超声波无损检测论文无损检测论文
超声波在无损检测中应用的研究与优化
超声波在无损检测中应用的研究与优化无损检测技术是指对物体表面以及内部进行检测而无需破坏它的完整性的技术。
自20世纪50年代无损检测技术的出现以来,它在航空、航天、汽车、电子、金属加工等诸多领域得到了广泛的应用。
其中,超声波技术是无损检测技术中的一种重要方法,可以有效地检测各种材料中的缺陷,而其优越的分辨率和灵敏度也是其重要的优势所在。
本文将对超声波在无损检测中的应用进行研究和优化探究。
一、超声波的原理与应用超声波是指频率超过20kHz的声波。
它的产生是利用声电转换原理,将电信号转换为机械振动,进而产生声波。
在物体的表面或内部存在缺陷时,声波会被反射、折射、散射等,其反射的强度与缺陷的性质、大小、形状等有关。
通过对超声波信号的检测和分析可以判断出被测物体的质量、缺陷情况等。
超声波在无损检测中应用广泛,特别是在金属、陶瓷、玻璃等硬质材料的检测中,因为这些材料的表面和内部缺陷不容易被直接观察到。
例如,如果需要检测金属材料内部的裂纹或气泡,就需要使用超声波技术。
此外,超声波技术还可以用于检测管道、水池、船舶等物体的腐蚀、损伤等问题。
二、超声波检测中的参数在超声波检测中,需要考虑的关键参数包括超声波的频率、波形、传播速度等。
其中,超声波的频率主要决定了其检测深度和分辨率。
通常情况下,频率越高,则探测的深度就越浅,分辨率就越高。
但是,高频率的超声波比低频率的超声波更容易被散射和吸收,从而影响其传播距离。
此外,超声波的波形也会影响其检测效果。
通常情况下,正弦波和方波是常用的超声波波形。
正弦波较为平稳,可以提供较好的分辨率和灵敏度,而方波则可以提供更好的穿透力和灵敏度。
因此,在实际检测中,可以选择适当的波形,以满足不同的需求。
此外,超声波的传播速度也需要考虑。
通常情况下,材料的密度和弹性常数等决定了其声速。
因此,在检测不同类型的材料时,需要根据其特性和声速来调整检测参数。
三、超声波检测中的优化在超声波检测中,优化是非常关键的环节。
超声波论文.
目录摘要 (1)ABSTRACT: (2)引言 (3)1、超声波 (4)1.1超声波检测的原理 (4)1.2超声波检测的应用 (6)2.超声波探伤 (7)2.1超声波探伤仪工作原理 (7)2.2超声波探伤可靠性的实现 (7)2.3超声波探伤稳定性的实现 (8)2.4A VG线图的应用 (10)2.5超声波探伤仪的发展简史 (12)3. 空气耦合式超声波检测 (15)3.1空气耦合式超声波检测技术的主要困难 (15)3.2空气耦合式超声波检测技术的发展概况 (16)3.3存在的主要问题 (17)3.4展望 (17)结束语 (18)参考文献 (19)致谢 (20)摘要超声波检测闻良科(浙江海洋学院数理与信息学院浙江舟山316000)[摘要]:超声波检测是指用超声波来检测材料和工件,并以超声波检测仪作为显示方式的一种无损检测方法。
选用超声波作为检测的原因是因为超声波声束能集中在特定的方向上,在介质中沿直线传播,具有良好的指向性。
其次,超声波在介质中传播过程中,会发生衰减和散射,且在异种介质的界面上将产生反射、折射和波型转换。
利用这些特性,可以获得从缺陷界面反射回来的反射波,从而达到探测缺陷的目的。
超声波在固体中的传输损失很小,探测深度大,由于超声波在异质界面上会发生反射、折射等现象,尤其是不能通过气体固体界面。
如果金属中有气孔、裂纹、分层等缺陷(缺陷中有气体)或夹杂,超声波传播到金属与缺陷的界面处时,就会全部或部分反射。
反射回来的超声波被探头接收,通过仪器内部的电路处理,在仪器的荧光屏上就会显示出不同高度和有一定间距的波形。
可以根据波形的变化特征判断缺陷在工件重的深度、位置和形状。
本文主要介绍超声波探伤技术原理、方法及其性能,并介绍超声波探伤仪的发展。
了解一种超声波检测技术空气耦合式超声波检测技术,了解它发展存在的问题困难以及发展概况。
[关键词]:超声波;超生波检测;超声波检测设备;超声波检测技术UITRASONIC TESTINGWen Liangke(School of Mathematics, Physics &Information Science, Zhejiang Ocean UniversityZhou Shan,316000)Abstract:Ultrasonic testing is the use of ultrasound to detect materials and artifacts, and display of ultrasonic detector as a non-destructive testing methods. Use of ultrasonic testing because ultrasonic beam can be focused on a specific direction, in the medium travels in straight lines, has a good directivity. Secondly, the ultrasonic propagation in the medium, the attenuation and scattering will occur, and the interface in heterogeneous media will produce reflection, refraction and wave-type conversion. With these features, defects can be obtained from the reflected waves reflected back interface, so as to achieve the purpose of detecting defects. The transmission of ultrasound in solids loss is very small, detection depth, the ultrasound will occur in heterogeneous interface reflection, refraction and other phenomena, especially not by the gas solid interface. If the metal in pores, cracks, delimitations and other defects (defects in the gas), or mixed, ultrasonic wave to the metal and the interface defects, they will all or part of the reflection. The reflected ultrasound received by the probe, through the instrument