工程流体力学第三章1

合集下载

流体力学-第三章

流体力学-第三章
空间各点只要有一个运动要素随时间变化,流体运动称为非恒 定流。
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。

工程流体力学课后习题答案_袁恩熙_流体力学第三章作业(1)汇总

工程流体力学课后习题答案_袁恩熙_流体力学第三章作业(1)汇总

3.1一直流场的速度分布为:U=(4x 2+2y+xy)i+(3x-y 3+z)j(1) 求点(2,2,3)的加速度。

(2) 是几维流动?(3) 是稳定流动还是非稳定流动? 解:依题意可知,V x =4x 2+2y+xy ,V y =3x-y 3+z ,V z =0∴a x =t V x∂∂+ v x X V x ∂∂+v y Y V x ∂∂+v z ZV x ∂∂ =0+(4x 2+2y+xy)(8x+y)+(3x-y 3+z)(2+x)=32x 3+16xy+8x 2y+4x 2y+2y 2+x y 2+6x-2 y 3+2z+3 x 2-x y 3+xz 同理可求得,a y =12 x 2+6y+3xy-9x y 2+3 y 5-3 y 2z a z =0代入数据得, a x = 436,a y =60, a z =0∴a=436i+60j(2)z 轴方向无分量,所以该速度为二维流动(3)速度,加速度都与时间变化无关,所以是稳定流动。

3.2 已知流场的速度分布为:k z yj yi x 2223+-=μ(1)求点(3,1,2)的加速度。

(2)是几维流动?解:(1)由z u z yu y xu x tu x x x x xuuua ∂∂∂∂∂∂∂∂+++=z u zyu yxu xtu y y y y y u u u a ∂∂∂∂∂∂∂∂+++=z u z y u y x u x tu z z z z z uuua ∂∂∂∂∂∂∂∂+++=得:020222+⋅+⋅+=x y x xy y x a x0)3(300+-⋅-+=y a yz z a z 420002⋅+++=把点(3,1,2)带入得加速度a (27,9,64)(2)该流动为三维流动。

3-3 已知平面流动的速度分布规律为()()j y x xi y x y u 222222+Γ++Γ=ππ解:()()22222,2yx xu yx y u y x +Γ=+Γ=ππ 流线微分方程:yx u dy u dx = 代入得:()()222222y x x dyy x y dx +Γ=+ΓππC y x ydy xdx xdy y dx =-⇒=-⇒=2203.4 截面为300mm ×400mm 的矩形风道,风量为2700m 3/h ,求平均流速。

工程流体力学--第三章--流体动力学基础ppt课件

工程流体力学--第三章--流体动力学基础ppt课件
当地加速度和迁移加速度的理解,现举例说明这两个加速
度的物理意义。如图3-1所示,不可压缩流体流过一个中 间有收缩形的变截面管道,截面2比截面1小,则截面2的 速度就要比截面1的速度大。所以当流体质点从1点流到2 点时,由于截面的收缩引起速度的增加,从而产生了迁移
加速度,如果在某一段时间内流进管道的流体输入量有变
第三章 流体动力学基础
§1–1 描述流体运动的两种方法
§1–2 流体运动的一些基本概念
§1–3 流体运动的连续性方程
§1–4 理想流体的运动微分方程
§1–5 理想流体微元流束的伯努力方程
§1–6 伯努利(Bernoulli)方程的应用
§1–7 定常流动的动量方程和动量矩方程
§1–8 液体的空化和空蚀现象
拉格朗日方法又称随体法,是从分析流场中个别流体 质点着手来研究整个流体运动的。这种研究方法,最基本
2021/4/19
3
的参数是流体质点的位移,在某一时刻,任一流体质点的
位置可表示为:
X=x (a,b,c,t)
y=y (a,b,c,t)
z=z (a,b,c,t)
(3-1)
式中a、b、c为初始时刻任意流体质点的坐标,即不同的a、 b、c代表不同的流体质点。对于某个确定的流体质点,a、 b、c为常数,而t为变量,则得到流体质点的运动规律。 对于某个确定的时刻,t为常数,而a、b、c为变量,得到 某一时刻不同流体质点的位置分布。通常称a、b、c为拉
(3-2) (3-3)
az w t t22 zaz(a,b,c,t)
2021/4/19
5
式(3-6)是流体质点的运动轨迹方程,将上式对时间 求导就可得流体质点沿运动轨迹的三个速度分量
u dx dt

