最新人教版初中七年级下册数学《垂线》练习题

合集下载

人教版七年级数学下册5.1.2 垂线 2 同步练习

人教版七年级数学下册5.1.2 垂线 2 同步练习

5.1.2 垂线一、填空题1.当两条直线相交所成的四个角中有一个角是______时,就说这两条直线互相垂直,其中一条直线是另一条直线的_______,它们的交点叫做_______.垂直是相交的一种特殊情形.2.过一点___________直线与已知直线垂直.3.“神舟”六号发射塔与地平面的夹角为__________度,它与地面的位置关系为_________.4.连接直线外一点与直线上各点的所有线段中,__________最短,直线外一点到这条直线的垂线段的长度,叫做点到直线的________.如图,过点O 作四条与直线l 相交的直线,交点分别为点A、B、C、D,其中OC ⊥l,则在OA、OB、OC、OD 这四条线段中,________最短,点O 到直线l 的距离是线段______的长.第4题图第5题图第6题图5.如图,OB⊥OA,直线CD 过点O,且∠AOC=25°,则∠BOC=______,∠BOD=_______.6.如图,AC⊥BC,CD⊥AB.(1)图中共有______个直角;(2)图中点C 到直线AB 的距离是线段______的长度,点B 到直线AC 的距离是线段_____的长度,点B 到直线CD 的距离是线段______的长度;(3)线段AD 的长表示___________的距离.7.如图,AB、CD 相交于点O,AC⊥CD 于点C.若∠BOD =38°,则∠A =__________.第7题图第8题图二、选择题8.如图,∠1+∠2等于 ( ) A.60° B.90° C.110° D.180°9.①过直线上一点作该直线的垂线不止一条;②直线a 的垂线有无数条;③相交的直线不一定垂直,但垂直的直线必定相交;④过直线外一点作已知直线的垂线有且只有一条.上述说法中不正确的有 ( )A.1个 B.2个 C.3个 D.4个10.过一条线段外一点,画这条线段的垂线,垂足在 ( ) A.这条线段上B.这条线段的端点C.这条线段的延长线上D.这条线段上或这条线段的延长线上11.跳远比赛时,小新从点A 跳落在沙坑内B 处(如图所示),这次小新的跳远成绩是3.4m,则小新从起跳点到落脚点之间的距离 ( )A.等于3.4m B.小于3.4m C.大于3.4m D.不能确定12.如图,点P 在∠AOC 的边OA 上.(1)过点P 画OA 的垂线PB,交OC 于点B;(2)画出点P 到OC 的垂线段PM ;(3)上述作图中,哪一条线段的长表示点P 到OB 的距离?(4)比较PM 与OP 的大小,并说明理由.13.如图所示,直线AB、CD 相交于点O,OM ⊥AB.(1)若∠1=∠2,判断ON 与OD 的位置关系,并说明理由;1∠BOC,求∠AOC 和∠MOD 的度数.(2)若∠1=414.如图,A 处是某学生的家,B 处是学校,l 是一条公路,学生要去学校,如何走最近? 该学生要去公路怎样走最近? 请在图中画出相应的路线,并简述理由.15.已知线段AB 的长为a cm,点A、B 到直线l 的距离分别为6cm,4cm.请画图说明在下列条件下符合条件的直线l有几条.(1)a=3;(2)a=10;(3)a=15.。

人教版数学七年级下册第五章《垂线》真题同步测试6(含解析)

人教版数学七年级下册第五章《垂线》真题同步测试6(含解析)

人教版数学七年级下册第五章《垂线》真题同步测试6(含解析)综合考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 xx 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释阅卷人一、单选题(共10题;共40分)得分1.(4分)(2023七下·海淀期末)如图,直线AB与CD交于点O,OE⊥AB,若∠AOD=140°,则∠COE的度数为( )A.40°B.50°C.60°D.70°2.(4分)下列四个条件中能判断两条直线互相垂直的有( )①两条直线相交所成的四个角中有一个角是直角;②两条直线相交所成的四个角相等;③两条直线相交所成的四个角中有一组相邻的角相等;④两条直线相交所成的四个角中有一组对顶角的和为180°.A.4个B.3个C.2个D.1个∥,DB⊥BC,∠1=40°,则∠2的度数是( )3.(4分)(2022七下·巴彦期末)如图,AB CDA.30°B.40°C.50°D.45°4.(4分)(2020八上·松阳期末)如图,在Rt ABC△中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )A.245B.5C.6D.85.(4分)如图,AB l⊥,BC l⊥,B为垂足,那么A,B,C三点在同一条直线上,理由是( )A.经过直线外一点有且只有一条直线与这条直线平行B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行6.(4分)如图,直线l1∥直线l2,直线l3与直线l1,l2分别相交于点A,点B,AC与BC相交于点C,若AC⊥BC,∠1=∠2,则下列结论正确的个数是( )①∠1+∠3=90°;②∠2+∠4=90°;③∠3=∠4;③∠2=∠4A.1B.2C.3D.47.(4分)如果直线MN外一点A到直线MN的距离是2 cm,那么点A与直线MN上任意一点B所连成的线段AB的长度一定( )A .等于2 cmB .小于2 cmC .大于2 cmD .大于或等于2 cm8.(4分)(2017·承德模拟)如图,AB CD ∥,EF AB ⊥于E ,EF 交CD 于F ,已知∠1=60°,则∠2=( )A .20°B .60°C .30°D .45°9.(4分)直线l 上有A 、B 、C 三点,直线l 外有一点P ,若P A =5cm ,PB =3cm ,PC =2cm ,那么点到直线l 的距离( )A .等于2cmB .小于2cmC .不大于2cmD .大于2cm 且小于3cm10.(4分)(2023九下·沭阳月考)在平面直角坐标系xOy 中,以P (0,−1)为圆心,PO 为半径作圆,M 为⊙P 上一点,若点N 的坐标为(a ,2a +4),则线段MN 的最小值为( )A .√5−1B .2√5+1C .2√5−1D .√5+1阅卷人二、填空题(共8题;共32分)得分11.(4分)(2019七下·老河口期中)如图,已知AB CD ⊥,垂足为点O ,直线EF 经过点O ,若∠1=35°,则∠AOE 的度数为 度.12.(4分)(2022七下·椒江期末)如图,在马路旁有一个村庄,现要在马路l 上设立一个核酸检测点为方便该村村民参加核酸检测,核酸检测点最好设在 处,理由是 .13.(4分)(2021八上·覃塘期末)如图,在 △ABC 中, AB=AC ,D是 BC 边的中点, EF 垂直平分 AB 边,动点P在直线 EF 上,若 BC=12 , S△ABC=84 ,则线段 PB+PD 的最小值为 .14.(4分)如图,在三角形ABC中,∠BCA=90∘,BC=3,AC=4,AB=5,点P是线段AB上的一动点,则线段CP的最小值是 .△中,∠ACB=90°,AC=5,BC=12,D是15.(4分)(2022九下·江岸月考)如图,在Rt ABCAB的中点.E,F分别是直线AC,BC上的动点,∠EDF=90°,则线段EF的最小值为 .⊥,∠1=20°,则∠BOE= 16.(4分)如图,已知直线AB,CD相交于点O,OE平分∠BOD,OF OE°,∠DOF= °,∠AOF= °.17.(4分)(2015七下·深圳期中)已知a,b,c为平面内三条不同直线,若a b⊥,c b⊥,则a与c的位置关系是 .△中,∠ABC=90°,AB=BC,直线l1、l2、l3分别18.(4分)(2017八下·无棣期末)如图,Rt ABC△的面积为 通过A、B、C三点,且l1l∥2l∥3.若l1与l2的距离为4,l2与l3的距离为6,则Rt ABC.第Ⅱ卷 主观题第Ⅱ卷的注释阅卷人三、作图题(共4题;共36分)得分19.(4.5分)按要求画图:∥交DC于E;①作BE AD∥交DC的延长线于F;②连接AC,作BF AC⊥于G.③作AG DC20.(4.5分)(2022七下·法库期中)在如图所示的正方形网格中,有两条线段AB和BC(点A,B,C均在格点上),请按要求画图.( 1 )过点A画出BC的平行线;( 2 )过点C画出AB的平行线,与(1)中的平行线交于点D;( 3 )过点D画AB的垂线,垂足为E.21.(13.5分)(2019·汕头模拟)如图,已知△ABC,按要求作图.(1)(4.5分)过点A作BC的垂线段AD;(2)(4.5分)过C作AB、AC的垂线分别交AB于点E、F;(3)(4.5分)AB=15,BC=7,AC=20,AD=12,求点C到线段AB的距离. 22.(13.5分)(2023七下·宿迁期中)如图,每个小正方形的边长均为1个单位长度,每个小正方形的顶点叫做格点.请利用网格点和直尺,完成下列各题:(1)(4.5分)画出△ABC中AB边上的中线CD,AC边上的高线BE;(2)(4.5分)将△ABC先向左平移4个单位长度,再向上平移3个单位长度,请在图中画出平移后的△A1B1C1;(3)(4.5分)△ABC的面积是 .阅卷人四、综合题(共3题;共42分)得分23.(11分)(2017·兰州)在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P求作:直线l的垂线,使它经过点P.作法:如图:⑴在直线l上任取两点A、B;⑵分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;⑶作直线PQ.参考以上材料作图的方法,解决以下问题:(1)(5分)以上材料作图的依据是: (2)(6分)已知,直线l和l外一点P,求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)24.(12分)(2016九下·澧县开学考)如图,△ABC是直角三角形,∠ACB=90°.(1)(6分)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.DE 的长.(2)(6分)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求 ^25.(19分)(2021八上·攀枝花期中)小孟同学将等腰直角三角板ABC(AC=BC)的直角顶点C 放在一直线m上,将三角板绕C点旋转,分别过A,B两点向这条直线作垂线AD,BE,垂足为D,E.(1)(6分)如图1,当点A,B都在直线m上方时,猜想AD,BE,DE的数量关系是 ;(2)(6分)将三角板ABC绕C点按逆时针方向旋转至图2的位置时,点A在直线m上方,点B 在直线m下方.(1)中的结论成立吗?请你写出AD,BE,DE的数量关系,并证明你的结论.(3)(7分)将三角板ABC继续绕C点逆时针旋转,当点A在直线m的下方,点B在直线m的上方时,请你画出示意图,按题意标好字母,直接写出AD,BE,DE的数量关系结论.答案解析部分1.【答案】B【解析】【解答】解:∵AOD=140°,∠,∴AOC=180°-AOD=40°⊥,∵OE AB∠,∴AOE=90°∠∠∠,∴COE=AOE-AOC=50°故答案为:B.∠,再根据垂线的定义求出∠AOE=90°,最【分析】根据邻补角的定义先求出AOC=180°-AOD=40°后计算求解即可。

5.1.2 垂线 人教版七年级数学下册分层作业(含答案)

5.1.2 垂线 人教版七年级数学下册分层作业(含答案)

第五章相交线与平行线5.1.2 垂线分层作业1.如图,图中直角的个数有()A.个B.个C.个D.个【答案】D【分析】根据直角的定义进行求解即可.【详解】解:由题意得,图中的直角有一共五个,故选D.【点睛】本题主要考查了垂线的定义,熟知垂线的定义是解题的关键.2.如图,,,若,则的度数是()A.B.C.D.【答案】C【分析】先求出,即可求出.【详解】解:,,.,.故选:C.【点睛】本题主要考查直角的概念以及角度的计算,比较简单.3.如图,在纸片上有一直线l,点A在直线l上,过点A作直线l的垂线、嘉嘉使用了量角器,过90°刻度线的直线a即为所求;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.【详解】解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点睛】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.4.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】C【分析】根据垂直定义得到∠AOF+∠BOD=,求出∠AOF的度数,利用角平分线的定义求出∠EOF即可.【详解】解:∵∠DOF=,∴∠AOF+∠BOD=,∵∠BOD=,∴∠AOF=,∵OF平分∠AOE,∴∠EOF=∠AOF=,故选:C.【点睛】此题考查了垂直的定义,几何图形中角度的计算,正确理解图形中各角度的关系是解题的关键.5.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为( )A.35°B.45°C.55°D.65°【答案】C【分析】根据角平分线的定义,得出∠MOC=35°,再根据题意,得出∠MON=90°,然后再根据角的关系,计算即可得出∠CON的度数.【详解】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C【点睛】本题主要考查了角平分线的定义和垂线的定义,解决本题的关键在正确找出角的关系.6.如图,为了解决村民饮水困难,需要在河边建立取水点,下面四个点中哪个最方便作为取水点()A.A点B.B点C.C点D.D点【答案】B【分析】根据“垂线段最短”可得结论.【详解】解:根据“垂线段最短”可知要在河边建立取水点,点B作为取水点最方便,故选:B【点睛】此题主要考查了垂线段最短,正确掌握垂线段的性质是解题关键.7.如图,,垂足是点,,,,点是线段上的一个动点包括端点,连接,那么的长为整数值的线段有()A.条B.条C.条D.条【答案】D【分析】根据垂线段最短解答即可.【详解】解:∵,,,,且点是线段上的一个动点包括端点,∴长的范围是,∴的长为整数值的线段有、、、,,共条,故选:D.【点睛】本题考查垂线段最短.理解和掌握垂线段最短是解题的关键.8.如图,直线AB,CD相交于点O,EO⊥CD,垂足为O,若∠1=50°,则∠2的度数为()A.B.C.D.【答案】B【分析】应用垂线性质可得∠EOD=90°,由∠1+∠BOD=90°,即可算出∠BOD的度数,再根据对顶角的性质即可得出答案.【详解】解:∵EO⊥CD,∴∠EOD=90°,∵∠1+∠BOD=90°,∴∠BOD=∠EOD-∠1=90°-50°=40°,∴∠2=∠BOD=40°.故选:B.【点睛】本题主要考查了垂线及对顶角,熟练掌握垂线及对顶角的性质进行求解是解决本题的关键.9.已知,与的度数之比为,则等于___.【答案】或【分析】根据垂直定义知,由,可求,根据与的位置关系,分类求解.【详解】解:,,,即∠AOB:90°=3:5,.分两种情况:①当OB在内时,如图,∴;②当OB在外时,如图,∴.故答案是:或.【点睛】本题考查垂直定义,角的和差运算,解题的关键是利用分类讨论的思想进行求解.10.如图,点,在直线上,且,的面积为.若是直线上任意一点,连接AP,则线段AP的最小长度为_____cm.【答案】8【分析】根据点到直线的垂线段最短,再由面积求出高,即为AP的最小值,由题知,过点A作BC的垂线,即为所求,此时,该垂线也是三角形的高.【详解】解:过点A作BC的垂线AP,根据点到直线的所有线段中,垂线段最短,∴垂线段即为AP的最小值,∵BC=5cm,ΔABC的面积为20,∴,∴AP=8,故答案为:8.【点睛】本题考查三角形的面积公式,垂线段最短的性质,属于基础题.11.已知的两边与的两边分别垂直,且比的倍少,则______【答案】80°或92°【分析】因为两个角的两边分别垂直,则这两个角相等或互补,又因∠A比∠B的倍少40°,设∠B是x 度,利用方程即可解决问题.【详解】解:设∠B是x度,根据题意,得①两个角相等时,如图1:∠B=∠A=x°,x=x-40,解得,x=80,故∠A=80°,②两个角互补时,如图2:x+x-40=180,所以x=88,×88°-40°=92°综上所述:∠A的度数为:80°或92°.故答案为:80°或92°.【点睛】本题考查垂线,本题需仔细分析题意,利用方程即可解决问题.关键是得到∠A与∠B的关系.12.如图,直线AB,CD相交于点O,若,且,则的度数是______.【答案】54°##54度【分析】设,则,可得,再由,可得,可求出x,即可求解.【详解】解:设,则,∴,∵,∴∠AOE=∠BOE=90°,∴,即,∴.故答案为:54°【点睛】本题主要考查了垂直的性质,对顶角的性质,熟练掌握垂直的性质,对顶角的性质进行求解是解决本题的关键.13.如图,直线与直线相交于点,,垂足为,,则的度数为______.【答案】60°##60度【分析】根据对顶角相等可得,由,可得,由,即可求解.【详解】解:∵,∴,∵,,,解得.故答案为:60°.【点睛】本题考查了垂直的定义,对顶角相等,几何图形角度的计算,数形结合是解题的关键.14.如图,点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,连接,若,则的长可能是___________(写出一个即可).【答案】4【分析】直接利用垂线段最短即可得出答案.【详解】解∶∵点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,∴3≤AP,∴PA可以为4,故答案为4(答案不唯一).【点睛】此题主要考查了垂线段最短,正确得出A P的取值范围是解题的关键.15.如图,直线和相交于点,,,,求的度数.【答案】【分析】根据,得出,根据,可得,根据角的倍分关系,可得∠的度数,根据是邻补角,可得答案.【详解】解:∵,∴,∵,∴,∵,∴,∴,∵,∴.∴.【点睛】本题考查垂直的性质、角的和差、角的倍分关系、邻补角的性质等知识,是基础考点,掌握相关知识是解题关键.16.如图,是直线上一点,,平分(1)求的度数.(2)试猜想与的位置关系,并说明理由.【答案】(1)的度数为(2)OD⊥AB,理由见解析【分析】(1)设=x,根据题意得,再根据平角的定义进而求解即可;(2)根据角平分线的定义即可得到解答.【详解】(1)解:设=x,∵,∴,∵直线,∴x+3x=180°,解得,∴的度数为;(2)解:OD⊥AB,理由如下,∵OC平分∠AOD,∴∠COD=∠AOC=45°.∴∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.【点睛】此题考查了垂线,平角的定义以及角平分线的定义,对定义的熟练掌握是解题的关键.平角:等于180°的角叫做平角;角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线.17.如图,两直线、相交于点,平分,如果::.(1)求;(2)若,,求.【答案】(1)145°(2)125°【分析】(1)根据邻补角的性质和已知求出和的度数,根据对顶角相等求出和的度数,根据角平分线的定义求出的度数,可以得到的度数;(2)根据垂直的定义得到,根据互余的性质求出的度数,计算得到答案.(1)解:,::,,,,,平分,,.(2)解:,,平分,,,.【点睛】本题考查的是邻补角的性质、对顶角的性质和角平分线的定义,掌握邻补角互补、对顶角相等和垂直的定义是解题的关键.18.如图,已知直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC.(1)若∠COE=54°,求∠DOF的度数;(2)若∠COE∶∠EOF=2∶1,求∠DOF的度数.【答案】(1)∠DOF=108°;(2)∠DOF=112.5°.【分析】(1)先由OE⊥AB得出∠AOE=∠BOE=90°,再根据角平分线定义求出∠COF=72°,然后由∠DOF=180°-∠COF即可求解;(2)设∠EOF=x°,则∠COE=2x°,则∠COF=3x°,再根据角平分线定义求出∠AOF=∠COF=3x°,所以∠AOE=4x°,由垂直的定义可知∠AOE=90°,则4x=90,解之,求出x即可.(1)解:∵OE⊥AB,∴∠AOE=90°;∵∠COE=54°,∴∠AOC=∠AOE+∠COE=144°,∵OF平分∠AOC,∴∠COF=∠AOC=72°,∴∠DOF=180°-∠COF=108°;(2)解:设∠EOF=x°,则∠COE=2x°,∴∠COF=3x°,∵OF平分∠AOC,∴∠AOF=∠COF=3x°,∴∠AOE=4x°,∵OE⊥AB,∴∠AOE=90°,∴4x=90,解得x=22.5,∴∠COF=3x°=67.5°,∴∠DOF=180°-∠COF=112.5°.【点睛】本题考查了角的计算,根据垂直的定义、角的和差关系列方程进行求解,即可计算出答案,难度适中.1.如图,直线AB,CD相交于点O,OE⊥CD,OF平分∠BOD,∠AOE=24°,∠COF的度数是()A.146°B.147°C.157°D.136°【答案】B【分析】欲求∠COF,需求∠DOF.由OE⊥CD,得∠EOD=90°,故求得∠BOD=66°.由OF平分∠BOD,故∠DOF==33°.【详解】解:∵OE⊥CD,∴∠EOD=90°.∴∠BOD=180°﹣∠AOE﹣∠DOE=66°.又∵OF平分∠BOD,∴∠DOF==33°.∴∠COF=180°﹣∠DOF=180°﹣33°=147°.故选:B.【点睛】本题主要考查垂直的定义、角平分线的定义以及邻补角的性质,熟练掌握垂直的定义、角平分线的定义以及邻补角的性质是解决本题的关键.2.如图,,,平分,则的度数为()A.45°B.46°C.50°D.60°【答案】A【分析】先根据垂直的定义得,由已知,相当于把四等分,可得的度数,根据角平分线可得,从而得结论.【详解】解:,,,,,平分,,.故选:.【点睛】本题考查了角平分线的定义,垂直的定义及有关角的计算,解题的关键是确定.3.如图所示,直线AB,CD相交于点O,于点O,OF平分,,则下列结论中不正确的是()A.B.C.与互为补角D.的余角等于【答案】D【分析】根据垂直的定义及角平分线的性质判断A,利用对顶角的性质判断B,利用邻补角的性质判断C,根据余角的定义判断D.【详解】∵于点O,∴∠AOE=,∵OF平分,∴∠2=,故A正确;∵直线AB,CD相交于点O,∴∠1与∠3是对顶角,∴∠1=∠3,故B正确,∵,∴与互为补角,故C正确;∵,∴的余角=,故D错误,故选:D.【点睛】此题考查垂直的定义,角平分线的性质,对顶角的性质,余角的定理,邻补角的性质,几何图形中角度的计算,熟记各定义及性质是解题的关键.4.已知点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离为()A.4 cm B.5 cm C.小于2 cm D.不大于2 cm【答案】D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.5.如图,若直线与相交于点,平分,且,则的度数为()A.B.C.D.【答案】C【分析】根据角平分线的定义得到,根据垂线的定义得到,利用邻补角的定义即可求解.【详解】解:∵,平分,∴,∵,∴,∴,故答案为:C.【点睛】本题考查邻补角的定义、角平分线的定义、垂直的定义等内容,运用几何知识进行角的和差运算是解题的关键.6.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为()A.35°B.45°C.55°D.25°【答案】A【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.【详解】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=55°,∴∠COM=90°-55°=35°,∵射线OM平分∠AOC,∴∠AOM=∠COM=35°,故选:A.【点睛】本题考查了垂直定义,角平分线定义等知识点,解题的关键是能求出∠COM的度数和求出∠AOM=∠COM.7.已知,如图,直线,相交于点,⊥于点,∠=35°.则∠的度数为().A.35°B.55°C.65°D.70°【答案】B【分析】直接利用垂线的定义结合已知角得出∠COE的度数即可.【详解】∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE−∠AOC=90°−35°=55°.∴∠COE=55°.故选B.【点睛】此题考查垂线的定义,对顶角,解题关键在于得出∠AOC=35°.8.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】B【分析】由垂直得∠COE=90°,从而知∠AOC=64°,则∠BOD也得64°,由角平分线和平角定义得∠COF 的度数.【详解】∵OE⊥CD,∴∠COE=90°,∴∠AOC=∠COE-∠AOE=90°-26°=64°,∵∠AOC=∠BOD,∴∠BOD=64°,又∵OF平分∠BOD,∴∠DOF=∠BOD=×64°=32°,∴∠COF=180°-∠DOF=180°-32°=148°.故选B.【点睛】本题考查了垂线的定义、邻补角、对顶角定义、角平分线定义等知识点.本题属于基础题,推理过程的书写是关键,从垂直入手与已知相结合得出∠AOC的度数,使问题得以解决;同时要注意对顶角和平角性质的运用.9.如图,直线,,相交于点,,,射线,则的度数为___________.【答案】20°或160°【分析】先求出∠EOD=70°,再分射线OG在直线EF的两侧进行讨论求解即可.【详解】解:∵,,∠2=∠AOE,∴∠EOD=180°-50°-60°=70°,分两种情况:①如图,∵,∴∠EOG=90°,∴∠DOG=∠EOG-∠EOD=90°-70°=20°;②如图,∵∠EOG=90°,∠EOD=70°,∴∠DOG=∠EOD+∠EOG=70°+90°=160°,综上,的度数为20°或160°,故答案为:20°或160°.【点睛】本题考查邻补角、对顶角、垂线性质、角的运算,熟练掌握对顶角相等、邻补角互补,分情况讨论是解答的关键.10.如图,点C,O,D在一条直线上,,OE平分比大,的度数为________.【答案】##72.5度【分析】根据比大,和互补,即可求出,进而由垂直性质可求出,再由角平分线性质即可得出答案.【详解】解:∵比大,∴设,则,∵,∴,∴,∴,∵,∴,∴,∴,∵OE平分,∴.故答案为:.【点睛】本题考查了垂直的性质,角平分线的性质以及角的运算,掌握以上知识是解题的关键.11.如图,直线AB,CD交于点O,OC平分∠BOE,OE⊥OF,若∠DOF=15°,则∠EOA=_________.【答案】30°##30度【分析】根据垂直定义可得∠EOF=90°,从而利用平角定义求出∠COE=75°,然后利用角平分线的定义求出∠BOE=2∠COE=150°,最后利用平角定义求出∠EOA,即可解答.【详解】解:∵OE⊥OF,∴∠EOF=90°,∵∠DOF=15°,∴∠COE=180°﹣∠EOF﹣∠DOF=75°,∵OC平分∠BOE,∴∠BOE=2∠COE=150°,∴∠AOE=180°﹣∠∠BOE=30°,故答案为:30°.【点睛】本题考查了垂线,角平分线的定义,根据题目的已知条件并结合图形分析是解题的关键.12.如图,直线AB、CD相交于点O,,O为垂足,如果,则________°.【答案】57.5【分析】根据垂线的定义,可得,根据角的和差,可得的度数,根据邻补角的定义,可得答案.【详解】解:∵∴∴∵,∴,∴,∴,故答案为:.【点睛】本题考查了垂线的定义,邻补角的和等于180°,角与分的转化等知识.解题的关键在于领会由垂直得直角.13.如图,直线AB和CD交于O点,OD平分∠BOF,OE⊥CD于点O,∠AOC=40 ,则∠EOF=_______.【答案】130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE ⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.14.如图所示,已知,若,,,则点到的距离是______,点到的距离是______.【答案】 4 2.4【分析】根据点到直线的距离概念可得点到的距离为垂线段AC的长,设点到的距离为,依据三角形面积,即可得到点到的距离.【详解】解:∵,∴,∴点到的距离为垂线段AC的长,又∵,∴点到的距离为4cm;设点到的距离为,,,,∵,,,,,故答案为:4;2.4.【点睛】本题考查了点到直线的距离,利用三角形的面积得出是解题关键.15.如图,直线,相交于点,平分.(1)若,,求的度数;(2)若平分,,求的度数.【答案】(1)70°(2)50°【分析】(1)根据角平分线的性质可得,根据垂线的定义以及已知条件求得,继而求得,根据对顶角相等即可求解;(2)根据角平分线的性质可得,,设,则,根据平角的定义建立方程,解方程即可求解.(1)解:平分,,,,,,∴;(2)平分,,,设,则,,解得:,故的度数为:.【点睛】本题考查了几何图形中角度的计算,角平分线的定义,垂线的定义,一元一次方程的应用,数形结合是解题的关键.16.如图,直线相交于点O,平分,求:(1)的度数;(2)写出图中互余的角;(3)的度数.【答案】(1)70°(2)∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余(3)55°【分析】(1)根据对顶角相等即可得到;(2)根据余角的定义求解即可;(3)先根据角平分线的定义求出∠DOE=35°,则∠EOF=∠DOF-∠DOE=55°.(1)解:由题意得;(2)解:∵∠COF=90°,∴∠DOF=180°-∠COF=90°,∴∠BOF+∠BOD=90°,∠EOF+∠EOD=90°,∵OE平分∠BOD,∴∠BOE=∠DOE,∴∠EOF+∠BOE=90°,∵∠AOC=∠BOD,∴∠BOF+∠AOC=90°,∴∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余;(3)解:∵∠BOD=70°,OE平分∠BOD,∴∠DOE=35°,∴∠EOF=∠DOF-∠DOE=55°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,对顶角相等,余角的定义,熟知相关知识是解题的关键.17.如图,已知,,是内三条射线,平分,平分.(1)若,,求的度数.(2)若,,求的度数.(3)若,,求的度数.【答案】(1)(2)(3)【分析】对于(1),由角平分线的定义求出和,再根据即可求解;对于(2),先求出,再根据角平分线的定义求出和,然后根据即可求解;对于(3),由角平分线的定义得,结合已知条件可得,,即,进而得出,可得答案.【详解】(1)∵平分,平分,∴,,∴;(2)∵,∴.∵,∴.∵平分,平分,∴,,∴;(3)∵平分,∴.∵,∴.∵,∴,∴,∴,∴.【点睛】本题主要考查了角的和差,关键是由角平分线定义得出相关等式.18.点O为直线l上一点,射线均与直线l重合,如图1所示,过点O作射线和射线,使得,,作的平分线.(1)求与的度数;(2)作射线,使得,请在图2中画出图形,并求出的度数;(3)如图3,将射线从图1位置开始,绕点O以每秒的速度逆时针旋转一周,作的平分线,当时,求旋转的时间.【答案】(1),(2)或(3)6秒或秒【分析】(1)根据,,即可得出的度数,根据角平分线的定义得出,然后根据得出的度数;(2)根据题意得出的度数,然后分两种情况进行讨论:①当射线在内部时;②当射线在外部时;分别进行计算即可;(3)根据平分得出,根据题意画出图形,计算的角度,然后计算时间即可.【详解】(1)解:由题意可知,,∵,∴,∵平分,∴,∴;(2)由(1)知,,∴,①当射线在内部时,如图2(1),;②当射线在外部时,如图2(2),,综上所述,的度数为或;(3)∵平分,∴,①如图3,,∵平分,∴,∴,∴旋转的时间(秒);②如图3(1),此时,,∵平分,∴,∴,∴,∴旋转的时间(秒);综上所述,旋转的时间为6秒或秒.【点睛】本题主要考查角度的计算,角平分线的定义等内容;第(2)问进行合适的分类讨论是解题的关键;第(3)问,搞清楚在射线旋转的过程中,和的相对位置在不断的变化,以此进行分类画图.1.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.2.(2022·河南·中考真题)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B【分析】根据垂直的定义可得,根据平角的定义即可求解.【详解】解:EO⊥CD,,,.故选:B .【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.3.(2021·北京·中考真题)如图,点在直线上,.若,则的大小为()A.B.C.D.【答案】A【分析】由题意易得,,进而问题可求解.【详解】解:∵点在直线上,,∴,,∵,∴,∴;故选A.【点睛】本题主要考查垂直的定义及邻补角的定义,熟练掌握垂直的定义及邻补角的定义是解题的关键.4.(2021·浙江杭州·中考真题)如图,设点是直线外一点,,垂足为点,点是直线上的一个动点,连接,则()A.B.C.D.【答案】C【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点是直线外一点,,垂足为点,是垂线段,即连接直线外的点与直线上各点的所有线段中距离最短,当点与点重合时有,综上所述:,故选:C.【点睛】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.5.(2020·湖北孝感·中考真题)如图,直线,相交于点,,垂足为点.若,则的度数为()A.B.C.D.【答案】B【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵∴∵∴故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.6.(2020·河北·中考真题)如图,在平面内作已知直线的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【答案】D【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D.【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.7.(2020·吉林·中考真题)如图,某单位要在河岸上建一个水泵房引水到处,他们的做法是:过点作于点,将水泵房建在了处.这样做最节省水管长度,其数学道理是_______.【答案】垂线段最短【分析】直线外一点与直线上各点连结的所有线段中,垂线段最短.【详解】通过比较发现:直线外一点与直线上各点连结的所有线段中,垂线段最短.故答案为:垂线段最短.【点睛】此题主要考查点到直线的距离,动手比较、发现结论是解题关键.。

