西安郭杜大学城学校2020年期中单元测试
2020-2021西安郭杜大学城学校小学四年级数学下期中一模试卷(附答案)
![2020-2021西安郭杜大学城学校小学四年级数学下期中一模试卷(附答案)](https://img.taocdn.com/s3/m/3d4bee99580216fc710afd6b.png)
2020-2021西安郭杜大学城学校小学四年级数学下期中一模试卷(附答案)一、选择题1.2.76扩大到100倍得到的结果是()。
A. 27.6B. 276C. 0.276D. 0.0276 2.70×★-8与70×(★-8)的计算结果相差()。
A. 560B. 552C. 5683.下面哪个算式是正确的。
()A. 99+1×23=100×23B. 201×50=200×50+1C. 75+34+66=75+1004.下面的小数中,最接近10的是()。
A. 9.9B. 10.01C. 9.9985.同样长的两根绳子,第一根剪去它的一半,第二根剪去0.5米,剩下的两根绳子()。
A. 第一根长B. 第二根长C. 同样长D. 不一定6.从侧面看,看到的是().A. B. C.7.哪一个是小红从正上方看到的小轿车的形状?( )A. B. C.8.下面的图形分别是从哪个方向看到的?( )A. 从正面看B. 从侧面看C. 从上面看9.765-543=222,下列验算方法错误的是()。
A. 765+222B. 765-222C. 543+22210.(380-65×2)÷5的正确运算顺序是()。
A. 乘法、减法、除法B. 乘法、除法、减法C. 除法、乘法、减法11.丰平村去年有18户装了电话,今年装电话的有23户,这个村今年装电话比去年多付9000元,每户装电话要付(选择适当的解法解答)()A. 1800元B. 500元C. 180元D. 1600元12.529+267+71+○,○里填()时计算最简便。
A. 29B. 133C. 71D. 104二、填空题13.把7.03先扩大到原来的100倍,再缩小到原来的后是________。
14.88+156+44=88+(156+44)使用了________律,要使37×56+56×63运算简便,可以运用________律,可以写作37×56+56×63=________15.78+324=324+________.16.站在不同的位置观察物体,看到的形状________。
西安郭杜大学城学校初三化学上册期中试卷(含答案)
![西安郭杜大学城学校初三化学上册期中试卷(含答案)](https://img.taocdn.com/s3/m/627bf7780508763230121287.png)
西安郭杜大学城学校化学上册期中试卷(含答案)一、选择题(培优题较难)1.下列实验基本操作错误的A.B.C.D.2.石墨烯是一种革命性材料,具有优异的光学、电学和力学特性。
图为金刚石、石墨和石墨烯的结构模型图,图中小球代表碳原子。
下列说法正确的是( )①石墨烯是一种新型化合物②三种物质分别在足量的氧气中完全燃烧的产物相同③金刚石和石墨烯是组成相同但结构不同的两种物质④石墨烯有超强的导电性和导热性,说明石墨烯的化学性质和金属相似A.①④B.②③C.①③D.②③④3.2017年10月27日央视财经报道:王者归“铼”,中国发现超级金属铼,制造出航空发动机核心部件。
如图是铼在元素周期表中的相关信息,下列有关说法不正确的是()A.铼原子的核内质子数为75 B.铼的相对原子质量为186.2gC.铼的元素符号是Re D.铼原子的核外电子数为754.鉴别二氧化碳、氧气、空气三种气体,可选用的最佳方法是( )A.将气体分别通入水中B.将燃着的木条分别伸入气体中C.将带火星的木条分别伸入气体中D.将气体分别通入澄清石灰水中5.下列图示中的“错误实验操作”与图下面对应的“可能产生的后果”不一致的是()A.液体喷出B.污染试剂C.酒精溅出D.读数偏大6.下列实验现象描述正确的是A.硫在氧气中燃烧发出淡蓝色火焰B.磷在空气中燃烧产生大量白烟C.木炭在空气中燃烧发出白光D.铁丝在氧气中燃烧,火星四射,生成四氧化三铁7.比较、推理是化学学习常用的方法,以下是根据一些实验事实推理出的影响化学反应的因素,其中推理不合理的是序号实验事实影响化学反应的因素A铁丝在空气中很难燃烧,而在氧气中能剧烈燃烧反应物浓度B碳在常温下不与氧气发生反应,而在点燃时能与氧气反应反应温度C双氧水在常温下缓慢分解,而在加入二氧化锰后迅速分解有、无催化剂D铜片在空气中很难燃烧,铜粉在空气中较易燃烧反应物的种类A.A B.B C.C D.D8.质量相等的两份氯酸钾,只向其中一份加入少量二氧化锰,同时放在两只试管内加热。
2020-2021西安郭杜大学城学校初三数学上期中一模试卷(附答案)
![2020-2021西安郭杜大学城学校初三数学上期中一模试卷(附答案)](https://img.taocdn.com/s3/m/d11154603968011ca3009177.png)
2020-2021西安郭杜大学城学校初三数学上期中一模试卷(附答案)一、选择题1.如图,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O→C→D→O 的路线匀速运动.设∠APB=y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是( )A .AB .BC .CD .D 2.如果关于x 的方程240x x m -+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .5C .6D .8 3.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥B .10a +>C .10a -<D .210a +< 4.已知()222226x y y x +-=+,则22x y +的值是( ) A .-2 B .3C .-2或3D .-2且3 5.已知关于x 的方程()211230mm x x +-+-=是一元二次方程,则m 的值为( ) A .1 B .-1 C .±1 D .26.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( )A .252元/间B .256元/间C .258元/间D .260元/间7.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .8.若关于x 的一元二次方程ax 2+bx ﹣1=0(a ≠0)有一根为x =2019,则一元二次方程a (x ﹣1)2+b (x ﹣1)=1必有一根为( )A .12019B .2020C .2019D .20189.如图,在Rt ABC V 中,90ACB ∠=o ,60B ∠=o ,1BC =,''A B C V 由ABC V 绕点C 顺时针旋转得到,其中点'A 与点A 、点'B 与点B 是对应点,连接'AB ,且A 、'B 、'A 在同一条直线上,则'AA 的长为( )A .3B .23C .4D . 43 10.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是 ( )A .120B .19100C .14D .以上都不对 11.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为A .1B .2C .3D .412.如果反比例函数2a y x -=(a 是常数)的图象在第一、三象限,那么a 的取值范围是( )A .a<0B .a>0C .a<2D .a>2 二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.15.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x 步,那么根据题意列出的方程为_____.16.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.17.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.18.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________ .19.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.20.若关于 x 的一元二次方程2x 2-x+m=0 有两个相等的实数根,则 m 的值为__________.三、解答题21.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.22.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.()1求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;()2求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?()3如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本⨯每天的销售量)23.如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O 上,BD平分∠ABC交AC 于点E,DF⊥BC交BC的延长线于点F.(1)求证:FD是⊙O的切线;(2)若BD=8,sin∠DBF=35,求DE的长.24.已知:如图,AB是⊙O的弦,⊙O的半径为10,OE、OF分别交AB于点E、F,OF 的延长线交⊙O于点D,且AE=BF,∠EOF=60°.(1)求证:△OEF是等边三角形;(2)当AE=OE时,求阴影部分的面积.(结果保留根号和π)25.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣2x+80(20≤x≤40),设这种健身球每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选B.考点:动点问题的函数图象.2.A解析:A【解析】【分析】根据根的判别式的意义得到16﹣4m>0,然后解不等式得到m<4,然后对各选项进行判断.