七年级上册数学立体图形.

合集下载

七年级上册立体图形知识点

七年级上册立体图形知识点

七年级上册立体图形知识点立体图形,是指具有高度、宽度和长度三个方向的图形,它们是空间中的实体物体。

在初中数学的学习中,学生需要学习一些基本的立体图形知识,本文将带大家对七年级上册立体图形的知识点进行梳理与总结。

一、三棱柱1. 什么是三棱柱三棱柱是一种侧面为三角形,两个平面为平行四边形的立体图形。

它有三个顶点、三条棱和三个侧面。

2. 三棱柱的表面积和体积(1)三棱柱的表面积公式为:S = 底面积 + 侧面积,其中底面积可以直接用底边长a和高h计算出来,即:底面积 = 1/2 × a × h;侧面积则通过三角形面积公式计算,即侧面积 = 3 × (1/2 ×底边长a ×高h)。

(2)三棱柱的体积公式为:V = 底面积 ×高h。

二、三棱锥1. 什么是三棱锥三棱锥是以一个三角形为底面,其余三个侧面都在一个顶点上的立体图形。

它有四个顶点、四条棱和四个侧面。

2. 三棱锥的表面积和体积(1)三棱锥的表面积公式为:S = 底面积 + 侧面积,其中底面积可以直接用底边长a和高h计算出来,即:底面积 = 1/2 × a × h;侧面积则通过三角形面积公式计算,即侧面积 = 3 × (1/2 ×底边长a ×斜高l)。

(2)三棱锥的体积公式为:V = 1/3 ×底面积 ×高h。

三、三棱台1. 什么是三棱台三棱台是一种底面为三角形,顶面与底面平行且相等的立体图形。

它有五个顶点、八条棱和五个侧面。

2. 三棱台的表面积和体积(1)三棱台的表面积公式为:S = 上底面积 + 下底面积 + 侧面积,其中上底面积和下底面积可以直接用底边长a、上底边长b和高h计算出来,即上底面积 = 1/2 × b × h,下底面积 = 1/2 × a × h;侧面积则通过直角三角形面积公式计算,即侧面积 = 1/2 ×侧棱长×高l。

人教版初中数学七年级上册第四章4.1.1立体图形的展开图(教案)

人教版初中数学七年级上册第四章4.1.1立体图形的展开图(教案)
-对于立体图形表面积和体积的计算,学生可能会在理解公式和应用上遇到困难;
-将理论知识应用于实际问题的解决,需要学生具备较强的空间想象能力和创新思维。
举例解释:
a.难点:对于圆柱的展开图,学生需要理解圆柱侧面展开成长方形的过程,以及底面圆的展开是如何与侧面连接的。
b.难点:在计算立体图形的表面积时,学生需要记住相应的公式,如长方体的表面积公式为2(lw + lh + wh),并能够根据展开图正确应用。
人教版初中数学七年级上册第四章4.1.1立体图形的展开图(教案)
一、教学内容
人教版初中数学七年级上册第四章《几何图形初步》4.1.1节,本节课主要围绕立体图形的展开图进行教学。内容包括:
1.理解立体图形及其展开图的概念;
2.学会识别和绘制常见立体图形(如正方体、长方体、圆柱、圆锥等)的展开图;
3.掌握利用展开图计算立体图形的表面积和体积的方法;
4.能够解决实际问题,如制作纸箱、纸筒等物品时,根据需要计算所需材料的面积。
二、核心素养目标
1.培养学生的空间观念,通过观察、思考和操作,形成对立体图形及其展开图的认识,提高空间想象力;
2.培养学生的数据分析能力,学会从展开图中提取信息,进行表面积和体积的计算,并能应用于实际问题;
3.培养学生的逻辑推理和几何直观,通过展开图的折叠与展开,理解立体图形之间的内在联系,提高解决问题的能力;
今天的学习,我们了解了立体图形展开图的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对立体图形展开图的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课程中,我们探讨了立体图形的展开图,这是一个既能锻炼学生的空间想象力,又能提高他们实际应用能力的重要课题。我发现,在讲解立体图形展开图的基本概念时,大部分学生能够跟上课堂节奏,但对于一些具体的操作和计算,部分学生还是感到有些吃力。

