最新人教版七年级上册__2.2整式的加减1课件
合集下载
人教版七年级数学上册教学课件-2.2整式的加减 第1课时 - 合并同类项 品质课件PPT
人教版七(上)
整 式的 加减ຫໍສະໝຸດ 人教版七(上)单 整式 项 式
多 项 式
整式的加减
第1课时 : 合并同类项
1、填空
①3kg
+2kg
= 5kg
;
②3m ③3kg
+2m +2m
= 5m
;
= 不能计算 .
为什么③不能运算? 因为它们不是同一类事物,不能进行加减 那么怎样的式子是同一类呢?
一、学习目标
1、判断同类项 2、合并同类项
①3kg +2kg = 5kg ; ②3m +2m = 5m ; ③3kg +2m =
填一填:
因为同类项 可以合并
(1). 100t-252t=( 100-252 )t =( -152 )t (2). 3 x2 + 2x2 =( 3 + 2 ) x2 =( 5 ) x2
(3). 3ab2 - 4 ab2 =( 3 - 4 ) ab2 =(-1) ab2
一找
二移
三合并
方法与技巧
1找
x3 x2 y xy2 3x2 y 4xy2 3y2
2 移( x2 y 3x2 y) +(xy2 4xy2 ) + x3 + 3y2
3 合并 -4x2 y 5xy2 x3 3y2
x3 x2 y xy2 3x2 y 4xy2 3y2
1
解:原式=(-x2 y 3x2 y) (xy2 4xy2 ) x3 3y2
8x 2 y和-x 2 y
mn2和7mn2和0.4mn2
5a和9a
3 和0和- 5
8
9
xy2 和2 y2 x 3
概念学习:
整 式的 加减ຫໍສະໝຸດ 人教版七(上)单 整式 项 式
多 项 式
整式的加减
第1课时 : 合并同类项
1、填空
①3kg
+2kg
= 5kg
;
②3m ③3kg
+2m +2m
= 5m
;
= 不能计算 .
为什么③不能运算? 因为它们不是同一类事物,不能进行加减 那么怎样的式子是同一类呢?
一、学习目标
1、判断同类项 2、合并同类项
①3kg +2kg = 5kg ; ②3m +2m = 5m ; ③3kg +2m =
填一填:
因为同类项 可以合并
(1). 100t-252t=( 100-252 )t =( -152 )t (2). 3 x2 + 2x2 =( 3 + 2 ) x2 =( 5 ) x2
(3). 3ab2 - 4 ab2 =( 3 - 4 ) ab2 =(-1) ab2
一找
二移
三合并
方法与技巧
1找
x3 x2 y xy2 3x2 y 4xy2 3y2
2 移( x2 y 3x2 y) +(xy2 4xy2 ) + x3 + 3y2
3 合并 -4x2 y 5xy2 x3 3y2
x3 x2 y xy2 3x2 y 4xy2 3y2
1
解:原式=(-x2 y 3x2 y) (xy2 4xy2 ) x3 3y2
8x 2 y和-x 2 y
mn2和7mn2和0.4mn2
5a和9a
3 和0和- 5
8
9
xy2 和2 y2 x 3
概念学习:
初中数学人教版七年级上册《整式的加减》教学课件
小明买笔记本和圆珠笔共花费(4x+3y)元. 小红和小明一共花费(单位:元) (3x+2y) + (4x+3y) = 3x+2y+4x+3y = 7x+5y.
例 笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记 本,2 支圆珠笔;小明买4本笔记本,3支圆珠笔.买这些笔记本 和圆珠笔,小红和小明一共花费多少钱? 解法2:小红和小明买笔记本共花费(3x+4x)元,
有三个农场在一条公路边,如图中的A,B,C处. A处农场年产小麦50吨,B 处农场年产小麦10吨,C处农场年产小麦60吨. 要在这条公路边修建一个 仓库收购这些小麦. 假设运费从A到C方向是1.5元/(吨·千米),从C到A方向 是1元/(吨·千米) ,那么仓库应该建在何处才能使总运费最低?
解:② 设仓库建在A,B之间(含A点),离B y千米处,则总运费为 1.5×50(50-y)+1×10y+1×60(120+y)=(10 950- 5y)(元). 因为0<y≤50, 所以当y=50,即仓库建在A处时,总运费最低,最低为10 700元. 综上,仓库建在A处时总运费最低.
解:(1) 方框内的9个数字之和是方框正中间的数字的9倍.
如图所示是某月的月历,带阴影的方框内有9个数字. (1) 探究方框内的9个数字之和与方框正中间的数字 有什么关系? (2) 不改变方框的大小,任意移动方框的位置,你能得 到什么结论?并说明理由. (3)当方框正中间的数字为16时,求方框内9个数字的和. 解:(2) 结论:方框内的9个数字之和是方框正中间的数字的9倍. 理由:设方框正中间的数字为x,则其他的8个数字分别为x-8,x-7,x-6,x-1,x+1, x+6,x+7,x+8. 这9个数字的和为x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x, 所以方框内的9个数字之和是方框正中间的数字的9倍.
