钢筋结构之型钢梁与组合梁的设计说明
有关钢与钢筋混凝土组合梁设计问题的概述

3 6・
林
业
科
技
情
报
2 1 o 4 o 1 0 lV 1 3N . .
有 关 钢 与钢 筋 混 凝 土 组合 梁设 计 问题 的概 述
张增 芳
( 黑龙 江省林 业设计研 究院)
[ 摘 要 】 介绍 了钢与钢筋混凝土组合 梁的特 点及设计 内容, 简单 归纳 了组合 梁 中钢 梁截面设 计 以及 剪切 连接件 的作用 并
,
和 形式。
[ 关键词 ] 钢 与钢 筋混凝土组合梁 ; 换算截 面法; 剪力连接件
’
S m m a ia in OfS e lAnd Ren o c d Co r t m p st a sg u rz to t e i f r e nc ee Co o ie Be m De in
构设 计 规 范 》 G 50 0的规 定 进 行 设 计 。钢 一混 B0 1 凝土 组合 梁充 分利用 了钢材 抗拉 和混凝 土抗 压 的特
点 ,发挥 两种 材 料 的优 势 ,同钢 筋 混凝 土 梁 相 比 ,
组合 梁可 以减 少 结构 高 度 ,提 高 净 空或 压 低 层 高 。
速 度快 、难 度小 等优点 ,是 一种很 有前 途 的结构 体
算 ,即用 等效 矩形应 力块 方 法确定 ,考 虑全 截 面的
减少用 钢量 ,与 混凝 土板结合 提 高 了梁 的 刚度 ,同 时亦 可 以减 少高 度 ,增 强抗 锈性 和耐久 性 。从施 工 角 度 出发 ,减少 了支模 、拆模 这些 工序 和混凝 土 现
场 作业 的工 作 量 ,便 于 主体 施 工 ,并 具 有 工期 短 、
1 概念
3 1 组 合 梁截 面 设 计 .
钢结构梁柱估算

钢结构梁柱估算梁的设计:1.型钢梁设计由梁的荷载和支承情况根据内力计算得到梁的最大弯矩,根据选用的型钢材料确定其抗弯强度设计值,由此求得所需要的梁净截面抵抗矩,然后在型钢规格表中选择型钢的型号。
最后对选定的型钢梁截面进行强度、刚度和整体稳定验算。
2.组合梁设计梁的截面选择步骤为:估算梁的高度(一般用经济高度)、确定腹板的厚度和翼缘尺寸,然后验算梁的强度、稳定和刚度。
柱的设计:1.实腹柱设计截面选择的步骤如下:(1)假定柱的长细比,一般在50―90范围之内,轴力大而长度小时,长细比取小值,反之取大值;(2)根据已假定的长细比,查得轴心受压稳定系数。
然后根据已知轴向力和钢材抗压强度设计值求得所需截面积;(3)求出截面两个主轴方向所需的回转半径(根据已知的两个方向的计算长度和长细比);(4)由此计算出截面轮廓尺寸的高和宽;(5)通过求得的截面面积和宽以及高,再根据构造要求、钢材规格等条件,选择柱的截面形式和确定实际尺寸;(6)验算实腹柱的截面强度、刚度,整稳和局稳;2.格构柱设计截面选择的步骤如下:(1)假定长细比,一般在50―90之间;(2)计算柱绕实轴整体稳定,用与实腹柱相同的方法和步骤选出肢件的截面规格。
根据假定的长细比,查稳定系数,最后确定所需的截面面积;(3)计算所需回转半径;(4)算出截面轮廓尺寸宽度和高度;(5)计算虚轴长细比;通过求得的面积、高度和宽度以及考虑到钢材规格及构造要求选择柱的截面形式和确定实际尺寸。
(6)强度、刚度和整稳验算;(7)缀条设计和缀板设计;回转半径就是惯性半径。
定义:任意形状截面的面积为A,则图形对y轴和z轴的惯性半径分别为iy=sqrt(Iy/A),iz=sqrt(Iz/A).特征:惯性半径是对某一坐标轴定义的;惯性半径的量纲为长度的一次方,单位为M;惯性半径的值恒为正。
用处:1,惯性矩Ix,回转半径ix=sqrt(Ix/A),长细比λx=lox/ix,截面验算:局部稳定b/t=(10+0.1λ)sqrt(235/fy);h0/tw=(25+0.5λ)sqrt(235/fy).2,知道了柱子的轴力和计算长度-假定长细比初步估计截面-选定截面计算长细比,回转半径惯性矩等-截面验算。
型钢梁、混凝土框架柱结构设计要点汇总

型钢梁、混凝土框架柱结构设计要点汇总1、参考规范《型钢混凝土组合结构技术规程》(JGJ 138-2001)《钢骨混凝土结构技术规程》(YB 9082-2006)2、型钢混凝土组合结构的相关构造规定1)抗震等级确定:型钢混凝土组合结构分为全部结构构件采用型钢混凝土的结构和部分结构构件采用型钢混凝土的结构。
注意:整体框架结构仅少量几根转换梁使用型钢梁,其他均为普通混凝土构件,整体框架结构可按普通框架结构按《抗规》确定抗震等级,再在此基础上将转换梁及转换柱抗震等级提高一级即可;2)位移比、挠度及裂缝限值要求:在PKPM中,应在梁施工图模块中查看梁挠度(为弹塑性挠度),不应在SATWE中查看弹性挠度(该数值永远不会变红),若弹塑性挠度飘红,可考虑受压楼板翼缘作用,该选项有利于减少计算挠度值;3)钢筋直径及混凝土保护层厚度要求:4)型钢宽厚比要求:5)栓钉直径要求:在需要设置栓钉的部位,可按弹性方法计算型钢翼缘外表面处的剪应力,相应于该剪应力的剪力由栓钉承担;栓钉承载力应按国家标准《钢结构设计规范》GBJ 17-88的规定计算。
型钢上设置的抗剪栓钉的直径规格宜选用19mm和22mm,其长度不宜小于4倍栓钉直径,栓钉间距不宜小于6倍栓钉直径。
6)型钢含量控制也可参考:《钢骨混凝土结构技术规程》(YB 9082-2006)P1067)含型钢梁的框架结构中其他普通构件的配筋率要求普通混凝土转换柱配筋率尽量不超过4%,普通混凝土梁纵筋配筋率不应超过2%。
;当柱配筋率飘红时,可提高混凝土强度等级、增大截面宽度等措施;3、PKPM分析要点1)在PMCAD中确定型钢钢材型号《型钢混凝土组合结构技术规程》(JGJ 138-2001)规定:型钢混凝土组合结构的混凝土强度等级不宜小于C30;2)在特殊构件中需定义转换梁和转换柱以上就是型钢梁、混凝土框架柱结构设计要点汇总相关介绍,想了解更多的相关信息,欢迎关注本店铺进行查询。
梁的介绍