【详解】根据题意得:△=16﹣4m>0,解得:m<4,所以m可以取3,不能取5、6、8.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.3.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;故选:B .【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.B解析:B【解析】试题分析:根据题意,先移项得()2222260x y y x +---=,即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-= ,由此解得22x y +=-2(舍去)或223x y +=.故选B.点睛:此题主要考查了高次方程的解法,解题的关键是把其中的一部分看做一个整体,构造出简单的一元二次方程求解即可.5.B解析:B【解析】【分析】根据一元二次方程的定义得出m-1≠0,m 2+1=2,求出m 的值即可.【详解】∵关于x 的方程()211230mm x x +-+-=是一元二次方程,∴m 2+1=2且m-1≠0,解得:m=-1,故选:B .【点睛】本题考查了对一元二次方程的定义的理解和运用,注意:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2,且二次项系数不为0.6.B解析:B【解析】【分析】根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况.【详解】设每天的利润为W 元,根据题意,得:W=(x-28)(80-y )-5000()128804245000x x ⎛⎫=--- ⎪⎝⎡⎤-⎢⎥⎣⎦⎭ 2112984164x x =-+- ()2125882254x =--+, ∵当x=258时,12584222.54y =⨯-=,不是整数, ∴x=258舍去,∴当x=256或x=260时,函数取得最大值,最大值为8224元,又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元. 故选:B .【点睛】本题考查二次函数的实际应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.7.D解析:D【解析】【分析】Rt △AOB 中,AB ⊥OB ,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A ,即∠AOD=∠OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt △AOB 中,AB ⊥OB ,且AB=OB=3,∴∠AOB=∠A=45°,∵CD ⊥OB ,∴CD ∥AB ,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=12×OD×CD=12t2(0≤t≤3),即S=12t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.8.B解析:B【解析】【分析】对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1得到at2+bt-1=0,利用at2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程a(x-1)2+b(x-1)=1必有一根为x=2020.【详解】对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1,所以at2+bt-1=0,而关于x的一元二次方程ax2+bx-1=0(a≠0)有一根为x=2019,所以at2+bt-1=0有一个根为t=2019,则x-1=2019,解得x=2020,所以一元二次方程a(x-1)2+b(x-1)=1必有一根为x=2020.故选B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.A解析:A【解析】【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A、B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选:A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.10.C解析:C【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004,故选C.点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.11.B解析:B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误。
2020-2021西安郭杜大学城学校小学三年级数学下期中一模试卷(附答案)
![2020-2021西安郭杜大学城学校小学三年级数学下期中一模试卷(附答案)](https://img.taocdn.com/s3/m/18cbc6944028915f814dc24d.png)
2020-2021西安郭杜大学城学校小学三年级数学下期中一模试卷(附答案)一、选择题1.在下面的竖式里,48表示()。
A. 48个一B. 48个十C. 48个百2.学校图书馆购进一批图书,每捆34本,一共有21捆,一共有多少本书?小青用竖式进行计算,竖式中箭头部分表示的是()A. 20捆书的本数B. 2捆书的本数C. 68本书3.下面的算式中,乘积一定大于5600的是()。
A. 68×79B. 71×81C. 68×814.一本《哈利·波特》的售价是29元,买21本大约要花()元。
A. 400B. 600C. 8005.648>()×8,括号里最大填()。
A. 79B. 80C. 816.800×5的积的末尾有()。
A. 两个0B. 三个0C. 四个07.从54里连续减去3,减()次结果是0。
A. 18B. 44C. 14D. 128.教室里,张强的座位在小花的东南方向,那么小花的座位在张强的( )方向。
A. 东北B. 西北C. 西南9.清晨你面向太阳升起的方向,你的影子指向( )面。
A. 东B. 西C. 南D. 北10.小乐和小丽的家在同一个小区内.在小区平面图(上北下南,左西右东)上.小东家在小丽家正上方,小丽家在小东家的( )面。
A. 南B. 北C. 东二、填空题11.43的15倍是________,600是4的________倍。
12.68×50的积是________位数.13.四年级同学喜欢的运动项目如下表.(1)喜欢________项目的男生最多?喜欢________项目的女生最少?(2)喜欢________项目的人最多?喜欢________项目的人最少?14.统计表可分为________和________统计表。
15.8□4÷4,要使商中间有0,□里可以填________。
16.商店运来360个火龙果,每盒装6个,可以装________盒;每盒装4个,可以装________盒。
2020-2021西安郭杜大学城学校初三数学下期中一模试卷(附答案)
![2020-2021西安郭杜大学城学校初三数学下期中一模试卷(附答案)](https://img.taocdn.com/s3/m/1a29707cbd64783e09122be5.png)
2020-2021西安郭杜大学城学校初三数学下期中一模试卷(附答案)一、选择题1.已知一次函数y 1=x -1和反比例函数y 2=2x 的图象在平面直角坐标系中交于A 、B 两点,当y 1>y 2时,x 的取值范围是( )A .x >2B .-1<x <0C .x >2,-1<x <0D .x <2,x >0 2.已知反比例函数y =﹣6x,下列结论中不正确的是( ) A .函数图象经过点(﹣3,2)B .函数图象分别位于第二、四象限C .若x <﹣2,则0<y <3D .y 随x 的增大而增大3.P 是△ABC 一边上的一点(P 不与A 、B 、C 重合),过点P 的一条直线截△ABC,如果截得的三角形与△ABC 相似,我们称这条直线为过点P 的△ABC 的“相似线”.Rt△ABC 中,∠C=90°,∠A=30°,当点P 为AC 的中点时,过点P 的△ABC 的“相似线”最多有几条?( )A .1条B .2条C .3条D .4条4.如图所示,在△ABC 中, cos B =22,sin C =35,BC =7,则△ABC 的面积是( )A .212B .12C .14D .215.如图,直线12y x b =-+与x 轴交于点A ,与双曲线4(0)y x x =-<交于点B ,若2AOB S ∆=,则b 的值是( )A .4B .3C .2D .16.如图,∠APD=90°,AP=PB=BC=CD ,则下列结论成立的是( )A .△PAB ∽△PCA B .△ABC ∽△DBA C .△PAB ∽△PDAD .△ABC ∽△DCA7.如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .22C .823D .328.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变9.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .1210.若反比例函数2y x=-的图象上有两个不同的点关于y 轴的对称点都在一次函数y =-x +m 的图象上,则m 的取值范围是( ) A .22m >B .-22m < C .22-22m m >或< D .-2222m <<11.在△ABC 中,若|sinA-32|+(1-tanB)2=0,则∠C 的度数是( ) A .45° B .60°C .75°D .105° 12.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .13二、填空题13.若反比例函数y =﹣的图象经过点A(m ,3),则m 的值是_____.14.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.15.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .16.