例 笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记 本,2 支圆珠笔;小明买4本笔记本,3支圆珠笔.买这些笔记本 和圆珠笔,小红和小明一共花费多少钱? 解法2:小红和小明买笔记本共花费(3x+4x)元,
有三个农场在一条公路边,如图中的A,B,C处. A处农场年产小麦50吨,B 处农场年产小麦10吨,C处农场年产小麦60吨. 要在这条公路边修建一个 仓库收购这些小麦. 假设运费从A到C方向是1.5元/(吨·千米),从C到A方向 是1元/(吨·千米) ,那么仓库应该建在何处才能使总运费最低?
解:② 设仓库建在A,B之间(含A点),离B y千米处,则总运费为 1.5×50(50-y)+1×10y+1×60(120+y)=(10 950- 5y)(元). 因为0<y≤50, 所以当y=50,即仓库建在A处时,总运费最低,最低为10 700元. 综上,仓库建在A处时总运费最低.
解:(1) 方框内的9个数字之和是方框正中间的数字的9倍.
如图所示是某月的月历,带阴影的方框内有9个数字. (1) 探究方框内的9个数字之和与方框正中间的数字 有什么关系? (2) 不改变方框的大小,任意移动方框的位置,你能得 到什么结论?并说明理由. (3)当方框正中间的数字为16时,求方框内9个数字的和. 解:(2) 结论:方框内的9个数字之和是方框正中间的数字的9倍. 理由:设方框正中间的数字为x,则其他的8个数字分别为x-8,x-7,x-6,x-1,x+1, x+6,x+7,x+8. 这9个数字的和为x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x, 所以方框内的9个数字之和是方框正中间的数字的9倍.
七年级上册数学精品课件:第二章第二节 整式的加减
(2)做大纸盒比做小纸盒多用料 (6ab+8bc+6ca)-(2ab+2bc+2ca) =6ab+8bc+6ca- 2ab-2bc-2ca =4ab+6bc+4ca(2cm )
总结归纳
整式加减解决实际问题的一般步骤: ⑴ 根据题意列代数式; ⑵ 去括号、合并同类项.; ⑶ 得出最后结果.
例5
求
1 x 2(x 1 y2的) 值(,3 x 1 y2 )
总结归纳
1.几个整式相加减,通常用括号把每一个整式 括起来,再用加、减连接,然后进行运算.
2.整式加减实际上就是: 去括号、合并同类项.
3.运算结果,常将多项式的某个字母(如x)的
降幂(升幂)排列.
二 整式的加减的应用 例3 一种笔记本的单价是x元,圆
珠笔的单价是y元.小红买这种笔 记本3本,买圆珠笔2支;小明买 这种笔记本4本,买圆珠笔3支.买 这些笔记本和圆珠笔,小红和小 明一共花费多少钱?
小红和小明一共花费(单位:元)
(3x+4x)+(2y+3y)=7x+5y
例4 做大小两个长方体纸盒,尺寸如下(单位:cm): 长宽高
小纸盒 a b c 大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
c ab
2c 2b
1.5a
解:小纸盒的表面积是(2ab+2b+c 2ca )c2m 大纸盒的表面积是(6ab+8bc+ 6ca )c2 m
例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)
解: (1)(2a-3b)+(5a+4b) =2a-3b+5a+4去b 括号 =7a+b 合并同类项
总结归纳
整式加减解决实际问题的一般步骤: ⑴ 根据题意列代数式; ⑵ 去括号、合并同类项.; ⑶ 得出最后结果.
例5
求
1 x 2(x 1 y2的) 值(,3 x 1 y2 )
总结归纳
1.几个整式相加减,通常用括号把每一个整式 括起来,再用加、减连接,然后进行运算.
2.整式加减实际上就是: 去括号、合并同类项.
3.运算结果,常将多项式的某个字母(如x)的
降幂(升幂)排列.
二 整式的加减的应用 例3 一种笔记本的单价是x元,圆
珠笔的单价是y元.小红买这种笔 记本3本,买圆珠笔2支;小明买 这种笔记本4本,买圆珠笔3支.买 这些笔记本和圆珠笔,小红和小 明一共花费多少钱?
小红和小明一共花费(单位:元)
(3x+4x)+(2y+3y)=7x+5y
例4 做大小两个长方体纸盒,尺寸如下(单位:cm): 长宽高
小纸盒 a b c 大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
c ab
2c 2b
1.5a
解:小纸盒的表面积是(2ab+2b+c 2ca )c2m 大纸盒的表面积是(6ab+8bc+ 6ca )c2 m
例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)
解: (1)(2a-3b)+(5a+4b) =2a-3b+5a+4去b 括号 =7a+b 合并同类项
人教版七年级数学上册第二章整式的加减复习课件(1)
xy2 4;
a 2 1 b; 2
1a;
1 1 xy; 3
e f ; 5
3 b2
(9)下列各式中哪些是单项式(系数、次数), 哪些是多项式(项、次数)?
