;Adams算法;高低精 计算时间比 ode45 短
度均可到 10-3~10-6
ode23t 适度刚性 采用梯形算法
适度刚性情形
ode15s
刚性 多步法;Gear’s 反向数值微分;若 ode45 失效时,可
y1 y(x1)
y2y1f(y1,x1)h
matlab-常微分方程数值解法
按照相似的方法,从(xn,yn)Qy
作曲线y(x)在(xn,y(xn))的切
Q1
线的平行线,得直线方程:
Qy(tt))
y ynf(yn,x n)x xn
与x=xn+1交点纵坐标为:
t0x1 xt21 x3t2x4 tx35 xt64 x7t5 t6 t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三维曲面
产生三维数据 在MATLAB中,利用meshgrid函数产生平面区 域内的网格坐标矩阵。其格式为: x=a:d1:b; y=c:d2:d; [X,Y]=meshgrid(x,y); 语句执行后,矩阵X的每一行都是向量x,行数 等于向量y的元素的个数,矩阵Y的每一列都是 向量y,列数等于向量x的元素的个数。
逻辑运算
MATLAB提供了3种逻辑运算符:&(与)、 |(或)和~(非)。
矩阵特征值
E=eig(A):求矩阵A的全部特征值,构成 向量E。 [V,D]=eig(A):求矩阵A的全部特征值, 构成对角阵D,并求A的特征向量构成V 的列向量。
M文件
用MATLAB语言编写的程序,称为M文件。M文 件可以根据调用方式的不同分为两类:命令文 件(Script File)和函数文件(Function File)。 例1:命令文件 首先建立命令文件并以文件名f2c.m存盘。 clear; %清除工作空间中的变量 f=input('Input Fahrenheit temperature:'); c=5*(f-32)/9 然后在MATLAB的命令窗口中输入f2c执行该命 令文件
[x,fval,exitflag,output]=fminbnd('(x^3+cos(x)+x*log(x))/exp(x)',0,1)
最优化方法-多维无约束
函数 fminsearch 格式 x = fminsearch(fun,x0) %x0为初始点,fun为 目标函数的表达式字符串或MATLAB自定义函数的函数 柄。 x = fminsearch(fun,x0,options) % options查 optimset [x,fval] = fminsearch(…) %最优点的函数值 [x,fval,exitflag] = fminsearch(…) % exitflag与单变 量情形一致 [x,fval,exitflag,output] = fminsearch(…) %output与 单变量情形一致 X=fminsearch('x(1)^4+x(2)^4-14*x(1)^238*x(2)^2-24*x(1)+120*x(2)',[0,0])
一维最优化方法
函数 fminbnd 格式 x = fminbnd(fun,x1,x2) %返回自变量x在区间 上 函数fun取最小值时x值,fun为目标函数的表达式字符串或 MATLAB自定义函数的函数柄。 x = fminbnd(fun,x1,x2,options) % options为指定优化参 数选项 [x,fval] = fminbnd(…) % fval为目标函数的最小值 [x,fval,exitflag] = fminbnd(…) %xitflag为终止迭代的条 件 [x,fval,exitflag,output] = fminbnd(…) % output为优化信 息 说明 若参数exitflag>0,表示函数收敛于x,若exitflag=0, 表示超过函数估计值或迭代的最大数字,exitflag<0表示函 数不收敛于x;若参数output=iterations表示迭代次数, output=funccount表示函数赋值次数,output=algorithm 表示所使用的算法。
非线性方程数值求解
z=fzero('fname',x0,tol,trace) 其中fname是待求根的函数文件名,x0为搜索 的起点。一个函数可能有多个根,但fzero函数 只给出离x0最近的那个根。tol控制结果的相对 精度,缺省时取tol=eps,trace指定迭代信息 是否在运算中显示,为1时显示,为0时不显示, 缺省时取trace=0。 y=inline('x-10.^x+2');fzero(y,0.5)
线性方程组求解
利用左除运算符的直接解法 对于线性方程组Ax=b,可以利用左除运 算符“\”求解: x=A\b A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; x=A\b
线性方程组求解
Cholesky分解 R=chol(X):产生一个上三角阵R,使R'R=X。 若X为非对称正定,则输出一个出错信息。 实现Cholesky分解后,线性方程组Ax=b变成 R‘Rx=b,所以x=R\(R’\b)。 A=[2,1,2;1,1,1;2,1,3]; b=[2,0,3]'; R=chol(A) R\(R'\b)
图形保持
hold on/off命令控制是保持原有图形还 是刷新原有图形,不带参数的hold命令 在两种状态之间进行切换。
图形样式
颜色:'c', 'm', 'y', 'r', 'g', 'b', 'w', and 'k'. 线型:'–' for solid, '– –' for dashed, ':' for dotted, '–.' for dash-dot, and 'none' for no line. 标记:'+', 'o', '*', and 'x'.