一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要__个小立方块.17.在平面直角坐标系中,O 为坐标原点,B 在x 轴上,四边形OACB 为平行四边形,且∠AOB=60°,反比例函数y=kx(k>0)在第一象限内过点A,且与BC交于点F.当F为BC的中点,且S△AOF=123时,OA的长为__________.18.如图,点A在双曲线y=6x(x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上且BC:CA=1:2,双曲线y=kx(x>0)经过点C,则k=_____.19.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.20.近视眼镜的度数(y度)与镜片焦距(x米)呈反比例,其函数关系式为120.yx=如果近似眼镜镜片的焦距0.3x=米,那么近视眼镜的度数y为______.三、解答题21.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)22.如图,小明同学在东西方向的环海路A处,测得海中灯塔P在它的北偏东60°方向上,在A的正东200米的B处,测得海中灯塔P在它的北偏东30°方向上.问:灯塔P到环海路的距离PC约等于多少米?(取1.732,结果精确到1米)23.如图,已知反比例函数y=kx的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=kx的图象上,当-3≤x≤-1时,求函数值y的取值范围.24.已知:如图,在正方形ABCD中,P是BC上的点,Q是CD上的点,且∠AQP=900,求证:△ADQ∽△QCP.25.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】因为一次函数和反比例函数交于A 、B 两点,可知x-1=2x,解得x=-1或x=2,进而可得A 、B 两点的坐标,据此,再结合函数解析式画图,据图可知当x>2时,以及当-1<x<0时,y 1>y 2.【详解】解方程x −1=2x,得 x =−1或x =2,那么A 点坐标是(−1,−2),B 点坐标是(2,1),如右图,当x >2时, 12y y >,以及当−1<x <0时, 12y y >.故选C.【点睛】本题考查了反比例函数与一次函数交点问题,解题的关键是能根据解析式画出函数的图象,并能根据图象解決问题解析:D【解析】【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A、∵当x=﹣3时,y=2,∴此函数图象过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C、∵当x=﹣2时,y=3,∴当x<﹣2时,0<y<3,故本选项正确;D、∵k=﹣6<0,∴在每个象限内,y随着x的增大而增大,故本选项错误;故选:D.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.3.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时,根据相似三角形的判定:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,根据∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A时:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,∵∠CPB=∠A+∠ABP,∴PB>PC,PC=PA,∴PB>PA,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C.4.A解析:A【解析】【分析】试题分析:过点A 作AD ⊥BC ,∵△ABC 中,cosB=22,sinC=35,AC=5,∴cosB=22=BD AB ,∴∠B=45°,∵sinC=35=AD AC =5AD ,∴AD=3,∴CD=4,∴BD=3,则△ABC 的面积是:12×AD×BC=12×3×(3+4)=212.故选A .考点:1.解直角三角形;2.压轴题.5.D解析:D【解析】因为直线12y x b =-+与x 轴交于点A ,所以令y =0,可得:1 02x b -+=,解得2x b =, 则OA =2b ,又因为2AOB S ∆=,所以B 点纵坐标是:2b ,因为B 点在4(0)y x x =-<,所以B 点坐标为(-2b ,2b ),又因为B 点在直线12y x b =-+上,所以()2122b b b =-⨯-+,解得1b =±,因为直线12y x b =-+与y 轴交于正半轴,所以0b >,所以1b =,故选D. 6.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD =90°,而∠P AB ≠∠PCA ,∠PBA ≠∠P AC ,∴无法判定△P AB 与△PCA 相似,故A 错误;同理,无法判定△P AB 与△PDA ,△ABC 与△DCA 相似,故C 、D 错误;∵∠APD =90°,AP =PB =BC =CD ,∴AB =P A ,AC =P A ,AD =P A ,BD =2P A ,∴=,∴,∴△ABC ∽△DBA ,故B 正确.故选B .【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法. 7.C解析:C【解析】【分析】由已知可知△ADC 是等腰直角三角形,根据斜边AC=8可得,在Rt △ABD 中,由∠B=60°,可得BD=tan 60AD ︒,再由BE 平分∠ABC ,可得∠EBD=30°,从而可求得DE 长,再根据AE=AD-DE 即可【详解】∵AD ⊥BC ,∴△ADC 是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC ,∵AC=8,∴,在Rt △ABD 中,∠B=60°,∴BD=tan 60AD ︒=3, ∵BE 平分∠ABC ,∴∠EBD=30°,∴=3,∴AE=AD-DE== 故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.8.D解析:D【解析】【分析】由于等腰直角三角形AEF 的斜边EF 过C 点,则△BEC 和△DCF 都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x =3时,y =3,即BC=CD=3,根据等腰直角三角形的性质得,CF=3,则C 点与M 点重合;当y =9时,根据反比例函数的解析式得x =1,即BC=1,CD=9,所以,而;利用等腰直角三角形的性质BE•DF=BC•CD=xy ,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于x =2xy ,其值为定值.【详解】解:因为等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,所以△BEC 和△DCF 都是直角三角形;观察反比例函数图像得x =3,y =3,则反比例解析式为y=9x.A 、当x =3时,y =3,即BC=CD=3,所以,,C 点与M 点重合,则EC=EM ,所以A 选项错误;B 、当y =9时,x =1,即BC=1,CD=9,所以,,,所以B 选项错误;C 、因为x y =2×xy =18,所以,EC•CF 为定值,所以C 选项错误;D 、因为BE•DF=BC•CD=xy =9,即BE•DF 的值不变,所以D 选项正确.故选:D .【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.9.C解析:C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】 ∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a , k a), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9, ∴k=245,故选:C【点睛】考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.10.C解析:C【解析】【分析】 根据题意可知反比例函数2y x =-的图象上的点关于y 轴的对称的点在函数2y x =上,由此可知反比例函数2y x=的图象与一次函数y=-x+m 的图象有两个不同的交点,继而可得关于x 的一元二次方程,再根据根的判别式即可求得答案.【详解】 ∵反比例函数2y x =-上有两个不同的点关于y 轴对称的点在一次函数y =-x +m 图象上, ∴反比例函数2y x=与一次函数y =-x +m 有两个不同的交点, 联立得2y x y x m⎧=⎪⎨⎪=-+⎩,消去y 得:2x m x =-+, 整理得:220x mx -+=,∵有两个不同的交点∴220x mx -+=有两个不相等的实数根,∴△=m 2-8>0,∴m >m <故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,关于x 轴、y 轴对称的点的坐标,熟练掌握相关内容、正确理解题意是解题的关键.11.C解析:C【解析】【分析】先根据非负数的性质求出sinA 及tanB 的值,再根据特殊角的三角函数值求出∠A 及∠B 的值,由三角形内角和定理即可得出结论.【详解】∵|sin A−2|+(1−tan B )2=0,∴sinA=32,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.12.D解析:D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.二、填空题13.﹣2【解析】∵反比例函数y=-6x的图象过点A(m3)∴3=-6m解得=-2解析:﹣2【解析】∵反比例函数的图象过点A(m,3),∴,解得.14.