internal circuit processing, the screen in the instrument will show a different height and a certain distance of the waveform. Waveform variation can determine the depth of defects in the work piece weight, position and shape.This paper introduces the principle of ultrasonic testing techniques, methods and properties, and describes the development of ultrasonic flaw detector. Understanding of an ultrasonic detection of air-coupled ultrasonic inspection technology, understand its difficult problems in the development and the development of profiles.Key words: Ultrasonic testing; Ultrasonic testing equipment; ultrasonic wave; ultrasonic inspection technique引言超声波检测是指用超声波来检测材料和工件,并以超声波检测仪作为显示方式的一种无损检测方法。
金属管道超声波无损检测方法的研究
金属管道超声波无损检测方法的研究摘要:金属管理属于工业生产内的关键设备,通过定期检测管道,可确保管道生产的安全性。
传统检测方法多是在停产情况下开展检测,这类检测方式检测速度缓慢,检测流程复杂,虽说精度高,但无法满足新经济形态生产要求。
通过开展超声波无损检测应用,可在开展检测的同时,实现不停机操作。
通过检测设备,能够快速、精准的检测金属管道损伤,能够知晓测量材料的劣化度。
基于此。
本文开展超声波无损检测方式研究,分析其在金属管道检测内的应用价值,以供参考。
关键词:超声波;无损检测技术;金属管道引言:当前工业上应用较多的无损检测技术为超声波检测技术,其在实际应用中,可不破坏工件、原料,有效开展工件表面、内部检测,从而判断其是否符合质量标准,确保检测质量[1]。
结合超声波在工件超声波检测内出现的反射、折射、透射和散射等现象,以此来对工件中的缺陷进行检测和判定。
1超声波探伤的运行方式和操作技术在进行配件焊接质量检测期间,借助超声波原理,可通过设置不同频率声波,实现不同位置检测。
检测位置反弹回来的声波,通过接收不同振动信号声波,能够结合声学原理,精准判断附件结构,分析其是否存在质量问题。
在监测阶段,压电片会及时将超声波发出,在超声波作用下,附件自身结构缺陷会形成反射波,且在检测设备上,反射波以脉冲形式呈现。
此时,检验人员能够结合脉冲波形,及时确定附件位置与附件规格。
当前我国超声波开发与检测阶段,大致可划分为四大类型:第一,渗透法。
通过设备发出的脉冲波,形成持续性的传播信号,并将信号作用在附件上,贡工作人员结合能量(附件转换传播信号的产物)变化,可确定附件内的缺陷,并获取其缺陷规格,确定缺陷位置。
借助穿透法开展附件检测,在设备与附件上各放置1个探头,前者为信号发射设备,后者为信号接收设备[2]。
第二,脉冲反射法,工作人员通过发射波,可及时检测附件缺陷,整个检测过程开展基于缺陷回波法基础上开展,借助仪器设备快可及时获取相关信息。
基于超声波的无损检测技术研究
基于超声波的无损检测技术研究随着科技的不断发展,无损检测技术成为在制造、材料、航空等领域中不可或缺的技术手段之一。
超声波无损检测技术是其中的一种,它使用机械波在物质中传播的原理,对物质内部结构或缺陷进行探测。
本文就基于超声波的无损检测技术进行探究,包括其原理、应用以及现状和前景等方面。
【超声波无损检测技术的原理】超声波无损检测技术主要利用机械波在物质中传播与反射的原理进行检测。
超声波作为一种机械波,可以传播到物体内部,并反弹回来。
无论是物体内部的结构、缺陷、还是外部的表面状态,都会对超声波的反射和声波信号产生影响。
通过检测这些反射信号,可以确定物体的状态。
【超声波无损检测技术的应用】超声波无损检测技术广泛应用于制造业、航空航天、汽车工业、能源行业、建筑行业、医疗行业等领域。
下面简单介绍几个应用场景:一、航空航天领域:超声波无损检测技术在航空航天领域中的应用,主要是对飞机部件或其他机械结构的结构、缺陷等进行检测,以保证其性能和安全性。
二、汽车工业:超声波无损检测技术可以用来检测汽车零件的内部结构和缺陷情况,以提高汽车零件的品质和安全性。
比如,可以使用超声波无损检测技术来检测汽车发动机的缸体、缸盖等部件。
三、医疗领域:超声波无损检测技术在医疗领域中的应用非常广泛,主要用于对人体内部结构的检测和诊断。
比如,常见的超声产科检查就是利用超声波无损检测技术。
【超声波无损检测技术的现状和前景】在目前的工业和科技发展中,超声波无损检测技术已经广泛应用,而且针对各个领域的应用也在不断扩展和深入。
目前,各国在超声波无损检测技术研究方面都已经取得了一定的成果。
但是,同时也存在一些挑战和问题需要解决。
一方面,现有的超声波无损检测技术设备成本较高,需要精密的仪器和技术支持。
另一方面,当前的技术对于大型结构或者深部缺陷检测的能力还较弱。
不过,未来超声波无损检测技术的发展前景十分广阔。
随着技术的不断进步,超声波无损检测技术的设备将更加精细和高效,其在工业和医疗领域中的应用也将更加广泛。
无损探伤技术论文(2)
无损探伤技术论文(2)推荐文章2017无损探伤技术论文热度:无损探伤检测新技术论文范文热度:无损探伤检测技术论文热度:无损检测新技术论文热度:无损检测技术论文热度:无损探伤技术论文篇二无损探伤技术在船舶钢结构检测工艺中的应用摘要:随着船舶与海洋工程的不断发展,生产技术的不断提高,钢结构材料的检测水平也在日益提升,NDT无损探伤就是其中一种。
文章说明了NDT无损探伤检测的定义、NDT无损检测的目的以及NDT检测的一般方法及局限性。
关键词:NDT无损探伤;无损探伤技术;船舶检验;钢结构检测;船舶与海洋工程文献标识码:A中图分类号:U671 文章编号:1009-2374(2016)07-0048-02 DOI:10.13535/ki.11-4406/n.2016.07.025NDT在中国称为无损检测,在国际上称为非破坏性检查,即Non destructive testing。
从广义上讲,NDT检测涉及到工程技术以及科研领域。
从狭义上讲,NDT即是利用电、磁、声、光等的特性,在不损坏或者不影响被检查对象使用性能的前提下,对被检测物体进行物理性测定或材料质量检验的一门综合性技术科学。