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.到直线L 的距离等于2cm 的点有( )A .0个B .2个C .3个D .无数个2.如图,能表示点到直线的距离的线段共有( )A .2条B .3条C .4条D .5条3.点P 是直线l 外一点,A 、B 、C 为直线l 上的三点,4PA cm =,5PB cm =,2PC cm =,则点P 到直线l 的距离( )A .小于2cmB .等于2cmC .不大于2cmD .等于4cm4.如图,有三条公路,其中AC 与AB 垂直,小明和小亮分别沿AC 、BC 同时从A 、B 出发骑车到C 城,若他们同时到达,则下列判断中正确的是( )A .小明骑车的速度快B .小亮骑车的速度快C .两人一样快D .因为不知道公路的长度,所以无法判断他们速度的快慢5.如图所示,已知AC⊥BC,CD⊥AB,垂足分别是C ,D ,那么以下线段大小的比较必定成立的是( )A .CD AD >B .AC BC < C .BC BD > D .CD BD <6.与一条已知直线垂直的直线有( )A .1条B .2条C .3条D .无数条7.如图,直线AB ,CD 相交于点O ,OE⊥CD 于点O ,∠AOC=36°,则∠BOE=( )A .36°B .64°C .144°D .54°8.下面说法正确的是( )A .过一点有且只有一条直线与已知直线平行B .两直线成直角,则这两直线一定垂直C .没有交点的两条直线一定平行D .过直线外一点,有且只有一条直线与已知直线垂直9.如图,OA⊥OB,∠1=35°,则∠2的度数是( )A .35°B .45°C .55°D .70°二、填空题1.如图所示,A ,B ,C 是直线l 上的三点,P 为直线l 外一点,已知PC⊥l,PA =4厘米,PB =5厘米,PC =3厘米,则点P 到直线l 的距离为__________.2.如图,115∠=︒,CO OA ⊥,点B ,O ,D 在同一直线上,则∠2的度数为________.3.如图,直线AB ,CD ,EF 相交于点O ,且AB⊥CD,∠1=30°,则∠2=______.4.如图,直线AB ,CD 相交于点O ,如果∠EOD=40°,∠BOC=130°,那么∠BOE 的度数是________.5.如图,直线AB,CD交于点O,OE⊥AB,OD平分∠BOE,则∠AOC=________.三、解答题1.数学是从实际生活中来的,又应用于生活.请将下列事件与对应的数学原理连接起来.事件数学原理教室的门要用两扇合页才能自由开关直线外一点与直线上各点连线的所有线段中,垂线段最短飞机从萧山飞往北京,它的航行路线是直的经过两点有且只有一条直线测量运动员的跳远成绩时,皮尺与起跳线保持垂直两点之间线段最短2.如图,M,N为坐落于公路两旁的村庄,如果一辆施工的机动车由A向B行驶,产生的噪音会对两个村庄造成影响.(1)当施工车行驶到何处时,产生的噪音分别对两个村庄影响最大?在图中标出来.(2)当施工车从A向B行驶时,产生的噪音对M,N两个村庄的影响情况如何?3.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.4.把图中的互相平行的线写出来,互相垂直的线写出来:5.如图,已知直线AB和CD相交于点O,射线OE⊥AB于点O,射线OF⊥CD于点O,且∠AOF =25°.求∠BOC与∠EOF的度数.参考答案一、单选题1.D解析:根据点到直线的距离和直线与直线之间的距离进行分析.详解:当两条平行线互相平行时,且其中一条直线上的一点到另一条直线的距离为2时,则这条直线上所有的点到另一条直线的距离都为2,所以有无数个.故选D.点睛:考查了点到直线的距离和直线与直线之间的距离,解题关键理解点到直线的距离和两条平行线间的距离之间的联系.2.D解析:根据点到直线的距离定义,可判断:AB表示点A到直线BC的距离;AD表示点A到直线BD的距离;BD表示点B到直线AC的距离;CB表示点C到直线AB的距离;CD表示点C到直线BD的距离.共5条.故选D.3.C解析:根据点到直线的距离是点到直线的垂线段的长度以及垂线段最短即可得答案.详解:解:点P为直线l外一点,当P点直线l上的三点A、B、C的距离分别为PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离为不大于2cm,故选:C.点睛:本题考查了点到直线的距离,点到直线的距离是点到直线的垂线段的长度,利用垂线段最短是解题关键.4.B分析:根据垂线的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短,可知BC>AC,然后根据速度公式即可判断.详解:∵AC与AB垂直,∴BC>AC,若他们同时到达,根据速度公式可得,小亮骑车的速度快,小明骑车的速度慢.故选B5.C解析:A选项,CD与AD互相垂直,没有明确的大小关系,错误;B选项,AC与BC互相垂直,没有明确的大小关系,错误;C选项,BD是从直线CD外一点B所作的垂线段,根据垂线段最短定理,BC>BD,正确;D选项,CD与BD互相垂直,没有明确的大小关系,错误,故选C.6.D解析:根据垂线的性质:过直线外一点作已知直线的垂线,能作且只能作1条;而直线外有无数个点,因此与一条已知直线垂直的直线有无数条.详解:解:与一条已知直线垂直的直线有无数条,故选D.点睛:本题主要考查了垂线的性质,准确理解性质是解题的关键.7.D解析:由垂直的定义可知∠DOE=90°;直线AB,CD相交于点O,对顶角相等,然后根据角的差计算即可详解:∵OE⊥CD∴∠DOE=90°∵直线AB,CD相交于点O,∠AOC=36°∴∠DOB=36°∴∠BOE=∠DOE−∠BOD=90°−36°=54°故本题答案应为:D点睛:垂直的定义、对顶角相等的性质是本题的考点,找出角之间的关系是解题的关键.8.B解析:根据平行公理,垂线的定义,平行线的定义和以及垂线的性质对各选项分析判断即可求解.解:A.应为过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B.两直线成直角,则这两直线一定垂直正确,故本选项正确;C.应为在同一平面内,没有交点的两条直线一定平行,故本选项错误;D.应为在同一平面内,过直线外一点,有且只有一条直线与已知直线垂直,故本选项错误. 故选B.9.C解析:试题分析:∵OA⊥OB,∴∠AOB=90°,所以∠2+∠1=90°,∵∠1=35°,∴∠2=55°,故选C .考点:1.余角和补角;2.垂线.二、填空题1.3厘米解析:分析:点P 到直线l 的距离为点P 到直线l 的垂线段,结合已知,因此点P 到直线l 的距离为PC 的长.详解:∵根据点到直线的距离为点到直线的垂线段(垂线段最短)的长度,PC⊥l,PA =4厘米,PB =5厘米,PC =3厘米,∴点P 到直线l 的距离为3厘米,故答案为:3厘米.点睛:本题考查了垂线段最短,关键是要明确点P 到直线l 的距离为点P 到直线l 的垂线段的长度.2.105°分析:根据垂直的定义及平角的定义计算即可.详解:解:∵CO OA ⊥,115∠=︒,∴∠COB=90°-15°=75°,∵点B ,O ,D 在同一直线上,∴∠2=180°-∠COB =180°-75°=105°.故答案为:105°.点睛:本题考查垂直定义与平角定义.熟练掌握垂直的定义是解题的关键.3.60°分析:根据题意由对顶角相等先求出∠ FOD,然后根据AB⊥CD,∠2与∠ FOD互为余角,求出即可详解:∵CD、EF相交于点O∴∠FOD=∠1=30°∵AB⊥CD∴∠2=90°−∠FOD=90°−30°=60°故本题答案应为:60°点睛:对顶角相等和垂线的定义及性质是本题的考点,熟练掌握基础知识是解题的关键.4.90°解析:观察图形,可猜想OE⊥AB,根据已知条件,证明∠AOE是直角即可.详解:∵∠BOC=130°,∴∠AOD=∠BOC=130°,∴∠AOE=∠AOD-∠EOD=130°-40°=90°.∴OE⊥AB.故答案为互相垂直.点睛:考查了对顶角、邻补角,利用垂直的定义除了由垂直得直角外,还能由直角判定垂直,判断两直线的夹角是否为90°是判断两直线是否垂直的基本方法.5.45分析:根据垂直定义得BOE=∠90〬,由角平分线定义得∠BOD=12∠BOE=45〬,由对顶角相等得∠AOC=∠BOD=45〬详解:因为,直线AB,CD交于点O,OE⊥AB,所以,BOE=∠90〬,因为,OD平分∠BOE,所以,∠BOD=12∠BOE=45〬,所以,∠AOC=∠BOD=45〬故答案为45点睛:本题考核知识点:垂直定义、角平分线、对顶角. 解题关键点:理解垂直定义、角平分线、对顶角性质.三、解答题1.见解析分析:两个合页所在的位置可看成的两个点,目的是为了让门与门框在一条直线上,应用的是两点确定一条直线;两个城市可看做两个点,两个城市之间,航行路线是直的,应用的是两点之间,线段最短.跳远成绩可将踏板看作直线,脚后跟看作一点,应用的是垂线段最短.详解:点睛:本题考查了生活中的数学知识、直线公理、线段公理、垂线段最短.注意一些物体或地方可看做一个点.2.见解析解析:试题分析:(1)过点M,N分别作AB的垂线,垂足分别为P,Q,根据垂线段最短可得汽车行驶到何处时,分别对两所学校影响最大;(2)此题说明时要分3段A到P;由P向Q,由Q 向B分别说明对两学校的影响情况.试题解:(1)如图所示,过点M,N分别作AB的垂线,垂足分别为P,Q,则当施工车行驶到点P,Q处时产生的噪音分别对M,N两个村庄影响最大.(2)由A至P时,产生的噪音对两个村庄的影响越来越大,到P处时,对M村庄的影响最大;由P至Q时,对M村庄的影响越来越小,对N村庄的影响越来越大,到Q处时,对N村庄的影响最大;由Q至B时,对M,N两个村庄的影响越来越小.点睛:此题主要考查了应用与设计作图,以及垂线段的性质,关键是正确画出图形.3.(1)见解析;(2)见解析.解析:本题考查了线段和垂线的性质在实际生活中的运用(1)由两点之间线段最短可知,连接AD、BC交于H,则H为蓄水池位置;(2)根据垂线段最短可知,要做一个垂直EF的线段.⑴连结AD,BC,交于点H,则H为所求的蓄水池点.⑵过H作HK EF于K,沿HK开挖,可使开挖的渠最短,依据是:“点与直线的连线中,垂线段最短”.(如图)4.AB∥CD,MN∥OP,EF∥GH;AB⊥GH,AB⊥EF,CD⊥EF,CD⊥GH.解析:试题分析:根据平行的含义,在同一平面内不相交的两条线叫做平行线,在图中所给的6条线段中找出互相平行的线,写出即可;根据垂直的含义,在同一平面内两条直线相交成直角时这两条直线互相垂直,在图中所给的6条线段中找出互相垂直的线,写出即可。

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(7)