或2【解析】【分析】由折叠性质可知BF=BF△BFC与△ABC相似有两种情况分别对两种情况进行讨论设出BF=BF=x列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF=BF设BF=BF=x故解析:127或2【解析】【分析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=127;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论. 15.2【解析】【分析】【详解】如图过A点作AE⊥y轴垂足为E∵点A在双曲线上∴四边形AEOD的面积为1∵点B在双曲线上且AB∥x轴∴四边形BEOC的面积为3∴四边形ABCD为矩形则它的面积为3-1=2解析:2【解析】【分析】【详解】如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线1y=x上,∴四边形AEOD的面积为1∵点B在双曲线3y=x上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=216.14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14点睛:主视图是从物体的正面看得到的视图左视图是从物体的左面看得到的视图;注意主视图主要告解析:14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14.点睛:主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.17.8【解析】分析:过点A 作AH⊥OB 于点H 过点F 作FM⊥OB 于点M 设OA=x 在由已知易得:AH=OH=由此可得S△AOH=由点F 是平行四边形AOBC 的BC 边上的中点可得BF=BM=FM=由此可得S△B解析:8【解析】分析:过点A 作AH ⊥OB 于点H ,过点F 作FM ⊥OB 于点M ,设OA=x ,在由已知易得:,OH=12x ,由此可得S △AOH 2x 由点F 是平行四边形AOBC 的BC 边上的中点,可得BF=12x ,BM=14x ,FM=4x ,由此可得S △BMF =232x ,由S △OAF =可得S △OBF =S △OMF =2x +,由点A 、F 都在反比例函数k y x =的图象上可得S △AOH =S △BMF ,由此即可列出关于x 的方程,解方程即可求得OA 的值. 详解:如下图,点A 作AH ⊥OB 于点H ,过点F 作FM ⊥OB 于点M ,设OA=x ,∵四边形AOBC 是平行四边形,∠AOB=60°,点F 是BC 的中点,S △OAF =∴,OH=12x ,BF=12x ,∠FBM=60°,S △OBF =∴S △AOH =28x ,BM=14x ,FM=4x ,∴S △BMF =232x ,∴S △OMF =232x , ∵由点A 、F 都在反比例函数k y x=的图象上, ∴S △AOH =S △BMF ,∴238x =236332x +, 化简得:23192x =,解得:1288x x ==-,(不合题意,舍去),∴OA=8.故答案为:8.点睛:本题是一道考查“反比例函数的图象和性质及平行四边形的性质”的综合题,熟记“反比例函数的图象和性质及平行四边形的性质”是解答本题的关键.18.2【解析】【分析】根据反比例函数系数k 的几何意义即可得到结论【详解】解:连接OC ∵点A 在双曲线y =(x >0)上过点A 作AB ⊥x 轴于点B ∴S △OAB =×6=3∵BC :CA =1:2∴S △OBC =3×=1解析:2【解析】【分析】根据反比例函数系数k 的几何意义即可得到结论.【详解】解:连接OC ,∵点A 在双曲线y =6x (x >0)上,过点A 作AB ⊥x 轴于点B , ∴S △OAB =12×6=3, ∵BC :CA =1:2,∴S △OBC =3×13=1,∵双曲线y=kx(x>0)经过点C,∴S△OBC=12|k|=1,∴|k|=2,∵双曲线y=kx(x>0)在第一象限,∴k=2,故答案为2.【点睛】本题考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,熟练掌握反比例函数系数k的几何意义是解题的关键.19.cm【解析】【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股解析:cm.【解析】【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.20.400【解析】分析:把代入即可算出y的值详解:把代入故答案为400点睛:此题主要考查了反比例函数的定义本题实际上是已知自变量的值求函数值的问题比较简单解析:400【解析】分析:把0.3x =代入120y x =,即可算出y 的值. 详解:把0.3x =代入120x, 400y =,故答案为400.点睛:此题主要考查了反比例函数的定义,本题实际上是已知自变量的值求函数值的问题,比较简单.三、解答题21.观景亭D 到南滨河路AC 的距离约为248米.【解析】【分析】过点D 作DE ⊥AC ,垂足为E ,设BE=x ,根据AE=DE ,列出方程即可解决问题.【详解】过点D 作DE ⊥AC ,垂足为E ,设BE=x ,在Rt △DEB 中,tan ∠DBE=DE BE, ∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE .∴132+x=xtan65°,∴解得x ≈115.8,∴DE≈248(米).∴观景亭D 到南滨河路AC 的距离约为248米.22.173米【解析】【分析】由外角的性质可以得到∠PAC=∠APB ,从而有PB=AB=200,在Rt △PBC 中,由三角函数定义可以求出PC的长.【详解】解:由题意,可得∠PAC=30°,∠PBC=60°.∴∠APB=∠PBC=∠PBC-∠PAC=30°.∴∠PAC=∠APB.∴PB=AB=200.在Rt△PBC中,∠PCB=90°,∠PBC=60°,PB=200,∴PC=PBsin∠PBC=400346.42⨯==≈173(米).答:灯塔P到环海路的距离PC约等于173米.考点:解直角三角形的应用-方向角问题.23.(1) k=4, m=1;(2)当-3≤x≤-1时,y的取值范围为-4≤y≤-4 3 .【解析】【分析】【详解】试题分析:(1)根据反比例函数系数k的几何意义先得到k的值,然后把点A的坐标代入反比例函数解析式,可求出k的值;(2)先分别求出x=﹣3和﹣1时y的值,再根据反比例函数的性质求解.试题解析:(1)∵△AOB的面积为2,∴k=4,∴反比例函数解析式为4yx=,∵A(4,m),∴m=44=1;(2)∵当x=﹣3时,y=﹣43;当x=﹣1时,y=﹣4,又∵反比例函数4yx=在x<0时,y随x的增大而减小,∴当﹣3≤x≤﹣1时,y的取值范围为﹣4≤y≤﹣43.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.24.证明见解析【解析】试题分析:本题利用等角的余角相等得出一对相等的角,加上直角得出相似三角形.试题解析:在Rt△ADQ与Rt△QCP中,∵∠AQP=90°,∴∠AQP+∠PQC=90°,又∵∠PQC+∠QPC=90°,∴∠AQP=∠QPC,∴Rt△ADQ∽Rt△QCP.25.(1)画图见解析;(2)DE=4.【解析】【分析】(1)连接CB延长CB交DE于O,点O即为所求.连接OG,延长OG交DF于H.线段FH即为所求.(2)根据AB CAOD CD=,可得1.6 1.41.42.1DO=+,即可推出DO=4m.【详解】(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,AB CA OD CD=,∴1.6 1.41.42.1 DO=+,∴OD=4m,∴灯泡的高为4m.【点睛】本题考查中心投影、解题的关键是正确画出图形,记住物长与影长的比的定值,属于基础题,中考常考题型.。
2020-2021西安郭杜大学城学校小学六年级数学下期中一模试卷(附答案)
![2020-2021西安郭杜大学城学校小学六年级数学下期中一模试卷(附答案)](https://img.taocdn.com/s3/m/04483a02be23482fb4da4cec.png)
2020-2021西安郭杜大学城学校小学六年级数学下期中一模试卷(附答案)一、选择题1.不能与3、6、9组成比例的数是()。
A. 2B. 3C. 18D. 4.52.圆的半径与()不成比例。
A. 直径B. 周长C. 面积3.一个圆柱侧面展开是正方形,这个圆柱底面周长与高的比是()A. 2π:1B. 1:1C. π:14.圆柱形水泥柱高4米,一根长31.4米的绳子正好能沿水泥柱绕10圈,这根水泥柱的体积是()立方米。
A. 3.14B. 12.56C. 314D. 125.6 5.一个圆锥的底面周长是12.56分米,高9厘米,它的体积是()立方分米。
A. 113.04B. 11304C. 37.68D. 3.7686.把改写成是根据()。
A. 小数的性质B. 分数的基本性质C. 比例的基本性质D. 比的基本性质7.一件衣服原价200元,现价140元,这件衣服按()折销售。
A. 七B. 六C. 八D. 九8.一件商品按五五折出售就是说现价()。
A. 比原价降低55%B. 是原价的5.5%C. 是原价的45%D. 是原价的55%9.饮水机打八折出售,价格比原来便宜了80元,这台饮水机原价是()元。
A. 100B. 200C. 300D. 400 10.一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于()克.A. 155B. 150C. 14511.在﹣4,﹣9,﹣,﹣0.1这些数中,最大的数是()A. ﹣4B. ﹣9C. ﹣D. ﹣0.1 12.冬季的一天,室外温度为﹣9℃,室内的温度是20℃,则室内外温度相差()A. 11℃B. 29℃C. ﹣29℃D. ﹣11℃二、填空题13.分子一定,分母和分数值成________比例;如果x=7y(x,y都不为0),则x和y成________比例。
14.在ab=c(a、b、c均不为0)中,当b一定时,a和c成________比例;当c一定时,a和b成________比例。
2020-2021西安郭杜大学城学校小学二年级数学上期中一模试卷(附答案)