七年级数学上册4.1生活中的立体图形基础知识素材

七年级数学上册4.1生活中的立体图形基础知识素材

4。

1 生活中的立体图形1.常见的立体图形(1)柱体①棱柱:有两个面互相平行,其余各面都是四边形,并且每两个相邻的四边形的公共边互相平行,由这些面围成的几何体叫棱柱.如三棱柱、四棱柱、五棱柱等;②圆柱:以矩形的一边所在的直线为旋转轴,其余各边围绕它旋转形成的几何体叫做圆柱.(2)锥体①棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面围成的几何体叫棱锥.如三棱锥、四棱锥、五棱锥等;②圆锥:以直角三角形一边所在的直线为旋转轴,其余各边围绕它旋转形成的几何体叫做圆锥.(3)球体:半圆以它的直径为旋转轴,旋转而成的几何体叫做球体.【例1】判断下列说法是否正确:(1)柱体的上、下两个面不一样大().(2)圆柱、圆锥的底面都是圆().(3)棱柱的底面不一定是四边形().(4)圆柱的侧面是平面().(5)棱锥的侧面不一定是三角形().解析:柱体的上、下底面是平行且相等的(形状相同、大小相等),所以(1)错误;圆柱的上、下两个底面都是圆,圆锥的底面是圆,所以(2)正确;棱柱可以是三棱柱、四棱柱、五棱柱等,即棱柱的底面不一定是四边形,所以(3)正确;圆柱的侧面是曲面不是平面,所以(4)错误;棱锥的侧面一定是三角形,所以(5)错误.答案:(1)×(2)√(3)√(4)×(5)×2.立体图形的分类立体图形错误!为便于理解与识记,形象地总结立体图形的分类如下:【例2】下列图形中柱体的个数为().A.1 B.2 C.3 D.4解析:柱体的特点是它们的上、下底面是平行且相等的(形状相同、大小相等),由此判断①和②是柱体.答案:B3.多面体(1)多面体的概念:围成棱柱和棱锥的面是平的面,像这样的立体图形叫做多面体.如图,下列图形分别为:棱柱(长方体)、棱锥(三棱锥),它们均为多面体.(2)正四面体:由四个完全一样的正三角形围成的空间图形称为正四面体,这些三角形的顶点、边分别称为正四面体的顶点、棱(相邻的三角形的公共边只算一条棱).(3)正六面体:类似的,组成正方体的每个正方形的顶点、边分别称为正六面体的顶点、棱(相邻的正方形的公共边只算一条棱).此外,还有正八面体、正十二面体和正二十面体,如图.谈重点常见的多面体棱柱和棱锥都是多面体,圆柱、圆锥和球不是多面体.【例3】一个棱柱的底面是五边形,它有几条侧棱,几个顶点?共有几个面?分析:由已知易知该立体图形是五棱柱,结合图形回答问题即可.解:它有5条侧棱,10个顶点,共有7个面.析规律棱柱棱数、顶点数和面数的确定底面为n边形的棱柱有n条侧棱,2n个顶点,(n+2)个面.。

人教版七年级数学上册《6.1.1 第2课时 从不同方向看立体图形及立体图形的展开图》精品教学课件

人教版七年级数学上册《6.1.1  第2课时  从不同方向看立体图形及立体图形的展开图》精品教学课件
“坚” 在下,“就”在后,“胜”和“利”在哪里?
坚 持就 是
胜 利
“胜”在上,“利”在前.
一个多面体的展开图中,在同一直线 上的相邻的三个线框中,首尾两个线框是 立体图形中相对的两个面.
巩固练习
说一说 下面图形是一些多面体的表面展开图,你能说出这 些多面体的名字吗?
长方体
三棱柱
四棱锥
三棱柱
巩固练习
2 c 7 -1 b
a
课堂小结

从前面看



从上面看
课堂小结
巧记正方体的展开图口诀: 正方体盒巧展开, 六个面儿七刀裁, 十一类图记分明; 一四一呈6种, 二三一有3种, 二二二与三三各1种; 对面相隔不相连, 识图巧排“凹”和“田”.
红 蓝