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(7)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,以A为公共端点的两条线段AB、AC互相垂直,点B、D、C在同一条直线上,AD⊥BC,则图形中能表示点到直线的距离的线段有( )条.A.6 B.5 C.4 D.32.到直线a的距离等于2㎝的点有()个A.0个B.1个C.无数个D.无法确定3.如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,下列说法不正确的是()A.点A到BC的垂线段为AD B.点C到AD的垂线段为CDC.点B到AC的垂线段为AB D.点D到AB的垂线段为BD4.下列语句叙述正确的有( )①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个 B.1个 C.2个 D.3个5.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度6.下列说法中正确的是()A.有且只有一条直线与已知直线垂直;B.从直线外一点到这条直线的垂线段,叫做这点到这条直线距离;C.互相垂直的两条线段一定相交;D.直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长度是3cm,则点A 到直线l的距离是3cm.7.如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是()A.两点之间,线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线8.如图,OA⊥OB,若∠1=55°,则∠2的度数是( )A.35° B.40° C.45° D.60°9.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是().A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短二、填空题1.如图,BC⊥AC,CB=8 cm,AC=6 cm,点C到AB的距离是4.8 cm,那么点B到AC的距离是____ cm,点A到BC的距离是____ cm,A,B两点间的距离是____ cm.2.如图,AB⊥l 1,AC⊥l 2,垂足分别为B ,A ,则A 点到直线l 1的距离是线段__的长度.3.如图,直线AB CD ,相交于点,O EO AB ⊥.重足为35,O EOC ∠=︒,则AOD ∠的度数为__________度4.已知OA⊥OC 于O ,∠AOB∶∠AOC=2∶3,则∠BOC 的度数为____________度.5.如图,直线a 与b 相交于点O ,直线c⊥b,且垂足为O ,若∠1=35°,则∠2=_____.三、解答题1.如图,已知直线a ,b ,点P 在直线a 外,在直线b 上,过点P 分别画直线a ,b 的垂线.2.如图,按要求画图并回答相关问题:(1)过点A 画线段BC 的垂线,垂足为D ;(2)过点D 画线段..DE∥AB,交AC 的延长线于点E ;(3)指出∠E 的同位角和内错角.3.如图所示,点P 是∠ABC 内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?4.如图,是一条河,C是河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)⊥于点O.5.如图,己知90∠=,过点O作直线CD,作OE CDAOB()1图中除了直角相等外,再找出一对相等的角,并证明它们相等;()2若70∠的度数;∠=,求BOCAOD()3将直线CD绕点O旋转,若在旋转过程中,OB所在的直线平分DOE∠的∠,求此时AOD度数.参考答案一、单选题1.B分析:根据点到直线距离的定义进行解答即可.详解:解:∵AB、AC互相垂直,AD⊥BC,∴线段AB的长度是点B到直线AC的距离;线段AC的长度是点C到直线AB的距离;线段AD的长度是点A到直线BC的距离;线段CD的长度是点C到直线AD的距离;线段BD的长度是点B到直线AD的距离.∴图形中能表示点到直线的距离的线段有5条.故选:B.点睛:本题考查了点到直线的距离的定义,即直线外一点到直线的垂线段的长度,叫做点到直线的距离,熟知概念是关键.2.C解析:详解:解:到直线a的距离等于2的点的轨迹是与a平行,且到a的距离等于2的两条直线,直线是由无数个点组成.故选C.3.D解析:A. 点A到BC的垂线段为AD,正确; B. 点C到AD的垂线段为CD,正确;C. 点B到AC的垂线段为AB,正确;D. 点B到AD的垂线段为BD.故选D.4.B解析:试题①如果两个角有公共顶点且它们的两边互为反向延长线,那么这两个角是对顶角;故错误.②如果两个角相等,那么这两个角是对顶角;错误.③连接两点的线段长度叫做两点间的距离;正确.④直线外一点到这条直线的垂线段的长度叫做这点到直线的距离.错误.故选B.5.B解析:由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.6.D解析:对照垂线的两条性质逐一判断.①从直线外一点引这条直线的垂线,垂线段最短;②过一点有且只有一条直线与已知直线垂直.详解:解:A、和一条直线垂直的直线有无数条,故A错误;B、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度,故B错误;C、互相垂直的两条线段不一定相交,线段有长度限制,故C错误;D、直线l外一点A与直线l上各点连接而成的所有线段中最短线段就是垂线段,可表示点A 到直线l的距离,故D正确.故选:D.点睛:本题考查的是垂线的相关定义及性质,只要记住并理解即可正确答题.7.C分析:根据“垂线段的性质:垂线段最短”解答即可.详解:这样做的理由是垂线段最短.故选C.点睛:本题考查了垂线段最短.垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.8.A解析:试题分析:∵OA⊥OB,∴∠AO∠=90°,即∠2+∠1=90°.∵∠1=55°,∴∠2=35°.故选A.考点:1.垂直的性质;2.数形结合思想的应用.9.B解析:利用OM⊥NP,ON⊥NP,所以直线ON与OM重合,其理由是:同一平面内,经过一点有且只有一条直线与已知直线垂直.故选B.二、填空题1.6 10解析:∵BC⊥AC,CB=8cm, AC=6cm,∴点B到AC的距离是8cm,点A到BC的距离是6cm,故答案为8,6,10.2.AB详解:解:根据点到直线的距离的定义,易得A点到直线l的距离是线段AB的长度.1故答案为:AB.3.125分析:根据垂直的定义及角的加法,求出∠BOC的度数,根据对顶角相等求解即可.详解:⊥∵EO AB∴∠EOB=90°∵∠EOC=35°∴∠BOC=∠EOB+∠EOC=125°∴∠AOD=∠BOC =125°故答案为:125点睛:本题考查的是垂直的定义及角的加减,掌握垂直的定义及能从图形中确定角之间的关系是关键.4.30°或150°分析:根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.详解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=3:2,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.如图,①当在∠AOC内时,∠BOC=90°-60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故答案为30°或150°.点睛:此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.5.55°解析:如下图,∵直线a、b、c相交于点O,且c⊥b,∴∠1+∠2+3∠=180°,∠3=90°,又∵∠1=35°,∴∠2=180°-35°-90°=55°.故答案为55°.三、解答题1.图形见解析.分析:根据过直线外一点作已知直线的垂线和过直线上一点作已知直线的垂线分别画出即可详解:解:如答图所示,PA为直线a的垂线,PB为直线b的垂线.点睛:垂线的作法是本题的考点,熟练掌握作图方法是解题的关键.2.(1)见解析(2)见解析(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.解析:(1)如图,过A点作AD⊥BD与BC的延长线交于D点即可;(2)如图,过D点作DE∥AB与AC的延长线交于E点即可;(3)根据同位角与内错角的定义进行解答即可.详解:(1)(2)如图所示.(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.点睛:本题主要考查基础作图,同位角与内错角的定义,熟练掌握其知识点是解此题的关键.3.(1)图形见解析(2)∠EPF=∠B解析:试题分析:(1)①过点P作BC的垂线,D是垂足;②过点P作BC的平行线交AB于E ,过点P 作AB 的平行线交BC 于F ;(2)根据平行线的性质可得∠AEP=∠B,∠EPF=∠AEP 然后利用等量代换得到结论即可. 解:如图所示,(1)①直线PD 即为所求;②直线PE 、PF 即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF=∠B(等量代换).点睛:本题考查了平行线和垂线的画法及平行线的性质,熟练掌握两直线平行同位角相等,两直线平行内错角相等是解答本题的关键.4.详见解析.解析:试题分析:(1)过点C 作AB 的平行线.(2)过点C 作CD 垂直于AB 交AB 于点D .根据垂线段最短,可得CD 长度最小,量出CD 的长度,然后按比例尺求出实际的距离. 试题如图:(1)过点C 画一平行线平行于AB .(2)过点C 作CD 垂直于AB 交AB 于点D .然后用尺子量CD 的长度,再按1:2000的比例求得实际距离即可.经测量0.9,CD cm =0.92000180018.cm m ⨯==5.(1)AOD BOE ∠=∠;(2)160BOC ∠=;(3)45AOD ∠=.解析:(1)根据垂直定义可得∠DOB+∠BOE=90°,再根据同角的余角相等可得∠AOD=∠BOE;(2)根据余角定义可得∠BOD=20°,再根据邻补角互补可得∠BOC 的度数;(3)根据角平分线性质可得∠DOB=12∠DOE=45°,再根据角的和差关系可得答案.详解:解:()1AOD BOE∠=∠,∵OE CD⊥于点O,∴90DOB BOE∠+∠=,∵90AOB∠=,∴90AOD DOB∠+∠=,∴AOD BOE∠=∠;()2∵70AOD∠=,90AOB∠=,∴20BOD∠=,∴18020160BOC∠=-=;()3∵OB所在的直线平分DOE∠,∴1452DOB DOE∠=∠=,∵90AOB∠=,∴904545AOD∠=-=.点睛:此题主要考查了垂线,以及余角,补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.。

初中数学同步训练必刷题(人教版七年级下册5

初中数学同步训练必刷题(人教版七年级下册5

初中数学同步训练必刷题(人教版七年级下册5.1.2 垂线)一、单选题(每题3分,共30分)1.(2022七下·宜春期末)点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=3cm,则点P到直线l的距离为()A.4cm B.5cm C.小于3cm D.不大于3cm【答案】D【知识点】垂线段最短【解析】【解答】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线l的距离≤PC,即点P到直线l的距离不大于3cm.故答案为:D.【分析】利用垂线段最短的性质可得答案。

2.(2022七下·江源期末)下列图形中,线段AD的长表示点A到直线BC的距离的是()A.B.C.D.【答案】B【知识点】点到直线的距离【解析】【解答】解:A.AD与BC不垂直,故线段AD的长不能表示点A到直线BC距离,不合题意;B.AD⊥BC于D,则线段AD的长表示点A到直线BC的距离,符合题意;C.AD与BC不垂直,故线段AD的长不能表示点A到直线BC距离,不合题意;D.AD与BC不垂直,故线段AD的长不能表示点A到直线BC距离,不合题意.故答案为:B.【分析】根据点到直线的距离,对每个图形一一判断即可。

3.(2022七下·辛集期末)如图,河道l的同侧有M、N两地,现要铺设一条引水管道,从P地把河水引向M、N两地.下列四种方案中,最节省材料的是()A.B.C.D.【答案】D【知识点】线段的性质:两点之间线段最短;垂线段最短【解析】【解答】解:依据垂线段最短,以及两点之间,线段最短,可得最节省材料的是:故答案为:D.【分析】利用垂线段最短,以及两点之间线段最短求解即可。

4.(2022七下·崇川期末)已知三条射线OA,OB,OC,OA⊥OC,⊥AOB=60°,则⊥BOC等于()A.150°B.30°C.40°或140°D.30°或150°【答案】D【知识点】角的运算;垂线【解析】【解答】解:分两种情况讨论,如图1所示,∵OA⊥OC,∴∠AOC=90°,∵⊥AOB=60°,∴∠BOC=∠AOC−∠AOB=90°−60°=30°;如图2所示,∵OA⊥OC,∴∠AOC=90°,∵⊥AOB=60°,∴∠BOC=∠AOC+∠AOB=90°+60°=150°.综上所述,⊥BOC等于30°或150°.故答案为:D.【分析】分OB在⊥AOC内部和外部两种情况讨论,结合已知的角度,根据角的和差关系求⊥BOC的度数即可.5.(2022七下·迁安期末)如图,在测量跳远成绩的示意图中,直线l是起跳线,则需要测量的线段是()A.AB B.AC C.DC D.BC【答案】C【知识点】垂线段最短【解析】【解答】解:根据垂线段最短可得,需要测量的线段是DC;故答案为:C.【分析】根据垂线段最短可得答案。

七年级数学(下)第五章《相交线与平行线——垂线》练习题含答案

七年级数学(下)第五章《相交线与平行线——垂线》练习题含答案

七年级数学(下)第五章《相交线与平行线——垂线》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.过一条线段外一点,作这条线段的垂线,垂足在A.这条线段上B.这条线段的端点处C.这条线段的延长线上D.以上都有可能【答案】D2.过点P向线段AB所在直线引垂线,正确的是.A.B.C.D.【答案】C【解析】过点P向线段AB所在直线引垂线,根据画一条线段或射线的垂线,就是画它们所在直线的垂线,符合要求的只有选项C,故选C.3.如图所示,已知ON⊥l,OM⊥l,所以OM与ON重合,其理由是A.过两点有且只有一条直线B.过一点只能作一条直线C.在同一平面内,经过一点有且只有一条直线与已知直线垂直D.垂线段最短【答案】C【解析】已知ON⊥l,OM⊥l,所以OM与ON重合,理由是在同一平面内,经过一点有且只有一条直线与已知直线垂直,故选C.二、填空题:请将答案填在题中横线上.4.如图所示,直线AB与直线CD的位置关系是__________,记作__________,此时,∠AOD=∠__________ =∠__________=∠__________=90°.【答案】垂直,AB⊥CD,DOB,BOC,COA5.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1∶5,那么∠COA=__________,∠BOC的补角为__________度.【答案】72°,162【解析】∵BO⊥AO,∴∠AOB=90°,∵∠BOC与∠BOA的度数之比为1∶5,∴∠BOC=18°,∴∠COA=∠BOA–∠BOC=90°–18°=72°.∠BOC的补角为180°–18°=162°.三、解答题:解答应写出文字说明、证明过程或演算步骤.6.如图,已知钝角∠AOB,点D在射线OB上.(1)作直线DE⊥OB;(2)作直线DF⊥OA,垂足为F. 【解析】根据垂直的定义作图即可.如图所示:7.如图所示,O是直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数.(2)判断OD与AB的位置关系,并说出理由.。

5.1.2 垂线 人教版七年级数学下册重难点专项练习(含答案)

5.1.2 垂线 人教版七年级数学下册重难点专项练习(含答案)

5.1.2《垂线》重难点题型专项练习考查题型一垂线的定义典例1.(2022秋·北京·七年级北京市第一六一中学校考期末)如图,O是上一点,于点O,直线经过O点,,则的度数为( )A.100°B.105°C.115°D.125°【答案】C【分析】由,可得,由对顶角相等可得,根据角的和差即可解答.【详解】解:∵,∴,∵,∴.故选:C.【点睛】此题考查垂直的定义以及对顶角,题目很简单,解题时要仔细识图.变式1-1.(2022秋·四川泸州·七年级统考期末)已知:如图,于点O,c为经过点O的任意一条直线,那么与的关系是()A.互余B.互补C.互为对顶角D.相等【答案】A【分析】根据对顶角相等得到,利用,得到,即可推出.【详解】解:由题意得,∵,∴,∴,故选:A.【点睛】此题考查了对顶角相等,垂直的定义,余角的定义,熟记各定义是解题的关键.变式1-2.(2022春·黑龙江哈尔滨·七年级哈尔滨风华中学校考期中)如图,,直线BD 经过点O,则的度数为( )A.B.C.D.【答案】B【分析】先利用垂直的含义求解再利用邻补角的含义求解即可.【详解】解:∵,∴∵直线BD经过点O,∴故选B.【点睛】本题考查的是垂直的含义,邻补角的含义,熟练的利用垂直与邻补角的定义求解角的度数是解本变式1-3.(2022秋·辽宁本溪·七年级统考期末)如图,,,垂足为点O,,垂足为点O,则等于()A.24°B.42°C.48°D.64°【答案】B【分析】根据,,可得∠BOD=∠AOC=90°,再由,可得∠AOB=48°,即可求解.【详解】解:∵,,∴∠BOD=∠AOC=90°,∵,∴∠AOB=∠AOD-∠BOD=48°,∴∠BOC=∠AOC-∠AOB=42°.故选:B【点睛】本题主要考查了角与角间的和与差,垂直的性质,明确题意,准确得到角与角之间的关系是解题的关键.考查题型二作已知直线的垂线典例2.(2021秋·广东珠海·七年级统考期中)过点C向AB边作垂线段,下列画法中正确的是( )A.B.C.D.【分析】根据垂线段的定义逐个判断即可得出正确结论.【详解】解:A.此选项是过点A作BC边的垂线段,故错误;B.此选项是过点B作AB边的垂线段,故错误;C.此选项是过点C作AB边的垂线段,故此项正确;D.此选项是过点B作CA边的垂线段,故错误.故选:C.【点睛】本题考查了垂线段的定义及作法,是一道基础题,解题时要善于观察,准确理解垂线段的定义是解题的关键.变式2-1.(2022秋·河北承德·七年级统考期末)下列选项中,过点P画AB的垂线CD,三角尺放法正确的是( )A.B.C.D.【答案】C【分析】根据P点在CD上,CD⊥AB进行判断.【详解】解:过点P画AB的垂线CD,则P点在CD上,CD⊥AB,所以三角尺放法正确的为【点睛】本题考查了作图-基本作图,熟练掌握基本作图(过一点画已知直线的垂线)是解决问题的关键.变式2-2.(2022秋·河北石家庄·七年级校联考期中)下列各图中,过直线外的点画直线的垂线,三角尺操作正确的是()A.B.C.D.【答案】C【分析】根据垂线的作法,用直角三角板的一条直角边与l重合,另一条直角边过点P后沿直角边画直线即可;【详解】根据分析可得C的画法正确;故答案选C.【点睛】本题主要考查了垂线的作法,准确理解是解题的关键.变式2-3.(2020秋·广西·七年级广西大学附属中学校考阶段练习)下列用三角板过点P画AB的垂线CD,正确的是()A.B.C.D.【答案】D【分析】根据垂线的作法,用直角三角板的一条直角边与重合,另一条直角边过点后沿直角边画直线即可.【详解】解:根据分析可得,用直角三角板的一条直角边与重合,另一条直角边过点后沿直角边画直线,选项的画法正确,故选:.【点睛】此题主要考查了垂线的画法,在平面内,过一点有且只有一条直线与已知直线垂直.考查题型三垂线的性质的应用典例3.(2022秋·重庆云阳·七年级校考阶段练习)春节过后,某村计划挖一条水渠将不远处的河水引到农田(记作点O),以便对农田的小麦进行灌溉,现设计了四条路段,,,,如图所示,其中最短的一条路线是( )A.OA B.OB C.OC D.OD【答案】B【分析】根据垂线段的性质:垂线段最短,可得答案.【详解】由垂线段最短,得四条线段,,,,如图所示,其中最短的一条路线是,故选:B.【点睛】本题考查了垂线段的的性质,熟记性质是解题关键.变式3-1.(2022·江苏盐城·校考三模)如图,是测量学生跳远成绩的示意图,即的长为某同学的跳远成绩,其依据是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线与已知直线垂直【答案】C【分析】由点到直线的距离的定义及跳远比赛的规则作出判断.【详解】解:能正确解释这一现象的数学知识是垂线段最短,故选:C.【点睛】此题考查了垂线段最短的性质的运用,解答此题的关键是熟练掌握由点到直线的距离的定义及跳远比赛的规则.变式3-2.(2022秋·河北保定·七年级校考期中)如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A.两点确定一条直线B.两点之间,直线最短C.两点之间,线段最短D.垂线段最短【答案】D【分析】根据垂线段最短解答即可.【详解】解:过点C作于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是:垂线段最短.故选D.【点睛】本题考查了垂线段的性质,熟练掌握垂线段性质是解答本题的关键.从直线外一点到这条直线上各点所连的线段中,垂线段最短.变式3-3.(2022秋·河南安阳·七年级统考期末)如图,从位置O到直线公路l有四条小道,其中路程最短的是()A.OA B.OB C.OC D.OD【答案】C【分析】根据垂线的性质即可得到结论.【详解】解:根据垂线段最短得,能最快到达公路l的小道是OC,故选C.【点睛】本题考查了垂线段最短,熟记垂线的性质是解题的关键.考查题型四点到直线的距离典例4.(2022春·黑龙江哈尔滨·七年级哈尔滨市第四十九中学校校考阶段练习)如图,直角三角形中,,,垂足是点,则下列说法正确的是()A.线段的长表示点到的距离B.线段的长表示点到的距离C.线段的长表示点到的距离D.线段的长表示点到的距离【答案】C【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A.线段的长度表示点A到的距离,说法错误,不符合题意;B.线段的长度表示点C到的距离,说法错误,不符合题意;C.线段的长度表示点B到的距离,说法正确,符合题意;D.线段的长度表示点B到的距离,说法错误,不符合题意;故选C.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.变式4-1.如图,P为直线l外一点,A,B,C在l上,且PB⊥l,下列说法中,正确的个数是()①PA,PB,PC三条线段中,PB最短;②线段PB叫做点P到直线l的距离;③线段AB的长是点A到PB 的距离;④线段AC的长是点A到PC的距离.A.1个B.2个C.3个D.4个【答案】B【分析】根据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;从直线外一点到这条直线上各点所连的线段中,垂线段最短.逐一判断.【详解】解:①线段BP是点P到直线l的垂线段,根据垂线段最短可知,PA,PB,PC三条线段中,PB最短;故原说法正确;②线段BP是点P到直线l的垂线段,故线段BP的长度叫做点P到直线l的距离,故原说法错误;③线段AB是点A到直线PB的垂线段,故线段AB的长度叫做点P到直线l的距离,故故原说法正确;④由题意及图形无法判断线段AC的长是点A到PC的距离,故原说法错误;综上所述,正确的说法有①③;故选:B.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.变式4-2.(2022春·广东梅州·七年级校考阶段练习)如图,已知三角形ABC中,∠ACB=90°,CD⊥AB,垂足为D,则表示点A到直线CD距离的是( )A.线段CD的长度B.线段AC的长度C.线段AD的长度D.线段BC的长度【答案】C【分析】根据点到直线的距离的概念:直线外一点到这条直线的垂线段的长度即为该点到这条直线的距离作答即可.【详解】解:点A到CD的距离是线段AD的长度.故选C.【点睛】本题主要考查了点到直线的距离的概念,解题的关键是熟练掌握并理解点到直线的距离的概念.变式4-3.(2022秋·山东济宁·七年级统考期末)如图,点A在直线l1上,点B,C在直线l2上,AB⊥l2于点B,AC⊥11于点A,AB=4,AC=5,则下列说法正确的是( )A.点B到直线l1的距离等于4B.点A到直线l2的距离等于5C.点B到直线l1的距离等于5D.点C到直线l1的距离等于5【答案】D【分析】根据点到直线的距离的定义求解即可.【详解】解:∵AB⊥于点B,AC⊥于点A,AB=4,AC=5,∴点A到直线的距离等于4,点C到直线的距离等于5,故选:D.【点睛】本题考查了点到直线的距离,利用点到直线的距离定义是解题关键.。