非线性方程组的求解
建立函数文件myfun.m function q=myfun(p) x=p(1); y=p(2); q(1)=x-0.6*sin(x)-0.3*cos(y); q(2)=y-0.6*cos(x)+0.3*sin(y);
x=fsolve('myfun',[0.5,0.5]',optimset('Display','of f'))
绘图
二维数据曲线图:Plot(x,y) x=0:pi/100:2*pi; y=2*exp(-0.5*x).*cos(4*pi*x); plot(x,y) t=0:0.1:2*pi; x=t.*sin(3*t); y=t.*sin(t).*sin(t); plot(x,y)
绘图
plot(x1,y1,x2,y2,…,xn,yn) 当输入参数都为向量时,x1和y1,x2和 y2,…,xn和yn分别组成一组向量对, 每一组向量对的长度可以不同。每一向 量对可以绘制出一条曲线,这样可以在 同一坐标内绘制出多条曲线。
自适应采样的绘图函数
fplot(fname,lims,tol,选项) 其中fname为函数名,以字符串形式出现, lims为x,y的取值范围,tol为相对允许误 差,其系统默认值为2e-3。选项定义与 plot函数相同。
fplot('cos(tan(pi*x))',[ 0,1],1e-4)
图形窗口的分割
三维曲面
[x,y]=meshgrid(0:0.25:4*pi); z=sin(x+sin(y))-x/10; mesh(x,y,z); axis([0 4*pi 0 4*pi -2.5 1]);
三维曲面
[x,y]=meshgrid(-8:0.5:8); z=sin(sqrt(x.^2+y.^2))./sqrt(x.^2+y.^2+eps); subplot(2,2,1); mesh(x,y,z); title('mesh(x,y,z)') subplot(2,2,2); meshc(x,y,z); title('meshc(x,y,z)') subplot(2,2,3); meshz(x,y,z) title('meshz(x,y,z)') subplot(2,2,4); surf(x,y,z); title('surf(x,y,z)')
非线性方程组的求解
X=fsolve('fun',X0,option) 其中X为返回的解,fun是用于定义需求解的非线性方 程组的函数文件名,X0是求根过程的初值,option为 最优化工具箱的选项设定。最优化工具箱提供了20多 个选项,用户可以使用optimset命令将它们显示出来。 如果想改变其中某个选项,则可以调用optimset()函数 来完成。例如,Display选项决定函数调用时中间结果 的显示方式,其中‘off’为不显示,‘iter’表示每步都 显示,‘final’只显示最终结果。 optimset(‘Display’,‘off’)将设定Display选项为‘off’。
图形例子
x=0:pi/100:2*pi; y1=2*exp(-0.5*x); y2=cos(4*pi*x); plot(x,y1,x,y2) title('x from 0 to 2{\pi}'); %加图形标题 xlabel('Variable X'); %加X轴说明 ylabel('Variable Y'); %加Y轴说明 text(0.8,1.5,'曲线y1=2e^{-0.5x}'); %在指定位置添 加图形说明 text(2.5,1.1,'曲线y2=cos(4{\pi}x)'); legend('y1','y2') %加图例
向量和矩阵
A=[1,2,3;4,5,6] %产生2X3矩阵,逗号 可用空格代替;size(A)返回维数,元素 可用A(i,j)访问,下标从1开始 b=[7 8] %b=start : step : end b=7 : 1 : 8 %b(2)返回8 转置用单撇表示