x , y — —绕梁截面x轴和y轴的截面塑性发展系数 。
根据局部稳定要求,当梁受压翼缘的自由外伸宽度
与其厚度之比大于 13 235 / f y 但不超过
15 235 / f y
时,
塑性发展对翼缘局部稳定会有不利影响,应取 x =1.0。
Mx Wpnx f
第五章
梁
单向受弯且为连续梁或固端梁时,允许按照塑性设计方法进 行设计。
力。
塑性净截面模量
Mp = Wpnfy 截面形状系数
仅与截面的几 何形状有关
F = Mp / Me = Wpn/Wn
第五章
梁
抗弯强度的计算
规范对承受静力荷载或间接承受动力荷载的简支梁,只是 有限制地利用塑性发展。规范取塑性发展总深度不大于截面高 度的1/4,通过对Wn乘以一小于F的塑性发展系数x和y来实现。 梁的抗弯强度按下列规定计算:
蜂窝梁 将工字钢或H型钢的腹板沿折线切开,再焊成
的空腹梁。
钢结构设计原理
Design Principles of Steel Structure
第五章
梁
梁格
主梁和次梁交叉连接组成交叉梁系,在梁格上铺放直 接承受荷载的钢或钢筋混凝土面板。分为简单梁格、 普通梁格、复式梁格。
主梁 主梁 主梁 横向次梁
钢结构设计原理 Design Principles of Steel Structure
Vy S x
fv
第五章
梁
3、局部承压强度
当梁上有集中荷载(如吊车轮压、次梁传来的集中力、支座反 力等)作用时,且该荷载处又未设置支承加劲肋时,集中荷载由翼 缘传至腹板,腹板边缘存在沿高度方向的局部压应力。
2.按截面的变化情况分 3.按梁支承情况分 4.按受力情况分
第二章(五)钢结构受弯构件 型钢梁设计

第三节 梁的整体稳定
在最大刚度平面内受弯的构件,其整体稳定性按下式计算:
Mx f bWx
在两个主平面内受弯的工字形截面构件的整体稳定按下式计 算在两个主平面受弯的H型钢或工字形截面构件:
My Mx f bWx yWy
第三节 梁的整体稳定
梁的整体稳定系数φ b的求法 《规范》 (1)
设计以及受弯构件的构造要求,在学习过程中应重点
(1) 掌握梁的强度、刚度和整体稳定性的计算方法,掌
握不需验算梁整体稳定的条件和措施; (2) 掌握型钢梁和焊接组合梁的截面设计方法;
本章提要
(3) 掌握梁腹板和翼缘局部稳定的保证条件和措施, (4) (5) 掌握梁的构造要求。
第一节 概述
1、概述: 受弯构件主要是承受横向荷载的实腹式构件和格构式构件 (桁架); 荷载通常有:均布荷载、集中荷载; 主要内力为:弯矩与剪力,按工程力学的弹性方法计算荷 载效应(弯矩、剪力、变形等) ;
第三节 梁的整体稳定
4、梁整体稳定的保证 提高梁的整体稳定承载力的关键是,增强梁受压翼缘的 抗侧移及扭转刚度,《钢结构设计规范》规定当满足一定 条件,当采取了必要的措施阻止梁受压翼缘发生侧向变形, 或者使梁的整体稳定临界弯矩高于梁的屈服弯矩,此时验算 了梁的抗弯强度后也就不需再验算梁的整体稳定。
第三节 梁的整体稳定
第二节 梁的强度与刚度
图
腹板计算高度
第二节 梁的强度与刚度
4、折算应力 产生的原因和位置:在弯矩、剪力都较大的截面,在腹板的 计算高度边缘同一点上同时产生的正应力、剪应力和局部压 应力。 应按下式验算其折算应力:
eq 2 c2 c 3 2 1 f
《钢结构》之型钢梁与组合梁的设计

《钢结构》网上辅导材料六型钢梁和组合梁的设计一、考虑腹板屈曲后强度的组合梁设计腹板受压屈曲和受剪屈曲后都存在继续承载的能力,称为屈曲后强度。
承受静力荷载和间接承受动力荷载的组合梁,宜考虑腹板屈曲后强度,则腹板高厚比达到250时也不必设置纵向加劲肋。
1. 受剪腹板的极限承载力腹板极限剪力设计值 V u 应按下列公式计算:当8.0s ≤λ时 v w w u f t h V = (1a )当2.18.0s ≤<λ时 [])8.0(5.01v w w u--=s f t h V λ (1b ) 当2.1s >λ时 2.1v w w u /s f t h V λ= (1c )式中 λs ──用于腹板受剪计算时的通用高厚比。
2.受弯腹板的极限承载力腹板高厚比较大而不设纵向加劲肋时,在弯矩作用下腹板的受压区可能屈曲。
屈曲后的弯矩还可继续增大,但受压区的应力分布不再是线性的,其边缘应力达到y f 时即认为达到承载力的极限。
图1 受弯矩时腹板的有效宽度 假定腹板受压区有效高度为ρh c ,等分在h c 的两端,中部则扣去(1-ρ)h c 的高度,梁的中和轴也有下降。
为计算简便,假定腹板受拉区与受压区同样扣去此高度,这样中和轴可不变动。
梁截面惯性矩为(忽略孔洞绕本身轴惯性矩)w c x c w c x xe t h I h t h I I 32)1(21)2()1(2ρρ--=--= (2) 梁截面模量折减系数为 xw c x xe x xe e I t h I I W W 2)1(13ρα--=== (3) 腹板受压区有效高度系数ρ按下列原则确定:当85.0≤b λ时 ρ=1.0(4a ) 当25.185.0≤<b λ时 )85.0(82.01--=b λρ(4b ) 当25.1>b λ时 b b λλρ/)/2.01(-= (4c )梁的抗弯承载力设计值为f W M x e x eu αγ= (5)以上式中的梁截面模量W x 和截面惯性矩I x 以及腹板受压区高度均按截面全部有效计算。
简支热轧型钢组合梁设计