其主要内容是寻找材料的缺陷,并明确地对缺陷进行定位、定量、定性,进而对材料或构件进行评价或者对在役设备进行动态的安全监控,这是检查的范畴;还可以对材料的温度、应力、硬度等物理性能和机械性能进行测定和试验,这是检测的范畴。
1 NDT无损探伤的定义及目的1.1 NDT无损探伤的定义在不损坏试件的情况下,以物理或化学为手段,借助先进的技术和设备器材,对试件的内部及表面结构、性质、状态进行检查和测试的方法。
1.2 NDT无损探伤的目的先进和完备的无损检测技术,是设备安全运行和保障产品质量以及提高经济效益的重要手段,因此NDT的目的主要有以下四点:1.2.1 检测性的目的。
根据有关质量验收标准,对产品进行检验,以控制产品的质量,确保产品使用的安全性和可靠性。
无损检测方案范文
无损检测方案范文无损检测是指在不破坏被检测材料完整性的前提下,通过对材料内部结构和性能进行检测,以提供材料的质量和可靠性信息。
无损检测的主要优势在于能够检测到隐藏在材料内部的缺陷,并对这些缺陷进行定性和定量分析,从而为材料的使用和维护提供依据。
下面将介绍一种无损检测方案。
该方案采用超声波无损检测技术。
超声波无损检测是利用超声波在材料中传播的特性,通过对超声波的发射和接收进行分析,来识别材料内的缺陷。
该技术的优点在于具有高灵敏度、高分辨率和定量测量等特点。
首先,进行超声波发射。
将超声波传感器放置在被检测材料的表面,并通过发生器产生一定频率和幅度的超声波。
超声波以固定的速度在材料中传播,当遇到材料内部的缺陷时,部分超声波将被反射或散射。
被检测材料可以是固体、液体或气体,但对于液体和气体材料,需要采用不同的传感器和技术。
然后,进行超声波接收和分析。
将超声波传感器重新放置在被检测材料表面,接收从缺陷处反射回来的超声波信号。
通过对接收信号的幅度、频率和相位等进行分析,可以判断材料中的缺陷类型、位置和大小。
此外,还可以通过接收信号的强度和时间来评估材料的完整性和疲劳程度。
最后,进行结果解读和报告生成。
根据接收信号的分析结果,对缺陷进行定性和定量评估,并生成相应的报告。
报告中应包括材料的基本信息、缺陷的类型、位置和大小、缺陷对材料性能的影响,以及建议的修复措施。
根据具体需求,报告的形式可以是文字描述、图表展示或视频展示等。
该方案中还可以结合其他无损检测技术,如磁粉检测、涡流检测和热波检测等,以提高对被检测材料的全面性和准确性。
此外,还可以根据被检测材料的特点和要求,选择合适的超声波频率和传感器,以及优化检测参数,以实现更准确和高效的无损检测。
总的来说,超声波无损检测方案是一种常用且有效的无损检测方法,可以应用于各种材料的检测和评估工作。
通过合理设计方案,并结合其他相关技术,可以实现对材料内部缺陷的快速、准确和可靠的检测。
无损检测论文
无损检测技术的原理及应用摘要:本文介绍了当前无损检测技术,包括射线、超声、渗透等常规技术和声发射、磁记忆等新技术.并论述它们的工作原理、优缺点和应用范围关键词:无损检测;新技术1 概述随着现代工业的发展,对产品质量和结构安全性,使用可靠性提出越来越高的要求,由于无损检测技术具有不破坏试件,检测灵敏度高等优点,所以其应用日益广泛。
本文主要介绍无损检测的常用技术如射线、超声、磁粉和渗透及新技术如声发射、磁记忆等。
2 无损检测方法现代无损检测的定义是:在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部及表面的结构,性质,状态进行检查和测试的方法。
2.1射线检测射线检测技术一般用于检测焊缝和铸件中存在的气孔、密集气孔、夹渣和未融合、未焊透等缺陷。
射线检测不适用于锻件、管材、棒材的检测。
射线检测方法可获得缺陷的直观图像,对长度、宽度尺寸的定最也比较准确,检测结果有直观纪录,可以长期保存。
但该方法对体积型缺陷(气孔、夹渣)检出率高,对体积型缺陷(如裂纹未熔合类),如果照相角度不适当,容易漏检。
另外该方法不适宜较厚的工件,且检测成本高、速度慢,同时对人体有害,需做特殊防护。
2.2超声波检测超声检测是利用超声波在介质中传播时产生衰减,遇到界面产生反射的性质来检测缺陷的无损检测方法。
与其它常规无损检测技术相比,它具有被测对象范围广;检测深度大;缺陷定位准确,检测灵敏度高;成本低,使用方便;速度快,对人体无害以及便于现场使用等特点。
目前大量应用于金属材料和构件质量在线监控和产品的在投检查。
如钢板、管道、焊鞋、堆焊层、复合层、压力容器及高压管道、路轨和机车车辆零部件、棱元件及集成电路引线的检测等。
2.3渗透检测渗透检测是基于毛细管现象揭示非多孔性固体材料表面开口缺陷,其方法是将液体渗透液渗人工件表面开口缺陷中,用去除剂清除多余渗透液后,用显像剂表示出缺陷。
渗透检测可有效用于除疏松多孑L性材料外的任何种类的材料,如钢铁材料、有色金属材料、陶瓷材料和塑料等材料的表面开口缺陷。
无损检测论文
无损检测技术的原理及应用摘要:本文介绍了当前无损检测技术,包括射线、超声、渗透等常规技术和声发射、磁记忆等新技术.并论述它们的工作原理、优缺点和应用范围关键词:无损检测;新技术1 概述随着现代工业的发展,对产品质量和结构安全性,使用可靠性提出越来越高的要求,由于无损检测技术具有不破坏试件,检测灵敏度高等优点,所以其应用日益广泛。
本文主要介绍无损检测的常用技术如射线、超声、磁粉和渗透及新技术如声发射、磁记忆等。
2 无损检测方法现代无损检测的定义是:在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部及表面的结构,性质,状态进行检查和测试的方法。
2.1射线检测射线检测技术一般用于检测焊缝和铸件中存在的气孔、密集气孔、夹渣和未融合、未焊透等缺陷。
射线检测不适用于锻件、管材、棒材的检测。
射线检测方法可获得缺陷的直观图像,对长度、宽度尺寸的定最也比较准确,检测结果有直观纪录,可以长期保存。
但该方法对体积型缺陷(气孔、夹渣)检出率高,对体积型缺陷(如裂纹未熔合类),如果照相角度不适当,容易漏检。
另外该方法不适宜较厚的工件,且检测成本高、速度慢,同时对人体有害,需做特殊防护。
2.2超声波检测超声检测是利用超声波在介质中传播时产生衰减,遇到界面产生反射的性质来检测缺陷的无损检测方法。
与其它常规无损检测技术相比,它具有被测对象范围广;检测深度大;缺陷定位准确,检测灵敏度高;成本低,使用方便;速度快,对人体无害以及便于现场使用等特点。
目前大量应用于金属材料和构件质量在线监控和产品的在投检查。
如钢板、管道、焊鞋、堆焊层、复合层、压力容器及高压管道、路轨和机车车辆零部件、棱元件及集成电路引线的检测等。
2.3渗透检测渗透检测(PenetrantTest, )是基于毛细管现象揭示非多孔性固体材料表面开口缺陷,其方法是将液体渗透液渗人工件表面开口缺陷中,用去除剂清除多余渗透液后,用显像剂表示出缺陷。
焊接超声波无损检测结课论文
焊接超声波探伤摘要:本毕业设计的课题是板材焊缝超声波探伤测试。