(1) 3abc 2
(2) x 2 y 3
(3) 4 R3
3
(4)0
(5)3x2y - 3xy 2 y3 - x3
5 (6)
x2 y
z3
4
= - x2 - 1
当x=
1 2
时:
- x2- 1= - (1 )2 - 1 2
=
-
5 4
3、长方形的长为2x cm ,宽为4cm,梯形的上底为x cm,下底为上底的3倍,高为5cm,两者谁的面积大? 大多少?
解:长方形的面积为:8x cm2 梯形的面积为:5(x+3x)=10x cm2
2
因为 x 是正数, 所以 10x>8x 所以 梯形的面积比长方形的面积大
❖ 解:因为:B=4x2-5x-6; A-B= 7x2+10x+12
❖ 所以:A= -7x2+10x+12+(4x2-5x-6)
❖
A= -3X2+5X+6
❖ 所以:A+B=-3X2+5X+6+(4x2-5x-6)
❖
= X2
课堂练习
1.选择题:
(1)一个二次式加上一个一次式,其和是( B )
A.一次式 B.二次式 C.三次式 D.次数不定
(1)
1 1 1 ; 1 1 1; 1 2 2 23 2 3
1 11; 34 3 4
.....
1 n (n 1)
2.2.1整式的加减
2 2
2.类比探究,学习新知
例题 4 x 2 x 7 3 x 8 x 2 解:4 x 2 2 x 7 3 x 8 x 2 2
2 2
4x 8x 2x 3x 7 2
2 2
( 交换律 )
2.类比探究,学习新知
例题 4 x 2 x 7 3 x 8 x 2 解:4 x 2 2 x 7 3 x 8 x 2 2
2 2
4x 8x 2x 3x 7 2 ( 交换律 ) 2 2 (4 x 8 x ) (2 x 3 x) (7 2) ( 结合律 ) 2 ( 分配律 ) (4 8) x (2 3) x (7 2)
2 2
2.类比探究,学习新知
例题 4 x 2 x 7 3 x 8 x 2 解:4 x 2 2 x 7 3 x 8 x 2 2
2 2 2 2
(3) 4a 3b 2ab 4a 4b
2 2 2
2
4.基础训练,巩固新知
练习1 判断下列说法是否正确,正确的 在括号内打“√”,错误的打“×” (1) 3 x 与 3mx 是同类项( ) (2) 2ab 与 5ab 是同类项( ) 1 2 2 (3) 3 xy 与 y x 是同类项( ) 2 2 2 (4) 5a b 与 2a bc 是同类项( ) 2 3 ( 5) 2 与 3 是同类项( )
(1)上述各多项式的项有什么共同特点? (2)上述多项式的运算有什么共同特点? 你能从中得出什么规律?
2.类比探究,学习新知
(1)上述各多项式的项有什么共同特点? ①每个式子的项含有相同的字母; ②并且相同字母的指数也相同. (2)上述多项式的运算有什么共同特点? ①根据分配律把多项式各项的系数相加; ②字母部分保持不变.
2.类比探究,学习新知
例题 4 x 2 x 7 3 x 8 x 2 解:4 x 2 2 x 7 3 x 8 x 2 2
2 2
4x 8x 2x 3x 7 2
2 2
( 交换律 )
2.类比探究,学习新知
例题 4 x 2 x 7 3 x 8 x 2 解:4 x 2 2 x 7 3 x 8 x 2 2
2 2
4x 8x 2x 3x 7 2 ( 交换律 ) 2 2 (4 x 8 x ) (2 x 3 x) (7 2) ( 结合律 ) 2 ( 分配律 ) (4 8) x (2 3) x (7 2)
2 2
2.类比探究,学习新知
例题 4 x 2 x 7 3 x 8 x 2 解:4 x 2 2 x 7 3 x 8 x 2 2
2 2 2 2
(3) 4a 3b 2ab 4a 4b
2 2 2
2
4.基础训练,巩固新知
练习1 判断下列说法是否正确,正确的 在括号内打“√”,错误的打“×” (1) 3 x 与 3mx 是同类项( ) (2) 2ab 与 5ab 是同类项( ) 1 2 2 (3) 3 xy 与 y x 是同类项( ) 2 2 2 (4) 5a b 与 2a bc 是同类项( ) 2 3 ( 5) 2 与 3 是同类项( )
(1)上述各多项式的项有什么共同特点? (2)上述多项式的运算有什么共同特点? 你能从中得出什么规律?
2.类比探究,学习新知
(1)上述各多项式的项有什么共同特点? ①每个式子的项含有相同的字母; ②并且相同字母的指数也相同. (2)上述多项式的运算有什么共同特点? ①根据分配律把多项式各项的系数相加; ②字母部分保持不变.