人教版七年级下知识点试题精选-关于垂线的习题

人教版七年级下知识点试题精选-关于垂线的习题

七年级下册关于垂线的习题一.选择题(共20小题)1.已知:如图,OC⊥AB,DE平分∠AOC,那么∠AOE等于()A.135°B.50°C.45°D.155°2.一个角的两边分别与另一个角的两边垂直,则这两个角的大小关系为()A.相等B.互补C.相等或互补D.不能确定3.给出条件:①两条直线相交成直角;②两条直线互相垂直;②一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是()A.能B.不能C.有的能有的不能 D.无法确定4.下列说法正确个数为()①过一点有且只有一条直线与已知直线垂直;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③过直线l外一点有且只有一条直线与直线I垂直;④过直线l上一点有且只有一条直线与已知直线l垂直.A.1个 B.2个 C.3个 D.4个5.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两条直线相交,只有一个交点6.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角7.画一条线段的垂线,垂足在()A.线段上B.线段的端点C.线段的延长线上 D.线段上或线段的延长线上8.如图,AO⊥BO,CO⊥DO,∠AOC:∠BOC=1:5,则∠BOD=()A.105°B.112.5°C.135° D.157.5°9.如图,AB、CD交于点O,OE⊥AB,则∠1与∠2一定满足关系是()A.对顶角B.相等C.互补D.互余10.下列语句中,正确的个数是()①平面上,一条直线只有一条垂线;②过直线上一点,画已知直线的垂线只能画一条;③过直线外一点且垂直于这条直线的垂线有且只有一条;④过一点有且只有一条直线与已知直线垂直.A.1个 B.2个 C.3个 D.4个11.在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是()A.60°B.120°C.60°或90°D.60°或120°12.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=∠AOC,则∠BOC=()A.150°B.140°C.130° D.120°13.如图,AO⊥OB,若∠AOC=50°,则∠BOC的度数是()A.20°B.30°C.40°D.50°14.如图,直线AB与CD相交于点O,过点O作OE⊥AB,若∠1=35°,则∠2的度数是()A.45°B.55°C.65°D.75°15.如图,直线a与b相交于点O,MO⊥直线a,垂足为O,若∠2=35°,则∠1的度数为()A.75°B.65°C.60°D.55°16.如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36°B.44°C.50°D.54°17.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A.155°B.145°C.135° D.125°18.下列语句中,正确的是()A.相等的角一定是对顶角B.垂线最短C.过一点有且只有一条直线与已知直线垂直D.有一个公共顶点,且两边互为反向延长线的两个角是对顶角19.在如图所示的条件中,可以判断两条直线互相垂直的是()A.①②B.①③C.②③D.①②③20.如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠BOD=70°,则∠CON的度数为()A.35°B.45°C.55°D.65°二.填空题(共20小题)21.如图直线AB、CD相交于点O,OE⊥AB于O,∠AOC=55°,则∠DOE=.22.如图,CD⊥AB,垂足为C,EF过点C,若∠1=130°,则∠2=.23.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=32°,则∠AOC=.24.过一点有且只有一条直线与已知直线垂直,作一条线段或射线的垂线就是作它们的垂线.25.如图,∠ABD=90°,直线⊥直线,垂足为,过D点有且只有条直线与直线AC垂直.26.如图,已知FE⊥AB于E,CD是过E的直线,且∠AEC=120°,则∠DEF=度.27.如图,已知直线AB、CD交于点E,EF⊥CD,∠AEF=50°,那么∠BED=°.28.如图,已知AB⊥CD垂足为O,EF经过点O.如果∠1=40°,则∠2=°.29.如图,直线AB与CD相交于E点,EF⊥AB,垂足为E,∠1=110°,则∠2=度.30.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC=度,∠COB=度.31.直线AB与直线CD相交于点O,∠BOC:∠BOD=2:7,射线OE⊥CD,则∠BOE的度数为.32.若a∥b,c⊥a,则c与b的位置关系是.33.如图,直线AB、CD相交于点O,OE⊥CD,若∠1=60°,则∠2=.34.如图,直线AB、CD相交于点O,OE⊥AB,∠AOC=40°,那么∠EOD的大小是.35.已知:如图,CD⊥AB于D,∠1=30°,则∠FDB=,∠BDE=.36.如图,点O是直线AB上一点,OC是一条射线,且∠AOC=32°,若过点O作射线OD,使OD⊥OC,则∠BOD的度数为.37.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=35°时,∠BOD的度数为.38.如图,已知直线a,b,c相交于点O,且a⊥c,垂足为O,若∠1=50°,则∠2的度数为.39.直线AB与射线OC相交于点O,OC⊥OD于O,若∠AOC=60°,则∠BOD=度.40.如图,直线AB、CD相交于点O,OM⊥AB于点O,若∠MOD=43°,则∠COB=度.三.解答题(共10小题)41.如图,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.42.如图,直线AB⊥CD于点O,直线EF经过点O,∠1=35°.求∠2、∠3及∠EOB的度数.43.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=25°,求∠COE、∠AOE、∠AOG的度数.44.如图,O是直线AB上一点,OD是∠AOC的平分线,OE⊥OD.OE是∠BOC 的平分线吗?为什么?45.已知:如图所示,∠1=∠2,∠3=∠4,GF⊥AB于G点,那么CD与AB是否互相垂直?试判断并说明理由.46.如图,AB⊥CD,垂足为O,EF经过点O,∠1=29°.求∠2和∠3的度数.47.如图,直线AB、CD、EF都经过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度数.48.如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD的直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=25°,求∠AOB的度数.(2)若OA平分∠BOE,则∠DOF的度数是.(直接写出答案)49.如图所示,直线AB、CD、EF相交于点O,且AB⊥CD,OG平分∠AOE,若∠DOF=50°,求∠AOG的度数.50.如图所示,点O为直线BD上的一点,OC⊥OA,垂足为点O,∠COD=2∠BOC,求∠AOB的度数.七年级下册关于垂线的习题参考答案与试题解析一.选择题(共20小题)1.已知:如图,OC⊥AB,DE平分∠AOC,那么∠AOE等于()A.135°B.50°C.45°D.155°【分析】首先根据垂直的定义得到∠AOC=90°,再根据角平分线的定义求出∠AOD=45°,最后根据邻补角定义得到∠AOE+∠AOD=180°即可求解.【解答】解:∵OC⊥AB,∴∠AOC=90°,∵OD平分∠AOC,∴∠AOD=∠AOC=45°,∴∠AOE=180°﹣∠AOD=180°﹣45°=135°.故选:A.【点评】此题主要考查了垂线、角平分线、邻补角的定义,关键是理清角之间的关系,求出∠AOD的度数.2.一个角的两边分别与另一个角的两边垂直,则这两个角的大小关系为()A.相等B.互补C.相等或互补D.不能确定【分析】此题可以通过两个图形得出这两个角的关系相等或互补.【解答】解:如图:图1中,根据垂直的量相等的角都等于90°,对顶角相等,所以∠1=∠2,图2中,同样根据垂直的量相等的角都等于90°,根据四边形的内角和等于360°,所以∠1+∠2=360°﹣90°﹣90°=180°.所以如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是相等或互补,故选C.【点评】本题考查了垂线的定义.解题的关键是明确四边形的内角和等于360°,三角形的内角和等于180°,对顶角相等的性质.3.给出条件:①两条直线相交成直角;②两条直线互相垂直;②一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是()A.能B.不能C.有的能有的不能 D.无法确定【分析】分别用①、②、③作为条件,依据垂直的定义分别进行判断即可.【解答】解:①作为条件,②③为结论正确;②作为条件,①③为结论正确;③作为条件,①②为结论正确.故选A.【点评】本题主要考查垂直的定义,熟练掌握定义是解题的关键.4.下列说法正确个数为()①过一点有且只有一条直线与已知直线垂直;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③过直线l外一点有且只有一条直线与直线I垂直;④过直线l上一点有且只有一条直线与已知直线l垂直.A.1个 B.2个 C.3个 D.4个【分析】根据垂线的定义和垂线的性质对各小题分析判断即可得解.【解答】解:①应为在同一平面内,过一点有且只有一条直线与已知直线垂直,故本小题错误;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③应为在同一平面内,过直线l外一点有且只有一条直线与直线I垂直;④应为在同一平面内,过直线l上一点有且只有一条直线与已知直线l垂直.综上所述,说法正确的是②共1个.故选A.【点评】本题考查了垂线的定义与性质,是基础题,主要性质“在同一平面内”的条件限制.5.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两条直线相交,只有一个交点【分析】运用直线,相交线,垂线的定义及角的概念可判定.【解答】解:根据直线,相交线,垂线的定义及角的概念可判定D正确.故选:D.【点评】本题主要考查了直线,相交线,垂线的定义及角的概念,解题的关键是熟记定义及角的概念.6.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.【点评】本题考查了余角和垂线的定义以及对顶角相等的性质.7.画一条线段的垂线,垂足在()A.线段上B.线段的端点C.线段的延长线上 D.线段上或线段的延长线上【分析】画一条线段的垂线,是指画线段所在的直线的垂线.【解答】解:由垂线的定义可知,画一条线段的垂线,垂足可以在线段上,也可以在线段的延长线上.故选D.【点评】本题考查线段垂线的画法,知道画一条线段的垂线,是指画线段所在的直线的垂线是解题的关键.8.如图,AO⊥BO,CO⊥DO,∠AOC:∠BOC=1:5,则∠BOD=()A.105°B.112.5°C.135° D.157.5°【分析】AO⊥BO,∠AOC:∠BOC=1:5,可求得∠AOC,再根据周角的定义求得结果.【解答】解:设,∠AOC=x,∠BOC=5x,∴∠AOB=4x,∵AO⊥BO,∴4x=90°,∴x=22.5°,∴∠BOD=360°﹣90°﹣90°﹣22.5°=157.5°,故选D.【点评】本题主要考查了垂直的定义,周角的定义,熟记定义是解题的关键.9.如图,AB、CD交于点O,OE⊥AB,则∠1与∠2一定满足关系是()A.对顶角B.相等C.互补D.互余【分析】由垂直的定义可知∠EOA=90°,从而可知∠1+∠AOC=90°,由对顶角的性质可知:∠2=∠AOC,从而可知∠1+∠2=90°.【解答】解;∵OE⊥AB,∴∠EOA=90°.∴∠1+∠AOC=90°.∵∠2=∠AOC,∴∠1+∠2=90°.∴∠1与∠2互为余角.故选:D.【点评】本题主要考查的是余角的定义、垂直的定义、对顶角的性质,发现∠2=∠AOC是解题的关键.10.下列语句中,正确的个数是()①平面上,一条直线只有一条垂线;②过直线上一点,画已知直线的垂线只能画一条;③过直线外一点且垂直于这条直线的垂线有且只有一条;④过一点有且只有一条直线与已知直线垂直.A.1个 B.2个 C.3个 D.4个【分析】根据垂线的性质:在平面内,过一点有且只有一条直线与已知直线垂直进行分析即可.【解答】解:①平面上,一条直线只有一条垂线,说法正确;②过直线上一点,画已知直线的垂线只能画一条,说法错误;③过直线外一点且垂直于这条直线的垂线有且只有一条,说法错误;④过一点有且只有一条直线与已知直线垂直,说法错误.正确的说法只有1个,故选:A.【点评】此题主要考查了垂线的性质,在平面内,过一点有且只有一条直线与已知直线垂直,注意“在平面内”这几个字.11.在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是()A.60°B.120°C.60°或90°D.60°或120°【分析】此题可分两种情况,即OC,OD在AB的一边时和在AB的两边,分别求解.【解答】解:①当OC、OD在AB的一旁时,∵OC⊥OD,∠COD=90°,∠AOC=30°,∴∠BOD=180°﹣∠COD﹣∠AOC=60°;②当OC、OD在AB的两旁时,∵OC⊥OD,∠AOC=30°,∴∠AOD=60°,∴∠BOD=180°﹣∠AOD=120°.故选D.【点评】此题主要考查了直角、平角的定义,注意分两种情况分析.12.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=∠AOC,则∠BOC=()A.150°B.140°C.130° D.120°【分析】根据平角、直角及角的和差关系可求出∠AOC+∠EOD=90°,再与已知∠EOD=∠AOC联立,求出∠AOC,利用互补关系求∠BOC.【解答】解:∵∠COD=180°,OE⊥AB,∴∠AOC+∠AOE+∠EOD=180°,∠AOE=90°,∴∠AOC+∠EOD=90°,①又∵∠EOD=∠AOC,②由①、②得,∠AOC=60°,∵∠BOC与∠AOC是邻补角,∴∠BOC=180°﹣∠AOC=120°.故选:D.【点评】此题主要考查了对顶角、余角、补角的关系.13.如图,AO⊥OB,若∠AOC=50°,则∠BOC的度数是()A.20°B.30°C.40°D.50°【分析】根据OA⊥OB,可知∠BOC和∠AOC互余,即可求出∠BOC的度数.【解答】解:∵AO⊥OB,∴∠AOB=90°.又∵∠AOC=50°,∴∠BOC=90°﹣∠AOC=40°.故选C.【点评】本题考查了垂线,余角的知识.要注意领会由垂直得直角这一要点.14.如图,直线AB与CD相交于点O,过点O作OE⊥AB,若∠1=35°,则∠2的度数是()A.45°B.55°C.65°D.75°【分析】由图和已知条件可以得到∠EOA的度数,∠EOA与∠1和∠2的关系,从而可以得到∠2的度数,本题得以解决.【解答】解:∵OE⊥AB,∴∠EOA=90°,又∵∠2+∠EOA+∠1=180°,∠1=35°,∴∠2=55°,【点评】本题考查垂线、平角,解题的关键是明确题意,利用数形结合的思想,找出所求问题需要的条件.15.如图,直线a与b相交于点O,MO⊥直线a,垂足为O,若∠2=35°,则∠1的度数为()A.75°B.65°C.60°D.55°【分析】根据对顶角和垂线的性质解答即可.【解答】解:∵∠2=35°,MO⊥直线a,∴∠1=90°﹣35°=55°.故选D.【点评】此题考查垂线的性质,关键是根据垂线的性质得出与∠1互余的度数.16.如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36°B.44°C.50°D.54°【分析】根据题意可以得到∠EOD的度数,由∠AOE=36°,∠AOE+∠EOD+∠BOD=180°,从而可以得到∠BOD的度数.【解答】解:∵EO⊥CD,∴∠EOD=90°,又∵∠AOE+∠EOD+∠BOD=180°,∠AOE=36°,∴∠BOD=54°,【点评】本题考查垂线、平角,解题的关键是明确题意,找出所求问题需要的条件.17.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A.155°B.145°C.135° D.125°【分析】由对顶角相等可求得∠BOD,根据垂直可求得∠EOB,再利用角的和差可求得答案.【解答】解:∵∠AOC=35°,∴∠BOD=35°,∵EO⊥AB,∴∠EOB=90°,∴∠EOD=∠EOB+∠BOD=90°+35°=125°,故选D.【点评】本题主要考查对项角相等和垂直的定义,掌握对顶角相等是解题的关键,注意由垂直可得到角为90°.18.下列语句中,正确的是()A.相等的角一定是对顶角B.垂线最短C.过一点有且只有一条直线与已知直线垂直D.有一个公共顶点,且两边互为反向延长线的两个角是对顶角【分析】分别利用垂线以及对顶角的定义分别分析得出答案.【解答】解:A、相等的角一定是对顶角,错误;B、垂线短最短,故此选项错误;C、在平面内,过一点有且只有一条直线与已知直线垂直,故此选项错误;D、有一个公共顶点,且两边互为反向延长线的两个角是对顶角,正确.故选:D.【点评】此题主要考查了垂线和对顶角的定义,正确把握定义是解题关键.19.在如图所示的条件中,可以判断两条直线互相垂直的是()A.①②B.①③C.②③D.①②③【分析】根据垂线的定义,可得答案.【解答】解:①两直线相交所成的四个角都是直角,②两条直线相交,对顶角互补,③两直线相交所成的四个角都相等,故选:D.【点评】本题考查了垂线,利用了垂线的定义.20.如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠BOD=70°,则∠CON的度数为()A.35°B.45°C.55°D.65°【分析】直接利用垂线的定义结合角平分线的定义得出答案.【解答】解:∵∠BOD=∠AOC=70°,射线OM平分∠AOC,∴∠AOM=∠MOC=35°,∵ON⊥OM,∴∠COM=90°﹣35°=55°.故选:C.【点评】此题主要考查了垂线以及角平分线的定义,正确得出∠AOM的度数是解题关键.二.填空题(共20小题)21.如图直线AB、CD相交于点O,OE⊥AB于O,∠AOC=55°,则∠DOE=35°.【分析】根据对顶角相等的性质求出∠BOD的度数,再利用余角的和等于90°求解即可.【解答】解:∵∠AOC=55°,∴∠BOD=∠AOC=55°,∵OE⊥AB于O,∴∠GOE=90°﹣55°=35°.故答案为:35°.【点评】本题考查了对顶角相等的性质以及余角的和等于90°的性质,需要熟练掌握.22.如图,CD⊥AB,垂足为C,EF过点C,若∠1=130°,则∠2=40°.【分析】首先利用互补关系求出∠BCE,再由CD⊥AB得出∠BCD=90°,即∠BCE+∠2=90°,从而求得∠2.【解答】解:由已知得:∠BCE=180°﹣∠1=180°﹣130°=50°,∵CD⊥AB,∴∠BCE+∠2=90°,∴∠2=90°﹣∠BCE=90°﹣50°=40°,故答案为:40°.【点评】本题考查了垂直的定义和补角定义,要注意领会由垂直得直角和互补角的关系.23.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=32°,则∠AOC=58°.【分析】由OE⊥AB,∠EOD=32°,利用互余关系求∠BOD,再利用对顶角相等求∠AOC.【解答】解:∵OE⊥AB,∠EOD=32°,∴∠BOD=90°﹣∠EOD=90°﹣32°=58°,∵∠BOD与∠AOC是对顶角,∴∠BOD=∠AOC=58°.故答案为:58°.【点评】此题考查的知识点是垂线,关键是利用垂直的定义及对顶角相等求解.24.过一点有且只有一条直线与已知直线垂直,作一条线段或射线的垂线就是作它们的所在直线的垂线.【分析】根据垂线的定义,可得答案.【解答】解:过一点有且只有一条直线与已知直线垂直,作一条线段或射线的垂线就是作它们的所在直线的垂线.故答案为:所在直线的.【点评】本题考查了垂线,注意作一条线段或射线的垂线就是作它们的所在直线的垂线.25.如图,∠ABD=90°,直线AC⊥直线BD,垂足为B,过D点有且只有1条直线DB与直线AC垂直.【分析】根据当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足,过一点有且只有一条直线与已知直线垂直解答.【解答】解:根据垂线的性质可知,直线AC⊥直线BD,垂足为B,过D点有且只有1条直线DB与直线AC垂直.依次填:AC,BD,B,1,DB.【点评】此题主要考查了垂线的定义及过一点有且只有一条直线与已知直线垂直的性质.26.如图,已知FE⊥AB于E,CD是过E的直线,且∠AEC=120°,则∠DEF=30度.【分析】本题利用邻补角的数量关系、互余关系,将已知角与所求角联系起来求解.【解答】解:∵∠AED与∠AEC是邻补角,∠AEC=120°,∴∠AED=180°﹣120°=60°,∵FE⊥AB,∴∠AEF=90°,∴∠DEF=90°﹣∠AED=30°.【点评】本题主要考查了邻补角的性质,以及垂直的定义.27.如图,已知直线AB、CD交于点E,EF⊥CD,∠AEF=50°,那么∠BED=40°.【分析】根据垂直的定义可得∠CEF=90°,然后求出∠AEC,再根据对顶角相等解答.【解答】解:∵EF⊥CD,∴∠CEF=90°,∴∠AEC=∠CEF﹣∠AEF=90°﹣50°=40°,∴∠BED=∠AEC=40°.故答案为:40.【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题,准确识图是解题的关键.28.如图,已知AB⊥CD垂足为O,EF经过点O.如果∠1=40°,则∠2=50°.【分析】根据垂直的定义可得∠BOC=90°,然后求出∠3,再根据对顶角相等可得∠2=∠3.【解答】解:∵AB⊥CD,∴∠BOC=90°,∴∠3=∠BOC﹣∠1=90°﹣40°=50°,∴∠2=∠3=50°.故答案为:50.【点评】本题考查了垂线的定义,对顶角相等的性质,熟记概念和性质并准确识图是解题的关键.29.如图,直线AB与CD相交于E点,EF⊥AB,垂足为E,∠1=110°,则∠2= 20度.【分析】根据对顶角相等求出∠EOD,继而得出∠2,由∠BOE=∠BOD+∠EOD,计算∠BOE即可.【解答】解:∵∠AED与∠1互为对顶角,∴∠AED=∠1=110°,又∵AB⊥EF,∴∠AEF=90°,∴∠2=110°﹣∠AEF=20°,故答案为:20.【点评】本题考查了垂线的定义,用到的知识点为:对顶角相等,垂线产生直角.30.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC=52度,∠COB=128度.【分析】由已知条件和观察图形可知∠EOD与∠DOB互余,∠DOB与∠AOC是对顶角,∠COB与∠AOC互补,利用这些关系可解此题.【解答】解:∵OE⊥AB,∴∠EOB=90°,又∠EOD=38°,∴∠DOB=90°﹣38°=52°,∵∠AOC=∠DOB,∴∠AOC=52°,∵∠COB与∠AOC互补,∴∠COB=180°﹣52°=128°.故答案为:52;128.【点评】本题利用垂直的定义,对顶角和互补的性质计算,要注意领会由垂直得直角这一要点.31.直线AB与直线CD相交于点O,∠BOC:∠BOD=2:7,射线OE⊥CD,则∠BOE的度数为50°.【分析】首先根据叙述作出图形,根据条件求得∠COB的度数,然后根据∠BOE=∠COE﹣∠COE即可求解.【解答】解:∵∠BOC=×180°=40°,又∵OE⊥CD,∴∠COE=90°,∴∠BOE=90°﹣40°=50°.故答案是:50°.【点评】本题考查了角度的计算,理解垂直的定理,根据条件正确作出图形是关键.32.若a∥b,c⊥a,则c与b的位置关系是垂直或异面.【分析】由于没有说明a,b,c在空间内的位置关系,因而需要分两种情况:在同一平面内,不在同一平面内,分别讨论.【解答】解:根据a,b,c在空间内的位置关系可知:1、当三条直线在同一平面内,根据两直线平行,一条直线与这两条中的一条垂直,则与另一条直线也垂直,故c与b的位置关系是:垂直;2、当三条直线不在同一平面内,c与b的位置关系是:异面.填:垂直或异面.【点评】由于没有说明a,b,c在空间内的关系,要注意分类讨论.33.如图,直线AB、CD相交于点O,OE⊥CD,若∠1=60°,则∠2=30°.【分析】根据垂线的定义,可得∠DOE的度数,根据余角的定义,可得∠BOD,根据对顶角的性质,可得答案.【解答】解:由OE⊥CD,得∠DOE=90°.由余角的定义,得∠BOD=90°﹣∠1=90°﹣60°=30°,由对顶角相等,得∠2=∠BOD=30°,故答案为:30°.【点评】本题考查了垂线,利用了垂线的定义,余角的定义,对顶角的性质.34.如图,直线AB、CD相交于点O,OE⊥AB,∠AOC=40°,那么∠EOD的大小是50°..【分析】依据垂线的定义可求得∠EOB=90°,然后依据对顶角的性质可求得∠BOD 的度数,最后依据∠EOD=∠EOB﹣∠DOB求解即可.【解答】解:∵OE⊥AB,∴∠EOB=90°.∵∠DOB=∠AOC=40°,∴∠EOD=∠EOB﹣∠DOB=90°﹣40°=50°.故答案为:50°.【点评】本题主要考查的是对顶角的性质和垂线的定义,掌握对顶角的性质和垂线的定义是解题的关键.35.已知:如图,CD⊥AB于D,∠1=30°,则∠FDB=60°,∠BDE=120°.【分析】由垂线的定义可知∠CDB=90°,从而可求得∠FDB=60°,然后根据∠FDB+∠BDE=180°可求得∠BDE=120°.【解答】解:∵CD⊥AB于D,∴∠CDB=90°.∴∠FDB=90°﹣30°=60°.∵∠FDB+∠BDE=180°,∴∠BDE=180°﹣60°=120°.故答案为:60°;120°.【点评】本题主要考查的是垂线的定义、邻补角的性质,掌握垂线的定义和邻补角的性质是解题的关键.36.如图,点O是直线AB上一点,OC是一条射线,且∠AOC=32°,若过点O作射线OD,使OD⊥OC,则∠BOD的度数为58°或122°.【分析】根据垂线定义可得∠COD=90°,然后再由条件∠AOC=32°可得∠AOD的度数.【解答】解:∵OD⊥OC,∴∠COD=90°,∵∠AOC=32°,∴∠AOD=90°﹣32°=58°,或∠AOD=32°+90°=122°,故答案为:58°或122°.【点评】此题主要考查了垂线定义,关键是正确画出图形,分类讨论.37.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=35°时,∠BOD的度数为55°或125°.【分析】此题可分两种情况,即OC,OD在AB的一边时和在AB的两边,分别求解.【解答】解:①当OC、OD在AB的一旁时,∵OC⊥OD,∴∠COD=90°,∵∠AOC=35°,∴∠BOD=180°﹣∠COD﹣∠AOC=55°;②当OC、OD在AB的两旁时,∵OC⊥OD,∠AOC=35°,∴∠AOD=55°,∴∠BOD=180°﹣∠AOD=125°.故答案为:55°或125°.【点评】此题主要考查了直角、平角的定义,注意分两种情况分析,理清图中的角之间的关系.38.如图,已知直线a,b,c相交于点O,且a⊥c,垂足为O,若∠1=50°,则∠2的度数为140°.【分析】先根据对顶角相等得出∠3的度数,进而可得出结论.【解答】解:∵a⊥c,垂足为O,∠1=50°,∴∠3=∠1=50°,∴∠2=90°+50°=140°.故答案为:140°.【点评】本题考查的是垂线,熟知垂直的定义是解答此题的关键.39.直线AB与射线OC相交于点O,OC⊥OD于O,若∠AOC=60°,则∠BOD=30或150度.【分析】根据题意画出图形,由OC⊥OD,∠AOC=60°,利用垂直的定义易得∠AOD,再利用补角的定义可得结果.【解答】解:根据题意画图如下,情况一:如图1,∵OC⊥OD,∠AOC=60°,∴∠AOD=∠COD﹣∠AOC=90﹣60°=30°,∴∠COD=180°﹣∠AOD=180°﹣30°=150°;情况二:如图2,∵OC⊥OD,∠AOC=60°,∴∠AOD=∠COD+∠AOC=90°+60°=150°,∴∠COD=180°﹣∠AOD=180°﹣150°=30°,故答案为:150或30.【点评】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.40.如图,直线AB、CD相交于点O,OM⊥AB于点O,若∠MOD=43°,则∠COB= 133度.【分析】根据垂直定义可得∠AOM的度数,然后再根据角的和差关系可得∠AOD,再利用对顶角相等可得答案.【解答】解:∵OM⊥AB,∴∠AOM=90°,∵∠MOD=43°,∴∠AOD=90°+43°=133°,∴∠COB=133°,故答案为:133.【点评】此题主要考查了垂线,关键是掌握当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,掌握对顶角相等.三.解答题(共10小题)41.如图,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.【分析】首先根据垂直定义可得∠AOB=90°,再由∠AON=120°可得∠BON,再根据角平分线的性质可得∠MOB=∠NOB,进而得到答案.【解答】解:∵OA⊥OB,∴∠AOB=90°,∵∠AON=120°,∴∠BON=120°﹣90°=30°,∵OB平分∠MON,∴∠MOB=∠NOB=30°,∴∠AOM=90°﹣30°=60°.【点评】此题主要考查了垂线、角平分线的定义,关键是理清图中角的和差关系.42.如图,直线AB⊥CD于点O,直线EF经过点O,∠1=35°.求∠2、∠3及∠EOB的度数.【分析】根据对顶角相等可得∠3=∠1=35°,根据邻补角互补可得∠EOB=145°,再由垂直可得∠BOC=90°,根据∠2=90°﹣∠1即可算出度数.【解答】解:∵∠1=35°,∴∠3=35°(对顶角相等),∠EOB=180°﹣35°=145°,∵AB⊥CD,∴∠BOC=90°,∴∠2=90°﹣∠1=90°﹣35°=55°.【点评】此题主要考查了对顶角,邻补角,以及垂直的定义,题目比较简单,要注意领会由垂直得直角这一要点.43.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=25°,求∠COE、∠AOE、∠AOG的度数.【分析】先根据对顶角的性质求出∠COE的度数,再由垂线及定义得出∠AOE的度数,最后根据角平分线的定义求出∠AOG的度数.【解答】解:∵∠FOD=∠COE(对顶角相等),∠FOD=25°,∴∠COE=25°.∵AB⊥CD,∴∠AOC=90°(垂直定义),∴∠COE+∠AOC=115°,即∠AOE=115°.∵OG平分∠AOE,∴∠AOG=∠AOE(角平分线定义),即∠AOG=55.5°.【点评】本题考查的是对顶角的性质,垂线及角平分线的定义,熟知角平分线的定义是解答此题的关键.44.如图,O是直线AB上一点,OD是∠AOC的平分线,OE⊥OD.OE是∠BOC 的平分线吗?为什么?【分析】OE是∠BOC的平分线.由于∠AOB是平角,OD是∠AOC的平分线,∠DOE=90°,易求∠COE+∠AOC=∠BOE+∠AOD,即∠COE=∠BOE.【解答】解:OE是∠BOC的平分线,理由如下:∵OD是∠AOC的平分线,OE⊥OD,∴∠AOD=∠COD,∠DOE=90°,∴∠AOD+∠BOE=90°,∴∠COE+∠AOC=∠BOE+∠AOD,即∠COE=∠BOE.∴OE是∠BOC的平分线.【点评】本题考查了角的计算.解题的关键是理解角平分线的定义.45.已知:如图所示,∠1=∠2,∠3=∠4,GF⊥AB于G点,那么CD与AB是否互相垂直?试判断并说明理由.【分析】首先由GF⊥AB可得∠2+∠4=90°,又因为∠1=∠2,∠3=∠4,得到∠1+∠3=90°,由此即可得到CD与AB的位置关系.【解答】解:相互垂直.理由:∵GF⊥AB,∴∠2+∠4=90°,而∠1=∠2,∠3=∠4,∴∠1+∠3=90°,∴CD⊥AB.【点评】此题主要考查了垂直的性质与判定,并运用了等角的代换.46.如图,AB⊥CD,垂足为O,EF经过点O,∠1=29°.求∠2和∠3的度数.【分析】根据∠1与∠2是对顶角;∠2与∠3互为余角,即可解答.【解答】解:如图,由题意得:∠2=∠1=29°(对顶角相等),∵AB⊥CD(已知),∴∠BOD=90°(垂直的定义),∴∠3+∠2=90°,即29°+∠3=90°,∴∠3=61°.【点评】本题考查了垂线,对顶角、邻补角,解决本题的关键是由垂直得直角.47.如图,直线AB、CD、EF都经过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度数.【分析】根据对顶角相等得到∠DOF=∠COE,又∠BOF=∠BOD+∠DOF,代入数据计算即可.【解答】解:如图,∵∠COE=35°,∴∠DOF=∠COE=35°,∵AB⊥CD,∴∠BOD=90°,∴∠BOF=∠BOD+∠DOF,=90°+35°=125°.【点评】本题主要利用对顶角相等的性质及垂线的定义求解,准确识别图形也是解题的关键之一.48.如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD的直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=25°,求∠AOB的度数.(2)若OA平分∠BOE,则∠DOF的度数是30°.(直接写出答案)【分析】(1)利用角平分线的定义可得∠DOC=50°,由垂直的定义可得∠BOD=90°,易得∠BOC=40°,因为OA⊥OC,可得结果;(2)利用垂直的定义易得∠BOC+∠COD=90°,∠AOB+∠BOC=90°,可得∠COD=∠AOB,设∠DOF=∠COF=x,利用平分线的定义可得∠AOE=∠AOB=∠COD=2x,∠BOC=90°﹣2x,由平角的定义可得5x+90°﹣2x=180°,解得x,即得结果.【解答】解:(1)∵∠DOF=25°,OF平分∠COD,∴∠DOC=50°,∵OB⊥OD,∴∠BOC=90°﹣50°=40°,∵OA⊥OC,∴∠AOB=90°﹣∠BOC=50°;(2)∵∠BOC+∠COD=90°,∠AOB+∠BOC=90°,∴∠COD=∠AOB,设∠DOF=∠COF=x,∵OA平分∠BOE,∴∠AOE=∠AOB=∠COD=2x,∠BOC=90°﹣2x,。