![2020-2021西安郭杜大学城学校小学二年级数学上期中一模试卷(附答案)](https://img.taocdn.com/s3/m/c2c157baccbff121dc368303.png)
2020-2021西安郭杜大学城学校小学二年级数学上期中一模试卷(附答案)一、选择题1.1根小木棍长3厘米,6根这样的小木棍连起来长()。
A. 9厘米B. 18米C. 18厘米2.两个乘数都是5,积是()。
A. 10B. 25C. 153.三时三十分,钟面上时针与分针之间的夹角为()A. 钝角B. 锐角C. 直角4.下面的算式中()的得数比10大。
A. 8+7-9B. 45-40+7C. 17-9-25.下面三个数,哪个数最接近80?()A. 68B. 78C. 836.小红跳绳,先跳了23下,接着又跳了54下,淘气要超过小红,至少要跳()下。
A. 31 B. 78 C. 557.把2米9厘米改成用米作单位的三位小数是()A. 2.090米B. 2.009米C. 2.09米D. 2.900米8.9时整,钟面上时针和分针所形成的角是()。
A. 直角B. 钝角C. 平角9.下图中,是锐角的是()。
A. B. C.10.新生儿出生时身长约50()。
A. 毫米B. 厘米C. 分米11.“1.01米○1米1厘米”,比较大小,在○里应填的符号是( )A. >B. <C. =D. ×12.下面的算式中,积是16的是( )。
A. 8+8B. 4×4C. 4×3二、填空题13.5个6相加的和是________,它比6个6少________。
14.有________个锐角,有________个钝角。
15.有________个锐角,________个直角,________个钝角,一共有________个角。
16.在横线上填上>、<或=。
34+50________74 45-20________45+20 36+40________96-2045+30________25+50 79-50________59-30 76+20________8917.80连续减8,写出每次减得的差。
80,72,________,________,________,________。
2020-2021西安郭杜大学城学校小学六年级数学上期中一模试卷(附答案)
![2020-2021西安郭杜大学城学校小学六年级数学上期中一模试卷(附答案)](https://img.taocdn.com/s3/m/c822c8636137ee06eff918d7.png)
2020-2021西安郭杜大学城学校小学六年级数学上期中一模试卷(附答案) 一、选择题1.小凡的邮票张数是小雨的,如果小雨给小凡45张,两人的邮票张数就同样多了,小雨原来有()张.A. 120B. 360C. 180D.2.李大叔步行上班,小时走了千米,那么平均一小时走()A. 千米B. 千米C. 千米D. 千米3.如图,以图书馆为观察点,游乐场在()。
A. 东偏南30°B. 南偏东30°C. 西偏北30°D. 北偏西30°4.如果小红在小强北偏东42°的位置上,那么小强在小红的()位置上。
A. 南偏西48°B. 北偏东48°C. 南偏西42°5.如右图,聪聪家位于学校的( )。
A. 东偏北30 º方向400米处B. 西偏北60 º方向200米处C. 西偏南30 º方向400米处6.同一根2米长的绳子,小明剪去了,李东剪去了米,两人剪的相比较,()。
A. 小明剪的多 B. 李东剪的多 C. 一样多 D. 无法比较7.甲、乙两袋面粉一样重,甲袋用去,乙袋用去千克,()用去的多。
A. 甲袋B. 乙袋C. 一样多D. 无法确定8.等式24×( + )=24× +24× 符合()A. 加法交换律B. 加法结合律C. 乘法交换律D. 乘法分配律9.根据《中华人民共和国国旗法》的规定,国旗的长与宽的比为3:2,以下几种规格的国旗中,()不符合标准。
A. 288cm×192cmB. 240cm×160cmC. 144cm×48cmD. 96cm×64cm 10.在一条直线上依次有A、B、C、D、E、F六个点,每相邻两个点的距离都相等,则BC:AF=()。
A. 1:5B. 1:4C. 2:4D. 4:2 11.2:5的后项加上5,要使比值不变,前项应加上()。
西安市2020年三年级下册期中考试数学试卷(I)卷
![西安市2020年三年级下册期中考试数学试卷(I)卷](https://img.taocdn.com/s3/m/977e2ef50b1c59eef8c7b4ef.png)
西安市2020年三年级下册期中考试数学试卷(I)卷姓名:________ 班级:________ 成绩:________同学们,经过一段时间的学习,你一定长进不少,让我们好好检验一下自己吧!一、选择题1 . □÷23=15…20,□中应填()A.322B.365C.3562 . 踢毽子比赛。
李芳踢了8个,王平踢的个数比李芳踢的6倍多5个。
王平踢了()个。
A.53B.48C.383 . 下面的算式中,商是两位数的是().A.420÷56B.305÷30C.285÷374 . 从家到学校,小明要走8分钟,小红要走12分钟,则小明与小红的速度比为()A.8:12B.2:3C.3:2D.12:85 . 25乘65的积的最高位是().A.十位B.百位C.千位二、填空题6 . 有一个三位数,百位上是2,十位上是1,个位上是6,它的3倍是()。
7 . 两个数相除的商是2.15,被除数和除数同时扩大为原来的100倍,商是(_____),如果被除数不变,除数缩小为原来的,那么商是(_____)。
8 . 三(2)班有女生23人,男生27人。
平均分成5组做游戏,每组有(______)人。
9 . 在除法算式☆÷8=15……□中,□里的数最大是(_______),这时☆里的数是(_______)。
10 . 一个数除以7商是35,有余数,这个数最大是,最小是.11 . 如果367÷3□的商是两位数,那么□里最大可填________,要使□67÷44的商是一位数,那么□里最大能填________。
12 . 算式6□□÷7的商的最高位在(________)位上,商是(________)位数。
13 . 填一填。
星期天,我们去动物园游玩,走进动物园大门,正北面有狮子馆和河马馆,熊猫馆在狮子馆的西北面,飞禽馆在狮子馆的东北面,经过熊猫馆向南走,可到达猴山和大象馆,经过猴山向东走到达狮子馆和金鱼馆,经过金鱼馆向南走到达骆驼馆,你能填出它们的位置吗?14 . 180的25倍是,25个是7500.三、判断题15 . —个三位数乘一位数,积一定是四位数.(_____)16 . 65乘74的最高位是百位。
西安郭杜大学城学校初三化学上册期中试卷(含答案)
![西安郭杜大学城学校初三化学上册期中试卷(含答案)](https://img.taocdn.com/s3/m/dbd19ad50b1c59eef9c7b4b6.png)
西安郭杜大学城学校化学上册期中试卷(含答案)一、选择题(培优题较难)1.食醋是厨房中常用的调味品,它的主要成分是乙酸,乙酸分子的模型如图所示,其中代表一个碳原子,代表一个氢原子,代表一个氧原子。
下列说法不正确的是A.乙酸是一种化合物B.乙酸的相对分子质量为60C.乙酸中碳元素的质量分数为60%D.乙酸分子中的碳原子、氢原子、氧原子的个数比为1∶2∶12.豆腐是人们喜爱的食物,营养丰富,能为人体提供所需的多种氨基酸,其中含量最多的是亮氨酸(C6H13NO2),关于亮氨酸的说法正确的是()A.亮氨酸是氧化物B.亮氨酸中碳元素的质量分数为27.3%C.一个亮氨酸分子由22个原子构成D.亮氨酸中碳、氢、氮、氧四种元素的质量比为6:13:1:23.最近,我国科学家成功合成新型催化剂,将CO2高效转化为甲醇(CH3OH)。
这不仅可以缓解碳排放引起的温室效应,还将成为理想的能源补充形式。
该化学反应的微观过程如下图所示。
下列说法正确的是A.该反应中四种物质均为化合物B.反应前后H元素的化合价不变C.参加反应的甲、乙分子个数比为1:3D.反应前后原子数目发生改变4.实验室常用加热高锰酸钾固体制取氧气,化学方程式为2KMnO4K2MnO4+MnO2+O2↑,现对一定量的高锰酸钾固体进行加热,加热过程中涉及的相关量随时间变化的图象正确的是A.B.C.D.5.下列是几种粒子的结构示意图,有关它们的叙述,你认为正确的是A.②表示的是阴离子B.①②③④表示的是四种不同元素C.③属于金属元素D.①③所表示的粒子化学性质相似6.下列滴管使用图示正确的是()A.取液时挤入空气B.代替玻璃棒进行搅拌C.向试管中滴加液体D.将残留溶液的滴管倒持7.某同学误将少量KMnO4当成MnO2加入KClO3中进行加热制取氧气,部分物质质量随时间变化如下图所示,下列关于该过程的说法正确的是()A.c代表氧气B.t2时刻,O2开始产生C.t1时刻,KMnO4开始分解D.起催化作用物质的质量一直保持不变8.某同学制作的试剂标签如下,其中化学式书写不正确...的是( )A.B.C.D.9.在一密闭的容器中,一定质量的碳粉与过量的氧气在点燃的条件下充分反应,容器内各相关量与时间(从反应开始计时)的对应关系正确的是( )A.B.C.D.10.下列实验基本操作错误的A.B.C.D.11.纳米铁粉在空气中能自燃并生成一种红色氧化物。
西安郭杜大学城学校初中数学八年级下期中经典题
![西安郭杜大学城学校初中数学八年级下期中经典题](https://img.taocdn.com/s3/m/c165a49b27d3240c8547ef0a.png)