《工程流体力学》第三章 流体运动研究方法及一维定常流基本方程

《工程流体力学》第三章  流体运动研究方法及一维定常流基本方程
截面1-1和2-2:垂直于流动方向,为什么? 侧面1-2:平行于流动方向,为什么?
控制体:1-1-2-2,用I+III表示 在空间上:固定的
t时体系:1-1-2-2,t时刻占据控制体I+III的流体
t+dt时体系:1’-1’-2’-2’ dt时间后: t时体系沿流线运动到III+II
由质量守恒定律: t时体系内质量=t+dt时体系内质量
定常流:空间中任一点参数随不随时间变化? 不随
物理意义?
A1, r1, V1 —— 控制面1-1上的横截面积、气流密度、速度
物理意义?
A2, r2, V2 —— 控制面2-2上的横截面积、气流密度、速度
物理意义?
一维定常流连续方程:在一维定常流中,通过同一流管任 意截面上的流体质量流量、重量流量保持不变。
例1:已知平面非定常流中的流速分量为:ux=x+t, uy= -y+t, 求:流线方程和迹线方程。 解:流线微分方程:
其中t为常数 积分后:
最后得:
迹线微分方程:
其中t为变量
结论:非定常流中迹线与流线不同
—— 迹线方程 ——流线方程
例2:已知平面定常流中的流速分量为:ux=x, uy= -y, 求:流线方程和迹线方程。 解:由流线微分方程:
体系动量对时间变化率:
控制体 = t时体系 环境对控制体内流体作用力 = 环境对t时体系内流体作用力
牛顿第二定律: 某瞬时作用在体系上全部外力合力 =该瞬时体系动量对时间的变化率
分量形式:
作用在控制体内流体上的外力: 1)表面力:控制体外流体或固体壁面作用在控制面上力
作用在进口截面上切向力:0 作用在出口截面上切向力:0

流体力学基础-第三章-一维流体动力学基础

流体力学基础-第三章-一维流体动力学基础

1Q1dt 2Q2dt
1. 微小流束连续性方程
1Q1 2Q2 11dA1 22dA2
对不可压缩流体:
1 2 , Q1 Q2 1dA1 2dA2
1. 微小流束连续性方程 推而广之,在全部流动的各个断面上:
Q1 Q2 ~ Q
拉格朗日法(Lagrange method)—“跟踪”法
拉格朗日法是将流场中每一流体质点作为研究对象, 研究每一个流体质点在运动过程中的位置、速度、加 速度及密度、重度、压强等物理量随时间的变化规律。 然后将所有质点的这些资料综合起来,便得到了整 个流体的运动规律。即将整个流体的运动看作许多流 体质点运动的总和。
d 2 4A d 4R d x
非圆形截面管道的当量直径 x
D 4A 4R x
R
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
五、一维流动模型
一维流动: 流动参数是一个坐标的函数; 二维流动: 流动参数是两个坐标的函数; 三维流动: 流动参数是三个坐标的函数。
二维流动→一维流动
(1)(a,b,c)=const ,t 为变数,可以 得出某个指定质点在任意时刻所处的位置。 (2)(a,b,c)为变数,t =const,可以得 出某一瞬间不同质点在空间的分布情况。
流体质点速度为: x a,b,c,t
流体质点加速度为:
v x x a,b,c,t a x t t 2 v y 2 y a,b,c,t a y 2 t t vz 2 z a,b,c,t a z t 2 t
动方向的横断面, 如图中的 1-1,2-2 断面。又称为有效 截面,在流束中与各流线相垂直,在每一个微元流束的过 水断面上,各点的速度可认为是相同的。

第三章 管流和边界层-工程流体力学

第三章 管流和边界层-工程流体力学


早在19世纪初,水力学家发现:由于液体具 有粘性,在不同的条件下,液体的断面流速分布 不同,液流的能量损失的规律也不相同。
图2 不同条件下的圆管流速分布图
1883年,英国科学家雷诺(Osborne Reynolds)做了著名 的雷诺实验,试图找到流动中由于粘性存在而产生的能量损 失规律。 ——雷诺实验(Reynolds experiment )
水力光滑和水力粗糙管

• 水力光滑壁面(管)(hydraulic smooth wall):