人教版 七年级数学下册 5.1.2 垂线(一) 精品课时作业习题(含解析)

人教版 七年级数学下册 5.1.2 垂线(一) 精品课时作业习题(含解析)

作业2 §5.1.2 垂线(一)典型例题【例1】 ①两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直;②两条直线相交,若有一组对顶角互补,则这条直线互相垂直;③两条直线相交,若所成的四个角相等,则这两条直线垂直;④两条直线相交,若有一组邻补角相等,则这两条直线垂直.其中说法正确的有( )A.1个B.2个C. 3个D. 4个【解析】 题中的4个说法,都是关于两条直线垂直的判定问题.根据垂直定义,只要推出两条直线相交所成的四个角中有一个角是直角,就可以判断两条直线互相垂直.①是垂直的定义,所以正确;②有一组对顶角互补,因为对顶角相等,所以这两个角都是90°,所以正确;③两条直线相交,所成的四个角相等,都是90°,所以正确;④有一组邻补角相等,而邻补是互补的,所以这两个角都是90°,所以正确.【答案】 D【例2】 如图5-16,过点A 、B 分别画OB 、OA 的垂线.图5-16 图5-17【解析】 画线段或射线的垂线,就是画这条线段或射线所在直线的垂线,本例中的垂足分别在OB 的反向延长线上和OA 的延长线上.【答案】如图5-17所示,直线AE 为过点A 与OB 垂直的直线,垂足为E;直线BD 为过点B 与OA 垂直的直线,垂足为D.【例3】 如图5-18,点O 为直线AB 上一点,OC 为一射线,OE 平分∠AOC ,OF 平分∠BOC(1)若∠BOC=50°,试探究OE 、OF 的位置关系;(2)若∠BOC=α(0°<x <180°),(1)中OE 、OF 的位置关系是否仍成立?请说明理由,由此你发现了什么规律?图5-18【解析】 要探究OE 、OF 的位置关系,可先用三角尺或量角器检测∠EOF 的大小来判断OE 、OF 的关系,再通过计算加以说明;第(2)问用代数代表示∠EOF ,再归纳出结论.【答案】 (1)由量角器测得∠EOF=90°,因此OE ⊥OF.由邻补角的定义,可得∠AOC=180°-∠BOC=130°.由OE 平分∠AOC ,OF 平分∠BOC 可得∠COF=21∠BOC=25°, ∠COE=21∠AOC=65°. 所以∠EOF=∠COF+∠COE=90°.因此OE ⊥OF.(2)OE ⊥OF 仍成立.因为∠AOC=180°-α,∠COF=21α,∠COE=21(180°-α)=90°-21α. 所以∠EOF=∠COF+∠COE=21α+(90°-21α)=90°. 由此发现:无论∠BOC 度数是多少,∠EOF 总等于90°.即邻补角的平分线互相垂直.总分100分 时间40分钟 成绩评定___________一、填空题(每题5分,共50分)课前热身1.两条直线互相垂直时,所得的四个角中有__________个直角.答案:42.过一点________条直线与已知直线垂直.答案:有且只有课上作业3.如图5-19,OA ⊥OB 于O ,直线CD 经过点O ,∠AOD=35°,则∠BOC=________.答案:125°4.如图5-20,直线AB 与CD 相交于点O ,EO ⊥AB 于O ,则∠1与∠2的关系是________.图5-19 图5-20答案:互为余角5.如图5-21,O 是直线AB 上一点OC ⊥OD ,有以下两个结论:①∠AOC 与∠BOD 互为余角;②∠AOC 、∠COD 、∠BOD 互为邻补角.其中说法正确的是________(填序号).图5-21 图5-22答案:①6.如图5-22,已知OC ⊥AB ,OE ⊥OD ,则图中互余的角共有________对.答案:4课下作业7.如果CD ⊥AB 于D ,自CD 上任一点向AB 作垂线,那么所画垂线均与CD 重合,这是因为________. 答案:过一点有且只有一条直线与已知直线垂直8.如图5-23,直线AB 、CD 、EF 交于一点O ,CO ⊥EF 且∠GOB=30°,∠AOC=40°,则∠COE=________. 答案:20°9.从钝角∠AOB 的顶点O 引射线OC ⊥OA ,若∠ACO ∶∠COB=3∶1,则∠AOB=________.答案:120°10.如图5-24,直线AB 、CD 相交于O ,EO ⊥AB ,OB 平分∠DOF ,若∠EOC=115°,则∠BOF=________.∠COF=________.图5-23 图5-24答案:25°;130°二、选择题(每题5分,共10分)模拟在线11.(辽宁)如图5-25,∠PQR 等于138°,SQ ⊥QR ,TQ ⊥PQ 则∠SQT 等于( )A.42°B.64°C.48°D.24°图5-25答案:A12.(四川)如图5-26所示,AB 、CD 相交于点O ,OE ⊥AB ,那么下列结论错误的是( )A.∠AOC 与∠COE 互为余角E.∠BOD 与∠COE 互为余角C.∠COE 与∠BOE 互为补角D.∠AOC 与∠BOD 是对顶角图5-26答案:C三、解答题(每题20分,共40分)13.OC 把∠AOB 分成两部分且有下列两个等式成立:①∠AOC=31直角+31∠BOC ;②∠BOC=31平角-21∠AOC ,问∶ (1)OA 与OB 的位置关系怎样?(2)OC 是否为∠AOB 的平分线?并写出判断的理由.答案:(1)OA ⊥OB (2)O(C 为∠AOB 的平分线,因为∠BOC=∠AOC=45°.14.如图5-27,已知AB 、C D 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线.图5-27(1)若∠AOC∶∠COG=4∶7,求∠DOF的大小;(2)若∠AOC∶∠DOH=8∶29,求∠COH的大小.答案:(1)∠DOF=110°(2)∠COH=107.5°。

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(5)

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(5)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是( )A.线段AC的长度是点A到BC的距离B.CD与AB互相垂直C.AC与BC互相垂直D.点B到AC的垂线段是线段CA2.我们在运动会时测量跳远的成绩,实际上是要得到( )A.两点之间的距离B.点到直线的距离C.两条直线之间的距离D.空中飞行的距离3.下列语句正确的是()A.过一点有且只有一条直线与已知直线平行B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两条直线相交,交点叫做垂足D.过直线上一点只能作一条直线和这条直线相交4.有下列说法:①两条直线相交成四个角,如果两个角相等,那么这两条直线垂直;②两条直线相交成四个角,如果三个角相等,那么这两条直线垂直;③在同一平面内,过直线上一点可以作无数条直线与已知直线垂直;④直线外一点到这条的垂线段,叫做点到直线的距离.其中正确的说法有()A.0个 B.1个 C.2个 D.3个5.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.三角形两边之和大于第三边6.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°7.同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥b B.b⊥d C.a⊥d D.b∥c8.如图,已知直线AB,CD,EF相交于点O,OG⊥AB,∠COE=32°,∠FOG=29°,则∠AOC 的度数是( )A.19°B.29°C.32°D.39°9.如图,直线 AD,BE 相交于点 O,CO⊥AD 于点 O,OF 平分∠BOC.若∠AOB=32°,则∠AOF 的度数为A.29°B.30°C.31°D.32°二、填空题1.如图,AC⊥BC,CD⊥AB于点D,图中共有________个直角,图中线段________的长表示点C到AB的距离,线段________的长表示点A到BC的距离.2.如图,直线AB、CD相交于点O,OE丄AB于O,∠DOE=35°,则∠AOC=______.3.如图,直线AB、CD相交于点O,OE平分∠AOD,OF⊥OC,∠1与∠3的度数之比为3:4,则∠EOC=___________,∠2=_________.4.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=_____°.5.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是_______________________三、解答题1.读下列语句,并画出图形.点P是直线AB外一点,直线CD经过点P,且与直线AB平行,直线EF也经过点P且与直线AB垂直.2.如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE.(2)过点P画CD的垂线,与AB相交于F点.(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?3.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.4.如图,直线AB,CD相交于点O.OF平分∠AOE,OF⊥CD于点O.(1)请直接写出图中所有与∠AOC相等的角:______.(2)若∠AOD=150°,求∠AOE的度数.5.已知直线CD⊥AB于点O,∠EOF=90°,射线OP平分∠COF.(1)如图1,∠EOF在直线CD的右侧:①若∠COE=30°,求∠BOF和∠POE的度数;②请判断∠POE与∠BOP之间存在怎样的数量关系?并说明理由.(2)如图2,∠EOF在直线CD的左侧,且点E在点F的下方:①请直接写出∠POE与∠BOP之间的数量关系;②请直接写出∠POE与∠DOP之间的数量关系.参考答案一、单选题1.D解析:根据垂线的定义可做出判断.详解:A. ∵∠ACB=90°,故线段AC的长度是点A到BC的距离,正确;B. 由CD⊥AB 知CD与AB互相垂直,正确;C. 由∠ACB=90°知AC与BC互相垂直,正确D. 点B到AC的垂线段应该是线段CB,故错误;选D.点睛:此题主要考察垂线的定义.2.B解析:跳远时,测量的是跳远者落地时脚后跟与起跳时直线之间的距离,测量是把脚后跟当做一个点处理,即是求点与直线之间的距离.故选B.3.B解析:试题A、过一点须指明过直线外一点,错误;B、在同一平面内,过一点有且只有一条直线与已知直线垂直,是垂线的性质,正确;C、只有垂直相交,交点才叫垂足,错误;D、过直线上一点与已知直线相交的直线有无数条,错误.故选B.4.B解析:试题①两条直线相交成四个角,如果有一对对顶角相等且均不为90°,那么这两条直线不垂直,故①错误;②两条直线相交成四个角,则这四个角中有2对对顶角.如果三个角相等,则这四个角相等,都是直角,所以这两条直线垂直.故②正确;③在同一平面内,过直线上一点只有一条直线与已知直线垂直.故③错误;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.故④错误;综上所述,正确的说法是1个.故选B.5.B分析:根据垂线段的定义判断即可.详解:解:直线外一点与直线上各点连接的所有线段中,垂线段最短,选:B.点睛:直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.6.C分析:根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.详解:A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C.点睛:本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.7.C解析:根据同一平面内,垂直于同一条直线的两条直线平行,可证a∥c,再结合c⊥d,可证a⊥d.详解:∵a⊥b,b⊥c,∴a∥c,∵c⊥d,∴a⊥d.故选C.点睛:此题考查垂线,难度不大8.B解析:先根据垂直的定义得出∠BOG=90°,那么∠BOF=61°,由对顶角相等求出∠AOE=∠BOF=61°,进而求出∠AOC=61°-32°=29°.详解:解:∵OG⊥AB,∴∠BOG=90°,∵∠FOG=29°,∴∠BOF=∠BOG-∠FOG=90°-29°=61°,∴∠AOE=∠BOF=61°,∵∠COE=32°,∴∠AOC=∠AOE-∠COE=61°-32°=29°.故选B.点睛:本题考查垂直的定义,对顶角的性质;弄清各个角之间的关系是解题关键.9.A分析:由CO⊥AD于点 O,得∠AOC=90︒,由已知∠AOB=32︒可求出∠BOC的度数,利用OF 平分∠BOC可得∠BOF=1BOC2∠,即可得∠AOF 的度数.详解:∵CO⊥AD 于点 O,∴∠AOC=90︒,∵∠AOB=32︒,∴∠BOC=122︒,∵OF 平分∠BOC,∴∠BOF=1BOC612∠=︒,∴∠AOF=∠BOF-∠AOB=61︒-3229︒=︒.故选A.点睛:本题考查垂线,角平分线的定义.二、填空题1.3, CD, AC解析:分析:运用垂直的定义和点到直线的距离,结合图形作答.详解:∵AC⊥BC,CD⊥AB,∴∠ACB=∠ADC=∠BDC=90°,即图中共有3个直角.图中线段CD的长表示点C到AB的距离,线段AC的长表示点A到BC的距离.故空中应填:3,CD,AC.点睛:点到直线的距离是过直线外一点作直线的垂线,垂线段的长度.2.o详解:解:∵OE丄AB于O,∴∠BOE=∠BOD+∠DOE=90°又∵∠DOE=35°,∴∠BOD=90°-35°=55°,又∵∠AOC=∠BOD,∴∠AOC=55°故答案为:55°.3.153° 54°分析:由垂线的定义和角平分线的定义即可得出结果.详解:∵OF⊥OC,∴∠DOF=∠COF=90°.∵OE平分∠AOD,∴∠AOD=2∠1.∵∠1与∠3的度数之比为3:4,∴∠AOD:∠3=3:2.∵∠3+∠AOD=90°,∴∠3=36°,∠AOD=54°,∴∠2=∠AOD=54°,∠112=∠AOD=27°,∴∠EOC=180°-∠1=180°-27°=153°.故答案为153°,54°.点睛:本题考查了垂线,角平分线定义,对顶角的性质,正确的识别图形是解题的关键.4.42°分析:根据对顶角相等可得∠COB=132°,再根据垂直定义可得∠EOB=90°,再利用角的和差关系可得答案.详解:∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°-90°=42°,故答案为42°.点睛:本题考查了垂线, 对顶角、邻补角的定义,熟练掌握这些定义是本题解题的关键.5.同一平面内,过一点有且只有一条直线与已知直线垂直.解析:根据同一平面内,过一点有且只有一条直线与已知直线垂直进而得出答案.详解:解:∵OA⊥l,OB⊥l,垂足为O,∴OA与OB重合(同一平面内,过一点有且只有一条直线与已知直线垂直).故答案为同一平面内,过一点有且只有一条直线与已知直线垂直.点睛:本题主要考查了垂线的性质,正确把握定义是解题关键.三、解答题1.如图所示见解析.解析:先画直线AB和点P,过P作AB的平行线CD,过P作直线EF⊥AB,即可得出答案.详解:解:如图所示:.点睛:本题考查了画垂线,主要考查学生的理解能力和动手操作能力,用了数形结合思想.2.(1)见解析;(2)见解析;(3)PE<PO<FO,其依据是“垂线段最短”分析:前两问尺规作图见详解,第(3)问中利用垂线段最短即可解题.详解:(1)(2)如图所示.(3)在直角△FPO中,PO<FO,在直角△PEO中,PE<PO,∴PE<PO<FO,其依据是“垂线段最短”.点睛:本题考查了尺规作图和垂线段的性质,属于简单题,熟悉尺规作图的方法和步骤,垂线段的性质是解题关键.3.见解析解析:试题分析:从落地点作沙坑一边的垂线,测量落地点与踏跳板间的距离即为跳远成绩.试题如图所示,红线的长度即为该同学的跳远成绩.点睛:本题考查了垂线的应用,根据体育常识,跳远时只要不越过踏跳板起跳,测量成绩时从踏跳板开始测量,越过踏跳板则成绩视为无效.4.(1)∠BOD,∠DOE;(2)∠AOE=120°.解析:(1)根据邻补角的定义确定出∠AOC和∠BOD,再根据角平分线的定义可得∠AOF=∠EOF,根据垂直的定义可得∠COF=∠DOF=90°,然后根据等角的余角相等求出∠DOE=∠AOC,从而最后得解;(2)根据垂直的定义得到∠DOF,根据角平分线的定义求出即可得到结论.详解:解:(1)∵直线AB,CD相交于点O,∴∠AOC=∠BOD,∵OF平分∠AOE,∴∠AOF=∠EOF,∵OF⊥CD,∴∠COF=∠DOF=90°,∴∠DOE=∠AOC,∴与∠AOD相等的角有∠BOD,∠DOE,故答案为:∠BOD,∠DOE.(2)∵OF⊥CD,∴∠DOF=90°,∵∠AOD=150°,∴∠AOF=60°,∵OF平分∠AOE,∴∠AOE=2∠AOF=120°.点睛:本题考查了垂线,余角和补角,对顶角相等的性质,角平分线的定义.5.(1)①∠BOF= 30°,∠POE=30°,②∠POE=∠BOP(2)①∠POE=∠BOP②∠POE+∠DOP =270°解析:(1)①根据余角的性质得到∠BOF=∠COE=30°,求得∠COF=90°+30°=120°,根据角平分线的定义即可得到结论;②根据垂线的性质和角平分线的定义即可得到结论;(2)①根据角平分线的定义得到∠COP=∠POF,求得∠POE=90°+∠POF,∠BOP=90°+∠COP,于是得到∠POE=∠BOP;②根据周角的定义即可得到结论.详解:(1)①∵CD⊥AB,∴∠COB=90°,∵∠EOF=90°,∴∠COE+∠BOE=∠BOE+∠BOF=90°,∴∠BOF=∠COE=30°,∴∠COF=90°+30°=120°,∵OP平分∠COF,∴∠COP=12∠COF=60°,∴∠POE=∠COP﹣∠COE=30°;②CD⊥AB,∴∠COB=90°,∵∠EOF=90°,∴∠COE+∠BOE=∠BOE+∠BOF=90°,∴∠BOF=∠COE,∵OP平分∠COF,∴∠COP=∠POF,∴∠POE=∠COP﹣∠COE,∠BOP=∠POF﹣∠BOF,∴∠POE=∠BOP;(2)①∵∠EOF=∠BOC=90°,∵PO平分∠COF,∴∠COP=∠POF,∴∠POE=90°+∠POF,∠BOP=90°+∠COP,∴∠POE=∠BOP;②∵∠POE=∠BOP,∠DOP+∠BOP=270°,∴∠POE+∠DOP=270°.点睛:本题考查了垂线,角平分线定义,角的和差,正确的识别图形是解题的关键.。

人教版初一数学7年级下册 第5章(相交线与平行线)垂线 课后练习(含解析)

人教版初一数学7年级下册 第5章(相交线与平行线)垂线 课后练习(含解析)