主要任务是在掌握过程设备制造流程和焊接缺陷及其产生原因的基础上,研究超声波探伤技术在钢制压力容器对接焊接接头探伤检测中的应用,并给出焊缝返修的具体方案。
本文详述了国内外超声检测技术的发展和现状,并在简述过程设备制造、焊接及无损探伤的基础上详细介绍了超声波探伤技术及其在焊缝无损探伤中的应用及评定等级和注意事项。
针对给定的板材焊缝,通过实验检测该焊缝的缺陷,本文详细介绍了试块选用,设备调试,现场探伤中的常见问题及解决方法。
同时给出了现场探伤、缺陷定位和长度测量的具体方法,并通过GB11345-89标准对试验中检测到的缺陷进行了等级评定并得出了检测工艺卡。
关键词:焊缝;超声波探伤;缺陷评定过程设备是各个工业部门不可缺少的重要生产设备,用于供热、供电和储存各种工业原料及产品,完成工业生产过程必需的各种物理过程和化学反应。
因此它成为石油、化工、电站、核能和军工等工业部门的重要生产装备。
其制造工艺以焊接为主,质量要求比较高。
焊缝质量直接决定着压力容器的使用安全和使用寿命,因此在制造和使用过程中的焊缝检测显得尤为重要。
因此,迫切需要寻找一种高效、经济、简便可行的无损检测技术及缺陷评定方法。
无损检测技术主要包括射线探伤、超声波探伤、磁粉探伤、渗透探伤、声发射等方法其中超声波探伤和射线探伤是检测压力容器焊缝内部缺陷的主要手段。
超声波探伤以其探伤距离大、探伤装置体积小、重量轻、便于携带、检测速度快、检测费用低等优势,在过程设备制造和在役检测工作中得到越来越多的应用。
由于历史的原因,在用过程设备的检验、检测及缺陷评定仍存在很大的问题。
具体表现在:①在役过程设备(其中包括国外进口设备)由于设计、制造与安装等所采用的标准不统一,其检验、检测要求难以统一,制造质量难以保证,给设备的维护和在用管理带来很大难度。
②过去对过程设备的验收管理不严,导致了现今在役设备焊缝中存着大量超标缺陷。
超声检测论文
超声检测论文姓名:学号:指导老师:超声检测论文摘要:超声检测是指用超声波来检测材料和工件、并以超声检测仪作为显示方式的一种无损检测方法。
超声检测是利用超声波的众多特性(如反射和衍射),通过观察显示在超声检测仪上的有关超声波在被检材料或工件中发生的传播变化,来判定被检材料和工件的内部和表面是否存在缺陷,从而在不破坏或不损害被检材料和工件的情况下,评估其质量和使用价值。
超声检测-原理超声检测---超声波频率超声波是频率高于20千赫的机械波。
在超声探伤中常用的频率为0.5-5兆赫。
这种机械波在材料中能以一定的速度和方向传播,遇到声阻抗不同的异质界面(如缺陷或被测物件的底面等)就会产生反射。
这种反射现象可被用来进行超声波探伤,最常用的是脉冲回波探伤法探伤时,脉冲振荡器发出的电压加在探头上(用压电陶瓷或石英晶片制成的探测元件),探头发出的超声波脉冲通过声耦合介质(如机油或水等)进入材料并在其中传播,遇到缺陷后,部分反射能量沿原途径返回探头,探头又将其转变为电脉冲,经仪器放大而显示在示波管的荧光屏上。
根据缺陷反射波在荧光屏上的位置和幅度(与参考试块中人工缺陷的反射波幅度作比较),即可测定缺陷的位置和大致尺寸。
除回波法外,还有用另一探头在工件另一侧接受信号的穿透法。
利用超声法检测材料的物理特性时,还经常利用超声波在工件中的声速、衰减和共振等特性。
超声波是频率大于20 kHz 的一种机械波(相对于频率范围在20 Hz - 20 kHz 的声波而言)。
超声检测用的超声波,其频率范围一般在0.25 MHz -15 MHz 之间。
用于金属材料超声检测的超声波,其频率范围通常在0.5 MHz - 10 MHz 之间;而用于普通钢铁材料超声检测的超声波,其频率范围通常为 1 MHz - 5 MHz。
超声波具有众多与众不同的特性,如:声束指向性好(能量集中);声压声强大(能量高),传播距离远;穿透能力强;在界面处会产生反射、透射(或折射)和波型转换,以及产生衍射等。
无损检测论文
无损检测导论论文题目:超声波检测技术的应用及设备系院:专业:学生姓名:指导教师:年月日摘要超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测;超声波检测应用主要包括在工业上对各种材料的检测和在医疗上对人体的检测诊断,通过它人们可以探测出金属等工业材料中有没有气泡、伤痕、裂缝等缺陷,可以检测出人们身体的软组织、血流等是否正常;运用超声检测的方法来检测的仪器称之为超声波探伤仪;它的原理是:超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测;超声检测方法通常有穿透法、脉冲反射法、串列法等;关键词:超声波检测的原理超声波检测的应用超声波检测仪器及原理1 超声波检测原理超声波检测的基本原理超声波在均匀连续弹性介质中传播时,将产生极少能量损失;但当材料中存在着晶界、缺陷等不连续阻隔时,将产生反射、折射、散射、绕射和衰减等现象,从而损失比较多的能量,使我们由接收换能器上接收的超声波信号的声时、振幅、波形或频率发生了相应的变化,测定这些变化就可以判定建筑材料的某些方面的性质和结构内部构造的情况达到测试的目的;当超声遇到缺陷面时,反射回波幅度会异常增大,根据反射幅度、延迟和相位等就可以判断缺陷的位置、面积和形状;超声波检测方法利用超声波探伤,主要有穿透法探伤和反射法探伤两种方式;穿透法探伤使用两个探头,一个用来发射超声波,一个用来接收超声波;检测时,两个探头分置在工件两侧,根据超声波穿透工件后能量的变化来判别工件内部质量;反射法探伤高频发生器产生的高频脉冲激励信号作用在探头上,所产生的波向工件内部传播,如工件内部存在缺陷,波的一部分作为缺陷波被反射回来,发射波的其余部分作为底波也将反射回来;根据发射波、缺陷波、底波相对于扫描基线的位置可确定缺陷位置;根据缺陷波的幅度可确定缺陷的大小;根据缺陷波的形状可分析缺陷的性质;如工件内部无缺陷,则只有发射波和底波;超声波的接收和产生原理相似,当超声波遇到不连续性时,即会产生反射,反射的超声波使压电晶片振动,继而在压电晶片两端产生电压;最主要是如何将电脉冲转化为探伤仪屏幕上的波形,模拟机是通过显像管显示的;显像管的图像是电子打在荧光物质上,使荧光物质发光;电子经过一个电场而改变方向,打在屏幕的不同位置,使屏幕显现图像;显像管x方向上的电压是探伤仪加在压电晶片上的电压,y方向的电压是压电晶片振动产生的电压,这样就形成了屏幕上的波形;在工业超声波检测中,超声波的反射特性主要用于探测材料中的缺陷;以最常用的A型显示测超声脉冲反射法探测为例:超声波探伤仪中高频脉冲电路产生的高频脉冲振荡电流施加超声换能器中的压电元件上,激发出超声波并传入被检工件;超声波在被检工件中传播时,若在声路上遇到缺陷;将会在界面上产生反射,反射回波被探头接收转换成高频脉冲电信号输入超声波探伤仪的接收放大电路,经过处理后在超声波探伤仪的显示屏上显示出与回波声压大小成正比的回波波形,根据显示的回波幅度大小可以评估缺陷大小,显示屏上的水平扫描线可以调整为与超声波在该介质中的传播时间成正比,然后就可以根据回波在显示屏水平扫描线上的位置来判定缺陷在工件中的位置;利用工件底面回波在水平扫描线上的位置,还可以用于测定工件厚度;2 