课堂小结
常见几何体的展开图
圆锥
四棱锥
长方体
三棱柱
探究新知
从上面看
从左面看
从前面看
从前面看
从左面看
从上面看
巩固练习
说出下面三个平面图形分别是物体从哪里看到的?
从前面看 从上面看
从左面看
巩固练习
分别画出圆柱体、圆锥及球体的从前面、左面、上面 看到的图形.
巩固练习
从前面看 从左面看 从上面看
探究新知
学生活动三 【一起探究】 立体图形的展开图 将一个正方体的表面沿某些棱剪开,能展成哪些平面图形?
三棱锥
三棱柱
正方体
圆柱
【回顾总结】
1.同桌之间相互交流本课学习收获。 2.老师引导学生总结归纳本课学习知识点,并 总结交流本课学习心得
课后作业
01 完成课后练习题 02 课时练习题(选取)

北师大版七年级数学上册:1.1生活中的立体图形(教案)

北师大版七年级数学上册:1.1生活中的立体图形(教案)
北师大版七年级数学上册:1.1生活中的立体图形(教案)
一、教学内容
本节课选自北师大版七年级数学上册第一章第一节数学内容:《生活中的立体图形》。教学内容主要包括以下几部分:
1.立体图形的认识:通过观察生活中的实例,让学生了解立体图形的特点,掌握长方体、正方体、圆柱、圆锥等基本立体图形。
2.立体图形的展开图:引导学生通过观察和操作,理解立体图形与展开图之间的关系,学会识别和绘制简单立体图形的展开图。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了立体图形的基本概念、分类、展开图以及表面积和体积的计算。同时,我们也通过实践活动和小组讨论加深了对立体图形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次教学中,我尝试了多种方法来帮助学生更好地理解和掌握生活中的立体图形这一知识点。首先,通过引入日常生活中的例子,让学生感受到立体图形无处不在,从而激发他们的学习兴趣。在实际教学过程中,我也注意到了以下几点:
1.学生在认识立体图形时,空间想象力不足。为了解决这个问题,我提供了模型和实物,让学生能够直观地感受到立体图形的特点。在今后的教学中,我还可以尝试使用虚拟现实技术,让学生更直观地观察和操作立体图形。
2.在讲解立体图形的展开图时,我发现部分学生难以理解立体图形与展开图之间的关系。针对这个问题,我让学生动手操作,剪裁和拼贴立体图形的展开图。实践证明,这种方法有助于学生更好地理解展开图的概念。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与立体图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作立体图形的展开图或计算某个立体图形的表面积和体积。

初中数学人教版七年级上册《立体图形与平面图形》课件

初中数学人教版七年级上册《立体图形与平面图形》课件

正方体
圆柱 三棱柱 圆锥 五棱柱 四棱锥
将正方体的表面沿某些棱剪开,展成如图所示的平面
图形,则原正方体中与“创”字所在的面相对的面上
标的字是( A )
A.庆
B.力
C.大
D.魅
解析:由“相间相对”可得到“建”字所在的面相对的面上标的字 是“力”,“魅”字所在的面相对的面上标的字是“大”.由“Z” 端是对面可得到“创”字所在的面相对的面上标的字是“庆”.
(1) 同一个立体图形,按不同的方式展开,可能得到不同的平面 图形,如正方体就有11种展开图. (2) 不是所有的立体图形都有展开图,如球就没有展开图. (3) 立体图形中相对的两个面在展开图中既没有公共边,也没有公共顶点.
正方体的展开图
1
2
34
5
6
7
8
9
10
11
这些正方体展开图可以分为几种? 观察上面的11种正方体的展开图有没有什么规律? 哪几号展开图可以分为一类,为什么?
下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠 成正方体的是( C )
A
B
C
D
解析:正方体的展开图有“一四一”型,“一三二”型,“阶梯”型, 故选项C中的图形能折叠成正方体.
谢谢大家
如图是一个正方体纸盒的外表面展开图,则这个正方体是( C )
A
B
CD
解析:由正方体的表面展开图可知,实心圆点所在的面与两个空心 圆圈所在的面都相邻,且两个空心圆圈所在的面相对,故只有选项 C符合题意.
常见几何体的展开图:
圆锥
四棱锥
长方体
ቤተ መጻሕፍቲ ባይዱ
三棱柱
三棱锥
三棱柱
正方体