雷诺 生平简介

雷诺(O.Reynolds,1842-1912): 英国力学家、 理学家和工程师,1842年8月23日生 于爱尔兰,1867年毕业于剑桥大学王后 学院,1868年出任曼彻斯特欧文学院 (后改名为维多利亚大学)首席工程学教 授,1877年当选为皇家学会会员,1888 年获皇家勋章。雷诺于1883年发表了一 篇经典性论文—《决定水流为直线或曲线 运动的条件以及在平行水槽中的阻力定律 的探讨》。这篇文章用实验说明水流分为 层流与紊流两种形态,并提出以无量纲数 Re作为判别两种流态的标准。雷诺于 1886年提出轴承的润滑理论,1895年在 湍流中引入应力的概念。他的成果曾汇编 成《雷诺力学和物理学课题论文集》两卷。
v x (r)
x
边界条件 r r0
x r

x
0
2
r
2
ro 4

d dx
p
gh
速度分布
r 0 处
x m ax
ro
2
d
4 dx
p gh
最大速度
阻力的计算方法
hf p 8 l U r g

工程流体力学第三章部分习题答案

工程流体力学第三章部分习题答案

概念题
伯努利方程的适用条件
伯努利方程适用于不可压缩、无粘性、无热传导的理想流体在重力场作稳定流动时,流体的动能、势能和内能相互转化的守 恒定律。
概念题
流体阻力的类型
流体阻力包括摩擦阻力和形状阻力。摩擦阻力是由于流体内 部摩擦而产生的阻力,形状阻力是由于流体流经物体时,因 流体速度变化而产生的阻力。
工程流体力学第三章部 分习题答案
contents
目录
• 习题一:基础概念理解 • 习题二:流体运动分析 • 习题三:流体压力和阻力 • 习题四:流体的无损检测技术
习题一:基础概念理
01

概念题
理解概念 题目:解释流线、迹线、流管、流束、流量等基本概念。
概念题
流线
表示某一瞬时流场中流体质点的 运动轨迹线,流线上各点的方向 与流速方向一致。
概念题
流体阻力的影响因素
流体阻力的影响因素包括流体的性质、 流速、物体的形状和大小、流道表面 的粗糙度等。
计算题
流体静压力的计算
根据流体静压力的定义,流体静压力的大小可以用流体深 度和当地的重力加速度计算得出。如果已知流体的密度和 重力加速度,也可以用流体质量和重力加速度计算得出。
计算题
伯努利方程的应用
计算题
题目
计算流体通过某一管道的流量。
答案
根据流量公式,流体通过某一管道的流量Q可以表示为Q = A × v,其中A为管 道截面积,v为流体在管道中的平均流速。如果已知管道截面积A和流速v,可以 直接计算出流量Q。
03
习题三:流体压力和
阻力
概念题
流体静压力的概念
流体静压力是指流体在静止状态下,由于重力作用在单位面积上的力,其大小与深度有关,深度越大 ,压力越大。

工程流体力学第三章

工程流体力学第三章

3.2.3 等压面
压强相等的空间点构成的平面或曲面称为等压面。等压面上,dp=0。又,式
(3-6)中ρ≠0,

Xdx Ydy Zdz 0
(3-9)
式中,dx、dy、dz可设想为流体质点在等压面上任一微小位移ds在相应坐标轴
上的投影。因此,式(3-9)表示,当流体质点沿等压面移动距离ds时,质量力所
A
p lim P
(3-2)
A0 A
3.1 静止流体的应力特性
3.1.2 静止流体的应力特性
① 静压强的方向与受压面垂直,并与作用面的 内法线方向相同。
这一特性可由反证法给予证明:假设在静止流体中,流体 静压强方向不与作用面相垂直,而与作用面的切线方向成α角, 如图所示。那么静压强p可以分解成两个分力,即切向压强pt和 法向压强pn。由于切向压强是一个剪切力,由第2章可知,流 体具有流动性,受任何微小剪切力作用都将连续变形,即流体 要流动,这显然与我们假设的静止流体相矛盾。流体要保持静 止状态,不能有剪切力存在,唯一的作用力便是沿作用面内法 线方向的压强。
g
和称为总势能。 流体静力学基本方程式的物理意义是:在重力作用下,静止的均质不可压缩流
体中,各点单位质量流体的总势能保持不变。
3.3 流体静压强的分布规律
3.3.2 流体静压强基本方程式的意义
2. 几何意义
z
p
g
C 表明,在同一种流体相互连通的静止流体中,任意点上的
z
p
g具
有相同的数值。
式中各项单位为m,即可以用液柱高度来表示,称为水头。z为某一点的位置相 p
h
z0 z
y
3.3 流体静压强的分布规律
3.3.1 流体静压强的基本方程式