图1 横断面布置图(单位:mm)
技术应用
图2 结构模型(单位:m)
荷载组合:根据《公路钢混组合桥梁设计与施工规范》
的规定:组合梁的持久状况按承载能力极限状态的要求,
进行承载力及稳定性验算,作用组合采用作用基本组合;
同时应按正常使用极限状态要求,进行组合梁的抗裂和挠
度的验算,作用组合采用频遇、准永久组合;
组合梁的短暂状况设计应对组合梁在施工过程各阶段
的承载能力进行验算,作用组合采用作用的基本组合;
施工阶段划分如下:
第一阶段:架设钢梁;
第二阶段:浇筑桥面板;
第三阶段:桥面板参与受力;
第四阶段:施加二期恒载;
第五阶段:收缩徐变(3650天);
1.强度、稳定和变形计算
(1)强度计算
钢混组合梁主要进行强度的计算,采用弹性法分析。
型钢组合梁截面抗弯承载力采用弹性法进行计算。
组
合梁的剪力假定全部由钢梁腹板承受。
承载能力极限状态
以计算截面的边缘应力达到材料强度设计值为标志,同时。
梁的介绍

第五章 梁
三、类型 预应力梁 在梁的受拉侧设置具有较高预拉力的高强
度钢索,原理与预应力混凝土梁相同 。 蜂窝梁 将工字钢或H型钢的腹板沿折线切开,再焊成
的空腹梁。
钢结构设计原理 Design Principles of Steel Structure
Mx Wpnx f
第五章 梁
单向受弯且为连续梁或固端梁时,允许按照塑性设计方法进 行设计。
Mx Wpnx f 需要计算疲劳的梁: 有塑性区时钢材易发生硬化,促使疲劳断裂发生。应按 弹性工作阶段1.0
第五章 梁
2、抗剪强度
板件宽厚比较大 薄壁截面
二、应用
梁在钢结构中是应用较广泛的一种基本构件。例如房屋建筑 中的楼盖梁、墙梁、檩条、吊车梁和工作平台梁,水工钢闸 门中的梁和采油平台梁等。
钢结构设计原理 Design Principles of Steel Structure
第五章 梁
三、类型
1.按制作方法分为:型钢梁和组合梁。
2.按截面的变化情况分 等截面梁和变截面梁。 3.按梁支承情况分 简支梁、悬臂梁和连续梁。 4.按受力情况分 单向弯曲梁和双向弯曲梁。
剪力流理论
Vy Sx Ixt
fv
上Vy 式——是计弹算截性面公沿式腹板,平没面作有用考的虑剪力塑;性发展,也没有考 虑Sx 截——面计上算剪有应螺力栓处以孔上等或以对下截毛面截面的对削中和弱轴影的响面积,矩但;当腹 板It—x—上——计开毛算截有点面处较惯板大性件矩孔的;厚时fv度—,。—则钢材应抗考剪设虑计孔强洞度;的影响。
度的1/4,通过对Wn乘以一小于F的塑性发展系数x和y来实现。
组合梁设计

钢-混凝土组合结构
山东科技大学钢结构工程研究所 王 来
第三章
一、组合梁概述
抗剪连接件剪力-滑移曲线。图为栓钉、槽钢、T形钢连接件的剪力-滑移 曲线。由图可知,栓钉和槽钢等连接件的刚度较小,变形能力较大,这 类连接称为柔性连接件;T形钢连接件的刚度较大,变形能力较小,称为 刚性连接件,目前已很少采用。
抗剪连接件剪力—滑移曲线
3.4 组合梁施工阶段计算
一.施工时设臵临支撑的组合梁
3.5 组合梁的承载力计算
组合梁设计的内容应包括:受弯承载力计算、受剪承载力计算、抗剪连 接件的数量和布臵、混凝土翼缘板及其板托纵向界面受剪承载力计算、变 形验算、负弯矩区段内混凝土翼缘板的最大裂缝宽度验算以及构造设计。
一.组合梁受弯承载力 1. 计算方法
弹性计算理论。早期的钢-混凝土组合梁承载力设计计算方法。把混 凝土翼缘板按钢与混凝土的弹性模量比折算成钢材截面,然后按材 料力学方法计算截面的最大应力,并使其小于材料的容许应力。这 一计算方法不考虑塑性变形发展带来的承载力潜力。适合于重复荷 载的组合梁(包括疲劳强度)。
组合梁板件宽厚比限值
截面形式 翼缘
当 N 0.37时 Af h0 h1 h2 N ( , ) 72 100 tw tw tw Af 当 N 0.37时 Af h0 h1 h2 235 ( , ) 35 tw tw tw fy 235 f y
腹板
4.主次梁连接
钢箱混凝土板组合梁设计说明