《整式的加法与减法》PPT课件 人教版七年级数学上册【2024年秋】
探究新知
学生活动一 【一起探究】 92b+72(b-0.15) ① 92b-72(b-0.15) ②
1.上面的代数式①②要进行加减运算需要先如何做? 需要先去括号
探究新知
学生活动一 【一起探究】 92b+72(b-0.15) ① 92b-72(b-0.15) ②
2.上面的代数式①②应如何去括号进行化简? 可以利用分配律,将括号前的乘数与括号内的各项相乘, 去掉括号,再合并同类项
72a+120a=
(72+120)a=192a
.
探究新知
根据以上探究过程完成下列题目: (1)72a-120a =( 72-120 )a= -48a . (2)3m2+2m2 =( 3+2 )m2= 5m2 . (3)3xy2-4xy2 =( 3-4 )xy2= -xy2 . 思考:上述运算有什么共同特点,你能从中得出 什么规律?
回顾复习
思考:合并同类项和去括号是进行整式加减运算 的基础,同学们还记的合并同类项法则与去括号 法则吗?
回顾复习
合并同类项法则:合并同类项后,所得项的系数是合 并前各同类项的系数的和,字母连同它的指数不变。
去括号法则:一般地,一个数与一个多项式相乘,需 要去括号,去括号就是用括号外的数乘括号内的每一 项,再把所得的积相加。
探究新知
92b 72b 0.15 92b 72b 10.8 164b 10.8 92b 72b 0.15 92b 72b 10.8 20b 10.8
思考:请同学们根据以上探究过程总结一下去括号法则
探究新知
去括号法则:一般地,一个数与一个多项式相乘, 需要去括号,去括号就是用括号外的数乘括号内的 每一项,再把所得的积相加。 特别地,+(x-3)与-(x-3)可以看作1与-1分别相乘, 得:+(x-3)=x-3,-(x-3)=-x+3
七年级上册2.2整式的加减(共18张PPT)
例2、根据乘法分配律合并同类项:
(1)-xy2+3xy2, (2)7a+3a2+2a-a2+3
解: (1)原式=(-1+3)xy2 =2xy2
(2)原式=7a 2a 3a2 a2 3
(7a 2a) (3a2 a2 ) 3
合并同类 项的法则
=(7+2)a+(3-1)a2+3 =9a+2a2+3
=(3-5)a+(2-1)b = -2a+b
(二结合) (三合并)
18
(1)同类项与系数无关, 字母的排 列顺序也无关。 (2)几个常数项也是同类项。
化简多项式的一般步骤是什么呢?通过 如下问题进行说明:找出多项式
4x2 2x 7 3x 8x2 2 中同类项,并进行合
并,同时思考下面问题:
每一步运算的依据是什么?注意什么?
(1)找出同类项并做标记; (2)运用交换律、结合律将多项式的同类项结合; (3)合并同类项; (4)按同一个字母的降幂(或升幂排列).
16
合并同类项:
不要忘记哦
(1)a 2a 3a ;
(2)3b 5b -2b ;
(3) 5x2 9x2 4 x 2;
(4) 4xy2 2xy2 6xy2;
17
例3、合并同类项:
(1)3a+2b-5a-b
(2) 4ab 1 b2 9ab 1 b2
3
2
解: (1) 3a + 2b – 5a - b (一找)
100t+120×2.1t=100t+252t
100t+120×2.1t=100t+252t 这个式子的结果是多少? 你是怎样得到的?
二、1.如何表示两种立体图形的体积? b
新人教版七年级数学上册2.2整式的加减(共32张PPT)
整式的加减
例题1 先化简,再求值.
3(2x2y-3xy2)-(xy2-3x2y),其中x=12,y=-1.
点评: 解题的基本规律是先把原式化简为9x2y-10xy2, 再代入求值,化简降低了运算难度,使计算更加简便, 体现了化繁为简,化难为易的转化思想.
5 4 1 2 1 1 2 x 2 y xy 1.多项式 x y xy 与多项式 xy x y 的和为________. 6 5 2 5 3
用整式的加减解决实际问题
例题2 因国际市场油价上涨,某市将出租车的收费标准重
新调整为:不超过2千米的部分,收起步价5元,燃油税1元; 2千米到5千米的部分,每千米收1.5元;超过5千米的部分,每 千米收2.5元.若某人乘坐了x(x>5)千米的路程,请写出他应该 支付的费用.当他乘坐了8千米的路程时,应付费多少元? 解析: 根据题意得,他乘坐x(x>5)千米的路程所支付的费用为 5+1+1.5×(5-2)+2.5(x-5) =6+4.5+2.5x-12.5 =(2.5x-2)(元). 当x=8时,应付费2.5×8-2=18(元).所以他乘坐了8千米的路 程时,应付费18元.