2024年华师大七年级数学上册 3.1 生活中的立体图形(课件)

2024年华师大七年级数学上册 3.1 生活中的立体图形(课件)
准确识别简单几何体.
观察下列,从中可以抽象出哪些你熟悉的图形?
三角形

都是平面的 长方形
1 立体图形
我们生活在三维世界中,随时随地看到的和接触到的 物体都是立体的.
合作探究 仔细观察图中的物体,我们发现这些物体 (或其 一部分) 可以抽象成某些立体图形.
你能找出和这些立体图形相类似的物体吗? 你能叫出这些立体图形的名字吗?
柱体 棱柱
球体
锥体 棱锥
长方体
圆柱

圆锥

棱柱
三棱柱
两个底面:三角形
正方体 长方体
四棱柱
五棱柱
六棱柱
棱锥
四棱锥 三棱锥
一个底面: 四边形
五棱锥
六棱锥
知识总结
在棱柱和棱锥中,相邻两个面的交线叫做棱, 两条棱的交点叫做顶点.
顶点 顶点
棱 棱
试一试 1. 指出图中其他几个棱柱和棱锥的顶点与棱.
2. 长方体和正方体是棱柱吗? 长方体和正方体都是棱柱
练一练 1. 图中实物的形状对应哪些立体图形?把相应的实
物与图形用线连接起来.
正方体 球 六棱柱 圆锥 长方体 四棱锥
练一练
2. (佛山·期末) 对于如图所示的几何体,说法正确 的是 ( D )
A. 几何体是三棱锥 B. 几何体有 6 条侧棱 C. 几何体的侧面是三角形 D. 几何体的底面是三角形
A. 1 个
B. 2 个
C. 3 个
D. 4 个
3. 观察下列图形,在括号内填上相应名称. (圆柱 ) ( 圆锥) (四棱锥 ) (六棱柱) (三棱柱) ( 四棱柱 ) ( 球 )
几何 图形
概念
常见的立体图形有:圆柱、 __圆__锥___、__三__棱__柱___等

七年级数学上册《生活中的立体图形》-典型例题六

七年级数学上册《生活中的立体图形》-典型例题六

典型例题六
例6 下列图形中,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的实物.
分析只有观察出能反映物体形状主要的轮廓特征.才能够抽象出具体的立体几何图形,像大小、颜色、装饰品等属性.可忽略不予考虑,同时像北京天坛的顶部、房屋顶部都是次要结构,也可排除不看.那么,读物体是什么几何形体,就个难抽象出来了.答案埃及金字塔——三棱锥;西瓜——球:北京天坛——圆柱;房屋——长方体.说明:判断一个几何体的形状,主要通过观察它的各个面和面所在的线(棱)的形状特征来抽象归纳.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

想一想:让我们一起来回想一下平时的日常生活中所见到过的哪些物体的形状类似于以上的几何体,(在实物与几何体模型之间建立对应关系)(尤其是组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答。

3、用自己的语言描述棱柱与圆柱的相同点与不同点。

4、通过交流,总结,归纳形成直觉感受后,可以采取游戏的形式,将学生进行分组对抗赛(甲方出示实物,乙方作出类似于该实物的几何体的答案,数个轮回后交换角色),以此加深对简单几何体的感受和认识。

5、自学棱柱可分为直棱柱和斜棱柱,强调本书只讨论直棱柱(简称棱柱)。

三、课堂练习当学生对简单几何体有了明确的认识后,可借助P4习题1—1引导他们对其进行分类,并交流各自分类的方法,分类要求不要过高,只要能自圆其说就可以了,比如可以(1)按柱,锥,球,(2)按组成的面曲或平面。

相关文档
最新文档