垂线课后练习一、选择题1.如图所示,下列说法不正确的是( )A. 线段BD是点B到AD的垂线段B. 线段AD是点D到BC的垂线段C. 点C到AB的垂线段是线段ACD. 点B到AC的垂线段是线段AB2.如图,把河AB中的水引到C,拟修水渠中最短的是( )A. CMB. CNC. CPD. CQ3.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=( )A. 10°B. 20°C. 30°D. 40°4.如图,直线AB、CD相交于点O,EO⊥CD.下列说法错误的是( )A. ∠AOD=∠BOCB. ∠AOE+∠BOD=90°C. ∠AOC=∠AOED. ∠AOD+∠BOD=180°5.点P为直线l外一点,点A,B在直线l上,若PA=5 cm,PB=7 cm,则点P到直线l的距离( )A. 等于5 cmB. 小于5 cmC. 不大于5 cmD. 等于6 cm6.如下图,在平面内过点P作已知直线m的垂线,可作垂线的条数有( )A. 0条B. 1条C. 2条D. 无数条7.如图,∠1=15°,AO⊥OC,点B,O,D在同一直线上,则∠2的度数为()A. 75°B. 15°C. 105°D. 165°8.点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=6 cm,则点P到直线m的距离()A. 等于5 cmB. 等于4 cmC. 小于4 cmD. 不大于4 cm9.如图,OA⊥OB,若∠1=55°,则∠2的度数是()A. 35°B. 40°C. 45°D. 60°10.下列各图中,过直线l外一点P画l的垂线CD,三角板操作正确的是()A. B.C. D.11.如图,射线OC⊥直线AB于点O,∠1=∠2,则图中互为余角的共有( )A. 2对B. 3对C. 4对D. 5对12.如图,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是( )A. 线段CA的长B. 线段CD的长C. 线段AD的长D. 线段AB的长二、填空题13.如图,直线AB、CD相交于点O,OE⊥AB,垂足为点O,∠COE:∠BOD=2:3,则∠AOD=______.14.如下图,∠AOE=30°,OB⊥OA,OE⊥直线CD于O点,∠BOD的度数为________,∠BOC的度数为________.15.如图,直线AB,CD相交于点O,OE⊥CD,垂足为O.若∠BOE=40°,则∠AOC的度数为.16.如图,A,B,C三点在一条直线上.若CD⊥CE,∠1=23°,则∠2的度数是.三、解答题17.如下图,直线AB与CD交于点O,OE在∠AOD内,∠AOE:∠COB=2:7,OD平分∠EOB.(1)求∠AOC的度数;(2)过点O作OF⊥OE,求∠BOF的度数.18.如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.19.如下图,直线AB,CD相交于点O,∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.答案和解析1.【答案】B【解答】解:A 、线段BD 是点B 到AD 的垂线段,故A 正确;B 、线段AD 是点A 到BC 的垂线段,故B 错误;C 、点C 到AB 的垂线段是线段AC ,故C 正确;D 、点B 到AC 的垂线段是线段AB ,故D 正确;2.【答案】C【解析】解:如图,CP ⊥AB ,垂足为P ,在P 处开水渠,则水渠最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.3.【答案】B【解析】解:∵∠FEA =40°,GE ⊥EF ,∴∠CEF =180°−∠FEA =180°−40°=140°,∠CEG =180°−∠AEF−∠GEF =180°−40°−90°=50°,∵射线EB 平分∠CEF ,∴∠CEB =12∠CEF =12×140°=70°,∴∠GEB =∠CEB−∠CEG =70°−50°=20°,4.【答案】C【解答】解:A 、∠AOD 与∠BOC 是对顶角,所以∠AOD =∠BOC ,此选项正确;B 、由EO ⊥CD 知∠DOE =90°,所以∠AOE +∠BOD =90°,此选项正确;C 、由已知条件,不能得到∠AOC 与∠AOE 相等,此选项错误;D 、∠AOD 与∠BOD 是邻补角,所以∠AOD +∠BOD =180°,此选项正确.5.【答案】C【解答】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∵PA <PB ,∴点P 到直线l 的距离≤PA ,即点P 到直线l 的距离不大于5cm .6.【答案】B【解答】解:在平面内,过一点画已知直线的垂线,可画垂线的条数是1.故选B.7.【答案】C8.【答案】D9.【答案】A【解答】解:∵OA⊥OB,∴∠AOB=90°,即∠2+∠1=90°,又∠1=55°,∴∠2=35°,10.【答案】D11.【答案】C12.【答案】B13.【答案】126°【解析】解:∵OE⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠COE:∠BOD=2:3,∴∠BOD=54°,∴∠AOD=126°.14.【答案】30°;150°【解析】解:由OB⊥OA,OE⊥CD得:∠AOE+∠BDE=90°,∠BOD+∠BOE=90°,∴∠BOD=∠AOE=30°;∵CD是直线,即∠COD=180°,∴∠BOC=180°−∠BOD,即∠BOC=180°−30°=150°15.【答案】50°16.【答案】67°【解答】解:∵CD⊥CE,∴∠ECD=90°,∵∠ACB=180°,∴∠2+∠1=90°,∵∠1=23°,∴∠2=90°−23°=67°,故答案为67°.17.【答案】解:(1)设∠AOE=2x,则∠AOD=∠BOC=7x,∴∠DOE=5x.∵OD平分∠EOB,∴∠DOB=∠DOE=5x,∠AOB=2x+5x+5x=180°,∴x=15°,∴∠AOC=∠DOB=5x=75°;(2)当OF在直线OE的下方时,如图所示:∵OF⊥OE,∴∠EOF=90°,∵∠AOE=2x=30°,∴∠AOF=∠EOF−∠AOE=90°−30°=60°,∠BOF=180°−∠AOF=120°;当OF在直线OE的上方时,如图所示:∵OF ⊥OE ,∴∠EOF =90°,∵∠EOB =10x =150°,∴∠BOF =∠EOB−∠EOF =150°−90°=60°.故∠BOF =120°或60°.18.【答案】解:(1)∵∠AOC :∠AOD =7:11,∠AOC +∠AOD =180°,∴∠AOC =718×180°=70°,∴∠DOB =∠AOC =70°,又∵OE 平分∠BOD ,∴∠DOE =12∠DOB =12×70°=35°,∴∠COE =180°−∠DOE =180°−35°=145°,(2)∵OF ⊥OE ,∴∠EOF =90°,∴∠FOD =90°−∠DOE =90°−35°=55°,∴∠COF =180°−∠FOD =180°−55°=125°.19.【答案】解:(1)OF 与OD 的位置关系:互相垂直;理由:∵OF 平分∠AOE ,∴∠AOF =∠FOE ,∵∠DOE =∠BOD ,∴∠AOF +∠BOD =∠FOE +∠DOE =12×180°=90°,∴OF 与OD 的位置关系:互相垂直;(2)∵∠AOC :∠AOD =1:5,∴∠AOC =16×180°=30°,∴∠EOD =∠BOD =∠AOC =30°,∴∠AOE =120°,∴∠EOF =12∠AOE =60°.。

人教版数学七年级下册垂线同步练习题含答案

人教版数学七年级下册垂线同步练习题含答案

人教版数学七年级下册垂线同步练习题学校:___________姓名:___________班级:___________一、单选题1.如图,AB ⊥CD ,垂足为O ,EF 是过点O 的一条直线,已知⊥1=40°,则⊥2=( )A .40°B .45°C .50°D .60°2.入射光线和平面镜的夹角为40︒,转动平面镜,使入射角减小10︒,反射光线与入射光线的夹角和原来相比较将( ) A .减小40︒B .减小10︒C .减小20︒D .不变3.如图所示,已知:,1:23:2CD AB ⊥∠∠=,则FDC ∠=( )A .120︒B .126︒C .135︒D .144︒4.过一条线段外一点,作这条线段的垂线,垂足在( ) A .这条线段上 B .这条线段的端点处 C .这条线段的延长线上D .以上都有可能5.数学课上,同学们在练习过点B 作线段AC 所在直线的垂线段,正确的是( )A .AB .BC .CD .D6.如图,O 是直线AD 上一点,射线,OC OE 分别平分,AOB BOD ∠∠,则COE ∠的大小为( )A.120°B.60°C.90°D.150°7.如图,AB⊥AC于A,AD⊥BC于D,DE⊥AC于E,下列说法错误的是()A.点A到BC的距离是AD的长度B.点B到AD的距离是BD的长度C.点C到AD的距离是DE的长度D.点B到AC的距离是AB的长度DE=,点F是射线OB上的任意一点,8.如图,OD平分AOB∠,DE AO⊥于点E,5则DF的长度不可能是()A.4B.5C.6D.79.如图,△ABC中,CD是AB边上的高,CM是AB边上的中线,点C到边AB所在直线的距离是()A.线段CA的长度B.线段CM的长度C.线段CD的长度D.线段CB的长度10.如图,在直角三角形ABC中,⊥BAC=90°,AD⊥BC于点D,则下列说法错误的是()A .线段AC 的长度表示点C 到AB 的距离 B .线段AD 的长度表示点A 到BC 的距离 C .线段CD 的长度表示点C 到AD 的距离 D .线段BD 的长度表示点A 到BD 的距离 11.下列命题是真命题的是( )A .过一点有且只有一条直线与已知直线垂直B .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C .互相垂直的两条线段一定相交D .直线外一点与直线上各点连接的所有线段中,垂线段最短12.平面直角坐标系中,点()1,2A -,()2,1B ,经过点A 的直线a x ∥轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( ). A .()1,1- B .()1,2-C .()2,1D .()2,2二、填空题13.如图,当直线AB 与CD 相交于O 点,⊥AOD =______时,那么AB 与CD 垂直,记作:AB ______CD . 符号语言:因为⊥AOD =90°(已知) , 所以AB ⊥CD ( ) .14.如图,直线AB 和CD 交于O 点,OD 平分⊥BOF ,OE ⊥CD 于点O ,⊥AOC =40︒,则⊥EOF =_______.15.如图, 直线AB , CD , EF 相交于点O , 若:1:2AOE COE ∠∠=, AB CD ⊥, 则COF ∠=______度.16.如图,已知CF AB ⊥于C ,DC CE ⊥,则ACD ∠的余角是__.17.如图,直线AB 、CD 相交于点O ,⊥BOC =α,点F 在直线AB 上且在点O 的右侧,点E 在射线OC 上,连接EF ,直线EM 、FN 交于点G .若⊥MEF =n ⊥CEF ,⊥NFE =(1﹣2n )⊥AFE ,且⊥EGF 的度数与⊥AFE 的度数无关,则⊥EGF=__.(用含有α的代数式表示)18.如图所示,⊥AOC 与⊥BOD 都是直角,且⊥AOB :⊥AOD =2:11,则⊥AOB =_______.三、解答题19.如图,已知⊥AOB =20°.(1)若射线OC ⊥OA ,射线OD ⊥OB ,请你在图中画出所有符合要求的图形; (2)请根据(1)所画出的图形,求⊥COD 的度数.20.如图1,1A BC ∠、1ACM ∠的角平分线2BA 、2CA 相交于点2A ,(1)如果164A ∠=︒,那么2A ∠的度数是多少,试说明理由并完成填空; 解:(1)结论:2∠=A ______度.说理如下:因为2BA 、2CA 平分1A BC ∠和1ACM ∠(已知), 所以121A BC ∠=∠,122A CM ∠=∠(角平分线的意义). 因为111ACM A BC A ∠=∠+∠,221A ∠=∠+∠( ) (完成以下说理过程)(2)如图2,164A ∠=︒,如果2A BC ∠、2A CM ∠的角平分线3BA 、3CA 相交于点3A ,请直接写出3A ∠度数;(3)如图2,重复上述过程,1n A BC -∠、1n A CM -∠的角平分线n BA 、n CA 相交于点n A 得到n A ∠,设1A θ∠=︒,请用θ表示n A ∠的度数(直接写出答案)21.如图,CE 是ABC 的外角ACD ∠的平分线,且CE 交BA 的延长线于点E .(1)求证:2BAC B E ∠=∠+∠.(2)若CA BE ⊥,30ECD ACB ∠-∠=︒时,求E ∠的度数.22.直线AB ,CD 相交于点O ,OF CD ⊥于点O ,作射线OE ,且OC 在AOE ∠的内部.(1)当点E ,F 在直线AB 的同侧;⊥如图1,若15BOD ∠=︒,120BOE ∠=︒,求EOF ∠的度数;⊥如图2,若OF 平分∠BOE ,请判断OC 是否平分AOE ∠,并说明理由; (2)若2AOF COE ∠=∠,请直接写出∠BOE 与AOC ∠之间的数量关系.23.如图所示,一辆汽车在直线形公路AB 上由A 向B 行驶,M 、N 分别是位于公路两侧的村庄.(1)设汽车行驶到公路AB 上点P 位置时,距离村庄M 最近;行驶到点Q 位置时,距离村庄N 最近,请在图中的公路AB 上分别画出点P 和点Q 的位置(保留作图痕迹). (2)当汽车从A 出发向B 行驶时,在公路AB 的哪一段路上距离M 、N 两村庄都越来越近?在哪一段路上距离村庄N 越来越近,而离村庄M 越来越远?(分别用文字表述你的结论,不必说明)24.如图,所有小正方形的边长都是1个单位,A 、B 、C 均在格点上仅用无刻度直尺画图:(1)过点A 画线段BC 的平行线AD ; (2)过点B 画线段BC 的垂线,垂足为B ; (3)过点C 画线段AB 的垂线,垂足为E ;(4)线段CE 的长度是点C 到直线________的距离;(5)线段CA 、CE 的大小关系是_________(用“<”连接),理由是__________________.参考答案:1.C【分析】根据垂直得到⊥BOD =90°,然后平角的性质求解即可. 【详解】⊥AB ⊥CD , ⊥⊥BOD =90°,⊥⊥1+⊥BOD +⊥2=180°,⊥1=40°, ⊥40°+90°+⊥2=180°, ⊥⊥2=50°, 故选:C .【点睛】此题考查了直角和平角的性质,解题的关键是熟练掌握直角和平角的性质. 2.C【分析】要知道入射角和反射角的概念:入射光线与法线的夹角,反射角是反射光线与法线的夹角,在光反射时,反射角等于入射角.【详解】解:入射光线与平面镜的夹角是40︒,所以入射角为904050︒-︒=︒.根据光的反射定律,反射角等于入射角,反射角也为50︒,所以入射光线与反射光线的夹角是100︒.入射角减小10︒,变为501040︒-︒=︒,所以反射角也变为40︒,此时入射光线与法线的夹角为80︒.则反射光线与入射光线间的夹角和原来比较将减小20︒. 故选:C .【点睛】本题考查了有关角的计算,首先要熟记光的反射定律的内容,搞清反射角与入射角的关系,特别要掌握反射角与入射角的概念,它们都是反射光线和入射光线与法线的夹角. 3.B【分析】根据CD AB ⊥,可得⊥ADC =⊥BDC =90°可得⊥1+⊥2=90°,由1:23:2∠∠=,可求⊥1=54︒,⊥2=36︒,由对顶角性质可得⊥ADF =⊥2=36°,利用角的和可得⊥FDC =⊥ADC +⊥ADF =126°. 【详解】解:⊥CD AB ⊥ ⊥⊥ADC =⊥BDC =90° ⊥⊥1+⊥2=90°, ⊥1:23:2∠∠=,设⊥1=3x ︒,⊥2=2x ︒, ⊥3x +2x =90, 解得18x =,⊥⊥1=54︒,⊥2=36︒, ⊥⊥ADF =⊥2=36°,⊥⊥FDC =⊥ADC +⊥ADF =90°+36°=126°. 故选:B .【点睛】本题考查垂直定义,角的和与比例,掌握垂直定义,根据角的和与比例建构方程,会解方程是解题关键. 4.D【分析】画一条线段的垂线,就是画线段所在的直线的垂线,进而得出答案.【详解】作一条线段的垂线,实际上是作线段所在直线的垂线,垂足可能在这条线段上,可能在端点处,也可能在线段的延长线上. 故选:D .【点睛】本题考查线段垂线的画法.正确把握垂线的定义是解题关键. 5.A【详解】A.根据垂线段的定义,故A 正确; B.BD 不垂直AC ,所以错误;C.是过点D 作的AC 的垂线,所以错误;D.过点C 作的BD 的垂线,也错误. 故选:A. 6.C【分析】根据平角的概念结合角平分线的定义列式求解. 【详解】解:⊥O 是直线AD 上一点 ⊥180AOD ∠=︒⊥射线,OC OE 分别平分,AOB BOD ∠∠ ⊥12COB AOB ∠=∠,12EOB BOD ∠=∠⊥1111=()902222COE COB EOB AOB BOD AOB BOD AOD ∠∠+∠=∠+∠=∠+∠=∠=︒故选:C .【点睛】本题考查平角及角平分线的概念,正确理解相关概念列出角的和差关系是解题关键. 7.C【分析】根据点到直线的距离的定义判断各选项即可.【详解】A 、点A 到BC 的距离是AD 的长度,本选项正确,不符合题意; B 、点B 到AD 的距离是BD 的长度,本选项正确,不符合题意; C 、点C 到AD 的距离是DE 的长度,故本选项错误,符合题意; D 、点B 到AC 的距离是AB 的长度,本选项正确,不符合题意. 故选C .【点睛】本题考查了点到直线的距离,关键是对点到直线的距离的意义的掌握. 8.A【分析】根据角平分线的性质,可知点D 到OB 和OA 的距离相等,并且点到直线的线段中,垂线段最短,最短距离为5,即可判断.【详解】⊥OD 平分AOB ∠,DE AO ⊥于点E ,5DE =, ⊥D 到OB 的距离等于5, ⊥5DF ≥故DF 的长度不可能为4,故选A .【点睛】本题考查了角平分线的性质,点到直线的线段中,垂线段最短,熟练掌握性质是本题的关键. 9.C【分析】根据点C 到边AB 所在直线的距离是点C 到直线AB 的垂线段的长度进行求解即可.【详解】点C 到边AB 所在直线的距离是点C 到直线AB 的垂线段的长度,而CD 是点C 到直线AB 的垂线段, 故选C.【点睛】本题考查了点到直线的距离,熟知点到直线的距离的概念是解题的关键. 10.D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可. 【详解】解:A. 线段AC 的长度表示点C 到AB 的距离,说法正确,不符合题意; B. 线段AD 的长度表示点A 到BC 的距离,说法正确,不符合题意; C. 线段CD 的长度表示点C 到AD 的距离,说法正确,不符合题意;D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.11.D【详解】在同一平面内,过一点有且只有一条直线与已知直线垂直,A没有告知在同一平面内,是假命题;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,B 是假命题;互相垂直的两条线段不一定相交,C是假命题;直线外一点与直线上各点连接的所有线段中,垂线段最短,D是真命题.答案:D题型解法:命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,确定假命题可举反例证明.12.D【分析】根据题意画出图形,根据直线a//x轴,得到直线a为直线y= 2,根据垂线段最短即可得出答案.【详解】如图,⊥直线a// x轴,⊥直线a为直线y= 2,当BC⊥a时,线段BC最短,⊥点C的坐标为(2,2).故选:D.【点睛】本题考查了坐标与图形性质,掌握平行于x轴的坐标的特点,以及垂线段最短是解题的关键.13.90°⊥垂直的定义【解析】略14.130°【分析】根据对顶角性质可得⊥BOD =⊥AOC=40°.根据OD 平分⊥BOF ,可得⊥DOF =⊥BOD =40°,根据OE ⊥CD ,得出⊥EOD =90°,利用两角和得出⊥EOF =⊥EOD +⊥DOF =130°即可.【详解】解:⊥AB 、CD 相交于点O ,⊥⊥BOD =⊥AOC=40°.⊥OD 平分⊥BOF ,⊥⊥DOF =⊥BOD =40°,⊥OE ⊥CD ,⊥⊥EOD =90°,⊥⊥EOF =⊥EOD +⊥DOF =130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.15.120【分析】根据垂直的定义和对顶角相等的性质可得答案.【详解】解:AB CD ⊥,90AOC BOC ∴∠=∠=︒,又:1:2AOE COE ∠∠=,119030123AOE AOC ∴∠=∠=︒⨯=︒+, AOE BOF ∠=∠,3090120COF BOF BOC ∴∠=∠+∠=︒+︒=︒,故答案为:120.【点睛】本题考查垂直的定义,对顶角相等的性质,解题的关键是掌握垂直的定义. 16.DCF ∠,ECB ∠【分析】根据垂直的定义和余角的定义,找和ACD ∠相加得90°的角即可.【详解】解:CF AB ⊥于C ,DC CE ⊥,90ACF BCF DCE ∴∠=∠=∠=︒,90ACD DCF∴∠+∠=︒,18090ACD BCE DCE∠+∠=︒-∠=︒ACD∴∠的余角是:DCF∠,ECB∠.答案:DCF∠,ECB∠.【点睛】本题考查了垂直的定义和余角的定义,解题关键是准确识图,找出图中90°角,准确进行推理判断.17.13α##α3【分析】利用三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角和,以及三角形内角和定理求解.【详解】解:⊥⊥CEF=⊥AFE+⊥BOC,⊥BOC=α,⊥⊥CEF=α+⊥AFE,⊥⊥MEF=n⊥CEF,⊥⊥MEF=n(α+⊥AFE),⊥⊥EGF=⊥MEF﹣⊥NFE,⊥⊥EGF=n(α+⊥AFE)﹣(1﹣2n)⊥AFE=nα+(3n﹣1)⊥AFE,⊥⊥EGF的度数与⊥AFE的度数无关,⊥3n﹣1=0,即n=13,⊥⊥EGF=13α;故答案为:13α.【点睛】此题考查了三角形外角的性质及角度计算,解题的关键是理解⊥EGF的度数与⊥AFE 的度数无关的含义.18.20°【分析】由⊥AOB+⊥BOC=⊥BOC+⊥COD知⊥AOB=⊥COD,设⊥AOB=2α,则⊥AOD=11α,故⊥AOB+⊥BOC=5α=90°,解得α即可.【详解】解:⊥⊥AOB+⊥BOC=⊥BOC+⊥COD,⊥⊥AOB=⊥COD,设⊥AOB=2α,⊥⊥AOB:⊥AOD=2:11,⊥⊥AOB+⊥BOC=9α=90°,解得α=10°,⊥⊥AOB =20°.故答案为20°.【点睛】此题主要考查了角的计算以及余角和补角,正确表示出各角度数是解题关键. 19.(1)见解析;(2)⊥COD=20°或160°.【分析】(1)根据垂直的定义画射线OC ⊥OA ,射线OD ⊥OB ;(2)如图1,由于OC ⊥OA ,OD (或OD’)⊥OB ,则⊥BOD =⊥BOD’=⊥AOC =90°,于是利用周角的定义可计算出⊥COD =160°,利用⊥COD ′=⊥BOC ﹣⊥BOD’可得到⊥COD ′=20°,如图2,同理可得⊥COD =160°,⊥COD ′=20°.【详解】解:(1)如图1、如图2,OC 、OD (或OD ′)为所作;(2)如图1,⊥OC ⊥OA ,OD ⊥OB ,⊥⊥BOD =⊥BOD’=⊥AOC =90°,⊥⊥COD =360°﹣90°﹣90°﹣20°=160°,⊥COD ′=⊥BOC ﹣⊥BOD’=90°+20°﹣90°=20°,如图2,同理可得⊥COD =160°,⊥COD ′=20°,⊥⊥COD =20°或160°.【点睛】本题考查了基本作图—过一点作已知直线的垂线,分情况作出图形是解决此题的关键.20.(1)32;三角形的一个外角等于与它不相邻的两个内角的和;过程见解析(2)16° (3)1()2n θ︒-【分析】(1)利用角平分线的定义和三角形的外角的性质即可求解;(2)根据(1)的解法即可直接求解;(3)利用(1)的结论求解.(1)解:结论:⊥A 2=32度.说理如下:因为BA 2、CA 2平分⊥A 1BC 和⊥A 1CM (已知),所以⊥A 1BC =2⊥1,⊥A 1CM =2⊥2(角平分线的意义).因为⊥A 1CM =⊥A 1BC +⊥A 1,⊥2=⊥1+⊥A 2(三角形的一个外角等于和它不相邻的两个内角的和).所以⊥A 1CM =⊥A 1BC +⊥A 1=2⊥1+⊥A 1=2(⊥1+⊥A 2),所以⊥A 1=2⊥A 2,因为⊥A 1=64°,所以⊥A 2=32°.故答案为:32,三角形的一个外角等于和它不相邻的两个内角的和.(2)由(1)得:⊥A 1=2⊥A 2,⊥A 2=2⊥A 3,⊥⊥A 1=4⊥A 3,⊥⊥A 3=14⊥A 1=16°. (3)由(1)得:⊥A 1=2⊥A 2,⊥A 2=2⊥A 3,…,⊥An ﹣1=2⊥An ,⊥⊥A 1=2⊥A 2,⊥A 1=4⊥A 3,⊥A 1=8⊥A 4,…,⊥A 1=2n ﹣1•⊥An ,⊥⊥A 1=2n ﹣1•⊥An ,⊥⊥An =112n A -∠=1()2n θ-︒. 【点睛】本题考查了角的平分线的定义以及三角形的外角的性质:三角形的一个外角等于与它不相邻的两个内角的和,正确解决(1),读懂题意是关键.21.(1)见解析(2)20︒【分析】(1)利用外角的性质,BAC E ACE ∠=∠+∠,ECD E B ∠=∠+∠,再利用角平分线的定义推出ACE ECD ∠=∠,通过等量代换即可求证;(2)先利用30ECD ACB ∠-∠=︒,180ACD ACB ∠+∠=︒,求出40ACB ∠=︒,进而求出B ,再代入(1)中结论即可求解.(1)证明:⊥BAC ∠是ACE ∆的外角,⊥BAC E ACE ∠=∠+∠,⊥ECD ∠是BCE ∆的外角,⊥ECD E B ∠=∠+∠,⊥CE 是ACD ∠的平分线,⊥ACE ECD E B ∠=∠=∠+∠,⊥2BAC E ACE E B E B E ∠=∠+∠=∠+∠+∠=∠+∠;(2)解:⊥30ECD ACB ∠-∠=︒,⊥30ECD ACB ∠=∠+︒,⊥2260ACD ECD ACB ∠=∠=∠+︒,⊥180ACD ACB ∠+∠=︒,⊥260180ACB ACB ∠+︒+∠=︒,解得40ACB ∠=︒.⊥CA BE ⊥,⊥90BAC ∠=︒,⊥18050B BAC ACB ∠=︒-∠-∠=︒,由(1)知2BAC B E ∠=∠+∠,⊥90502E ︒=︒+∠,解得20E ∠=︒.【点睛】本题考查三角形外角的性质,三角形内角和定理,垂直的定义,角平分线的定义等,牢固掌握上述知识并灵活运用是解题的关键.22.(1)⊥45︒;⊥平分,理由见解析(2)32270AOC BOE ∠+∠=︒或2270AOC BOE ∠+∠=︒【分析】(1)⊥先利用角度的和差关系求得COE ∠,再根据90EOF COE ∠=︒-∠,可得EOF∠的度数;⊥先根据角平分线定义EOF FOB ∠=∠,再结合余角定义和对顶角相等可得结论; (2)需要分类讨论,当点E ,F 在直线AB 的同侧,当点E ,F 在直线AB 的异侧;设COE α∠=,再分别表示AOC ∠、∠BOE ,再消去α即可.(1)解:⊥⊥OF CD ⊥于点O ,⊥90COF ∠=︒,⊥15BOD ∠=︒,120BOE ∠=︒,⊥1801801201545COE BOE BOD ∠=︒-∠-∠=︒-︒-︒=︒,⊥904545EOF COF COE ∠=∠-∠=︒-︒=︒,⊥EOF ∠的度数为45︒;⊥平分.理由如下:⊥OF 平分∠BOE , ⊥12EOF FOB EOB ∠=∠=∠, ⊥OF CD ⊥,⊥90COF ∠=︒,⊥90COE EOF FOB BOD ∠+∠=∠+∠=︒,⊥COE BOD ∠=∠,⊥AOC BOD ∠=∠,⊥COE AOC ∠=∠,⊥OC 平分AOE ∠.(2)如图,当点E ,F 在直线AB 的同侧,设COE α∠=,⊥2AOF COE ∠=∠,⊥22AOF COE α∠=∠=,⊥OF CD ⊥,⊥90COF ∠=︒,⊥290AOC AOF COF α∠=∠-∠=-︒⊥,⊥()1801802902703BOE AOC COE ααα∠=︒-∠-∠=︒--︒-=︒-⊥,⊥×3+⊥×2得,32270AOC BOE ∠+∠=︒;如图,当点E ,F 在直线AB 的异侧;设COE α∠=,⊥2AOF COE ∠=∠,⊥22AOF COE α∠=∠=,⊥OF CD ⊥,⊥90COF ∠=︒,⊥902AOC COF AOF α∠=∠-∠=︒-⊥,⊥()180********BOE AOC COE ααα∠=︒-∠-∠=︒-︒--=︒+⊥,⊥+⊥×2得,2270AOC BOE ∠+∠=︒.综上所述,∠BOE 与AOC ∠之间的数量关系:32270AOC BOE ∠+∠=︒或2270AOC BOE ∠+∠=︒.【点睛】本题考查了角平分线定义,对顶角相等,垂直的定义,平角的定义,等式的恒等变形等知识,主要考查学生的计算能力,并注意数形结合.分类讨论是解题的关键. 23.(1)作图见解析;(2)当汽车从A 向B 行驶时,在AP 这段路上,离两个村庄越来越近;在PQ 这段路上,离村庄M 越来越远,离村庄N 越来越近.【分析】(1)点与直线的连线中,垂线段最短,所以MP AB ⊥,NQ AB ⊥.(2)观察图形可以得到在AP 这段路上,离两个村庄越来越近;在PQ 这段路上,离村庄M越来越远,离村庄N越来越近.⊥,垂足为Q,点P、Q 【详解】解:(1)过点M作MP AB⊥,垂足为P,过点N作NQ AB就是要画的两点,如图所示.(2)当汽车从A向B行驶时,在AP这段路上,离两个村庄越来越近;在PQ这段路上,离村庄M越来越远,离村庄N越来越近.【点睛】本题主要考查了点与直线距离以及尺规作图相关知识,熟练掌握点与直线的距离和尺规作图是解决本题的关键.<;垂线段最短.24.(1)见解析;(2)见解析;(3)见解析;(4)AB;(5)CE CA【分析】(1)(2)(3)利用网格的特点直接作出平行线及垂线即可;(4)利用垂线段的性质直接回答即可;(5)利用垂线段最短比较两条线段的大小即可.【详解】(1)如图,直线AD即为所求;(2)如图,直线BF即为所求(3)如图,直线CE即为所求;(4)AB<;垂线段最短.(5)CE CA【点睛】本题考查了垂线段最短和点到直线的距离的知识,解题的关键是理解有关垂线段的性质及能进行简单的基本作图.。