用整式的加减解决实际问题
例题2 因国际市场油价上涨,某市将出租车的收费标准重
新调整为:不超过2千米的部分,收起步价5元,燃油税1元; 2千米到5千米的部分,每千米收1.5元;超过5千米的部分,每 千米收2.5元.若某人乘坐了x(x>5)千米的路程,请写出他应该 支付的费用.当他乘坐了8千米的路程时,应付费多少元?
新人教版七年级数学上册 2.2整式的加减
知识与技能 - 会进行整式的加减计算,能利用整式的加减解决一些简单问题。
人教版七年级上册数学第2节《整式的加减》参考课件(共16张PPT)
(1)求多项式 求:
的值. 的值.
的值,
第一天水位的变化量为-2acm, 上的数交换位置,计算所得数与原数的和,所得
进货后这个商店有大米多少千克? 例5 已知m是绝对值最小的有理数,且
第二天水位的变化量为0.5acm. 其中
,
,
(1)水库中水位第一天连续下降了a 小时,每小时平均
问题.本节课设计了大量的实际问题,可以让学生
2
求:
的值.
例6 若
,
8x 3xy 将整式化简求值,运2用整式的加法解决简单的实际
86
2
例6 若 a2a b2 0 ,a bb 2 1 3 ,
求:a22abb2的值.
例6 若 a2a b2 0 ,a bb 2 1 3,
求:a22abb2的值.
解:a2 ab20 ①
abb2 13②
①+②得:a2ababb27
10a b 10b a
11a 11b
11(a b)
∴所得数与原数的和能被11整除.
例5 已知m是绝对值最小的有理数,且am1by1 与 3 a x b 3 是同类项, 求 :2 x 2 3 x y 6 x 2 3 m x 2 m x y 9 m y 2的值
例5 已知m是绝对值最小的有理数,且am1by1与
例3(2)某商店原有5袋大米,每袋大米为x千克.
解: 例1 下列各题计算的结果对不对?如果不对
将整式化简求值,运用整式的加法解决简单的实际
例1 下列各题计算的结果对不对?如果不对
把下降的水位变化量记为负, 答:这两天水位总的变化情况为下降了1.
(2)某商店原有5袋大米,每袋大米为x千克.
把上升的水位变化量记为正. 求:
的值. 的值.
的值,
第一天水位的变化量为-2acm, 上的数交换位置,计算所得数与原数的和,所得
进货后这个商店有大米多少千克? 例5 已知m是绝对值最小的有理数,且
第二天水位的变化量为0.5acm. 其中
,
,
(1)水库中水位第一天连续下降了a 小时,每小时平均
问题.本节课设计了大量的实际问题,可以让学生
2
求:
的值.
例6 若
,
8x 3xy 将整式化简求值,运2用整式的加法解决简单的实际
86
2
例6 若 a2a b2 0 ,a bb 2 1 3 ,
求:a22abb2的值.
例6 若 a2a b2 0 ,a bb 2 1 3,
求:a22abb2的值.
解:a2 ab20 ①
abb2 13②
①+②得:a2ababb27
10a b 10b a
11a 11b
11(a b)
∴所得数与原数的和能被11整除.
例5 已知m是绝对值最小的有理数,且am1by1 与 3 a x b 3 是同类项, 求 :2 x 2 3 x y 6 x 2 3 m x 2 m x y 9 m y 2的值
例5 已知m是绝对值最小的有理数,且am1by1与
例3(2)某商店原有5袋大米,每袋大米为x千克.
解: 例1 下列各题计算的结果对不对?如果不对
将整式化简求值,运用整式的加法解决简单的实际
例1 下列各题计算的结果对不对?如果不对
把下降的水位变化量记为负, 答:这两天水位总的变化情况为下降了1.
(2)某商店原有5袋大米,每袋大米为x千克.
把上升的水位变化量记为正. 求:
人教版七年级数学上册第二章《整式的加减》复习课课件
【解析】可以发现每个图形的五角星个数都比前面一 个图形的五角星个数多3个.由于第1个图形的五角星个数是 3×1+1,所以第n个图形的五角星个数是3n+1,故第202X个 图形五角星个数是3×202X+1=6052.
知识框架
用字母表示数 整 整 单项式:系数、次数
式 式 多项式: 项、次数、常数项 同类项: 定义、“两相同、两无关”
方法技能:
在求多项式的值时,一般情况是先化简,然后再 把字母的值代入化简后的式子中求值,化简的过 程就是整式运算的过程.
针对训练
5.化简后再求值:5x2-2y-8(x2-2y)+3(2x2-3y),其中 |x+12|+(y-13)2=0. 分析:原式去括号合并得到最简结果,利用非负 数的性质求出x与y的值,代入计算即可求出值. 解:原式=5x2-2y-8x2+16y+6x2-9y=3x2-5y. 因为|x+2|+(y-3)2=0,所以x+2=0,y-3=0, 即x=-2,y=3,则原式=12-15= -3.
s=1002×(1002+1)=1005006.
即2+4+6+8+……+2004=1005006.