工程流体力学课件3流体动力学基础

工程流体力学课件3流体动力学基础

恒质





恒能
恒 定
量 守

恒动


程连
续 方
程恒 定

程能 量 方
流 三

程动



• v1 A1 = v2 A2
说明流量不变时,过流断面越小, 流速越大 —— 水射器原理
Φ
D
小头
大头
消防水枪喷嘴
收缩段 亚音速
喉部 音速
扩散段 超音速
拉瓦尔喷管
由拉瓦尔喷管可获得超音速气流,其原理广泛应用 于超音速燃气轮机中的叶栅,冲压式喷气发动机,火箭 喷管及超音速风洞等处。
3)在恒定流情况下,当判别第II段管中是缓变 流还是急变流时,与该段管长有无关系?
区分均匀流及非均匀流与过流断面上流速 分布是否均匀有无关系?是否存在“非恒定 均匀流”与“恒定急变流”?
当水箱水面恒定时: a)为恒定均匀流;b)为恒定非均匀流。 当水箱水面不恒定时: a)为非恒定均匀流;b)为非恒定非均匀流。
uz F3(x, y, z,t)
x,y,z,t —欧拉变量

dux
ux t
dt
ux x
dx
ux y
dy
ux z
dz
a
x
a y
az
dux
dt du y
dt duz
dt
dF1
dt dF2
dt dF3
dt
ux t
ux
ux x
uy
ux y
uz
ux z
u y t
ux
u y x
uy
u y y
重、难点

工程流体力学-第三章

工程流体力学-第三章

三、流管、流束和总流
1. 流管:在流场中任取一不是流 线的封闭曲线L,过曲线上的每 一点作流线,这些流线所组成的 管状表面称为流管。 2. 流束:流管内部的全部流体称 为流束。 3. 总流:如果封闭曲线取在管道 内部周线上,则流束就是充满管 道内部的全部流体,这种情况通 常称为总流。 4. 微小流束:封闭曲线极限近于 一条流线的流束 。
ax

dux dt

dux (x, y, z,t) dt

ux t
ux
ux t
uy
ux t
uz
ux t
ay

du y dt

duy (x, y, z,t) dt

u y t
ux
u y t
uy
u y t
uz
u y t
az

du z dt

duz (x, y, z,t) dt
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
欧拉法中的迹线微分方程
速度定义
u dr (dr为质点在时间间隔 dt内所移动的距离) dt
迹线的微分方程
dx dt

ux (x, y, z,t)
dy dt uy (x, y, z,t)
dz dt uz (x, y, z,t)
说明: (1)体积流量一般多用于表示不可压缩流体的流量。 (2)质量流量多用于表示可压缩流体的流量。
(3) 质量流量与体积流量的关系
Qm Q
(4) 流量计算 单位时间内通过dA的微小流量
dQ udA
通过整个过流断面流量
Q dQ udA A

工程流体力学1718(2)3.1描述流体运动的两种方法

工程流体力学1718(2)3.1描述流体运动的两种方法
(3)当时间t 变化时,流体质点从一个空间点运动到另一个空间
点,也就是说质点的空间坐标也会随时间发生变化。由此可 见,x, y, z 也是时间的函数。
即:x=x(t);y=y(t);z=z(t)
2.质点的加速度
第一节 描述流体运动的两种方法
u u( x, y, z, t ) 按复合函数求导原则,对时间t 求全导数,得:
第一节 描述流体运动的两种方法 1.拉格朗日法(跟踪法)描述
初始(t0)时刻:跟踪某个流体质点(a,b,c)
任意(t)时刻:质点从(a,b,c)运动到(x,y,z)
基本参数: 位移
x x(a,b,c,t) y y(a,b,c,t)
(流体质点的位置坐标) z z(a,b,c,t)
3. 在工程实际中,并不关心每一质点的运动。基于上述三点原因, 欧拉法在流体力学研究中广泛被采用。
1.研究流体在外力作用下流体运动参数(速度、加速度等)随空间和 时间的变化规律(流体运动学);
2.研究运动流体与相接触固体壁面间的相互作用(流体动力学)。
四个基本方程:
连续性(微分)方程 ; 运动(微分)方程 能量方程(伯努利方程); 动量方程
本章研究重点:
本章将围绕流体力学中“运动”和“受力”展开讨论。主要包括以 下几点:
u u(x, y, z,t) v v(x, y, z,t) w w(x, y, z, t) p p(x, y, z,t)
(x, y, z,t)
独立变量: (x, y, z,t)
第一节 描述流体运动的两种方法
u u(x, y, z, t);v v(x, y, z, t);w w(x, y, z, t)
ax