钢箱混凝土板组合梁设计说明一、概述本桥平面位于R=820右偏圆曲线上,纵面位于2.58%的上坡上,桥梁中心桩号为N5K111+763,本桥主桥采用跨径组合为:1×76m 钢箱混凝土板组合梁,起点桩号为N5K111+724.5,终点桩号为N5K111+801.5,桥台下部采用扩大基础。
二、设计规范与技术标准1、《公路工程技术标准》(JTG B01-2014)2、《公路工程基本建设项目设计文件编制办法》(交公路发【2007】358 号)3、《公路工程水文勘测设计规范》(JTG C30-2002)4、《公路桥涵设计通用规范》(JTG D60-2015)5、《公路圬工桥涵设计规范》(JTG D61-2005)6、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362-2018)7、《公路桥涵地基与基础设计规范》(JTG D63-2007)8、《公路桥梁抗震设计细则》(JTG/T B02-01-2008)9、《公路交通安全设施设计规范》(JTG D81-2017)10、《公路交通安全设施设计细则》(JTG/T D81-2017)11、《公路桥涵施工技术规范》(JTG/T F50-2011)12、《公路交通安全设施施工规范》(JTG F71-2006)13、《公路工程混凝土结构防腐蚀技术规范》(JTG/T B07-01-2006)14、《公路钢结构桥梁设计规范》(JTG D64-2015)15、《公路钢混组合桥梁设计与施工规范》(JTG/T D64-01-2015)16、《钢-混凝土组合桥梁设计规范》(GB50917-2013)17、《公路桥梁钢结构防腐涂装技术条件》JT/T 722-200818、《钢筋混凝土用钢第二部分:热轧带肋钢筋》(GB1499.2-2007)19、《低合金高强度结构钢》(GB/T 1591-2008)20、《公路桥梁盆式支座》(JT/T 391-2009)21、《公路工程质量检验评定标准》JTG F80/1-201722、《铁路钢桥制造规范》Q/CR 9211-201523、《钢结构焊接规范》(GB 50661-2011)24、《钢结构工程施工规范》(GB 50755-2012)25、《钢结构工程施工质量验收规范》(GB 50205-2012)26、《桥梁用结构钢》(GB714-2015)三、技术标准1、设计荷载:公路-Ⅰ级2、桥面宽度:0.5 米(护栏)+11.25 米(行车道)+0.5 米(护栏)=12.25 米3、桥面铺装:10cm 厚沥青混凝土桥面铺装+防水层+18cm 厚C50钢纤维混凝土桥面板;3、地震动峰值加速度:0.3g4、环境类别:I类四、主要材料1、混凝土(1)桥面采用C50钢纤维混凝土,垫石为C50小石子混凝土,墩台盖梁、承台、挡块及桥台背墙、搭板、护栏均为C30混凝土,扩大基础采用C25片石混凝土,台背回填采用C25混凝土。
《钢结构设计原理》第五章课件 梁的设计

短向加劲肋最小间距为0.75h1,外伸宽度应取为横向加劲肋外伸宽 度的0.7-1.0倍,厚度同样不小于短向加劲肋外伸宽度的1/15。
钢结构设计原理 Design Principles of Steel Structure
第五章 梁的设计
5.3.3 支承加劲肋计算
1.端面承压
t
≤2t
第五章 梁的设计
t hw h1 h
2)腹板尺寸
腹板高度hw 梁高确定以后腹板高也就确定了,腹板高为梁高 减两个翼缘的厚度,在取腹板高时要考虑钢板的 尺寸规格,一般使腹板高度为50mm的模数。
腹板厚度tw 抗剪强度要求:
tw
1.2Vm a x hw fV
局部稳定和构造因素: tw hw / 3.5
按支承条件分:
简支梁、连续梁 、悬臂梁 钢梁一般都用简支梁,简支梁制造简单,安装方便,且可避免支 座不均匀沉陷所产生的不利影响。不论何种支承的梁,当截面内力 已知时,进行截面设计的原则和方法是相同的。
钢结构设计原理 Design Principles of Steel Structure
第五章 梁的设计
钢结构设计原理 Design Principles of Steel Structure
第五章 梁的设计
§5.2 梁的设计
一般说来,梁的设计步骤通常是先根据强度和刚度要求,同 时考虑经济和稳定性等各个方面,初步选择截面尺寸,然后对所 选的截面进行强度、刚度、整体稳定和局部稳定的验算。
如果验算结果不能满足要求,就需要重新选择截面或采取一 些有效的措施予以解决。对组合梁,还应从经济考虑是否需要采 用变截面梁,使其截面沿长度的变化与弯矩的变化相适应。
钢结构设计原理 Design Principles of Steel Structure
型钢与混凝土组合结构施工方案

xxxxxx工程型钢与混凝土组合结构施工方案型钢与混凝土组合结构施工方案1工程概况xxxxxx工程位于2应用部位及特点本工程28根框架柱型钢混凝土柱,截面尺寸及高度见设计图纸。
2.1框架梁钢筋与型钢柱连接型式比较复杂,现场钢筋通过连接器和连接板与十字型钢柱连接,焊接工作量大。
采用连接板连接时,当梁钢筋上铁或下铁为上下两排时。
应在现场分别将上下排钢筋与连接板上皮及下皮焊接,施工难度大。
2.2柱头部位钢筋较密,且存在多根框架梁相交于同一柱头的现象,导致多层钢筋互相重叠,钢筋与型钢柱连接及钢筋标高的控制难度很大。
3施工工艺流程4主要操作要点4.1安装钢柱柱脚埋件4.1.1钢结构的基础预埋工程非常关键,它影响第一节钢柱的安装精度乃至关系到整个工程钢结构的安装质量。
4.1.2预埋件的定位安装在基础模板支设完后,校正并加固牢固,检查合格后,安装柱脚埋件,并在四个方向加固,利用500mm高程控制线控制埋件的高度。
浇筑混凝土时,拉通线控制,专人在纵横两个方向用经纬仪看护,以避免位移。
同时安放调节螺母,用于调节钢柱埋件的标高。
4.1.3预埋件的保护埋件调整验收后,在螺栓丝头部位上涂黄油并包上油纸保护。
在浇筑基础混凝土前再次复核,确认其位置及标高准确、固定牢固后方可进行浇灌工序。
在后续施工时对地脚螺栓采取严格的保护措施,严禁碰撞和损坏;在钢柱安装前要将螺纹清理干净,对已损伤的螺牙要进行修复。
4.2型钢柱的安装4.2.1安装流程4.2.2测量定位型钢柱安装前,安装现场应测设并标识出所安装的每个型钢柱的十字轴线,作为型钢柱安装定位及控制安装参数的依据。
4.2.3钢柱吊装前检查、核对成品型钢柱进场后,技术人员按照规范及图纸要求进行复核,并检查型钢柱的外形尺寸及运输过程中的变形情况,对变形部位进行修复处理。
吊装前,技术人员应根据拟吊装的部位核对型钢柱型号。
4.2.4钢柱吊装就位用起重机械将核对无误的型钢柱垂直吊至拟安装的部位,并在型钢柱对接部位放置一圈A 6钢筋,预留出调整空间,方便后续的型钢柱校正等施工4.2.4-1型钢柱安装示意图1.1.5钢柱临时固定型钢柱吊装就位后,四周耳板用连接钢板夹紧并用螺栓临时固定。
型钢混凝土组合结构中混凝土梁钢筋与箱型钢柱组合连接施工工法(2)