考点讲授
小结:视察是解题的前提条件,当已知数据有很多组 时,需要仔细视察,反复比较,才能发现其中的规律.
针对训练
6. 视察下列图形:它们是按一定规律排列的,依照 此规律,第202X个图形中共有__6_0_5_2___个五角星.
易错警示:
单项式的次数和系数、多项式的次数和项是 容易混淆的概念,须辨别清楚.
考点2 同类项
考点讲授
例2 若3xm+5y2与x3yn的和是单项式,求mn的值.
知识框架
用字母表示数 整 整 单项式:系数、次数
式 式 多项式: 项、次数、常数项 同类项: 定义、“两相同、两无关”
方法技能:
在求多项式的值时,一般情况是先化简,然后再 把字母的值代入化简后的式子中求值,化简的过 程就是整式运算的过程.
针对训练
5.化简后再求值:5x2-2y-8(x2-2y)+3(2x2-3y),其中 |x+12|+(y-13)2=0. 分析:原式去括号合并得到最简结果,利用非负 数的性质求出x与y的值,代入计算即可求出值. 解:原式=5x2-2y-8x2+16y+6x2-9y=3x2-5y. 因为|x+2|+(y-3)2=0,所以x+2=0,y-3=0, 即x=-2,y=3,则原式=12-15= -3.
s=1002×(1002+1)=1005006.
即2+4+6+8+……+2004=1005006.
考点讲授
小结:视察是解题的前提条件,当已知数据有很多组 时,需要仔细视察,反复比较,才能发现其中的规律.
针对训练
6. 视察下列图形:它们是按一定规律排列的,依照 此规律,第202X个图形中共有__6_0_5_2___个五角星.
易错警示:
单项式的次数和系数、多项式的次数和项是 容易混淆的概念,须辨别清楚.
考点2 同类项
考点讲授
例2 若3xm+5y2与x3yn的和是单项式,求mn的值.
人教版七年级数学上册课件:2.2整式的加减(共51张PPT)
方法二:把每一个正方形都看成用 4 根火柴棍搭成的, 然后再减去多算的火柴棍,得到需要 [4n-(n-1)] 根火柴 棍.
一、新知导入
方法三:第一个正方形可以看成是 3 根火柴棍加 1 根火 柴棍搭成的,此后每增加一个正方形就增加 3 根,搭 n 个正 方形共需要 (3n+1) 根火柴棍.
想一想:这三种方法的结果是否一样? 以上三种方法的结果是一样的,搭 n 个正方形共需要( 3n + 1)根火柴棍.
二、探究
解:列车通过冻土地段要 u h,那么它通过非冻土地段 的时间为(u-0.5) h,于是,冻土地段的路程为 100u km, 非冻土地段的路程为120(u-0.5) km.因此,这段铁路全长 (单位:km)是
100u+120(u-0.5),
①
冻土地段与非冻土地段相差
100u-120(u-0.5).
(交换律) (结合律) (分配律)
二、探究
归纳步骤: 1.找出同类项并做标记; 2.运用交换律、结合律将多项式的同类项结合; 3.合并同类项; 4.按同一个字母的降幂(或升幂)排列.
二、探究
例 1 水库水位第一天连续下降了a h,每小时平均下 降 2 cm;第二天连续上升了a h ,每小时平均上升 0.5 cm, 这两天水位总的变化情况如何?
(3)3xy2与 1 y2 x 是同类项;( 2
√)
(4)5a2b与 2a2bc 是同类项;( × )
(5)23 与 32 是同类项.( √ )
五、作业
教科书第 65 页练习题第 1,2,3 题; 习题 2.2 第 1,9 题.
第二课时
第二章 整式的加减
2.2 整式的加减 第二课时
一、新知导入
四、课堂训练
1.化简下列各式: (1)8a+2b+( 5a-b) ; 解: 8a+2b+( 5a-b)
一、新知导入
方法三:第一个正方形可以看成是 3 根火柴棍加 1 根火 柴棍搭成的,此后每增加一个正方形就增加 3 根,搭 n 个正 方形共需要 (3n+1) 根火柴棍.
想一想:这三种方法的结果是否一样? 以上三种方法的结果是一样的,搭 n 个正方形共需要( 3n + 1)根火柴棍.
二、探究
解:列车通过冻土地段要 u h,那么它通过非冻土地段 的时间为(u-0.5) h,于是,冻土地段的路程为 100u km, 非冻土地段的路程为120(u-0.5) km.因此,这段铁路全长 (单位:km)是
100u+120(u-0.5),
①
冻土地段与非冻土地段相差
100u-120(u-0.5).
(交换律) (结合律) (分配律)
二、探究
归纳步骤: 1.找出同类项并做标记; 2.运用交换律、结合律将多项式的同类项结合; 3.合并同类项; 4.按同一个字母的降幂(或升幂)排列.
二、探究
例 1 水库水位第一天连续下降了a h,每小时平均下 降 2 cm;第二天连续上升了a h ,每小时平均上升 0.5 cm, 这两天水位总的变化情况如何?