du dt

工程流体力学3

工程流体力学3
由此得流线的微分表达式: dx dy dz
u( x, y, z, t) v( x, y, z, t ) w( x, y, z, t)
上式可写成两个微分方程的方程组。令t为参数, 对x,y,z积分上式,便可得到两个曲面方程,这两个曲 面的交线就是流线。
四、流线的几个性质
(1)定常流动,流线不随时间变化,即流体质点必沿一确 定的流线运动,流线与迹线重合。 (2)非定常流动,流线随时间变化,即流场内任意一点的 流线在不同时刻将取不同形状,而任意一流体质点的迹 线总是确定的,故流线和迹线就不再始终重合。 (3)在同一点上某一瞬时只能有一个流动方向,因此只能 给出一条流线,所以流线一般不相交,只有在流场内速 度为零或为无穷大的那些点,流线可能相交。速度为零
A
Rh
水力半径与一般圆截面的
半径是完全不同的概念。
Rh r
例:半径为r的圆管内充满流体,Rh
所以:
Rh r
r2 2 r
r 2
6.当量直径 De: 4倍的有效截面积与湿周之比。
4A
De Rh
一般的流动都是三维空间内的流动,
例: v v( x, y, z) ,称为三维流动。 若流动参数是两个坐标的函数,则称为二维流动,若 流动参量是一个坐标的函数,则称为一维流动。 例:在一带锥度的圆管内的粘性流体的流动,流体质 点的速度与圆周角θ无关,流 体质点的速度是半径r和轴线距 离x的函数,即:u=f(r,x)。 这就是一个二维流动的问题.若
(2)流经流管中任意截面的流量为:Q
AV
cos(V
,
n)dA
2.平均流速
流经有效截面的体积流量除以有效截面面积所得的
商就是平均流速,即
V Q A
4.湿周χ : 在流体的有效截面上,流体同固体边界接触 部分的周长称为湿周,用χ表示,见图。

2-流体力学-第三章-流体动力学(1)-三大方程-黄国钦

2-流体力学-第三章-流体动力学(1)-三大方程-黄国钦

迹线
M(-1,-1)
o
x
流线
t = 0 时过 M(-1,-1)点的流线和迹线示意图
19
dx dy dz = = vx v y vz
流线微分方程
20
3.2 几个概念 3.2.2 流线和迹线——流线
流线的性质
(1)流线彼此不能相交。 (2)流线是一条光滑的曲线,不可能出现折点。 (3)定常流动时流线形状不变(不随时间变化),迹 线与流线重合, 非定常流动时流线形状发生变化。 (4)流线簇的疏密反映了速度的大小;
求导
求导
几点说明:
1、对于某个确定的流体质点,(a,b,c)为常数,t为变量——轨迹。 2、t为常数,(a,b,c)为变量——某一时刻不同流体质点的位置分布。 3、a,b,c为Lagrange变数,是连续分布的空间坐标,是流体质点的标号,不 随时间变化。
优缺点: 优缺点 直观性强、物理概念明确、可以描述各质点的时变过程。 由于流体易动性,要跟踪某个点十分困难。

欧拉法是流场法,
它定义流体质点的速 度矢量场为:
选定某一空 选定某一空 间固定点 间固定点
记录流动空间 某固定位置 处,流体运动 要素(速度、 加速度)随时 间变化规律
r r u =u (x,y,z,t)
综合流场中 许多空间点 随时间的变 化情况
(( x ,, y ,, zz )) 是 x y 是空 空间 间点 点( (场 场 r u 点)。流速 是在 点)。流速 是在 tt 时 时 刻占据 (( x ,, y ,, zz )) 的那个流 刻占据 x y 的那个流
以质点所携带的物理量量 u(x,y,z,t)为代表
位置 速度
t 时刻 M0 (x, y, z, t) v0 (x, y, z, t) Δ t后