型钢混凝土组合结构中混凝土梁钢筋与箱型钢柱组合连接施工工法型钢混凝土组合结构中混凝土梁钢筋与箱型钢柱组合连接施工工法一、前言型钢混凝土组合结构中,混凝土梁钢筋与箱型钢柱组合连接施工工法是一种常用的结构连接方式,通过将钢筋与箱型钢柱组合连接,既能保证结构的强度和稳定性,又能充分发挥钢结构的优势,提高整体结构的抗震性能和承载能力。
本文将从工法特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例等方面进行详细介绍。
二、工法特点1. 结构简单:该工法将混凝土梁钢筋与箱型钢柱进行组合连接,减少了构件的数量和体积,简化了结构形式,提高了施工效率。
2. 耐久性好:混凝土梁与钢筋的组合连接能够提供良好的耐久性,保证结构的使用寿命。
3. 抗震性能好:通过混凝土梁与钢筋的组合连接,能够提高结构的抗震性能,减轻地震对结构的影响。
4. 施工工艺简单:该工法的施工工艺相对简单,工期较短,投资成本低。
三、适应范围该施工工法适用于多种混凝土与钢结构的组合连接,适用于桥梁、大型厂房、高层建筑等各种类型的工程。
四、工艺原理该工法的工艺原理是通过将预埋在混凝土中的钢筋与箱型钢柱进行组合连接,形成一个整体结构,提高结构的强度和稳定性。
具体采取的技术措施包括:1. 钢筋预埋:在混凝土梁中提前预埋钢筋,确定好位置和数量。
2. 箱型钢柱制作:制作好箱型钢柱,确保其质量和尺寸符合设计要求。
3. 组合连接:将混凝土梁上的预埋钢筋与箱型钢柱进行组合连接,采用焊接、螺栓连接等方式。
五、施工工艺1. 基础处理:对基础进行清理、加固等处理,确保基础的稳定性和承载能力。
2. 钢筋预埋:在混凝土梁中预埋钢筋,按照设计图纸和要求进行布置和固定。
3. 箱型钢柱制作:根据设计要求制作箱型钢柱,并进行防腐处理,确保其质量和耐久性。
4. 组合连接:将混凝土梁上的预埋钢筋与箱型钢柱进行组合连接,通过焊接、螺栓连接等方式将两者牢固地固定在一起。
钢结构之_钢梁

钢结构之_钢梁在现代建筑领域中,钢结构以其独特的优势占据着重要的地位,而钢梁作为钢结构中的关键构件,更是发挥着不可或缺的作用。
钢梁,顾名思义,是用于承受荷载并将其传递到支撑结构的水平构件。
它的形状和尺寸多种多样,以适应不同的建筑设计和功能需求。
常见的钢梁形状包括工字钢、H 型钢、槽钢等。
工字钢钢梁,因其截面形状像一个“工”字而得名。
这种钢梁具有较高的抗弯能力,适用于承受较大的竖向荷载。
在跨度较大的建筑中,工字钢钢梁常常被选用,比如工厂厂房、大型仓库等。
其优点在于结构简单,制造方便,成本相对较低。
H 型钢梁则是一种更为高效的截面形式。
它的翼缘宽,腹板薄,因此在抗弯、抗扭性能方面表现出色。
H 型钢梁在高层建筑、大跨度桥梁等重要工程中应用广泛。
与工字钢相比,H 型钢的承载能力更强,稳定性更好,但相应的造价也会略高一些。
槽钢钢梁的截面形状像一个凹槽,其特点是重量较轻,但承载能力相对较弱。
一般在一些轻型结构或临时建筑中使用。
钢梁的设计是一个复杂而严谨的过程。
设计师需要充分考虑到各种荷载的作用,包括恒载(如结构自身的重量)、活载(如人员、设备、货物等的重量)、风载、雪载以及地震作用等。
根据这些荷载的大小和组合情况,计算出钢梁所需的截面尺寸、强度和刚度,以确保其在使用过程中的安全性和稳定性。
在实际施工中,钢梁的安装也是一项重要的工作。
安装前,需要对钢梁进行严格的质量检验,确保其尺寸、形状和材质符合设计要求。
安装过程中,要保证钢梁的位置准确、连接牢固。
通常采用焊接、螺栓连接等方式将钢梁与其他结构构件连接在一起。
焊接连接具有整体性好、强度高的优点,但对施工技术要求较高;螺栓连接则便于拆卸和更换,施工较为方便,但连接的整体性相对较弱。
为了延长钢梁的使用寿命,还需要对其进行防腐处理。
由于钢梁大多暴露在空气中,容易受到氧化、腐蚀等因素的影响。
常见的防腐措施有涂漆、镀锌等。
涂漆可以在钢梁表面形成一层保护膜,阻止氧气和水分的侵蚀;镀锌则是通过在钢梁表面镀上一层锌层,起到防腐的作用。
钢混组合梁设计说明