超声检测的应用基于超声波速度特性的超声检测应用同一波形的超声波在不同的材料中有不同的传播的速度,而在同一材料中,不同波形的超声波也有不同的传播速度;当材料的成分、显微组织、密度、内含物的比例、浓度、聚合物转化率、强度、温度、压强、速度等存在差异或发生变化时,期声速也将出现差异;利用专门的声速测定仪或利用普通的超声脉冲反射型探伤仪或测厚仪,将未知声速的材料与已知声速的标准试样比较,从而可以测出材料的声速或者声速变化;可以用于:1、材料物理常数的测定2、测量温度3、测量流量4、测量液体的黏度5、测量应力6、测量硬度7、测定金属表面裂纹的深度8、测量厚度利用超声波的速度特性,还可以应用于混凝土强度检测、球墨铸铁的强度及石墨球化度的测量、确定陶土坯的湿度以确定进窑焙烧的时机、气体介质的特性分析,以及测量石油馏分的密度、氯丁橡胶乳液的密度等等;基于超声波谐振特性的超声检测应用超声波是一种机械振动波,利用超声波谐振仪把频率可调的超声波垂直入射到被检工件中,当超声波与工件的固有频率发生频率共振时,相向传播的入射波与反射波互相叠加形成驻波;利用这种谐振特性,可以应用于:测厚检测缺陷超声波谐振特性的一个典型应用时超声硬度计,它是借助超声传感器杆谐振频率的变化来测量硬度的,主要用于测定金属的洛氏硬度;超声硬度测量的优点时对试件表面破坏小、测量速度快、操作程序简单,特别适合成品工件百分之百检验,并且可以手握测头直接对工件检测,特别适合于不易移动的大型工件、不易拆卸的部件进行测量;超声波相控阵检测技术的应用超声波相控阵检测技术是一种新型的特殊超声波检测技术,类似相控阵雷达、声呐等其他波动物理学的原理,但是超声波具有波长较短,模式变化,以及更多复杂成分的特性,在材料无损评价领域获得越来越多的应用;工业超声波相控阵检测时,高频声束遵循超声波在材料中的传播规律通过被检测材料并能在屏幕上显示材料内部结构的回波图像,能比常规超声波检测获得更多的信息,不仅可以探测缺陷,而且在检测诸如压力容器和管路的腐蚀和绘制腐蚀图等方面也有其独特的功效;在航空领域可以应用于:可用于老龄飞机的相控阵超声波检测相控阵超声检测无需声透镜便可使声束聚焦,可以灵活而有效地控制声束和聚焦点的位置,实现复杂结构件和盲区位置缺陷的精确检测,并可以通过优化控制焦点尺寸和卢束方向,能使分辨率、信噪比、缺陷检出率等性能得到提高满足了老龄飞机检测可靠性的要求;可用于新机新材料的无损检测各种新型飞机都大量使用新材料.特别是钛合金材料;钛合金由于内部缺陷检测能力的高要求,在各种无损检测技术方案中.超声波方法是唯一能够满足应用需求的手段;钛合金材料具有较高的声衰减;为大尺寸工件的超声波检测带来了困难,常规超声波技术的相应解决方案是采用宽频带窄脉冲和聚焦探头技术.但仍然存在检测灵敏度和超卢波穿透能力之间进行折中取舍的困难.甚至于不能保证工件整体范围的足够检测灵敏度;即使检测对象是小尺寸棒材.在选择检测技术的时候仍然需要根据不同缺陷的取向和方位选择相应声学特性和指向特性的多个探头组合,检测工艺复杂化,同时增加了不可靠因素;相控阵技术针对以上问题解决了技术细节中存在的矛盾.提供了有效的解决途径;使用相控阵技术可以实现理想的声束聚焦;采用同样的脉冲电压驱动每个阵列单元.聚焦区域的实际声场强度远大于常规的超声波技术.从而对于相同声衰减特性的材料可以使用较高的检测频率;3 超声波检测设备超声波检测设备与器材包括超声波检测仪、探头、试块、耦合剂和机械扫描装置等;超声波检测仪和探头是超声波检测的关键设备,其性能的好坏影响超声波检测的检测灵敏度和定位定量精度;超声波检测试块和耦合剂是超声波检测的重要器材,试块类型和反射体的性质对超声波检测灵敏度和缺陷评定具有重要意义,耦合剂的类型和性能对超声波检测灵敏度和缺陷评定也有重要影响;超声波检测仪的分类按超声波的连续性可分为:脉冲波探伤仪:仪器通过向探头的压电晶片周期性地发射持续时间很短的电脉冲,激励探头中压电晶片发生振动产生超声波,超声波在工件中传播,并在边界上产生反射和折射,探头的压电晶片接收从工件中反射回来的超声波并转变为电信号,仪器对这些电信号进行处理并以一定的方式显示出来,从而根据反射波在工件中的传播时间确定缺陷的位置,根据反射波的幅度判断缺陷的大小;连续波探伤仪:仪器通过探头向工件中发射连续且频率不变或在小范围内周期性变化的超声波,根据透过工件的超声波强度变化判断工件中有无缺陷和缺陷大小;调频波探伤仪:仪器通过探头向工件中发射连续的频率周期性变化的超声波,根据发射波与反射波的差频变化情况判断工件中有无缺陷;按缺陷显示方式可分为:A型显示探伤仪:A型显示是一种波型显示,探伤仪荧光屏的横坐标代表声波的传播时间如果超声波在均匀介质中传播,则声速是恒定的,则传播时间可以转变为传播距离,纵坐标代表反射波的幅度,由反射波的位置可以确定缺陷的位置,反射波的幅度可以估算缺陷的大小;B型显示探伤仪:B型显示是一种图象显示,探伤仪荧光屏的横坐标是靠机械扫描来代表探头的扫查轨迹,纵坐标是靠电子扫描来代表声波的传播时间或距离,因而可以直观地显示出被探工件任一纵截面上缺陷的分布及缺陷的深度;C型显示探伤仪:C型显示也是一种图象显示,探伤仪荧光屏的横坐标和纵坐标都是靠机械扫描来代表探头在工件表面的位置,探头接收信号幅度以光点辉度表示,因而探头的工件表面移动时,荧光屏上便显示出工件内部缺陷的平面图象,但不能显示缺陷的深度;超声波探伤仪的工作原理同步电路产生的触发脉冲同时加至扫描电路和发射电路,扫描电路受触发开始工作,产生锯齿波扫描电压,加至示波管水平偏转板上,使电子束发生水平偏转,在荧光屏上产生一条水平扫描线;同时,发射电路受触发产生高频脉冲,施加至探头,激励压电晶片振动,产生超声波,超声波通过透声介质进入被检工件,超声波在工件中传播,遇到边界产生反射,返回到探头,又被压电晶片转变为电信号,经接收电路放大和检波,加到示波管垂直偏转板上,使电子束发生垂直偏转,在水平扫描线的相应位置上产生缺陷回波和底波;。
超声波探伤 测定论文
超声波探伤测定实验研究姓名(学校,专业,学号)摘要:本实验是板材焊缝超声波探伤测试。
主要任务是在掌握过程设备制造流程和焊接缺陷及其产生原因的基础上,研究超声波探伤技术在钢制压力容器对接焊接接头探伤检测中的应用。
本文详述了国内外超声检测技术的发展和现状,并在简述过程设备制造、焊接及无损探伤的基础上详细介绍了超声波探伤技术及其在焊缝无损探伤中的应用。
关键词:焊缝;超声波探伤;无损探伤;焊接接头。
1引言:过程设备是各个工业部门不可缺少的重要生产设备,用于供热、供电和储存各种工业原料及产品,完成工业生产过程必需的各种物理过程和化学反应。
因此它成为石油、化工、电站、核能和军工等工业部门的重要生产装备。
其制造工艺以焊接为主,质量要求比较高。
焊缝质量直接决定着压力容器的使用安全和使用寿命,因此在制造和使用过程中的焊缝检测显得尤为重要。