(3)3xy2与 1 y2 x 是同类项;( 2
√)
(4)5a2b与 2a2bc 是同类项;( × )
(5)23 与 32 是同类项.( √ )
五、作业
教科书第 65 页练习题第 1,2,3 题; 习题 2.2 第 1,9 题.
第二课时
第二章 整式的加减
2.2 整式的加减 第二课时
一、新知导入
四、课堂训练
1.化简下列各式: (1)8a+2b+( 5a-b) ; 解: 8a+2b+( 5a-b)
七年级数学上册教学课件《整式的加减(第1课时)》
当x
=12时,原式=−
5 2
.
探究新知
2.2 整式的加减
(2)求多项式
3a
abc
1 3
c
2
3a
1 3
c
2
的值,其中a=−
16,
b=2,c=-3.
解:3a abc 1 c2 3a 1 c2 =abc,
3
3
当a=−
1 6
,b=2,c=-3时,原式=1.
巩固练习
2.2 整式的加减
当x=2019时,求多项式x4-5x2+2x3-x4+5x2-2x3+2x-1的值.
探究新知
2.2 整式的加减
素养考点 2 合并同类项并且求值
例2 (1)求多项式 2x2 5x x2 4x 3x2 2的值,其中x =12 . 分析:在多项式求值时,可以先将多项式中的同类项合并, 然后再代入求值,这样可以简化计算.
解:(1) 2x2 5x x2 4x 3x2 2 x 2.
A.3
B.6
C.8
D. 10
2. 下列运算中正确的是( A )
A.3a2-2a2=a2
B.3a2-2a2=1
C.3x2-x2=3
D.3x2-x=2x
课堂检测
2.2 整式的加减
3.如果5x2y与xmyn是同类项,那么m =__2__,n =__1__. 4.合并同类项:
(1)-a-a-2a=___-_4_a___; (2)-xy-5xy+6yx=___0___; (3)0.8ab2-a2b+0.2ab2=_a_b_2_-_a_2b_; (4)3a2b-4ab2-4+5a2b+2ab2+7=_8_a_2_b_-_2_a_b_2+_3_.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 2
相信自己,挑战自己
做一做:求代数式-3x2+5x+3x2-x-1的值,其 中x=2.并说一说你是怎么计算的。
字母相同 ,并且_________ 相同字母 同类项的定义:所含__________ 指数 也相同的项,叫做同类项。几个常数项也是 的_____ _______。 同类项
相同 ;2、相同字母的指 判断同类项:1、字母_____ 系数 无关,与_________ 数也_____ 字母顺序 无关。 相同 。与______ 同类项的系数 相加,作为 合并同类项的法则:______________ 不变 。 结果的系数,字母和字母的指数______
( 错 )
( 错 ) ( 对 )
2
(4) 3 x y 5 xy 2 x y
( 错 )
知识的应用
例:找出多项式中的同类项并合 并:
4x2+2x+7+3x-8x2-2 (找)
解:原式= 4x2 -8x2+2x+3x+7-2(搬)
=-4x2+5x+5(合)
合并下列各式的同类项:
1、计算
(1)3a+2b-5a-b 解:原式=3a-5a+2b-b =-2a+b
合并同类项:
知识的升华
定义: 把多项式中的同类项合并成一项。
法则: (1)系数:系数相加; (2)字母:字母和字母的指数不变。
瞧一瞧:
下列各题计算的结果对不对?如果不对, 指出错在哪里?
(1) 3a 2b 5ab ( 2) 5 y 2 y 3 (3) 2ab 2ba 0
2 2 2 2
我观察、 2 我合作
你能用不同的方法计算下列两个图像的面积吗?与同伴一起试一试吧!
n
8
5
8n n 8
5n n 5
8n+5n= (8+5)n =13n
我观察、 1 我合作
ห้องสมุดไป่ตู้
知识的探究
议一议:(你能用分配律吗?) 8a+5a=(8+5)a=13a -7ab+2ab= (-7+2)ab =-5ab 6xy-3xy= (6-3)xy =3xy
课后作业
1、预习课本P66-P68;
2、课本P69习题2.2 1.