工超声波探伤方法和探伤结果分级》(GB11345)的规定,焊缝射线探伤应符合《金属熔化焊焊接接头射线照相》(GB/T3323)的规定,磁粉探伤应符合《无损检测焊缝磁粉检测》(JB/T 6061)的规定。
(3)当采用射线、超声波、磁粉等多种方法检验的焊缝,必须达到各自的质量要求,该焊缝方可认为合格。
(4)进行局部超声波探伤的焊缝,当发现裂缝或较多其他缺陷时,应扩大该条焊缝探伤范围,必要时延至全长。
进行射线探伤或磁粉探伤的焊缝,当发现超标缺陷时应加倍检验。
(5)焊接材料除进厂时必须有生产厂家的出厂质量证明外,并应按现行有关标准进行复验,做好复验检查记录。
八、施工要点有关桥梁的施工工艺、材料要求及质量标准,除按《公路桥涵施工技术规范》(JTG/TF50-2011)、《钢结构工程施工规范》(GB50755-2012)有关条文办理外,还应特别注意以下事项:1、钢梁制作(1)钢—混凝土组合结构桥梁钢梁承担单位应根据设计文件的技术要求、《公路桥涵施工技术规范》、《铁路钢桥制造规范》、《钢结构工程施工规范》、《钢结构工程施工及验收规范》及其它相关国家标准,编制详细的钢梁制造工艺方案。
为确保钢梁制造加工的质量,制造工艺方案必须通过专家评审后方可执行。
(2)承担单位应根据接头形式编制焊接工艺评定试验,并编制详细的焊接工艺评定报告,确定合适的焊接坡口尺寸、合理的焊接工艺和焊接参数,选择有效的措施控制焊接变形和降低焊接残余应力。
焊接工艺评定试验也必须通过专家评审后方可执行。
(3)钢梁可在变截面位置分段,在工厂制造,预拼检验合格后,分节段运抵桥位或工地钢梁存放场。
钢梁分段时,顶底板与腹板拼接焊缝错开距离必须满足规范要求,且分段接头不应布置在应力最大位置。
(4)钢材应按同一厂家、同一材质、同一板厚、同一出厂状态,每10 个炉(批)号抽检1 组试件,且应抽取每种板厚的10%(至少1 块)进行超声波探伤,检验不合格的钢材不得使用。
钢与混凝土组合梁的设计步骤解析

钢与混凝土组合梁的设计步骤解析摘要:本文介绍了钢与混凝土组合梁的特点,对钢与混凝土组合梁的主要设计思路及计算方法进行了简要的概述,就设计中的一些概念和步骤进行解析,供大家参考。
关键词:钢与混凝土组合梁;翼板;板托;抗剪连接件一、概述钢与混凝土组合梁是由钢梁和钢梁所支承的钢筋混凝土板通过连接件使钢梁和钢筋混凝土板结合成为整体而共同工作的一种结构形式。
组合梁充分利用了钢材和混凝土两种材料和结构特性,充分发挥了钢材的抗拉性能和混凝土抗压性能。
钢材的抗拉性能好,把钢材布置在构件的受拉区、混凝土的抗压性能好而抗拉性能差,故把混凝土布置在构件的受压区,相互祢补了彼此的弱点,充分发挥了彼此的长处,从而达到节约材料的目的。
同材料单一结构相比,组合梁具有承载力高,结构刚度大,节约钢材(可达15%~25%),降低造价,降低楼盖结构高度(可降低20%~30%),增强了钢梁的整体稳定性,防水性能好,抗震性能强,便于铺设管线等特点,组合梁的截面高度比混凝土梁小,组合梁的截面高度仅为(1/16~1/20)L(视载荷、跨度、梁间距而定);因而能增大室内的净空高度,增大使用空间,由于采用钢梁,减少了部分模板工作量,施工简单方便,不需复杂的施工工艺,具有较为显著的技术经济效果。
组合梁与非组合梁相比,其缺点在于:1.由于钢梁顶面焊有抗剪连接件,在施工中行走不便;2.耐火等级差,对耐火要求高的钢梁,需要对其涂刷耐火涂料,增加了项目造价。
二、组合梁的设计厂房内各种平台跨度不大时,设计中往往采用钢筋混凝土结构,一般也能满足使用要求,但工艺和使用往往要求有较大的跨度和柱距,这时采用钢筋混凝土结构往往不能满足使用要求;采用钢梁与混凝土板组合楼盖,在钢梁的翼缘上,每隔一定距离便焊有圆柱头焊钉连接件或短槽钢连接件,通过连接件使钢梁与混凝土板联结成为整体而共同工作,其全部荷载由组合梁的整个截面承受,这种结构应称为钢与混凝土组合梁结构。
由于钢梁与混凝土板共同工作,故钢梁截面较小,挠度小,刚度大,降低楼盖结构高度,经济性较好。
型钢混凝土组合结构中混凝土梁钢筋与箱型钢柱组合连接施工工法