因此,迫切需要寻找一种高效、经济、简便可行的无损检测技术及缺陷评定方法。
无损检测技术主要包括射线探伤、超声波探伤、磁粉探伤、渗透探伤、声发射等方法其中超声波探伤和射线探伤是检测压力容器焊缝内部缺陷的主要手段。
超声波探伤以其探伤距离大、探伤装置体积小、重量轻、便于携带、检测速度快、检测费用低等优势,在过程设备制造和在役检测工作中得到越来越多的应用。
1.1国际超声检测技术的发展历程和现状:无损检测技术历经一个世纪,尽管无损检测技术本身并非一种生产技术,但其技术水平却能反映该部门、该行业、该地区甚至该国的工业技术水平。
超声无损检测技术(UT)作为四大常规检测技术之一,由于其与其它常规无损检测技术相比,它具有被测对象范围广,检测深度大;缺陷定位准确,检测灵敏度高;成本低,使用方便,速度快,对人体无害以及便于现场使用等特点,因而世界各国都对超声无损检测给予了高度的重视。
目前,国外工业发达国家的无损检测技术已逐步从NDI和NDT向NDE 过渡。
无损探伤(NDI)、无损检测(NDT)和无损评价(NDE)是无损检测发展的三个阶段。
超声波检测论文超声波无损检测论文
超声波检测论文超声波无损检测论文超声波检测技术在公路桥梁桩基检测中的应用分析摘要:本文结合工程实例,简要介绍了超声波法的原理及影响基桩质量检测波形的因素,通过具体的检测工作,对超声波检测技术在工程上的应用进行分析探讨,可供同类工程技术人员参考。
关键词:桩基础;检测技术;超声波;公路桥梁工程1.前言随着我国交通事业的发展,桩基已成为一种重要的基础形式应用到交通基础建设中,它决定着整个工程的基本质量。
目前混凝土钻(冲)孔灌注桩是桥梁施工结构的主要形式,这主要是由于桩能将上部结构的荷载传递到深层稳定的土层中去,从而大大减少基础沉降和建筑物的不均匀沉降,具有抗震性能好,承载力高,施工噪音小等特点,是一种极为有效,安全可靠的基础形式。
由于桩基是典型的地下隐蔽结构物,由基桩缺陷引起的工程问题时有发生,很容易出现缩径、断裂、夹泥、沉渣、扩径等质量问题。
对施工后的基桩进行质量检测,对于及时发现问题、采取必要的工程措施有相当的重要意义。
2.超声法概述超声法检测桩的混凝土质量是上世纪九十年代发展起来的一种新的检测方法。
具有以下优点:1)检测细致,结果准确可靠。
2)不受桩长、桩径限制。
3)无盲区。
声测管埋到的部位都可检测,包括桩顶低强区和桩底沉渣厚度。
4)桩顶露出地面即可检测,方便施工。
因此,虽然需预埋声测管,材料费用较高,但仍然得到广泛采用。
3.检测参数3.1声速。
声速即超声波在混凝土中传播的速度,它是混凝土超声波检测中一个主要的参数,与混凝土的弹性性质及混凝土的内部结构组成有关。
弹性模量越高、内部越密,其声速就越高。
3.2波幅。
接收波波幅通常指首波,反映了接收到声波的强弱,它与混凝土的粘塑性能有关。
在发出的超声波情况下,波幅的大小反映了超声波在混凝土中衰减的情况,即在一定程度上反映了混凝土的强度。
对于内部有缺陷或裂缝的混凝土,由于缺陷、裂缝使超声波反射或绕射,波幅也将明显变化。
3.3频率。
超声检测中,电脉冲激发出的声脉冲信号是复频超声脉冲波,在混凝土内传播过程中,其中的高频成分首先衰减,而下降的多少除与传播距离有关外,主要取决于混凝土本身的质量和内部是否存在缺陷。
超声波检测技术论文
超声波检测技术论文超声波检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,这是店铺为大家整理的超声波检测技术论文,仅供参考!超声波检测技术论文篇一关于超声波无损检测技术的应用研究摘要:超声波无损检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,从而获取物品的性质和特征对其进行检测。
超声波无损检测技术通过结合高科技的技术来完成检测的过程,检测的结果真实可靠,可以体现出超声波无损检测技术的应用性,同时超声波无损检测技术在检测时,也存在一些缺点。
关键词:超声波无损检测;脉冲反射式技术;检测技术中图分类号:P631 文献标识码:A 文章编号:1009-2374(2014)05-0029-02超声波无损检测技术在检测的过程中,会使用到很多的技术,这些技术既满足了检测的需要,又能有效的解决检测中出现的问题。
经过技术人员的不断探索,通过人工神经网络的技术来减少检测的缺陷,并实现了降低噪音的效果,满足了超声波无损检测的更高要求。
在检测的过程中,要合理科学的利用技术手法,来提高检测结果的准确性。
1 超声波无损检测技术的发展趋势和主要功能1.1 超声波无损检测技术的发展趋势在超声波无损检测技术应用的过程中,需要很多理论知识的支持,检测时也对检测的方法和工艺流程有严格的要求,这些规范的检测方式使超声波无损检测的结果可以更准确。
发现检测缺陷时,技术人员应用非接触方式的检测技术,运用激光超声来提高检测的效果,所以未来超声波无损检测技术一定会向着自动化操作的水平去发展。
自动化的检测方法可以简化检测工作,实现专业检测的目标,扩大超声波无损检测技术应用的范围,同时随着超声技术的应用,在检测的过程中,也会实现数字化检测的目标,利用超声信号来处理技术的应用,使检测技术可以实现统一使用的要求,同时数字化操作的检测过程也会提高检测的准确性,有利于检测技术的发展。
所以超声波无损检测技术将会实现全面的现代化操作要求,利用现代化科学技术的发展,来规范超声波无损检测的检测行为,也具备了处理缺陷的功能,提高了检测的效率。
【2019年整理】超声波检测论文超声波无损检测论文
超声波检测论文超声波无损检测论文超声波检测技术在公路桥梁桩基检测中的应用分析摘要:本文结合工程实例,简要介绍了超声波法的原理及影响基桩质量检测波形的因素,通过具体的检测工作,对超声波检测技术在工程上的应用进行分析探讨,可供同类工程技术人员参考。
关键词:桩基础;检测技术;超声波;公路桥梁工程1.前言随着我国交通事业的发展,桩基已成为一种重要的基础形式应用到交通基础建设中,它决定着整个工程的基本质量。
目前混凝土钻(冲)孔灌注桩是桥梁施工结构的主要形式,这主要是由于桩能将上部结构的荷载传递到深层稳定的土层中去,从而大大减少基础沉降和建筑物的不均匀沉降,具有抗震性能好,承载力高,施工噪音小等特点,是一种极为有效,安全可靠的基础形式。
由于桩基是典型的地下隐蔽结构物,由基桩缺陷引起的工程问题时有发生,很容易出现缩径、断裂、夹泥、沉渣、扩径等质量问题。
对施工后的基桩进行质量检测,对于及时发现问题、采取必要的工程措施有相当的重要意义。
2.超声法概述超声法检测桩的混凝土质量是上世纪九十年代发展起来的一种新的检测方法。
具有以下优点:1)检测细致,结果准确可靠。
2)不受桩长、桩径限制。
3)无盲区。
声测管埋到的部位都可检测,包括桩顶低强区和桩底沉渣厚度。
4)桩顶露出地面即可检测,方便施工。
因此,虽然需预埋声测管,材料费用较高,但仍然得到广泛采用。
3.检测参数3.1声速。
声速即超声波在混凝土中传播的速度,它是混凝土超声波检测中一个主要的参数,与混凝土的弹性性质及混凝土的内部结构组成有关。