一、选择题1.(0分)[ID :9930]下列运算中,正确的是( ) A .235+=; B .2(32)32-=-; C .2a a =;D .2()a b a b +=+.2.(0分)[ID :9913]一次函数1y ax b 与2y bx a 在同一坐标系中的图像可能是( )A .B .C .D .3.(0分)[ID :9905]如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A 310B .3105C 10D 354.(0分)[ID :9904]某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示: 决赛成绩/分 95 90 85 80 人数4682那么20名学生决赛成绩的众数和中位数分别是( ) A .85,90B .85,87.5C .90,85D .95,905.(0分)[ID :9896]已知P (x ,y )是直线y =1322x -上的点,则4y ﹣2x +3的值为( ) A .3B .﹣3C .1D .06.(0分)[ID :9895]如图,在5×5的正方形网格中,从在格点上的点A ,B ,C ,D 中任取三点,所构成的三角形恰好是直角三角形的个数为()A.1 B.2 C.3 D.47.(0分)[ID:9883]如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A.203B.252C.20D.258.(0分)[ID:9878]如图,在平行四边形ABCD中,AC、BD相交于点O,下列结论:①OA =OC;②∠BAD=∠BCD;③AC⊥BD;④∠BAD+∠ABC=180°中,正确的个数有()A.1个 B.2个 C.3个 D.4个9.(0分)[ID:9870]函数y=11xx+-中,自变量x的取值范围是()A.x>-1B.x>-1且x≠1C.x≥一1D.x≥-1且x≠1 10.(0分)[ID:9844]在水平地面上有一棵高9米的大树,和一棵高4米的小树,两树之间的水平距离是12米,一只小鸟从小树的顶端飞到大树的顶端,则小鸟至少飞行( )A.12米B.13米C.9米D.17米11.(0分)[ID:9926]如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是( )A .0点时气温达到最低B .最低气温是零下4℃C .0点到14点之间气温持续上升D .最高气温是8℃12.(0分)[ID :9834]下列运算正确的是( ) A .532-=B .822-=C .114293=D .()22525-=-13.(0分)[ID :9910]小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( ) A .2.7 米B .2.5 米C .2.1 米D .1.5 米14.(0分)[ID :9863]如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A .1B .2C 5D .315.(0分)[ID :9925]已知一次函数y =﹣x +m 和y =2x +n 的图象都经过A (﹣4,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为( ) A .48B .36C .24D .18二、填空题16.(0分)[ID :10027]一次函数的图像经过点A (3,2),且与y 轴的交点坐标是B (0,2- ),则这个一次函数的函数表达式是________________.17.(0分)[ID :10020]若一元二次方程x 2﹣2x ﹣m=0无实数根,则一次函数y=(m+1)x+m ﹣1的图象不经过第_____象限.18.(0分)[ID :10015]23(1)0m n -+=,则m+n 的值为 .19.(0分)[ID :9997]若实数,,x y z ()22130x y z -++-=,则x y z ++的平方根是______.20.(0分)[ID :9984]如图,△ABC 中,∠ACB =90°,CD 是斜边上的高,AC =4,BC =3,则CD =______.21.(0分)[ID :9982]将函数31y x 的图象平移,使它经过点()1,1,则平移后的函数表达式是____.22.(0分)[ID :9974]小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多出1m ,当它把绳子的下端拉开旗杆4m 后,发现下端刚好接触地面,则旗杆的高为________23.(0分)[ID :9951]矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____.24.(0分)[ID :9940]如图,在∠MON 的两边上分别截取OA 、OB ,使OA =OB ;分别以点A 、B 为圆心,OA 长为半径作弧,两弧交于点C ;连接AC 、BC 、AB 、OC .若AB =2cm ,四边形OACB 的面积为4cm 2.则OC 的长为_____cm .25.(0分)[ID :9939]在平面直角坐标系中,(1,0)(4,0)(0,3),A B C -、、若以A B C D 、、、为顶点的四边形是平行四边形,则D 点坐标是________________. 三、解答题26.(0分)[ID :10123]如图,∠MON =90°,正方形ABCD 的顶点A 、B 分别在OM 、ON 上,AB =13,OB =5,E 为AC 上一点,且∠EBC =∠CBN ,直线DE 与ON 交于点F . (1)求证BE =DE ;(2)判断DF 与ON 的位置关系,并说明理由; (3)△BEF 的周长为 .27.(0分)[ID :10096]“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC 表示赛跑过程中 的路程与时间的关系,线段OD 表示赛跑过程中 的路程与时间的关系.赛跑的全程是 米. (2)兔子在起初每分钟跑 米,乌龟每分钟爬 米. (3)乌龟用了 分钟追上了正在睡觉的兔子.(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?28.(0分)[ID :10068]如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、√5、√13; (3)如图3,点A 、B 、C 是小正方形的顶点,求∠ABC 的度数.29.(0分)[ID :10043]一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,回答下列问题: (1)李师傅修车用了多时间;(2)修车后李师傅骑车速度是修车前的几倍.30.(0分)[ID :10042]端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家560千米的景区游玩,甲先以每小时60千米的速度匀速行驶1小时,再以每小时m 千米的速度匀速行驶,途中体息了一段时间后,仍按照每小时m 千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程()y km 甲,()y km 乙与时间()x h 之间的函数关系的图象.请根据图象提供的信息,解决下列问题:()1图中E点的坐标是______,题中m=______km/h,甲在途中休息______h;()2求线段CD的解析式,并写出自变量x的取值范围;()3两人第二次相遇后,又经过多长时间两人相距20km?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.B4.B5.B6.C7.D8.C9.D10.B11.D12.B13.C14.C15.C二、填空题16.y=x-2【解析】【分析】一次函数关系式y=kx+b将AB两点坐标代入解一元一次方程组可求kb的值确定一次函数关系式【详解】设一次函数关系式y=kx+b将A(32)B(0-2)代入得解得一次函数解析17.一【解析】∵一元二次方程x2-2x-m=0无实数根∴△=4+4m<0解得m<-1∴m+1<0m-1<0∴一次函数y=(m+1)x+m-1的图象经过二三四象限不经过第一象限故答案是:一18.2【解析】试题分析:几个非负数之和为零则每个非负数都为零根据非负数的性质可得:m-3=0且n+1=0解得:m=3n=-1则m+n=3+(-1)=2考点:非负数的性质19.【解析】【分析】根据二次根式平方绝对值的非负性即可得出xyz的值求和后再求平方根即可【详解】解:由题意可得:解得:∴∴4的平方根是故答案为:【点睛】本题考查的知识点求代数式的平方根解此题的关键是根据20.4【解析】【分析】在Rt中由勾股定理可求得AB的长进而可根据三角形面积的不同表示方法求出CD的长【详解】解:Rt中AC=4mBC=3mAB=m∵∴m=24m故答案为24m【点睛】本题考查勾股定理掌握21.y=3x﹣2【解析】【分析】根据函数图象平移的性质得出k的值设出相应的函数解析式再把经过的点代入即可得出答案【详解】解:新直线是由一次函数y=3x+1的图象平移得到的∴新直线的k=3可设新直线的解析22.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练23.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB24.【解析】【分析】根据作法判定出四边形OACB是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC=BC=OA∵OA=OB∴OA=OB=BC=AC∴四边形OACB是菱形∵AB25.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC为对角线三种情况进行求解【详解】如图所示①AC 为对角线时AB=5∴点D 的坐标为(-53)②BC 为对角线时AB=5∴点D 的坐标为(53三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.D 解析:D 【解析】2=-误;a =,故错误; D.()2a b =+,正确;故选D.2.C解析:C 【解析】 【分析】可用排除法,对各选项中函数图象的特点逐一分析即可. 【详解】A.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a>0,b>0,两结论相矛盾,故错误;B.由y 1的图象可知a< 0,b> 0;由y 2的图象可知a=0,b<0,两结论相矛盾,故错误;C. 正确;D.由y 1的图象可知a> 0,b> 0;由y 2的图象可知a<0,b<0,两结论相矛盾,故错误; 故选:C. 【点睛】此题考查一次函数的图象,熟记一次函数的图象与k 及b 值的关系是解题的关键.3.B解析:B 【解析】 【分析】 根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】 如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°, 在Rt △ADE 中,22AD DE +2231+10,∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310. 