大学课程《工程流体力学》PPT课件:第三章

大学课程《工程流体力学》PPT课件:第三章

§3.1 研究流体运动的方法
➢ 欧拉法时间导数的一般表达式
d (v ) dt t
d :称为全导数,或随体导数。
dt
:称为当地导数。
t
v
:称为迁移导数。
例如,密度的导数可表示为: d (v )
dt t
§3.1 研究流体运动的方法
3.1.2 拉格朗日法
拉格朗日法的着眼点:特定的流体质点。
lim t0
(
dV
III
)
t
t
t
CS2 vndA
单位时间内流入控制体的物理量:
z

Ⅱ’

y
lim
t 0
(IdV )t t t CS1vndA
x
§3.3 雷诺输运方程
➢ 雷诺输运方程
dN dt
t
CV dV
CSvndA
雷诺输运方程说明,系统物理量 N 的时间变化率,等于控 制体该种物理量的时间变化率加上单位时间内经过控制面 的净通量。
d dt
V
dV
t
CV
dV
CS
vndA
0
因此,连续性方程的一般表达形式为:
t
CV
dV
CS
vndA
0
连续性方程是质量守恒定律在流体力学中的表现形式。
对定常流动,连续性方程简化为:
CS vndA 0
§3.4 连续性方程
对一维管流,取有效截面 A1 和 A2,及
v2
管壁 A3 组成的封闭空间为控制体:
ay
dv y dt
v y t
vx
v y x
vy
v y y
vz
v y z
az

3工程流体力学 第三章流体运动学基础

3工程流体力学 第三章流体运动学基础
总流: 由无数元流构成的大的流束,包括整
个流动区域上的所有质点的流动。
§3-3 迹线、流线和染色线,流管(续16)
三、湿周、水力半径
1.湿周x 在总流过流断面上,液体与固体相接触的线
称为湿周。用符号x 表示。
2.水力半径R
总流过流断面的面积A与湿周的比值称为水Βιβλιοθήκη 力半径。R A x
注意:水力半径与几何半径是完全不同的两个概念。
这是两个微分方程,其中 t 是参数。 可求解得到两族曲面,它们的交线就是 流线族。
§3-3 迹线、流线和染色线,流管(续10)
例3-1 已知直角坐标系中的速度场 u=x+t; v= -y+t;w=0,
试求t = 0 时过 M(-1,-1) 点的流线。
解:由流线的微分方程:
dx d y dz u vw
§3-3 迹线、流线和染色线,流管(续5)
因为u不随t变,所以同一点的流线 始终保持不变。即流线与迹线重合。
某点流速的方向是
流线在该点的切线方向 A
B
流速的大小由流 线的疏密程度反映
uA=uB ?
§3-3 迹线、流线和染色线,流管(续6)
迹线与流线方程 采用拉格朗日方法描述流动时,质
点的运动轨迹方程:
试求t = 0 时过 M(-1,-1) 点的迹线。
解:由迹线的微分方程:
dx d y dz dt u vw
u=x+t;v=-y+t;w=0
dx xt dt
d y y t
dt
求解
x C1 et t 1
t = 0 时过 M(-1,-1):C1 = C2 = 0 y C2 et t 1 x= -t-1 y= t-1 消去t,得迹线方程: x+y = -2

工程流体力学第三章

工程流体力学第三章

fx、fy、fz,则作用在微元四面体上的总质量力为:
W 1 dxdydz f
6
它在三个坐标轴上的分量为:
Wx
1 dxdydz
6
fx
Wy
1 dxdydz
6
fy
Wz
1 dxdydz
6
fz
由于流体的微元四面体处于平衡状态,故作用在其上的一切力在任意
轴上投影的总和等于零。
在x轴方向上力的平衡方程为:
d
p
f xdx
f ydy
f z dz
上式的左边是全微分,它的右边也必须是某个函数 (x, y, z) 的
全微分。
由于
d dx dy dz
x y z
(2-5)
所以
fx x
fy
y
fz
z
(2-6)
即质量力的分量等于函数 (x, y, z) 的偏导数,因此, (x, y, z) 称为力势函数(若某一坐标函数对个坐标的偏导数分别等于力 场的力在对应坐标轴上的投影,则称该坐标函数为力的势函数)。 存在力势函数的质量力称为有势力,重力、电磁力、(惯性力) 等是有势力。
px
1 2
dydz
pndAn
cos
1 6
dxdydzf x
0
(2-1)
因为:
dAn
cos
1 dydz 2
则上式变成
px
1 2
dydz
pn
1 2
dydz
1 6
dxdydzf
x
0

px
pn
1 3
f xdx
0
dx趋于0时,第三项为无穷小,可以略去,故得:

工程流体力学 第3章 流体运动基本概念和基本方程

工程流体力学 第3章 流体运动基本概念和基本方程
迹线和流线:
第四节 流管 流束 流量 水力半径
1. 流管和流束
流管——在流场中作一不是流线的封闭周线C,过该周线 上的所有流线组成的管状表面。
流束——充满流管的一束流体。 微元流束——截面积无穷小的流束。 总流——无限多微元流束组成总的流束。
3. 缓变流和急变流 缓变流— 流线近似平行; 急变流— 流线不平行;
缓变流
急变流
缓变流 急变流
4. 有效截面 流量 平均流速 有效截面—在流束或者总流中,与所有流线都垂直的截面。
流量——在单位时间内流过有效截面积的流体的量。
体积流量(m3 / s) 质量流量(kg /)s
qv v dA v cos(v, n)dA vndA
A
A
A
qm v dA v cos(v, n)dA vndA
0 t
0
t
定常流动:
(1)流动过程中所有的物理量都不随时间变化而变化。 非定常流动:
(2)流动过程中任意一个物理量随时间变化而变化。
判断的唯一依据:运动参数是否随时间变化。
定常流动 (steady and unsteady flow)
非定常流动 (unsteady flow)
2. 一维流动、二维流动和三维流动
流体质点的运动方程
质点物理量: 速度: x y
x y
(a,b,c,t (a,b,c,t
)= )
x(a,b,c,t t
y(a,b,c,t t
) )
z
z (a,b,c,t)
z (a,b,c,t ) t
流体质点的加 速度:
ax
a
x
(a,b,c,t
)=

x
(a,b,c,t t

工程流体力学答案第三章(杜广生)习题解答

工程流体力学答案第三章(杜广生)习题解答
(7)
p1 p +z1 2 +z2 = w 1 H g g
由式(3) 、 (7)得:
2 2 w 1 H = 2g
12
2g
(8)
第 4 页 共 25 页
《工程流体力学(杜广生) 》习题答案
q d V 2 2 d q dA( x) 1 dA( x) qV A( x) = qV = ax x x = V 2 3 dx A( x) dx A( x) A ( x) dx A ( x) dx
6. 解:
根据已知条件,有:
x
dx dy y x , y ,代入流线微分方程: = 可得: x y 2 (x y ) 2 (x y )
y t x y x y y y z y z 0 0 9y 0 9y
ay
az
z x z y z z z 0 0 0 8z3 8z3 t x y z
3 2 3
根据不可压缩管流连续性方程: 1 A1 =2 A2 , 代入已知参数,可以得到:
1 1 0.3 0.52 =2 0.0382 ,求解方程,可得: 2 =51.94m /s 4 4
14. 解:
列 1-1,2-2 缓变流截面的伯努利方程:
1a21
2 p1 2a p 2 z1 z2 2 +hw (1) 2g 2g g g
ax
x x x y x z x 1 0+(xz t )z xy 2 1 (xz t )z xy 2 t x y z
y t x y x y y y z y z 1 (yz t )z 0 x 2 y 1 (yz t )z x 2 y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dΦs = ( β ρ A V ) o ut − ( β ρ A V ) in dt
If there are several one-D inlets and outlets :
dΦs = dt
∑ (β ρ AV )
i i i i
i out
− ∑ ( β i ρ i AiVi ) in
i
Steady , 1-D only in inlets and outlets, no matter how the flow is within the CV .
3.3 Conservation of mass (质量守恒)
(Continuity Equation)
φ=m
β=dm/dm=1
dms = Σ ( ρ i AiV i ) out − Σ ( ρ i AiV i )in = 0 dt i i
Σ (ρ
i
i
A iV i ) o u t =
Σ (ρ
i
i
A iV i ) i n
Solu = m(V 2 − V 1)
& m = ρ 1 A1V 1 = ρ 2 A2V 2
2
v V1
v V2
& Σ F x = m(V2 x − V1x ) = m(V 2 − V 1 cos θ ) &
& & Σ F y = m(V2 y − V1 y ) = − mV 1 sin θ