弹性模量越高、内部越密,其声速就越高。
3.2波幅。
接收波波幅通常指首波,反映了接收到声波的强弱,它与混凝土的粘塑性能有关。
在发出的超声波情况下,波幅的大小反映了超声波在混凝土中衰减的情况,即在一定程度上反映了混凝土的强度。
对于内部有缺陷或裂缝的混凝土,由于缺陷、裂缝使超声波反射或绕射,波幅也将明显变化。
3.3频率。
超声检测中,电脉冲激发出的声脉冲信号是复频超声脉冲波,在混凝土内传播过程中,其中的高频成分首先衰减,而下降的多少除与传播距离有关外,主要取决于混凝土本身的质量和内部是否存在缺陷。
超声波无损检测范文
超声波无损检测范文超声波无损检测(Ultrasonic Nondestructive Testing,简称UT)是一种基于超声波传播和反射原理的无损检测方法。
它利用超声波高频振动的特性,通过探头向被测物体中发送超声波脉冲,然后接收并分析被测物体中超声波的反射、折射和散射情况,以检测缺陷和评估材料的质量。
超声波无损检测具有以下特点:首先,它是一种非接触式的检测方法,无需直接接触被测物体即可进行检测,减少了可能对被测物体造成的二次伤害。
其次,它可以实现全面的检测覆盖,即使被测物体表面存在涂层或是完全密封,也不会影响超声波的传播和反射,从而实现对整个物体的无损检测。
此外,超声波无损检测对于不同类型的材料都具有广泛应用性,在金属、塑料、玻璃等各类物体的检测中都有较高的检测准确性。
超声波无损检测的主要原理是利用超声波在不同介质中的传播速度差异来检测缺陷。
当超声波传播到介质中发生混响或是遇到缺陷时,部分能量会被反射回来,形成回波。
通过接收并分析回波的特征,可以确定被测物体中的缺陷位置、形态、尺寸和性质。
为了实现超声波无损检测,首先需要使用超声波发射探头将超声波能量传递到被测物体中。
常用的探头有压电式探头和脉冲式探头。
其中,压电式探头将电能转化为超声波能量,通过压电效应产生超声波信号;脉冲式探头则通过电能脉冲的方式产生超声波信号。
接收方面,超声波无损检测一般采用吸收式探头进行信号接收。
当超声波传播到被测物体的界面或缺陷处时,部分能量会被反射回来,形成回波信号。
探头通过吸收反射信号,并将其转化为电能信号,再由检测仪器进行信号放大、滤波和处理。
在超声波无损检测中,由于不同材料的声波传播特性不同,需要根据被测物体的性质选择合适的检测参数。
常见的检测参数包括超声波频率、探头的尺寸和形状、检测角度和检测距离等。
通过调整这些参数,可以实现对不同材料和不同缺陷的高效无损检测。
超声波无损检测在许多领域中得到了广泛应用。
在工业领域,它常用于金属制品的质量检测,如焊接接头、压力容器和管道连接处的裂纹检测;在医学领域,它常用于检测人体内部器官和组织的缺陷,如肿瘤和血管的异常情况。
超声波探伤论文 (2)
哈尔滨工程大学超声波无损探伤实验S311020083时文第一章探伤仪器简介1.1 TUD360探伤仪器TUD360超声波探伤仪是一种便携式无损探伤仪器,它能够快速便捷、无损伤、精确地进行工件内部多种缺陷(裂纹、夹杂、气孔等)的检测、定位、评估和诊断。
它广泛地应用在制造业、钢铁冶金业、金属加工业、化工业等需要缺陷检测和质量控制的领域,也广泛应用于航空航天、铁路交通、锅炉压力容器等领域的在役安全检查与寿命评估。
超声波探伤仪是超声波探伤的主体设备,它的作用是产生点振荡并加于换能器上,激励探头发射超声波,同时将探头送回的电信号进行放大,通过一定的方式显示出来,从而得到被探工件内部有无缺陷及缺陷位置和大小等信息。
脉冲反射式超声波法同其他无损检验方法相比,主要优点是:①穿透能力强,探测深度可达数米;②灵敏度高,可发现与直径约十分之几毫米的空气隙反射能力相当的反射体;③在确定内部反射体的位向、大小、形状及性质等方面较为准确;④仅须从一面接近被检验的物体;⑤可立即提供缺陷检验结果;⑥操作安全,设备轻便。
主要缺点是:①要由有经验的人员谨慎操作;②对粗糙、形状不规则、小、薄或非均质材料难以检查;③对所发现缺陷作十分准确的定性、定量表征仍有困难。
其主要参数:扫描范围(mm)扫描范围(mm):2.5~5000(钢纵波)脉冲移位(ms)脉冲移位(ms):-20~+3400 us探头零点(ms)探头零点:0us~99.99us,分辨率0.01材料声速(m/s)材料声速:1000m/s~9999m/s输出阻尼(W)50,150,400频率范围(MHz)0.2~10增益调节(dB)0~110dB垂直线性误差≤3%水平线性误差≤0.2%探伤灵敏度余量≥50dB动态范围≥32dB外型尺寸(mm) 230×184×53重量(kg) 1.2Kg温度:-15℃~50℃湿度:20%~90%RH无强磁场、腐蚀环境1.2 探头选择超声波探伤中,超声波的发射和接收都是通过探头来实现的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波无损检测论文无损检测论文
一种可实现高速信号处理的超声波无损检测系统的设计无损探伤技术是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。
超声波探伤就是利用超声能透入金属材料的深处,并由一截面进入另,截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法。
当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分別发生反射波来,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。
随着超声波探伤技术的发展,对数字信号的处理与分析已不再仅仅是辅助技术。
而是一种基本技术,由此出现了各种全数字化的超声波检测设备。
但早期的数字化设备仅停留在超声波检测频率较低频段的信号处理上,主要是受到高速A/D和高速存储技术的限制,山于计算机总线技术应用的瓶颈,也不能实时多通道传送波形数据到计算机去处理,声源定位信号分析等实时显示分析的功能只能由硬件输出的参数完成。
而A/D转换器和高效率微处理器的问世克服了在高频领域应用模拟电子技术受到的各种限制。
数字化全波形超声波探伤设备就是由计算机作为主机,以单片机芯片为主构成的专用板卡统一控制管理超声系统。
这种设备综合应用了高速数据采集技术、A/D转换技术、大容量缓冲技术、多通道切换技术、数据存储技术和数据管理软件技术
等先进的数据信号处理技术,使得多通道声发射波形的采集和分析不再困难。
因此,如何开发和研制更具先进性、创新性、科学性和实用性的全数字式超声波检测设备和系统,已成为一项紧迫性的任务。
本文主要介绍一种基于高速信号处理技术的超声波无损检测系
统的典型设计方案,从系统的总体设计、单元电路设计和程序设计等方面阐述和分析了设让原理,电路和软件的结构与功能等,系统方案具有较高的技术含量和实用价值。
总体设计
系统的总体结构设计如图1所示。