故选:B . 【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.4.B解析:B 【解析】试题解析:85分的有8人,人数最多,故众数为85分; 处于中间位置的数为第10、11两个数, 为85分,90分,中位数为87.5分. 故选B .考点:1.众数;2.中位数5.B解析:B 【解析】【分析】根据点P(x,y)是直线y=1322x-上的点,可以得到y与x的关系,然后变形即可求得所求式子的值.【详解】∵点P(x,y)是直线y=1322x-上的点,∴y=13 22x-,∴4y=2x-6,∴4y-2x=-6,∴4y-2x+3=-3,故选B.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.6.C解析:C【解析】【分析】先求出每边的平方,得出AB2+AC2=BC2,AD2+CD2=AC2,BD2+AB2=AD2,根据勾股定理的逆定理得出直角三角形即可.【详解】理由是:连接AC、AB、AD、BC、CD、BD,设小正方形的边长为1,由勾股定理得:AB2=12+22=5,AC2=22+42=20,AD2=12+32=10,BC2=52=25,CD2=12+32=10,BD2=12+22=5,∴AB2+AC2=BC2,AD2+CD2=AC2,BD2+AB2=AD2,∴△ABC、△ADC、△ABD是直角三角形,共3个直角三角形,故选C.【点睛】本题考查了勾股定理的逆定理,解题的关键是掌握勾股定理.7.D解析:D【解析】分析:本题考查的是利用勾股定理求线段的长度.解析:根据题意,得出如下图形,最短路径为AB的长,AC=20,BC=15,∴AB=25故选D.点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度.8.C解析:C【解析】试题分析:根据平行四边形的性质依次分析各选项即可作出判断.∵平行四边形ABCD∴OA=OC,∠BAD=∠BCD,∠BAD+∠ABC=180°,但无法得到AC⊥BD故选C.考点:平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.9.D解析:D【解析】根据题意得:1010 xx+≥⎧⎨-≠⎩,解得:x≥-1且x≠1.故选D.10.B解析:B【解析】【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】如图,设大树高为AB=9m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=12m,AE=AB-EB=9-4=5m,在Rt△AEC222251213AE EC m++==.故小鸟至少飞行13m.故选:B.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.11.D解析:D【解析】【分析】根据气温T如何随时间t的变化而变化图像直接可解答此题.【详解】A.根据图像4时气温最低,故A错误;B.最低气温为零下3℃,故B错误;C.0点到14点之间气温先下降后上升,故C错误;D描述正确.【点睛】本题考查了学生看图像获取信息的能力,掌握看图像得到有用信息是解决此题的关键. 12.B解析:B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A.532≠A错误;B.8222-2=2=,故B正确;C.137374993=,故C错误;D.()22525=5-2-=,故D错误.故选:B.【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.13.C解析:C【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【详解】梯脚与墙脚距离:22-=2.1(米).3.5 2.8故选C.【点睛】本题考查了勾股定理的应用.善于提取题目的信息是解题以及学好数学的关键.14.C解析:C【解析】【分析】直接根据题意画出平移后的三角形进而利用勾股定理得出BE的长.【详解】如图所示:22BE+=125故选:C.【点睛】此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.15.C解析:C【解析】【分析】把A(﹣4,0)分别代入一次函数y=﹣x+m和y=2x+n中,求得m和n的值,根据所得的两个解析式,求得点B和点C的坐标,以BC为底,点A到BC的垂线段为高,求出△ABC的面积即可.【详解】把点A(﹣4,0)代入一次函数y=﹣x+m得:4+m=0,解得:m=﹣4,即该函数的解析式为:y=﹣x﹣4,把点A(﹣4,0)代入一次函数y=2x+n得:﹣8+n=0,解得:n=8,即该函数的解析式为:y=2x+8,把x =0代入y =﹣x ﹣4得:y =0﹣4=﹣4,即B (0,﹣4),把x =0代入y =2x +8得:y =0+8=8,即C (0,8),则边BC 的长为8﹣(﹣4)=12,点A 到BC 的垂线段的长为4,S △ABC 11242=⨯⨯=24. 故选C .【点睛】 本题考查了一次函数图象上点的坐标特征,正确掌握代入法求一次函数的解析式是解题的关键.二、填空题16.y=x-2【解析】【分析】一次函数关系式y=kx+b 将AB 两点坐标代入解一元一次方程组可求kb 的值确定一次函数关系式【详解】设一次函数关系式y=kx+b 将A (32)B (0-2)代入得解得一次函数解析解析:y=43x-2. 【解析】【分析】一次函数关系式y=kx+b ,将A 、B 两点坐标代入,解一元一次方程组,可求k 、b 的值,确定一次函数关系式.【详解】设一次函数关系式y=kx+b ,将A (3,2)、B (0,-2)代入,得 322k b b +⎧⎨-⎩==,解得432k b ⎧⎪⎨⎪-⎩==, 一次函数解析式为y=43x-2. 故答案为:y=43x-2. 【点睛】此题考查利用待定系数法求一次函数解析式,解题关键在于利用待定系数法进行求解. 17.一【解析】∵一元二次方程x2-2x-m=0无实数根∴△=4+4m<0解得m <-1∴m+1<0m-1<0∴一次函数y=(m+1)x+m-1的图象经过二三四象限不经过第一象限故答案是:一解析:一【解析】∵一元二次方程x 2-2x-m=0无实数根,∴△=4+4m<0,解得m <-1,∴m+1<0,m-1<0,∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.故答案是:一.18.2【解析】试题分析:几个非负数之和为零则每个非负数都为零根据非负数的性质可得:m -3=0且n+1=0解得:m=3n=-1则m+n=3+(-1)=2考点:非负数的性质解析:2【解析】试题分析:几个非负数之和为零,则每个非负数都为零.根据非负数的性质可得:m -3=0且n+1=0,解得:m=3,n=-1,则m+n=3+(-1)=2.考点:非负数的性质19.【解析】【分析】根据二次根式平方绝对值的非负性即可得出xyz 的值求和后再求平方根即可【详解】解:由题意可得:解得:∴∴4的平方根是故答案为:【点睛】本题考查的知识点求代数式的平方根解此题的关键是根据 解析:2±【解析】【分析】根据二次根式、平方、绝对值的非负性即可得出x 、y 、z 的值,求和后再求平方根即可.【详解】解:由题意可得:20,10,30x y z -=+=-=解得:2,1,3x y z ==-=∴4x y z ++=∴4的平方根是2±.故答案为:2±.【点睛】本题考查的知识点求代数式的平方根,解此题的关键是根据二次根式的非负性、绝对值的非负性、平方数的非负性,求出x 、y 、z 的值.20.4【解析】【分析】在Rt 中由勾股定理可求得AB 的长进而可根据三角形面积的不同表示方法求出CD 的长【详解】解:Rt 中AC=4mBC=3mAB=m∵∴m=24m 故答案为24m 【点睛】本题考查勾股定理掌握解析:4【解析】【分析】在Rt ABC 中,由勾股定理可求得AB 的长,进而可根据三角形面积的不同表示方法求出CD 的长.【详解】解:Rt ABC中,AC=4m,BC=3m5=m∵1122ABCS AC BC AB CD =⋅=⋅∴125AC BCCDAB⋅==m=2.4m故答案为2.4 m【点睛】本题考查勾股定理,掌握勾股定理的公式结合利用面积法是解题关键.21.y=3x﹣2【解析】【分析】根据函数图象平移的性质得出k的值设出相应的函数解析式再把经过的点代入即可得出答案【详解】解:新直线是由一次函数y=3x+1的图象平移得到的∴新直线的k=3可设新直线的解析解析:y=3x﹣2【解析】【分析】根据函数图象平移的性质得出k的值,设出相应的函数解析式,再把经过的点代入即可得出答案.【详解】解:新直线是由一次函数y=3x+1的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=﹣2,∴平移后图象函数的解析式为y=3x﹣2;故答案为y=3x﹣2.【点睛】此题考查了一次函数图形与几何变换,求直线平移后的解析式时要注意平移时k和b的值的变化.22.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练解析:7.5m【解析】【分析】根据题意画出示意图,利用勾股定理可求出旗杆的高.【详解】解:如图所示:设旗杆AB x =米,则(1)AC x 米,在Rt ABC ∆中,222AC AB BC =+,即222(1)4x x ,解得:7.5x =.∴旗杆的高为7.5米故答案为:7.5.【点睛】本题考查了勾股定理的应用,解答本题的关键是画出示意图,熟练运用勾股定理. 23.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB 是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD 是矩形∴OA=ACOB=BDAC=BD ∴OA=OB解析:10【解析】【分析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB 是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD 是矩形,∴OA=12AC ,OB=12BD ,AC=BD ∴OA=OB ,∵∠A0B=60°,∴△AOB 是等边三角形,∴OA=OB=AB=5,∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.