r r d (m V )s v v & = m (V out − V in ) F = dt
2-out, 1- in
{
& F x = m (V 2 x − V 1 x )
y
& F y = m (V 2 y − V 1 y )
& F z = m (V 2 z − V 1 z )
o
z
x
Example: A fixed control volume of a streamtube in steady flow has a uniform inlet (ρ1,Α1,V1 )and a uniform exit ρ (ρ2,Α2 V2) . Find the net force on the control volume. ρ ,Α2,
Example: A jet engine working at design condition. At the inlet of the nozzle
p1 = 2.05 × 105 N / m 2
T1 =865K,V1=288 m/s,A1=0.19㎡;
At the outlet p2 = 1.143 × 105 N / m 2 T2 =766K,A2=0.1538㎡ Please find the mass flux and velocity at the outlet. Given
Homework: P185 P3.12, P189P3.36
3.4 The Linear Momentum Equation (动量方程 动量方程) ( Newton’s Second Law )
r Φ = mV
r v dm V β = =V dm
dΦs = dt
∑ (β ρ
i
i
A iV i ) out − ∑ ( β ρ i A iV i ) in




or r v r v dV d = (mV ) F = ma = m dt dt v v dH v v r M= H = ∑ (r × V ) ⋅ m dt
dQ dW dE − = dt dt dt
m = const
dm =0 dt
It is rare that we wish to follow the ultimate path of a specific particle of fluid. Instead it is likely that the fluid forms the environment whose effect on our product we wish to know, such as how an airplane is affected by the surrounding air, how a ship is affected by the surrounding water. This requires that the basic laws be rewritten to apply to a specific region in the neighbored of our product namely a control volume ( CV). The boundary of the CV is called control
3.2 Basic Physical Laws of Fluid Mechanics
All the laws of mechanics are written for a system, which state what happens when there is an interaction between the system and it’s surroundings. If m is the mass of the system Conservation of mass(质量守恒) Newton’s second law Angular momentum First law of thermodynamic
& Σ (m
i
i in
) =
& Σ (m
i
i out
)
Mass flux (质量流量
& m )
For incompressible flow:
Σ( A V )
i i
i out
= Σ( AiV i )in
i
Qi = AiV i Volume flux
体积流量
If only one inlet and one outlet
s
t t+dt
t
t+dt
r r Φ : any property of fluid (m, mV , H , E )
dΦ β= dm
:The amount of Φ per unit mass
The total amount of
Φ
in the CV is :
Φ CV = ∫cv d Φ = ∫cv β dm
1
θ
y
o
x
Example:
G iv e n
m = 10 cm , d 2 = 8 cm & m = 78.5 K g s d1
ρ = 998 K g
m
3
p 1 = p 2 = 4.19 × 10 5 N
2
1
2
Neglect the weight of the fluid. Find the force on the water by the elbow pipe. Solution: select coordinate , ,control volume
surface(CS)
Basic Laws for system
⇑ 3.3 The Reynolds Transport Theorem (RTT) 雷诺输运定理
⇒ for CV
1122 is CV . 1*1*2*2* is system which occupies the CV at instant t.
d (Φ CV ) = dt
s
t t+dt
1 = [Φ CV (t + dt ) − Φ CV (t )] dt
t
t+dt
1 1 = [Φ s (t + dt ) − (d Φ )out + (d Φ )in] − Φs (t ) dt dt 1 1 = [Φ s (t + dt ) − Φs (t )] − [(d Φ )out − (d Φ )in ] dt dt d Φs 1 = − [(d Φ )out − (d Φ )in] dt dt d Φs d Φcv 1 = + [(d Φ )out − (d Φ )in] dt dt dt
r ∑ F :Net force on the system or CV (体系或控制体受到的合外力)
v & i V i :Momentum flux (动量流量) m
For only one inlet and one outlet According to continuity
& & & mout = min = m
Chapter 3 Integral Relations(积分关系式 积分关系式) 积分关系式 for a Control Volume in One-dimensional Steady Flows 3.1 Systems (体系 versus Control Volumes (控制体 体系) 控制体) 体系 控制体
1-D flow : Φ is only the function of s .
Φ = Φ (s)
( d Φ ) in = ( β d m ) in = ( β ρ A d s ) in = ( β ρ A V d t ) in
In the like manner
( d Φ ) out = ( β ρ A V dt ) out
i
1-D in & out steady RTT
( linear − momentum )
momentum perunit mass
Φ flux
相关文档
最新文档