首先,由高压脉冲发生器发射高压脉冲,其经能量转換电路形成超声波信号,遇到缺陷或杂质时产生反射波,再经能量转换电路转換为电压信号,最后经放大电路放大、A/D转换后,形成数字量,写入高速数据缓存器中;然后,由PCI接口电路将缓存器中的数据适时地通过PCI总线送到本系统的微处理
器进行处理,实现与外部计算机通信、显示、打印,存储和控制等功能。
本系统采用转换速率为60MHz的8位高速A/D转换电路以满足数据采集的要求。
为对A/D芯片输出的高速数据进行缓冲,并充分利用LCI总线带宽,采用了]2KB的高速数据缓存电路;对于多通道检测的要求,设计了通道选择控制电路以实现通道之间的切換;采用高增益的高频宽带放大电路对缺陷回波信号进行整理和放大。
单元电路设计
1 放大电路设计
本系统采用带触发的直流逆变电路产生高压脉冲,采用多路模拟通道选择电路实现通道切换以满足多通道探伤的要求。
模拟信号经放大、滤波后,作为A/D转換电路的输入。
放大电路采用增益为80dB,带宽为15MHz、分辨率为1dB的放大器,并且以数字电位器进行放大增益的动态调整,可实现放大器的动态响应和频带范围与尖峰回波脉冲信号的匹配。
2 A/D转换电路设计
A/D转换电路通常可分为积分型和比较型。
积分型A/D转換器的特点是抗干扰能力强、精度高,但速率较低,因此高速A/D转换器,般采用比较型。
本系统采用ADS830,该芯片信噪比高、功耗低、非线性畸变小,广泛应用于图像处理、数字通信和视频测试系统中。
它有共模和差模两种信号输入方式,输出的数字量可直接与5V或3.3V 芯片接口。
超声波无损检测对象基本上为钢体材料,其在钢中传播时,纵波CL的传播速度为5900m/s,横波CS的传播速度为3230m/s,缺陷回波信号通常宽度约10~100ns,因此在钢中的传播速度很快。
超声波在工作中的传播时间很短,尤其对于薄壁材料检测,传播距离更短,因此,为了得到足够的分辨率,要有足够的检测和采样频率才能满足信号采集的要求。
ADS830的精度为8位,最高采样频率为60MHz,可满足一般无损检测系统对数据采集精度和采样频率的要求。
3 数据缓存器设计
由于在PCI总线控制器S5933的缓存器中只有8个3H位寄存器,对于实时高速数据,可能会由于延时造成数据的丢失,因此需要进行扩展。
本系统采用IDT公司的IDT72V36100作为高速数据的缓存。
IDT72V36100可以提供65536×36bit的存储单元,并且具有配置灵活的特点,可以通过设置确定输入输出的数据宽度,对于宽度为8bit 的输入数据,为了充分利用PCI总线的性能,将输出数据的宽度设为32bit,此外,IDT72V36100也提供了丰富的状态信号,可以利用它们作为控制信号。
IDT72V36100需要在写操作之前进行主复位,以设置一些初始状态,所以需要电复位。
本设计选用上电复位芯片
MAX814T,在上电时对缓存电路进行复位。
缓存电路的初始设置主要为:BM、OW、IW全为“低”,使输入输出宽度为32位,FWFT/SI为“低”表示标准IDT模式,只要REN和WEN使能,就可以读写数据,OE为“低”,表示允许输出端输出;IP为“低”表示不加校验位,PFM为“高”表示同步方式,即在时钟上升沿读写数据。
高速数据缓存电路使A/D芯片可以不必工作在PCI同步时钟下,提高了A/D芯片的利用率和数据的吞吐率。
高速数据缓存电路由十具有“先进先出”的特性,数据的读写都无须提供地址信号,也简化了电路的设计。
4 时序逻辑控制器设计
本设计采用厂DMA传输的模式,为此需要通过相应的逻辑控制将扩展的存储空间结合为一个整体。
由此采用一片XC9536的CPLD器件作为逻辑控制器。
5 PCI接口电路设计
PCI总线的最大数据传输速率为132~264Mb/s,远远超过ISA总线5Mb/s的速率,是目前使用较为广泛的一种总线。
在高速信号的实时处理中,利用PCI总线将采集数据直接传送到微机系统内存,可有效解决数据的实时传输和存储,为信号的实时处理提供方便。
PCI总线执行协议比较复杂,总线的接口逻辑也非常复杂,为简化电路设计和提高可靠性,本设计采用了AMCC公司的总线控制器芯片S5933。
图2为95933的内部结构框图。
从外部看,它提供了PCI Bus、ExternalBIOS及ADD-ON三个接口。
因此,复杂的PCI接口规范完全由$5933实现,我们只需设计ADD-ON接口电路及编制可选的External BIOS即可。
为便于ADD-ON接口电路设计,还提供了三
程序设计
1 驱动程序设计
S5933驱动程序根据Windows驱动程序模型WDM设计,运行在Win2000平台上,支持即插即用,采用基于数据包的DMA传输方式,每次最大传输64KB,当应用程序请求从系统读数据时,内核I/O管理器将此请求打包成一个IRP(I/O请求包),并调用驱动程序的读例
程。
如果设备不忙,就启动DMA传输,否则将此IRP加入IRP队列中。
启动设备DMA读时,先用数据传输的存储地址和数据长度设置写地址寄存器和写传送计数寄存器,再设置中断控制状态寄存器(INTCSR),使DMA完成时能触发中断,最后设置控制/状态寄存器(MCSR)来启动DMA读,当本次DMA传输完成时,系统产生中断,I/O管理器调用中断服务例程和DpcForlsr完成此IRP,并从IRP队列中取出下一个IRP,启动下一次DMA。
下一次中断发生时同样处理,这样不断地进行DMA传输,直到IRP队列空为止。
驱动程序主要采用中断方式来实现,程序流程如图3所示。
出总线控制器$5933的结构可知,设备驱动程序需要实现双字
I/O操作和物理内存管理,双字I/O的操作相对简单,调用虚拟机管理器的SIMULATE_VM_IO例程即可,伹物理内存管理较复杂。
由于
S5933发起的DMA操作需要物理内存的起始地址,因此必须涉及页面级的物理内存操作,故采用下述内存管理策略:应用程序加载驱动程序,加载成功后发送申请缓冲区的事件给驱动程序,驱动程序使用PAGEALLO CATE例程得到地址连续的适当长度的物理内存,锁定缓冲区并将物理地址逆映射为线性地址,将物理首地址填入S5933的写RAM地址寄存器,允许S5933进行主控DMA传輸,传输完毕时,应用程序请求驱动程序释放上述物理内存。
2 用户应用程序设计
本系统应用程序采用结构化、模块化的设计方法,采用一片8031单片机作为CPU,各模块均完成一定的独立功能,便于系统的功能扩充和维护,系统操作由多级中文菜单提示进行。
显示模块程序设计模式多,显示内容下富,可显示中文菜单、回波波形、报警闸门、移动标尺、测量结果等。
主控模块用于控制检测流程,实现数据的采集、处理和分析,并调用相应的功能模块实现显示和打印等。
通信模块程序用于CPU与外部PC的串行通信,将探伤波形及结果等相关信息传送至PC做进一步分析、处理或存档。
键盘管理模块扩展了一个的小键盘,分成功能键和数字键,功能键用于选择操作类型,数字键用于参数输入。
当键按下时向CPU中请中断。
打印模块用于控制微型打印机打印结果和缺陷回波等。