型钢混凝土组合结构中混凝土梁钢筋与箱型钢柱组合连接施工工法型钢混凝土组合结构中混凝土梁钢筋与箱型钢柱组合连接施工工法一、前言型钢混凝土组合结构的应用越来越广泛,其中混凝土梁钢筋与箱型钢柱的组合连接施工工法成为关键。
本文将介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例。
二、工法特点型钢混凝土组合结构中混凝土梁钢筋与箱型钢柱的组合连接施工工法具有以下特点:1. 结构稳定性好:通过混凝土梁与箱型钢柱之间的组合连接,能够有效增强结构的整体稳定性,同时提高抗震性能。
2. 施工周期短:采用预制构件的方式,在工地现场进行模块化的拼装,可以大幅度缩短施工周期,提高施工效率。
3. 施工质量控制好:由于工程环境受控、操作规程化,能够有效降低施工工艺与质量风险,保证施工质量的稳定性。
4. 施工成本节约:预制构件的使用可以减少现浇混凝土的使用量,节约成本,同时还能减少对周边环境的影响。
三、适应范围混凝土梁钢筋与箱型钢柱组合连接适用于各类建筑结构,特别是对于多层建筑、工业厂房、桥梁等大跨度或多跨度的结构体系,其优势更加明显。
四、工艺原理混凝土梁钢筋与箱型钢柱组合连接的工艺原理是通过梁与柱之间的组合连接来实现结构的整体稳定性。
该工法采用优先安装梁的方式,然后将梁与柱进行连接,通过精准的连接方式和施工工艺保证连接的牢固性。
五、施工工艺施工工艺主要分为如下阶段:1. 基础施工:根据设计要求进行基础施工,确保基础的稳定性。
2. 梁的安装:在基础完成后,进行梁的安装,包括精确的定位和调整,以及钢筋的固定。
3. 梁与柱的连接:通过预先设计的连接件,将梁和箱型钢柱进行连接,保证连接的牢固性和稳定性。
4.混凝土浇筑:在梁与柱的连接完成后,进行混凝土的浇筑,填充连接空隙,增强整体结构的稳定性和强度。
六、劳动组织施工过程中需要合理的劳动组织,包括施工人员的分工和协作,确保施工进度的顺利推进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《钢结构》网上辅导材料六型钢梁和组合梁的设计一、考虑腹板屈曲后强度的组合梁设计腹板受压屈曲和受剪屈曲后都存在继续承载的能力,称为屈曲后强度。
承受静力荷载和间接承受动力荷载的组合梁,宜考虑腹板屈曲后强度,则腹板高厚比达到250时也不必设置纵向加劲肋。
1. 受剪腹板的极限承载力腹板极限剪力设计值 V u 应按下列公式计算:当8.0s ≤λ时 v w w uf t h V = (1a ) 当2.18.0s ≤<λ时 [])8.0(5.01v w w u--=s f t h V λ (1b ) 当2.1s >λ时 2.1v w w u/s f t h V λ= (1c ) 式中 s ──用于腹板受剪计算时的通用高厚比。
2.受弯腹板的极限承载力腹板高厚比较大而不设纵向加劲肋时,在弯矩作用下腹板的受压区可能屈曲。
屈曲后的弯矩还可继续增大,但受压区的应力分布不再是线性的,其边缘应力达到y f 时即认为达到承载力的极限。
图1 受弯矩时腹板的有效宽度 假定腹板受压区有效高度为h c ,等分在h c 的两端,中部则扣去(1-)h c 的高度,梁的中和轴也有下降。
为计算简便,假定腹板受拉区与受压区同样扣去此高度,这样中和轴可不变动。
梁截面惯性矩为(忽略孔洞绕本身轴惯性矩) w c x c w c x xe t h I h t h I I 32)1(21)2()1(2ρρ--=--= (2) 梁截面模量折减系数为 xw c x xe x xe e I t h I I W W 2)1(13ρα--=== (3) 腹板受压区有效高度系数ρ按下列原则确定:当85.0≤b λ时 ρ=1.0(4a ) 当25.185.0≤<b λ时 )85.0(82.01--=b λρ(4b ) 当25.1>b λ时 b b λλρ/)/2.01(-= (4c )梁的抗弯承载力设计值为f W M x e x eu αγ= (5)以上式中的梁截面模量W x 和截面惯性矩I x 以及腹板受压区高度均按截面全部有效计算。
3.弯矩和剪力共同作用下梁的极限承载力图2 弯矩与剪力相关曲线梁腹板同时承受弯矩和剪力的共同作用,承载力采用弯矩M 和剪力V 的相关关系曲线确定。
假定弯矩不超过翼缘所提供的弯矩f M 时,腹板不参与承担弯矩作用,即在f M M ≤的范围内相关关系为一水平线,0.1/=u V V 。
当截面全部有效而腹板边缘屈服时,腹板可以承受剪应力的平均值约为vy f 65.0左右。
对于薄腹板梁,腹板也同样可以负担剪力,可偏安全地取为仅承受剪力最大值u V 的0.5倍,即当5.0/≤u V V 时,取0.1/=eu M M 。
在图2所示相关曲线A 点(eu f M M /,1)和B 点(1,0.5)之间的曲线可用抛物线表达,由此抛物线确定的验算式为115.02≤--+⎪⎪⎭⎫ ⎝⎛-f eu f u M M M M V V 这样,在弯矩和剪力共同作用下梁的承载力为当≤f M M / 1.0时 u V V ≤(6a ) 当5.0/≤u V V 时 eu M M ≤(6b ) 其他情况 0.1)15.0(2≤--+-feu f u M M M M V V (6c ) f h A h h A M f f f )(222211+⋅= (7) 式中 M ,V ──梁的同一截面处同时产生的弯矩和剪力设计值;当V <0.5V u ,取V =0.5V u ;当M<M f ,取M=M f ;M f ——梁两翼缘所承担的弯矩设计值;A f1、h 1——较大翼缘的截面积及其形心至梁中和轴的距离;A f2、h 2——较小翼缘的截面积及其形心至梁中和轴的距离;M eu ,V u ──梁抗弯和抗剪承载力设计值。
4.考虑腹板屈曲后强度的梁的加劲肋的设计当仅配置支承加劲肋不能满足式(6)的要求时,应在两侧成对配置中间横向加劲肋。
(1)腹板高厚比超过170y f /235(受压翼缘扭转受到约束时)或超过150y f /235(受压翼缘扭转未受到约束时)也可只设置横向加劲肋,其间距一般采用0)5.1~0.1(h a =。
