巧算气体做功 之 “图像法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧算气体做功 之

“图像法”

前面已经介绍了对于包含有特殊热力学过程时可以用特殊的公式直接计算气体对外界所做的功。但就是我们遇到的题目有很多不就是发生特殊的热力学过程,而就是一般的变化过程,没有使用现成的公式。也有的题目就是选择性题目,只需判断做功的正负而不需要计算,如果采用公式法计算较为麻烦。还有一些题目就是以气体状态变化图像出现的,要转化为用公式计算比较麻烦。那么我们该怎么办呢?

别急,这里我们就介绍一种使用气体状态变化图像进行判断与计算热力学过程中气体所做的功的方法,由于采用气体状态变化图像来解决问题,我们就叫它图像法。使用图像法解题,比较直观,有时候一眼就能瞧出气体就是做正功还就是负功。

下面我们来瞧瞧这个方便的招。

大思路

我们常见的各状态变化图像可以按曲线的形状分为封闭形曲线与不封闭曲线。处理这两种图像时稍有不同。

曲线封闭:一般就是循环过程,需要根据题目条件,获得变化过程的P —V 图。在P —V 图

像中计算所围面积,就就是该循环过程中气体所做的功。顺时针循环,做正功,;逆时针循环,做负功。

曲线不封闭:若需要计算做功大小,也需根据题目条件获得P —V 图,然后计算曲线与横

坐标轴(即V 轴)所围的面积,这个面积就就是这个过程中气体所做的功。如果状态变化方向沿V 轴正方向则做功为正,沿V 轴反方向则功为负,如果垂直于V 周则为零。

如果我们只需判断气体就是否做功,则可以根据任何自己熟悉的状态变化图像判断初始状态与末状态的体积关系。体积增加,做正功;体积减小,做负功;体积不变,不做功。

好了,我们就去体验一下怎样使用图像法。

经典体验(一)

如图,1mol 理想气体经历了一个在T —V 图上标为1

—2—3—1的循环过程。其中,过程1—2的方程为

112

T 2T (1BV)BV =-,过程2—3就是经过原点的线段上的一段,过程3—1的方程为12

2

T T B V =,B为常数。状态

1与2的热力学温度为1T 与134T 。求该气体在此循环中对外所做的功。

体验思路: 题目中的循环过程就是一个复杂的热力学过程,不就是特殊的热力学过程,所以不

能使用公式法解决问题。题目给出了一个T—V图,我们可以先将其装换为P—V图,其P —V 图也为封闭曲线。计算图形面积即可得到功的大小。

体验过程: 第一步,先按题意画出P —V 图; 先确定各段曲线形式:

1—2过程:由理想气体状态方程PV=n RT 与已知的112

T 2T (1BV)BV =-有211P RB T V 2RBT =-+,因此P 与V 成正比,在P —V 图上就是直线。

2—3过程:符合等压过程T —V 曲线,故在P —V 上就是水平线,P=P 2。

3—1过程:由PV=n RT 及122T T B V =有12

P RT B V =,P 与V 成正比,在P —V 图上

为直线。

再确定3点的状态参数: 1点:(P 1,V 1,T 1)

2点:当T= T 1时由公式1

12

T 2T (1BV)BV =-有11B V V ==; 当1

234T T T ==时12332B

2V V V ==

=。再由

11221

2

P V P V T T =

有211

2P P

=

,因此2点状态参

数为11133

2412(P

V ,T ),。 3点:由题目有P 3=P 2。由12

2

T T B V =有12

2

33T T B V =,再由

33223

2

P V P V T T =

313

1

V 2V T T =

,结合两式有131T 4

T =

, 321113

2

V V V ==

,故3点状态参

数为111112412(P

V ,T ),。 由此,可以画出P —V 图如右图。

第二步,标出循环方向,即就是图中1—2—3—1

方向,由于顺时针,故为正功;

第三步,计算图像所围面积,转化为功;

该循环过程中气体所做的总功为

12231111

112

44W (P P )(V V )P V RT =

--==g 。

小 结: 这个例题只就是在画P —V 图时稍微有些难度,但就是能很好的反映使用图像法的关

键——画出P —V 图,求面积。从上可以瞧出P —V 图上任意一条曲线与V 轴的面积反映的就就是该过程所做的功。对于一个循环过程,将各段累加起来,其所作的功为循环曲线所围面积,功的正负则与循环的方向有关。对于不封闭曲线的处理,则稍微简单一些,这里就不给例子了。

经典体验(二)

如图所示,一定质量的理想气体从A 经ACDB 的一个循环过程后到达B 状态,求在整个过程中气体所做的功。

体验思路: 题目中的循环过程就是一个复杂的热力学过程,其中

AC 为等压膨胀过程,CD 为等容过程,DB 为等压压缩过程。这些过程所做的功都可以用上一专题所介绍的公式法分阶段计算功的大小,然后相加就得到在整个过

程中气体所做的功。但就是在这里我们可以使用图像法求解此题。

体验过程: 假设气体还继续发生了从B 到A 的过程,由于B 状态下气体的体积与A 状态下气体

体积相同,故此过程气体不做功。则ACDB 过程与ACDBA 过程气体所做的功就是相等的,故只需计算ACDBA 过程气体所做的功。ACDBA 过程气体P-V 图为封闭曲线,面积大小为(P 1-P 2)(V 2-V 1)。同时由于ACDBA 为顺时针循环,故做正功,因此所求过程气体所做功为(P 1-P 2)(V 2-V 1)。

小 结: 由此题可以瞧出,在气体变化过程中,气体经过一系列变化,即经过一个复杂变化后,

气体体积最终没有发生变化,但气体与外界却有机械功,而且功的正负与过程的方向有关。故有时候我们不能仅凭气体体积变化与否来判断气体就是否对外界做功。

提 示: 好了,下面我们来试试两道题目,瞧瞧就是不就是真的好用。

试一试

(1) 如右图所示,已知一定质量的理想气体,从

状态1变化到状态2。问:在此过程中气体对外就是否做功?

(2) 用n mol 理想气体做热机的工作物质,随着热机做功,气体状态变化完成一个循环,如 图所示,过程1—2与2—3在图中就是直线,且 2—3就是等容过程,过程3—1可以表达为

1T 0.5T (3bV)bV =-,b 为常数。求气体在一

循环中所做的功。

(3) 一定质量的理想气体,由平衡状态A 经过一系列变化过程到达平衡状态B,且有V A

试一试答案

试一试(1)

指点迷津 这就是一个不封闭曲线,只需要判断就是否对外

做功,而不需要计算,因此只需判断1、2两状态的体积即可。虽然状态1与状态2在一条直线

A

B

P 1 P 2

O V 1 V 2 V P

C

D P 1 B C

P 2 A E D O V 1 V 2 V 3 V

P

相关文档
最新文档