新人教版数学七年级下《垂线》课时练习含答案解析

新人教版数学七年级下《垂线》课时练习含答案解析

新人教版数学七年级下《垂线》课时练习含答案解析一、填空题(共15小题)1.下面说法中错误的是()A.两条直线相交,有一个角是直角,则这两条直线互相垂直B.若两对顶角之和为1800,则两条直线互相垂直C.两条直线相交,所构成的四个角中,若有两个角相等,则两条直线互相垂直D.两条直线相交,所构成的四个角中,若有三个角相等,则两条直线互相垂直答案:C知识点:垂线对顶角邻补角解析:解答:垂线的概念是:当两条直线相交,有一个角是直角时,即两条直线互相平行.依据此概念,我们能够判定,选项A正确.选项B中,两对顶角之和为180°,则说明两对顶角均为90°,选项B 也正确.在选项D中,两条直线相交,所构成的四个角中,若有三个角相等,依照对顶角的性质,说明四个角都相等,又因为四个角的度数和为360°,则说明四个角差不多上90°,选项D也正确.因为两条直线相交,形成两对对顶角,对顶角是相等的,然而不能说明该角一定是90°,因此选项C 错误.分析:把握相交线形成的对顶角知识,以及垂线的概念,就能轻松解答本题.本题考查垂线.2.如图所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有()A.2个B.3个C.4个D.1个答案:B知识点:垂线解析:解答:两条直线互相垂直,其所形成的夹角差不多上直角.依照题意,AB⊥CD,则∠ADC和∠BDC 差不多上直角;同时,AC⊥BC,因此∠ACB也是直角.为此,图形中一共有3个直角.分析:把握垂线的概念,就能轻松解答本题.本题考查垂线.3.如图所示,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°B.130°C.135°D.140°答案:C知识点:垂线角平分线解析:解答:两条直线互相垂直,其所形成的夹角差不多上直角.依照题意,EO⊥CD,则∠EOD和∠EOC 差不多上直角;又因为AB平分∠EOD,因此∠AOD为45°.∠AOD与∠COB是对顶角,因此∠COB 也是45°.因为∠COB与∠BOD互补,因此∠BOD=180°-45°=135°.分析:把握垂线的概念,以及角平分线和对顶角的性质,就能轻松解答本题.本题考查垂线.4.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离为()A.4cm B.5cm C.小于2cm D.不大于2cm答案:D知识点:点到直线的距离垂线段最短解析:解答:点到直线的最短距离为过点作出的与已知直线的垂线段.在题干中,已知的最短距离为2cm,则选项A和选项B差不多上不正确的.又因为题干中没有明确告诉PC是否垂直于直线l,当两线垂直时,则点P到直线l的距离为2cm;若两直线不垂直,则点P到直线l的距离为小于2cm.因此,只能选D.分析:点到直线的最短距离为过点作出的与已知直线的垂线段,是解答本题的关键.本题考查点垂线段最短.5.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.A.①②③B.①②④C.①③④D.②③④答案:C知识点:垂线解析:解答:由题意可知,OA⊥OC,因此∠AOC=90°,即∠AOB+∠BOC=90°.同时,OB⊥OD,因此∠BOD=90°,即∠COD+∠BOC=90°.依次,能够判定∠AOB=∠COD,因此①正确.又因为不能推断出∠AOB与∠COD的具体角度,因此②不正确.∠AOD=∠AOB+∠BOC+∠COD,因此∠BOC+∠AOD=∠BOC+∠AOB+∠BOC+∠COD=90°+90°=180°.因为∠AOB=∠COD,因此∠AOC-∠COD=∠AOC-∠AOB=∠BOC,因此④正确.为此,选C.分析:在把握两直线相互垂直,夹角为直角的基础上,学会角度转换,就能轻松找到正确答案.本题考查垂线.6.如图所示,直线AB⊥CD于点O,直线EF通过点O,若∠1=26°,则∠2的度数是(•).A.26°B.64°C.54°D.以上答案都不对答案:B知识点:垂线对顶角解析:解答:由题意可知,AB⊥CD于点O,因此∠BOC=∠AOD=90°,同时,∠1与∠DOF是对顶角,∠1=26°,因此∠DOF=26°.∠AOD=∠AOF+∠DOF,因此∠AOF=∠AOD-∠DOF=90°-26°=64°.因此选B.分析:在把握两直线相互垂直,夹角为直角的基础上,学会角度转换,就能轻松找到正确答案.本题考查垂线.7.在下列语句中,正确的是().A.在平面上,一条直线只有一条垂线;B.过直线上一点的直线只有一条;C.过直线上一点且垂直于这条直线的直线有且只有一条;D.垂线段确实是点到直线的距离答案:D知识点:垂线解析:解答:概念明白得型题.垂直于一条直线的垂线有许多条,因此选项A错误.两点之间才只有一条直线,过一点的直线有许多条,因此选项B错误.选项C是最容易显现混淆的地点.在概念中,同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条;然而,在该选项中,没有注明同一平面,因此选项C错.点到直线的距离确实是垂线段,因此选项D正确.分析:概念明白得型题,在解答时要注意对概念的正确明白得,专门是像选项C这种属于专门容易混淆的题目.本题考查垂线.8.如图所示,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数为().①AB⊥AC; ②AD与AC互相垂直; ③点C到AB的垂线段是线段AB; ④点D到BC的距离是线段AD的长度; ⑤线段AB的长度是点B到AC的距离; ⑥线段AB是点B到AC的距离;⑦AD>BD.A.2个B.4个C.7个D.0个答案:B知识点:垂线点到直线的距离解析:解答:依照题意,∠BAC=90,因此AB⊥AC,①正确.AD⊥BC于D,因此AD与AC不垂直,②不正确.点到直线的距离为垂线段,因此点C到AB的垂线段是线段AB,③正确.点D到BC 的距离应为过D点垂直于AC的垂线段,AD与AC不垂直,因此④错误.因为AB⊥AC,点B到AC的距离为AB,因此⑤⑥正确.AD与BD的具体长度无法推断,因此不能确定二者的大小关系,⑦错误.分析:概念明白得型题,把握垂直和点到直线的具体的概念,是解答本题的关键.本题考查垂线.9.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为()A.35°B.45°C.55°D.65°答案:C知识点:垂线对顶角邻补角解析:解答:由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON ﹣∠MOC得出答案.解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.分析:本题要紧考查了垂线和角平分线,解决本题的关键是找准角的关系.10.已知在正方形网格中,每个小方格差不多上边长为1的正方形,A和B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C•为顶点的三角形的面积为1个平方单位,则C点的个数为().A.3个B.4个C.5个D.6个答案:B知识点:垂线解析:解答:已知每个小方格的边长为1,因此每个小方格的面积为1个平方单位.要使点C也在小方格的顶点上,且以A,B,C•为顶点的三角形的面积为1个平方单位,需要从两个方面来摸索:一是以A为三角形的顶点,则A到BC是距离为1,BC的距离为2时才能使面积为1个平方单位,因此,如此的点有2个.同理,若以B为三角形的顶点,如此的点也同样有2个.因此,选B.分析:从点到直线的距离,以及三角形的面积运算方法入手,就能轻松解答.本题考查垂线.11.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形能够是()A.B.C.D.答案:A知识点:垂线;平行线解析:解答:依照题意画出图形即可.故选:C.分析:此题要紧考查了垂线,关键是把握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.12.下列语句正确的是()A.两条直线相交成四个角,假如有两个角相等,那么这两条直线互相垂直B.两条直线相交成四个角,假如有两对角相等,那么这两条直线互相垂直C.两条直线相交成四个角,假如有三个角相等,那么这两条直线互相垂直D.两条直线相交成四个角,假如有两个角互补,那么这两条直线互相垂直答案:C知识点:垂线解析:解答:概念明白得型题.两条直线相交,其中有一个夹角是直角,说明这两条直线互相垂直.同时,两条直线相交,形成四个角,分为两对对顶角,对顶角是相等的.然而,两条直线垂直必须相交,两条直线相交未必垂直,因此,能够推断出选项A、选项B都错误.在选项D中,两条直线任意相交,都能满足有两个角互补,因此D错误.在选项C中,有三个角相等,能够推导出这四个角都相等,同时差不多上直角,因此选项C正确.分析:概念明白得型题,把握垂直的概念,是解答本题的关键.本题考查垂线.13.过线段外一点画这条线段的垂线,垂足一定在()A.线段上B.线段的端点上C.线段的延长线上D.以上情形都有可能答案:D知识点:垂线解析:解答:由于线段有两个端点,所线段的长度是固定的.由于点的位置不确定,因此过线段外一点画这条线段的垂线,垂足有可能在线段上、线段的端点上和线段的延长线上.那个知识点能够从三角形的高的画法上得到验证.因此,选D.分析:概念明白得型题,把握垂直的作法,是解答本题的关键.本题考查垂线.14.如图,直线AD⊥BD,垂足为D,则点B到线段AC的距离是()A.线段AC的长B.线段AD的长C.线段BC的长D.线段BD的长答案:D知识点:点到直线的距离解析:解答:点到直线的距离为垂线段,因为直线AD⊥BD,垂足为D,因此点B到线段AC的距离是线段BD的长,因此选D.分析:概念明白得型题,把握到直线的距离为垂线段,是解答本题的关键.本题考查点到直线的距离.15.如图,OM⊥NP,ON⊥NP,因此OM和ON重合,理由是()A.两点确定一条直线B.通过一点有且只有一条直线和已知直线垂直C.过一点只能作一条垂线D.垂线段最短答案:B知识点:垂线解析:解答:概念明白得型题.通过一点有且只有一条直线与已知直线垂直.因为OM⊥NP,ON⊥NP,两条通过O点的直线都垂直于NP,因此选B.分析:概念明白得型题,把握通过一点有且只有一条直线与已知直线垂直,是解答本题的关键.本题考查垂线.二、填空题(共5小题)1.当两条直线相交所成的四个角中_________,叫做这两条直线互相垂直,其中的一条直线叫_________,它们的交点叫_________.答案:有一个直角另一条直线的垂线垂足知识点:垂线解析:解答:概念明白得型题.两条直线相交,所形成的夹角中,有一个角为直角,说明这两条直线互相垂直.相互垂直的两条直线,其中一条直线叫另一条直线的垂线.两条直线互相垂直,它们的交点叫垂足.分析:概念明白得型题,把握垂线的概念,是解答本题的关键.本题考查垂线.2.过直线上或直线外一点,_________与已知直线垂直.答案:有且只有一条直线知识点:垂线解析:解答:概念明白得型题.过直线外一点,有且只有一条直线与已知直线垂直.分析:概念明白得型题,把握垂线的概念,是解答本题的关键.本题考查垂线.3.如图所示,若AB⊥CD于O,则∠AOD=_______;若∠BOD=90°,则AB____CD.答案:90°⊥知识点:垂线解析:解答:概念明白得型题.两条直线互相垂直,所形成的夹角为直角,也确实是90°.假如两条直线相交,所形成的夹角中,有一个角为90°,则这两条直线互相垂直.分析:概念明白得型题,把握垂线的概念,是解答本题的关键.本题考查垂线.4.如图所示,已知AO⊥BC于O,那么∠1与∠2________.答案:互余知识点:垂线;余角解析:解答:概念明白得型题.两条直线互相垂直,所形成的夹角为直角,也确实是90°.因为AO⊥BC 于O,因此∠AOC=90°.因为∠1+∠2=∠AOC.因此,∠1与∠2互余.分析:概念明白得型题,把握垂线的概念,是解答本题的关键.本题考查垂线.5.假如CD⊥AB于D,自CD上任一点向AB作垂线,那么所画垂线均与CD重合,这是因为__________________________________.答案:在同一平面内,过一点有且只有一条直线与已知直线垂直知识点:垂线解析:解答:概念明白得型题.过直线外一点有且只有一条直线与已知直线垂直.因为CD⊥AB于D,因此自CD上任一点向AB作垂线,那么所画垂线均与CD重合.分析:概念明白得型题,把握垂线的概念,是解答本题的关键.本题考查垂线.三、解答题(共5小题)1.如图,已知A,O,E三点在一条直线上,OB平分∠AOC,∠AOB+∠DOE=90°,试问:∠COD 与∠DOE之间有如何样的关系?说明理由.答案:相等理由:∠AOB+∠DOE=90°,且A、O、E三点共线,因此∠BOC+∠COD=90°.因为OB平分∠AOC,因此∠AOB=∠BOC,通过等量代换,能够得知∠COD与∠DOE相等.知识点:垂线解析:解答:由题意可知,∠AOB+∠DOE=90°,且A、O、E三点共线,因此∠BOC+∠COD=90°.因为OB平分∠AOC,因此∠AOB=∠BOC,通过等量代换,能够得知∠COD与∠DOE相等.分析:把握相交线相关知识,是解答本题的关键.本题考查垂线.2.如图,∠1=30°,AB⊥CD,垂足为O,EF通过点O.求∠2、∠3的度数.答案:∠2=60°,∠3=30°知识点:垂线解析:解答:因为∠1与∠3是对顶角,因此∠1=∠3,因为∠1=30°,因此∠3=30°.因为AB ⊥CD ,因此∠BOD =90°,因为∠2+∠3=∠BOD ,因此∠2=90°-∠3=60°.分析:把握相交线相关知识,是解答本题的关键.本题考查垂线.3.如图,直线AB 与CD 相交于点O ,OP 是∠BOC 的平分线,OE ⊥AB ,OF ⊥CD ,(1)图中除直角外,还有相等的角吗?请写出两对:①____________;②____________.(2)假如∠AOD =40°,则①∠BOC =_______;②OP 是∠BOC 的平分线,因此∠COP =______度; ③求∠BOF 的度数.答案:(1)∠AOD =∠BOC ∠BOP =∠COP(2)①40°②20° ③50° 知识点:垂线;相交线解析:解答:由题意可知,∠AOD 与∠BOC 是对顶角,因此二者相等.因为OP 是∠BOC 的角平分线,因此∠BOP =∠COP .由第一问得到的答案,)假如∠AOD =40°,因此∠BOC =40°.OP 是∠BOC的平分线,因此∠COP =20°.因为OF ⊥CD ,因此∠COF =90°,因此∠BOF =90°-40°=50°. 分析:把握相交线相关知识,是解答本题的关键.本题考查垂线.4.如图,已知∠AOB , OE 平分∠AOC , OF 平分∠BOC.(1)若∠AOB 是直角,∠BOC =60°,求∠EOF 的度数;(2)猜想∠EOF 与∠AOB 的数量关系;(3)若∠AOB +∠EOF =156°,则∠EOF 是多少度?FEO C BA答案:(1)∠EOF =45°(2)∠EOF =21∠AOB(3)∠EOF =52°知识点:垂线解析:解答:(1)∵∠AOC =∠AOB +∠BOC ,∴∠AOC =90°+60°=150°.∵OE 平分∠AOC ,∴∠EOC =150°÷2=75°.∵OF 平分∠BOC ,∴∠COF =60°÷2=30°.∵∠EOC =∠EOF +∠COF,∴∠EOF =75°-30°=45°. (2)∵OE 平分∠AOC ,OF 平分∠BOC .∴∠COE =21∠AOC ,∠COF =21∠BOC ∵∠AOB =∠AOC -∠BOC ∴∠EOF =∠COE -∠COF =21∠AOC -21∠BOC =21(∠AOC -∠BOC )=21∠AOB (3)∵OE 平分∠AOC ,OF 平分∠BOC ,∴∠COE =21∠AOC ,∠COF =21∠BOC , ∴∠EOF =21∠AOC -21∠BOC =21(∠AOC -∠BOC )=21∠AOB .又∵∠AOB +∠EOF =156°, ∴∠EOF =52°.分析:此题难度较大,要通过角度转换.本题考查相交线所形成的角度.5.直线AB 、CD 相交于点O.(1)OE 、OF 分别是∠AOC 、∠BOD 的平分线.画出那个图形.(2)射线OE 、OF 在同一条直线上吗?(直截了当写出结论)(3)画∠AOD 的平分线OG .OE 与OG 有什么位置关系?并说明理由.答案:(1)如图中红线所示(2)射线OE 、OF 在同一条直线上(3)OE ⊥OG 理由:∵EF 平分∠AOC 和∠BOD ,同时∠AOC =∠BOD ,∴∠AOE =∠DOF .∵OG 平分∠AOD ,∴∠AOG =∠DOG .∵∠AOE +∠DOF +∠AOG +∠DOG =180°,∴∠DOF +∠DOG =180°÷2=90°,∴OE ⊥OG .知识点:垂线;角平分线解析:解答:(1)直截了当画图即可.(2)因为∠AOC 与∠BOD 是对顶角,因此两角的角平分线是在同一直线上.(3)∵EF 平分∠AOC 和∠BOD ,同时∠AOC =∠BOD ,∴∠AOE =∠DOF .∵OG 平分∠AOD ,EF∴∠AOG=∠DOG.∵∠AOE+∠DOF+∠AOG+∠DOG=180°,∴∠DOF+∠DOG=180°÷2=90°,∴OE⊥OG.分析:此题把握了角平分的性质是解题的关键.本题考查垂线和角平分线.。

人教版七年级下数学:5.1.2《垂线》习题(含答案)

人教版七年级下数学:5.1.2《垂线》习题(含答案)