(2)中间横向加劲肋 梁腹板在剪力作用下屈曲后以斜向张力场的形式继续承受剪力,梁的受力类似桁架,张力场的水平分力在相邻区格腹板之间传递和平衡,而竖向分力则由加劲肋承担,为此,横向加劲肋应按轴心压杆计算其在腹板平面外的稳定,其轴力为cr w u s t h V N τ0-= (8)若中间横向加劲肋还承受固定集中荷载F ,则F t h V N cr w u s +-=τ0 (9)(3)支座加劲肋 支座加劲肋除承受梁支座反力R 外,还承受张力场斜拉力的水平分力H t 。
200)/(1)(h a t h V H cr w a t +-=τ (10)H t 的作用点可取为距上翼缘h 0/4处(图3a )。
图3 梁端构造为了增加抗弯能力,还应在梁外延的端部加设封头板。
可采用下列方法之一进行计算:①将封头板与支座加劲肋之间视为竖向压弯构件,简支于梁上下翼缘,计算其强度和稳定;②将支座加劲肋按承受支座反力R 的轴心压杆计算,封头板截面积则不小于)16/(30ef H h A t c =,式中e 为支座加劲肋与封头板的距离;f 为钢材强度设计值。
梁端构造还有另一方案:即缩小支座加劲肋和第一道中间加劲肋的距离a 1(图3b ),使范围内的8.0≤s λ,此种情况的支座加劲肋就不会受到H t 的作用。
二、型钢梁的设计型钢梁中应用最广泛的是工字钢和H 型钢。
型钢梁设计一般应满足强度、整体稳定和刚度的要求。
型钢梁腹板和翼缘的宽厚比都不太大,局部稳定常可得到保证,不需进行验算。
首先按抗弯强度(当梁的整体稳定有保证时)求出需要的截面模量)/(max f M W x nx γ= (11)由截面模量选择合适的型钢,然后验算其他项目。
由于型钢截面的翼缘和腹板厚度较大,不必验算局部稳定;端部无大的削弱时,也不必验算剪应力。
而局部压应力也只在有较大集中荷载或支座反力处才验算。
三、梁的拼接和连接1.梁的拼接梁的拼接分为工厂拼接和工地拼接两种。
由于钢材规格和现有钢材尺寸的限制,必须将钢材接长,这种拼接常在工厂中进行,称为工厂拼接。
由于运输或安装条件的限制,梁必须分段运输,然后在工地进行拼装连接,称为工地拼接。
型钢梁的拼接可采用对接焊缝连接(图4a ),但由于翼缘与腹板连接处不易焊透,故有时采用拼接板拼接(图4b )。
拼接位置均宜设在弯矩较小处。
图4 型钢梁的拼接焊接组合梁的工厂拼接,翼缘和腹板的拼接位置最好错开并用直对接焊缝相连。
腹板的拼接焊缝与横向加劲肋之间至少应相距10w t (图5)。
对接焊缝施焊时宜加引弧板,并采用一级或二级焊缝,这样焊缝可与主体金属等强。
图5 组合梁的工厂拼接梁的工地拼接应使翼缘和腹板基本上在同一截面处断开,以便分段运输。
高大的梁在工地施焊时应将上、下翼缘的拼接边缘均做成向上开口的V 形坡口,以便俯焊(图6)。
有时将翼缘和腹板的接头略为错开一些(图6b )。
图6 组合梁的工地拼接 图7 采用高强度螺栓的工地拼接 较重要或受动力荷载的大型梁,其工地拼接宜采用高强度螺栓(图7)。
当梁拼接处的对接焊缝采用三级焊缝时,应对受拉区翼缘焊缝进行验算。
对用拼接板的接头,应按下列规定的内力进行计算的内力进行计算:翼缘拼接板及其连接所承受的内力1N 为翼缘板的最大承载力f A N fn ⋅=1 (12)式中 fn A ——被拼接的翼缘板净截面积。
腹板拼接板及其连接,主要承受梁截面上的全部剪力V ,以及按刚度分配到腹板上的弯矩I I M M w w /⋅=,式中w I 为腹板截面惯性矩;I 为整个梁截面的惯性矩。
2.次梁与主梁的连接次梁与主梁的连接型式有叠接和平接两种。
叠接将次梁直接搁在主梁上面,用螺栓或焊缝连接,构造简单,但需要的结构高度大,其使用常受到限制。
图8a 是次梁为简支梁时与主梁连接的构造,而图8b 是次梁为连续梁时与主梁连接的构造示例。
如次梁截面较大时,应另采取构造措施防止支承处截面的扭转。
图8 次梁与主梁的叠接平接(图9)是使次梁顶面与主梁相平或略高、略低于主梁顶面,从侧面与主梁的加劲肋或在腹板上专没的短角钢或支托相连接。
图9a 、b 、c 是次梁为简支梁时与主梁连接的构造,图8d 是次梁为连续梁时与主梁连接的构造。
平接虽构造复杂,但可降低结构高度,在实际工程中应用较广泛。
图9 次梁与主梁的平接四、组合梁的设计1.截面选择组合梁截面应满足强度、整体稳定、局部稳定和刚度的要求。
设计组合梁时,首先需要初步估计梁的截面高度、腹板厚度和翼缘尺寸。
(1)梁的截面高度确定梁的截面高度应考虑建筑高度、刚度和经济三个方面的要求。
.建筑高度是指梁的底面到铺板顶面之间的高度,通常由生产工艺和使用要求决定。
确定了建筑高度也就确定了梁的最大高度m ax h 。
刚度要求确定了梁的最小高度m in h 。
刚度条件要求梁在全部荷载标准值作用下的挠度v 不大于容许挠度[]T v 。
梁的经济高度,梁用钢量最少的高度。
经验公式为)mm (30073-=x e W h (13)式中x W 的单位为mm 3, e h 的单位为mm 。
实际采用的梁高,应介于建筑高度和最小高度之间,并接近经济高度。
梁的腹板高度w h 可稍小于梁的高度,一般取腹板高度w h 为50mm 的倍数。
(2)腹板厚度腹板厚度应满足抗剪强度的要求。
初选截面时,可近似的假定最大剪应力为腹板平均剪应力的1.2倍,根据腹板的抗剪强度计算公式vw w f h V t m ax 2.1≥ (14) 由式(14)确定的w t 值往往偏小。
为了考虑局部稳定和构造等因素,腹板厚度一般用下列经验公式进行估算5.3ww h t = (15)式(15)中,w t 和w h 的单位均为mm 。
实际采用的腹板厚度应考虑钢板的现有规格,一般为2mm 的倍数。
对于非吊车梁,腹板厚度取值宜比式(15)的计算值略小;对考虑腹板屈曲后强度的梁,腹板厚度可更小,但腹板高厚比不宜超过250y f /235。
(3)翼缘尺寸图10 组合梁截面已知腹板尺寸,可求得需要的翼缘截面积f A 。
已知 2221212130h W h A h t I x f w x =⎪⎭⎫ ⎝⎛+= 由此得每个翼缘的面积2132161h h t h h W A w w x f -= 近似取01h h h ≈≈,则翼缘面积为061h t h W A w w x f -= (16) 翼缘板的宽度通常为1b =(1/6~l/2.5)h ,厚度t =f A /1b 。
翼缘板常用单层板做成,当厚度过大时,可采用双层板。
确定翼缘板的尺寸时,应注意满足局部稳定要求,使受压翼缘的外伸宽度b 与其厚度t之比b /t ≤15y f /235(弹性设计)或13y f /235(考虑塑性发展)。