(2)-4ab+8-2b-9ab-8
解:原式=-4ab-9ab-2b+8-8 =-13ab-2b 方法:(1)系数:系数相加;(2)字母:字母和字 母的指数不变。 步骤:一找、二搬、三合
先 (1)求多项式2x - 5x x 4 x - 3x - 2 的值, 化 其中x 2; 简 解答:原式 2 x 2 x 2 3x 2 5x 4 x 2 , x 2 再 当x 2时, 求 值 原式 (2) 2 0
绥阳县城关中学---高勇
思考
问题 你能将下列分类吗?若能请说一说理由
苹果
猫
文具盒
钢笔
梨
狗
1、苹果与梨(水果) 2、文具盒与钢笔(文具) 3、猫与狗(动物)
理由:因为他们都是同类
我观察、 1 我合作
知识的探究
2a2b 6xy 5n -3xy
(1)观察下列式子,我们如何分类?(说一说你的理由)
8n
火眼金睛
1、你能写出两个项是同类项的例子吗? 如-2abc与4abc; 0.8m2n与2nm2
2、下列各组是同类项的是( D ) A 2x3与3x2 B 12ax与8bx C x4与a4 D π与-3 3、5x2y 和42ymxn是同类项,则 1 2 m=______, n=____________ 4、 –xmy与45ynx3是同类项,则 3 , n=______ 1 m=______
-7a2b
{ {
{
知识的探究
-7a2b和2a2b都含有相同的字母 ab,并且a 的指 数都是2,b的指数都是1,我们就把-7a2b与2a2b 叫做同类项。 像-7a2b 与2a2b这样,所含字母相同,并且 相同字母的指数也相同的项叫做同类项。(两 同)几个常数项也是同类项。 注:同类型与系数无关,与字母顺序无关。 如: -7a2b 与2a2b 3ab与2ba
相信自己,挑战自己
做一做:求代数式-3x2+5x+3x2-x-1的值,其 中x=2.并说一说你是怎么计算的。
字母相同 ,并且_________ 相同字母 同类项的定义:所含__________ 指数 也相同的项,叫做同类项。几个常数项也是 的_____ _______。 同类项
相同 ;2、相同字母的指 判断同类项:1、字母_____ 系数 无关,与_________ 数也_____ 字母顺序 无关。 相同 。与______ 同类项的系数 相加,作为 合并同类项的法则:______________ 不变 。 结果的系数,字母和字母的指数______
( 错 )
( 错 ) ( 对 )
2
(4) 3 x y 5 xy 2 x y
( 错 )
知识的应用
例:找出多项式中的同类项并合 并:
4x2+2x+7+3x-8x2-2 (找)
解:原式= 4x2 -8x2+2x+3x+7-2(搬)
=-4x2+5x+5(合)
合并下列各式的同类项:
1、计算
(1)3a+2b-5a-b 解:原式=3a-5a+2b-b =-2a+b
合并同类项:
知识的升华
定义: 把多项式中的同类项合并成一项。
法则: (1)系数:系数相加; (2)字母:字母和字母的指数不变。
瞧一瞧:
下列各题计算的结果对不对?如果不对, 指出错在哪里?
(1) 3a 2b 5ab ( 2) 5 y 2 y 3 (3) 2ab 2ba 0
2 2 2 2
我观察、 2 我合作
你能用不同的方法计算下列两个图像的面积吗?与同伴一起试一试吧!
n
8
5
8n n 8
5n n 5
8n+5n= (8+5)n =13n
我观察、 1 我合作
ห้องสมุดไป่ตู้
知识的探究
议一议:(你能用分配律吗?) 8a+5a=(8+5)a=13a -7ab+2ab= (-7+2)ab =-5ab 6xy-3xy= (6-3)xy =3xy
课后作业
1、预习课本P66-P68;
2、课本P69习题2.2 1.
(2)-4ab+8-2b-9ab-8
解:原式=-4ab-9ab-2b+8-8 =-13ab-2b 方法:(1)系数:系数相加;(2)字母:字母和字 母的指数不变。 步骤:一找、二搬、三合
先 (1)求多项式2x - 5x x 4 x - 3x - 2 的值, 化 其中x 2; 简 解答:原式 2 x 2 x 2 3x 2 5x 4 x 2 , x 2 再 当x 2时, 求 值 原式 (2) 2 0
绥阳县城关中学---高勇
思考
问题 你能将下列分类吗?若能请说一说理由
苹果
猫
文具盒
钢笔
梨
狗
1、苹果与梨(水果) 2、文具盒与钢笔(文具) 3、猫与狗(动物)
理由:因为他们都是同类
我观察、 1 我合作
知识的探究
2a2b 6xy 5n -3xy
(1)观察下列式子,我们如何分类?(说一说你的理由)
8n
火眼金睛
1、你能写出两个项是同类项的例子吗? 如-2abc与4abc; 0.8m2n与2nm2
2、下列各组是同类项的是( D ) A 2x3与3x2 B 12ax与8bx C x4与a4 D π与-3 3、5x2y 和42ymxn是同类项,则 1 2 m=______, n=____________ 4、 –xmy与45ynx3是同类项,则 3 , n=______ 1 m=______
-7a2b
{ {
{
知识的探究
-7a2b和2a2b都含有相同的字母 ab,并且a 的指 数都是2,b的指数都是1,我们就把-7a2b与2a2b 叫做同类项。 像-7a2b 与2a2b这样,所含字母相同,并且 相同字母的指数也相同的项叫做同类项。(两 同)几个常数项也是同类项。 注:同类型与系数无关,与字母顺序无关。 如: -7a2b 与2a2b 3ab与2ba