垂线习题一、选择题:(每小题3分,共18分)1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段ABB.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段D.线段BD是点B到AD的垂线段D CBADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线②在平面内,过直线外一点有且只有一条直线垂直于已知直线③在平面内,过一点可以任意画一条直线垂直于已知直线④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=a cm,BC=b cm,则BD的范围是( )A.大于a cmB.小于b cmC.大于a cm或小于bcmD.大于b cm且小于a cm5.到直线L的距离等于2cm的点有( )A.0个B.1个C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,P A=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,∠AOD=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离. 三、训练平台:(共15分)如图所示,直线AB ,CD ,EF 交于点O ,OG 平分∠BOF ,且CD ⊥EF ,∠AOE =70°,求∠DOG 的度数.G OFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC =13∠BOC ,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA六、中考题与竞赛题:(共20分)(.杭州)如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M ,N 分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,离村庄N 最近,请你在AB 上分别画出P ,Q 两点的位置.lANBA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直AB⊥CD DOB BOC COA 2.一条 3.所在直线 4.垂线段的长度三、∠DOG=55°四、解:如图3所示.l五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,∴13∠BOC+∠BOC=180°,∴43∠BOC=180°,∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.(2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.六、解:如图4所示.NA。

七年级下册垂线的认识课后练习题(附答案)

七年级下册垂线的认识课后练习题(附答案)

七年级下册垂线的认识课后练习题(附答案)一、填空题1. 平面内,过一点____一条直线与已知直线垂直.2. 填空:如图所示,∠COB=90∘(1)直线____与直线____相交于点D:(2)直线____⊥直线____,垂足为____;(3)过点C有且只有____直线与直线AB垂直;3. 如图,OA⊥OC,∠1=∠3,则OB与OD的位置关系是____.4. 垂线的性质性质1:平面内,过一点____与已知直线垂直.性质2:连接直线外一点与直线上各点的____中,____最短.5. 如图,直线AB与CD相交于点O,且∠AOC=90∘,则AB____CD,图中直角共有____个.6. 若直线AB,CD相交于点O,若∠BOD=90∘,则称直线AB与CD____,直线AB是直线CD的____.7. 当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线____,其中的一条直线叫做另一条直线的____线,它们的交点叫做____.8. 点A在直线a外,直线AB⊥a,直线AC⊥a,那么直线AB,AC的关系是____.二、单选题9. 如图,经过直线l外一点画l的垂线,能画出( )A. 1条B. 2条C. 3条D. 4条10. 如图,OA⊥OB,CO⊥OD,则下列叙述正确的是( )A. ∠AOC=∠AODB. ∠AOD=∠BODC. ∠AOC=∠BODD. 以上都不对11. 如图,经过直线l外一点A画l的垂线,能画出( )A. 1条B. 2条C. 3条D. 4条12. 过一条线段外一点,作这条线段的垂线,垂足在( )A. 这条线段上(不包含端点)B. 这条线段的端点处C. 这条线段的延长线上D. 以上都有可能13. 如图,直线AB,CD相交于点O,EO⊥CD,下列说法错误的是( ).A. ∠AOD=∠BOCB. ∠AOC=∠AOEC. ∠AOE+∠BOD=90∘D. ∠AOD+∠BOD=180∘14. 如图,如果直线AB垂直于直线CD,垂足为点O,那么图中的直角有( ).A. 1个B. 2个C. 3个D. 4个15. 如图,过点P作直线l的垂线和斜线,下列叙述正确的是( )A. 都能作且只能作一条B. 垂线能作且只能作一条,斜线可作无数条C. 垂线能作两条,斜线可作无数条D. 均可作无数条七年级下册垂线的认识课后练习题(附答案)答案和解析1. 【答案】有且只有2. 【答案】(1)AB CD(2)CE AB O(3)一条【解析】通过复习斜交、垂直的意义,测量CD与CO的长度,比较它们的大小,可以由此引入点到直线的距离,其实,CO即为点C到直线AB的距离.3. 【答案】OB⊥OD4. 【答案】有且只有一条直线所有线段垂线段5. 【答案】⊥46. 【答案】互相垂直垂线7. 【答案】互相垂直垂垂足8. 【答案】重合【解析】由于过一点有且只有一条直线与已知直线垂直,所以直线AB,AC重合.9. 【答案】A【解析】平面内经过一点有且只有一条直线垂直于已知直线,据此可得.解:经过直线l外一点画l的垂线,能画出1条垂线,故选:A.10. 【答案】C11. 【答案】A【解析】在同一平面内,过一点有且只有一条直线垂直于已知直线.12. 【答案】D【解析】作一条线段的垂线,实际上是作线段所在直线的垂线,垂足可能在这条线段上(包含端点),也可能在线段的延长线上.13. 【答案】B14. 【答案】D15. 【答案】B。

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(1)

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(1)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.2.下列作图能表示点A到BC的距离的是( )A.A B.B C.C D.D3.如图,直线a//b,则直线a,b之间距离是()A.线段AB的长度B.线段CD的长度C.线段EF的长度D.线段GH的长度4.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,正确的有 ( )①BC与AC互相垂直;②AC与CD互相垂直;③点A到BC的垂线段是线段BC;④点C到AB的垂线段是线段CD;⑤线段BC是点B到AC的距离;⑥线段AC的长度是点A到BC的距离.A.2个B.3个C.4个D.5个5.如图所示,AC⊥BC与C,CD⊥AB于D,图中能表示点到直线(或线段)的距离的线段有()A.1条B.2条C.3条D.5条6.如图,下列说法不正确的是()A.点B到AC的垂线段是线段AB B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段D.线段BD是点B到AD的垂线段7.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的数学知识是( )A.两点之间的所有连线中,线段最短B.点到直线的距离C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短8.如图,直线AB,CD相交于点O,OE⊥CD,OF⊥AB,∠EOF=32°,则∠BOC的大小为( )A.120°B.122°C.132°D.148°9.如图,直线AB、CD、EF相交于点O,且AB⊥CD,若∠BOE=35°,则∠DOF=()A.65°B.45°C.35°D.55°二、填空题1.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:_____.2.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是_______________________.3.如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是________________________________.4.如图,在一块直角三角板ABC中,AB>AC的根据是_____.5.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是_____.三、解答题1.读下列语句,并完成作图.()1如图1,过点P分别作OA、OB的垂线段PM、PN.()2如图2,①过点C,作出AB的垂线段CM;②过点A作出表示点A到BC的距离的线段AN.2.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).3.如图,点P,Q分别是∠AOB的边OA,OB上的点.(1)过点P画OB的垂线,垂足为H;(2)过点Q画OA的垂线,交OA于点C,连接PQ;(3)线段QC的长度是点Q到的距离,的长度是点P到直线OB的距离,因为直线外一点和直线上各点连接的所有线段中,垂线段最短,所以线段PQ、PH的大小关系是(用“<”号连接).4.如图,在直线MN的异侧有A、B两点,按要求画图取点,并注明画图取点的依据.(1)在直线MN上取一点C,使线段AC最短.依据是______________.(2)在直线MN上取一点D,使线段AD+BD最短.依据是______________________.5.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.参考答案一、单选题1.C解析:试题分析:根据题意画出图形即可.解:根据题意可得图形,故选C.点评:此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.2.B分析:由点到直线的距离知点A到BC的距离就是过A向BC作垂线所得垂线段的长度. 逐一进行判断即可.详解:解:A.BD表示点B到AC的距离,故A选项错误;B. AD表示点A到BC的距离,故B选项正确;C. AD表示点D到AB的距离,故C选项错误;D. CD表示点C到AB的距离,故D选项错误;故选B.点睛:本题主要考查了点到直线的距离,直线外一点到直线的垂线段的长度,叫做点到直线的距离.3.B解析:根据两直线的距离的定义即可判断.详解:∵a//b,CD⊥a,AD⊥b,∴直线a,b之间距离是CD的长度.此题主要考查两直线的距离,解题的关键是找到两直线间的垂线段.4.B分析:根据垂直定义和点到直线距离的定义对各选项进行逐一分析即可.详解:解:∵∠ACB=90°,∴AC⊥BC,故①正确;AC与DC相交不垂直,故②错误;点A到BC的垂线段是线段AC,故③错误;点C到AB的垂线段是线段CD,故④正确;线段BC的长度是点B到AC的距离,故⑤错误;线段AC的长度是点A到BC的距离,故⑥正确.故选B.5.D解析:试题表示点C到直线AB的距离的线段为CD,表示点B到直线AC的距离的线段为BC,表示点A到直线BC的距离的线段为AC,表示点A到直线DC的距离的线段为AD,表示点B到直线DC的距离的线段为BD,共五条.故选D.6.C解析:根据点到直线的距离的定义:直线外一点到这条直线的垂线段的长度叫做点到直线的距离,结合图示对各个选项逐一分析即可作出判断.详解:A、点B到AC的垂线段是线段AB,正确;B、点C到AB的垂线段是线段AC,正确;C. 点A到BC的垂线段是线段AD,故错误;D. 点B到AD的垂线段是线段BD,正确;故选C.本题考查了点到直线距离的概念,解题的关键是明确点到直线的距离的定义:直线外一点到这条直线的垂线段的长度叫做点到直线的距离7.D解析:根据垂线段的性质进行作答.详解:由题知,AB⊥CD,所以选D.点睛:本题考查了垂线段的性质,熟练掌握垂线段的性质是本题解题关键.8.D解析:分析:由OE⊥CD,OF⊥AB,可得∠COE=90°, ∠BOF=90°;又由∠EOF=32°,可求出∠COF的度数,然后根据∠BOC=∠BOF+∠COF求出结论即可.详解:∵OE⊥CD,OF⊥AB,∠COE=90°, ∠BOF=90°,∵∠EOF=32°,∴∠COF=90°-32°=58°,∴∠BOC=∠BOF+∠COF=90°+58°=148°.故选D.点睛:题考查了垂线的定义和角的和差,若两条直线相交所成的角为90°,那么这两条直线垂直,交点叫垂足.求出∠EOF=32°是解答本题的关键.9.D解析:∵AB⊥CD,∴∠BOC=90°,∵∠BOE=35°,∴∠COE=∠BOC-∠BOE=90°-35°=55°,∵直线EF和直线CD相交于点O,∴∠DOF=∠COE=55°.故选D.二、填空题1.垂线段最短解析:根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知,要选垂线段.2.垂线段最短解析:试题分析:点到直线的所有线段中垂线段最短.考点:垂线段的性质3.垂线段最短.分析:根据垂线段最短作答.详解:解:根据“连接直线外一点与直线上所有点的连线中,垂线段最短”,所以沿AB开渠,能使所开的渠道最短,故答案为“垂线段最短”.点睛:本题考查垂线段最短的实际应用,属于基础题目,难度不大.4.垂线段最短.解析:根据从直线外一点到这条直线所作的垂线段最短可得.详解:∵AC⊥BC,∴AB>AC,其依据是:垂线段最短,故答案为:垂线段最短.点睛:本题主要考查垂线段最短的性质,解题的关键是掌握从直线外一点到这条直线所作的垂线段最短.5.两点确定一条直线解析:应用的数学知识是:过两点有且仅有一条直线.故答案为过两点有且只有一条直线.三、解答题1.(1)见解析;(2)见解析.解析:(1)根据点到直线距离的作法利用直角三角尺分别作出即可;(2)分别过点C作CM⊥AB,AN⊥BC,注意要延长BC得出.详解:解:()1如图1所示:()2如图2所示.点睛:此题主要考查了点到直线的垂线作法以及钝角三角形中高线的作法,正确作出钝角三角的高线是解题关键.2.(1)见解析;(2)见解析;(3)OA , PC的长度, PH<PC<OC.解析:(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.详解:(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.点睛:本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.3.(1)画图见解析;(2)见解析;(3)直线OA,线段PH;PH<PQ.解析:(1)根据垂线的概念、结合网格特点作图即可;(2)根据垂线的概念、结合网格特点和线段的作法作图;(3)根据垂线段最短进行比较即可.详解:(1)如图,直线PH即为所求;(2)如图,直线QC即为所求;(3)线段QC的长度是点Q到直线OA的距离,线段PH的长度是点P到直线OB的距离,根据直线外一点和直线上各点连接的所有线段中,垂线段最短可知PH<PQ,故答案为直线OA,线段PH;PH<PQ.点睛:本题考查了复杂作图和垂线段的性质,掌握基本尺规作图、得到复杂图形,连接垂线段最短是解题的关键.4.垂线段最短两点之间,线段最短解析:(1)过A作AC⊥MN,AC最短;(2)连接AB交MN于D,这时线段AD+BD最短.详解:(1)过A作AC⊥MN,根据垂线段最短,故答案为垂线段最短;(2)连接AB交MN于D,根据是两点之间线段最短,故答案为两点之间线段最短.点睛:本题主要考查了垂线段的性质和线段的性质,关键是掌握垂线段最短;两点之间线段最短.5.(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.解析:(1)依据垂线的定义以及对顶角相等,即可得∠BOE的度数;(2)依据平角的定义以及垂线的定义,即可得到∠AOE的度数;(3)分两种情况:若F在射线OM上,则∠EOF=∠BOD=30°;若F'在射线ON上,则∠EOF'=∠DOE+∠BON-∠BOD=150°.详解:解:(1)∵EO⊥CD,∴∠DOE=90°,又∵∠BOD=∠AOC=36°,∴∠BOE=90°-36°=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=16∠COD=30°,∴∠AOC=30°,又∵EO⊥CD,∴∠COE=90°,∴∠AOE=90°+30°=120°;(3)分两种情况:若F在射线OM上,则∠EOF=∠BOD=30°;若F'在射线ON上,则∠EOF'=∠DOE+∠BON-∠BOD=150°;综上所述,∠EOF的度数为30°或150°.故答案为(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.点睛:本题考查了角的计算,对顶角,垂线等知识点的应用,关键是分类讨论思想的运用.。

人教新课标数学七年级下册512垂线练习题

人教新课标数学七年级下册512垂线练习题

人教新课标数学七年级下册5.1.2垂线练习题(2)一、判断题.1.两条直线互相垂直,则所有的邻补角都相等.( )2.一条直线不可能与两条相交直线都垂直.( )3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互为垂直.( ) 二、填空题.1.如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________.(1)ODC BA (2)O DCBAE(3)O D CBA2.如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.3.如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________. 三、解答题.1.已知钝角∠AOB,点D 在射线OB 上. (1)画直线DE ⊥OB;(2)画直线DF ⊥OA,垂足为F.2.已知:如图,直线AB,垂线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.E O DC BA3.你能用折纸方法过一点作已知直线的垂线吗?四、填空题.1.如图,AC ⊥BC,C 为垂足,CD ⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点的距离是_________.CBAFE C B A2.如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.小明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对小明的说法,你认为_________________. 五、解答题.1.(1)用三角尺画一个是30°的∠AOB,在边OA 上任取一点P ,过P 作PQ ⊥OB, 垂足为Q,量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?(2)若所画的∠AOB 为60°角,重复上述的作图和测量,你能发现什么?2.如图,分别画出点A 、B 、C 到BC 、AC 、AB 的垂线段,再量出A 到BC 、点B 到AC 、 点C 到AB 的距离.CBA参考答案一、二、三略四、1.4.8,6,6.4,10 2.小明说法是错误的,因为AD与BE是否垂直无判定.五、1.(1)PQ=12OP (2)OQ=12OP 2.略.。

人教版七年级下数学垂线同步试题

人教版七年级下数学垂线同步试题

垂线 同步练习一、填空题:(每题4分,共40分)1、直线外____与直线上各点连结的所有线段中,______最短。

2、定点P 在直线外,动点O 在直线AB 上运动,当线段PO 最短时,∠POA =___度,此时,点P 到直线AB 的距离是线段____的长度。

3、如图1,计划把池中的水引到C 处,可过点C 作CD ⊥AB 于D ,然后沿CD 开渠,可使所开的渠道最短,这种设计的依据是____________。

4、如图2,OD ⊥BC 于D ,BD =6cm ,OD =8cm ,OB =10cm ,则点B 到OD 的距离是__,点O 到BC 的距离为_____,O 、B 两点间的距离为_____。

5、如图3,在△ABC 中,AC ⊥BC ,CD ⊥AB ,则AB 、AC 、CD 之间的大小关系为____(用“<”连接起来)6、过一个钝角的顶点向一边作垂线把这个钝角分成的两个角的比为1∶6,则这个钝角为__7、如图4,点P 是直线L 外一点,过点P 画直线PA 、PB 、PC ,…交L 于点A 、B 、C …,请你用量角器量∠1、∠2、∠3的度数,并量线段PA 、PB 、PC 的长,你发现的规律是_______________。

8、如图5,已知直线AD 、BE 、CF 相交于O ,OG ⊥AD ,且∠BOC =35°,∠FOG =30°,则∠DOE =_____。

9、如图6,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD ,则∠AOC =___,OD 与AB 的位置关系是______。

10、①如图7,∵∠AOC =90°,根据垂直定义,∴___⊥___于___。

②如图8,∵CD ⊥AB ,根据垂直定义,∴∠____=∠____=___°。

③如图9,∵∠ADC =90°,根据______,∴AD ⊥BD 于___。

二、选择题:(每题4分,共12分)11、学校的国旗的旗杆与地面的位置关系属于( ) A 直线与直线平行 B 直线与直线垂直C 直线与平面平行D 直线与平面垂直 12、在如图所示的长方体中,和平面ABCD 垂直的棱有( )AB CLD CBD CB A图 4图 3图 2图 1321O PDC BA图 9ABDC AD O ADGOACDC BDCBA图 8图 7图 6图 5EO C BA 2条B 4条C 6条D 8条13、如图2,OD ⊥BC 于D ,下列说法中:①线段OB 是O 、B 两点的距离;②线段OB 的长度是O 、B 两点的距离;③线段OD 是点O 到直线BC 的距离;④线段OD 的长度是点O 到直线BC 的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.2 垂线
要点感知 1 两条直线相交,当有一个夹角为__________时,这两条直线互相垂直,其中一条直线叫做另一条直线的__________.它们的交点叫做__________.
预习练习1-1如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是__________;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=__________.
要点感知2 在同一平面内,过一点__________一条直线与已知直线垂直.
预习练习2-1 如图,过直线l外一点A,作直线l的垂线,可以作__________条.
要点感知3 连接直线外一点与直线上各点的所有线段中,__________最短.
预习练习3-1 如图,这是一条马路上的人行横道线,即斑马线的示意图,请你根据图示判断,在过马路时三条线路AC,AB,AD中最短的是( )
A.AC
B.AB
C.AD
D.不确定
要点感知4 直线外一点到这条直线的垂线段的长度,叫做__________.
预习练习4-1 点到直线的距离是指这点到这条直线的( )
A.垂线段
B.垂线
C.垂线的长度
D.垂线段的长度
4-2 到直线l的距离等于2 cm的点有( )
A.0个
B.1个
C.无数个
D.无法确定
知识点1 认识垂直
1.(2014·贺州)如图,OA⊥OB,若∠1=55°,则∠2的度数是( )
A.35°
B.40°
C.45°
D.60°
2.如图,直线AB与直线CD相交于点O,已知OE⊥AB,∠BOD=45°,则∠COE的度数是( )
A.125°
B.135°
C.145°
D.155°
知识点2 画垂线
3.过线段外一点,画这条线段的垂线,垂足在( )
A.这条线段上
B.这条线段的端点
C.这条线段的延长线上
D.以上都有可能
4.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )
A.1个
B.2个
C.3个
D.4个
知识点3 垂线的性质
5.下列说法正确的有( )
①在平面内,过直线上一点有且只有一条直线垂直于已知直线;
②在平面内,过直线外一点有且只有一条直线垂直于已知直线;
③在平面内,可以过任意一点画一条直线垂直于已知直线;
④在平面内,有且只有一条直线垂直于已知直线.
A.1个
B.2个
C.3个
D.4个
6.如图所示,AD⊥BD,BC⊥CD,AB=a,BC=b,则BD的范围是__________,理由是____________________.
知识点4 点到直线的距离
7.如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,AB=6 cm,AD=5 cm,则点B到直线AC的距离是__________,点A到直线BC的距离是__________.
8.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD__________时,他跳得最远.
9.(2014·厦门)已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是( )
10.如图所示,下列说法不正确的是( )
A.点B到AC的垂线段是线段AB
B.点C到AB的垂线段是线段AC
C.线段AD是点D到BC的垂线段
D.线段BD是点B到AD的垂线段
11.如图,直线AB,CD相交于点O,OM⊥AB,若∠COB=135°,则∠MOD等于( )
A.45°
B.35°
C.25°
D.15°
12.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP的长不可能是( )
A.2.5
B.3
C.4
D.5
13.如图,当∠1与∠2满足条件__________时,OA⊥OB.
14.(2014·河南改编)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为__________.
15.如图所示,OM平分∠AOB,ON平分∠COD,OM⊥ON,∠BOC=26°,求∠AOD的度数.
16.如图所示,直线AB,CD相交于点O,作∠DOE=∠BOD,OF平分∠AOE.
(1)判断OF与OD的位置关系;
(2)若∠AOC∶∠AOD=1∶5,求∠EOF的度数.
挑战自我
17.如图所示,一辆汽车在直线形的公路AB上由A向B行驶,C,D分别是位于公路AB两侧的村庄.
(1)该汽车行驶到公路AB上的某一位置C′时距离村庄C最近,行驶到D′位置时,距离村庄D最近,请在公路AB上作出C′,D′的位置(保留作图痕迹);
(2)当汽车从A出发向B行驶时,在哪一段路上距离村庄C越来越远,而离村庄D越来越近?(只叙述结论,不必说明理由)
参考答案
课前预习
要点感知1 90°垂线垂足
预习练习1-1垂直90°
要点感知2 有且只有
预习练习2-1 1
要点感知3垂线段
预习练习3-1 B
要点感知4点到直线的距离
预习练习4-1 D
4-2 C
当堂训练
1.A
2.B
3.D
4.D
5.C
6.b<BD<a 垂线段最短
7.6 cm 5 cm
8.垂直课后作业
9.C 10.C 11.A 12.A 13.∠1+∠2=90°14.55°
15.因为OM平分∠AOB,ON平分∠COD,
所以∠AOB=2∠AOM=2∠BOM,∠COD=2∠CON=2∠DON.
因为OM⊥ON,所以∠MON=90°.
所以∠CON+∠BOC+∠BOM=90°.
因为∠BOC=26°,
所以∠CON+∠BOM=90°-26°=64°.
所以∠DON+∠AOM=64°.
所以∠AOD=∠DON+∠AOM+∠MON=64°+90°=154°.
16.(1)因为OF平分∠AOE,
所以∠AOF=∠EOF=1
2
∠AOE.
又因为∠DOE=∠BOD=1
2
∠BOE,
所以∠DOE+∠EOF=1
2
(∠BOE+∠AOE)=
1
2
×180°=90°,
即∠FOD=90°.
所以OF⊥OD.
(2)设∠AOC=x°,
因为∠AOC∶∠AOD=1∶5,
所以∠AOD=5x°.
因为∠AOC+∠AOD=180°,
所以x+5x=180,x=30.
所以∠DOE=∠BOD=∠AOC=30°. 又因为∠FOD=90°,
所以∠EOF=90°-30°=60°.
17.(1)图略.
过点C作AB的垂线,垂足为C′,过点D作AB的垂线,垂足为D′.
(2)在C′D′上距离村庄C越来越远,而离村庄D越来越近.。

相关文档
最新文档