【点睛】本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.24.【解析】【分析】根据作法判定出四边形OACB是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC=BC=OA∵OA=OB∴OA=OB=BC=AC∴四边形OACB是菱形∵AB解析:【解析】【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴12AB•OC=12×2×OC=4,解得OC=4cm.故答案为:4.【点睛】本题考查菱形的判定与性质,菱形的面积.解决本题的关键是能根据题目中作图的过程得出线段的等量关系.25.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC为对角线三种情况进行求解【详解】如图所示①AC为对角线时AB=5∴点D的坐标为(-53)②BC为对角线时AB=5∴点D的坐标为(53解析:(-5,3)、(5,3)、(3,−3)【解析】【分析】作出图形,分AB、BC、AC为对角线三种情况进行求解.【详解】如图所示,①AC为对角线时,AB=5,∴点D的坐标为(-5,3),②BC为对角线时,AB=5,∴点D的坐标为(5,3),③AB为对角线时,C平移至A的方式为向左平移1个单位,向下平移3个单位,∴点B 向左平移1个单位,向下平移3个单位得到点D的坐标为(3,−3),综上所述,点D的坐标是(-5,3)、(5,3)、(3,−3).故答案为:(-5,3)、(5,3)、(3,−3).【点睛】本题考查了坐标与图形的性质,平行四边形的判定,根据题意作出图形,注意要分情况进行讨论.三、解答题26.(1)见解析;(2)DF⊥ON,理由见解析;(3)24【解析】【分析】(1)根据正方形的性质证明△BCE≌△DCE即可;(2)由第一题所得条件和已知条件可推出∠EDC=∠CBN,再利用90°的代换即可证明;(3)过D点作DG垂直于OM,交点为G,结合已知条件推出DF和BF的长,再根据第一题结论得出△BEF的周长等于DF加BF即可得出答案.【详解】解:(1)证明:∵四边形ABCD正方形,∴CA平分∠BCD,BC=DC,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS);∴BE=DE;(2)DF⊥ON,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)过D点作DG垂直于OM,交点为G,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAG+∠BAO=90°,∵∠ABO+∠BAO=90°,∴∠DAG=∠ABO,又∵∠MON=90°,DG⊥OM,∴△ADG≌△ABO,∴DM=AO,GA=OB=5,∵AB=13,OB=5,根据勾股定理可得AO=12,由(2)可知DF⊥ON,又∵∠MON=90°,DG⊥OM,∴四边形OFDM是矩形,∴OF=DG=AO=12,DF=OM=17,由(1)可知BE=DE,∴△BEF的周长=DF+BF=17+(12-5)=24.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.27.(1)兔子、乌龟、1500;(2)700,50;(3)14;(4)28.5【解析】试题分析:此题要数形结合,根据兔子与乌龟的奔跑路程和时间的图象来求解.试题解析:(1)∵乌龟是一直跑的而兔子中间有休息的时刻;∴折线OABC表示赛跑过程中兔子的路程与时间的关系;线段OD表示赛跑过程中乌龟的路程与时间的关系;由图象可知:赛跑的路程为1500米;(2)结合图象得出:兔子在起初每分钟跑700米.1500÷30=50(米)乌龟每分钟爬50米.(3)700÷50=14(分钟)乌龟用了14分钟追上了正在睡觉的兔子.(4)∵48千米=48000米∴48000÷60=800(米/分)(1500-700)÷800=1(分钟)30+0.5-1×2=28.5(分钟)兔子中间停下睡觉用了28.5分钟.考点:函数的图象.28.(1)详见解析;(2)详见解析;(3)450【解析】【分析】(1)根据勾股定理画出边长为√10的正方形即可;(2)根据勾股定理和已知画出符合条件的三角形即可;(3)连接AC、CD,求出△ACB是等腰直角三角形即可.【详解】(1)如图1的正方形的边长是√10,面积是10;(2)如图2的三角形的边长分别为2,√5、√13;(3)如图3,连接AC,因为AB2=22+42=20,AC2=32+12=10,BC2=32+12=10,所以AB2= AC2+ BC2,AC=BC∴三角形ABC是等腰直角三角形,∴∠ABC=∠BAC=45°.【点睛】本题考查了勾股定理逆定理,三角形的面积,直角三角形的判定的应用,主要考查学生的计算能力和动手操作能力.29.(1)5分钟;(2)2倍【解析】【分析】(1)观察图象可得李师傅离家10分钟时开始修车、离家15分钟修完车,两数相减即可得解;(2)观察图象可得李师傅修车前后行驶的路程和时间,即可求得相应的行驶速度,两速度相除即可得解.【详解】解:(1)由图可得,李师傅修车用了15105-=(分钟);(2)∵修车后李师傅骑车速度是200010002002015-=-(米/分钟),修车前速度为100010010=(米/分钟)∴2001002÷=∴修车后李师傅骑车速度是修车前的2倍.【点睛】本题考查了从图象中读取信息的数形结合的能力,需要注意分析其中的“关键点”,还要善于分析各部分图象的变化趋势.30.()()12,160,100,1;()2直线CD 的解析式为:()y 100x 1405x 7=-≤≤;()3两人第二次相遇后,又经过0.25时或1.5时两人相距20km.【解析】【分析】(1)根据速度和时间列方程:60×1+m=160,可得m=100,根据D 的坐标可计算直线OD 的解析式,从图中知E 的横坐标为2,可得E 的坐标,根据点E 到D 的时间差及速度可得休息的时间;(2)利用待定系数法求直线CD 的解析式;(3)先计算第二次相遇的时间:y=360时代入y=80x 可得x 的值,再计算x=5时直线OD 的路程,可得路程差为40km ,所以存在两种情况:两人相距20km ,列方程可得结论.【详解】()1由图形得()D 7,560,设OD 的解析式为:y kx =,把()D 7,560代入得:7k 560=,k 80=,OD ∴:y 80x =,当x 2=时,y 280160=⨯=,()E 2,160∴,由题意得:601m 160⨯+=,m 100=,()725601601001---÷=,故答案为()2,160,100,1;()()2A 1,60,()E 2,160,∴直线AE :y 100x 40=-,当x 4=时,y 40040360=-=,()B 4,360∴,()C 5,360∴,()D 7,560,∴设CD 的解析式为:y kx b =+,把()C 5,360,()D 7,560代入得:{5k b 3607k b 560+=+=,解得:{k 100b 140==-, ∴直线CD 的解析式为:()y 100x 1405x 7=-≤≤;()3OD 的解析式为:()y 80x 0x 7=≤≤,当x 5=时,y 580400=⨯=,40036040-=,∴出发5h 时两个相距40km ,把y 360=代入y 80x =得:x 4.5=,∴出发4.5h 时两人第二次相遇,①当4.5x 5<<时,80x 36020-=,x 4.75=,()4.75 4.50.25h -=,②当x 5>时,()80x 100x 14020--=,x 6=,()6 4.5 1.5h -=,答:两人第二次相遇后,又经过0.25时或1.5时两人相距20km.【点睛】本题考查了一次函数的应用,读懂函数图象,理解横、纵坐标表示的含义,熟练掌握一次函数的相关知识、利用数形结合思想是解题的关键.。
西安郭杜大学城学校人教版七年级上册期中生物期中综合测试题
![西安郭杜大学城学校人教版七年级上册期中生物期中综合测试题](https://img.taocdn.com/s3/m/2bde58c45727a5e9846a6188.png)
西安郭杜大学城学校人教版七年级上册期中生物期中综合测试题一、选择题1.在如图所示的显微镜使用步骤中,符合要求的是()A.B.C.D.2.有关生物与环境的说法,错误的是()A.“雨露滋润禾苗壮”主要体现了生物对环境的适应B.“鱼儿离不开水”说明了生物依赖环境C.“种豆南山下,草盛豆苗稀”体现了生物之间的竞争关系D.“人间四月芳菲尽,山寺桃花始盛开”主要体现了温度对生物的影响3.在探究实验“光对鼠妇生活的影响”中,作为实验中的变量应是()A.光B.湿度C.温度D.空气4.“春有桃花迷人眼,夏有连叶荷田田”,不同的花儿在不同季节绽放,主要是受了()的影响,所以在异地引进作物品种之前应充分考虑,以免造成不必要的损失。
A.温度、水分B.水分、日照C.光照、温度D.温度、土壤5.按植物细胞分裂的过程,将如图图片排序()A.a→c→d→b B.c→d→a→b C.a→b→c→d D.a→d→b→c6.若用如图表示植物细胞的两项生理活动,下列有关说法正确的是()A.①表示细胞生长,②表示细胞分裂B.①表示细胞分裂,②表示细胞分化C.①过程中细胞膜和细胞质的变化最明显D.②过程中细胞内的遗传物质发生了变化7.在某生态系统中,各种生物体内残留的某重金属含量如下表所示,则该生态系统中最可能的食物链构成是()生物体A B C D E某重金属浓度/ppm0.0570.5158560A.A→E→C→B→D B.D→B→C→E→AC.A→C→B→D→E D.E→D→B→C→A8.如图是某草原生态系统的食物网简图,据图分析,下列说法正确的是A.水稻、昆虫都属于生产者B.该图可以代表一个生态系统C.生态系统中,能量是沿着食物链和食物网流动的D.青蛙和鸟是捕食关系9.如图是生态系统中构成一条食物链的四种生物的X量分布模型图,下列说法错误的是()选项X食物链A有机物含量丁→丙→乙→甲B个体数量丁→丙→乙→甲C DDT(一种农药)含量甲→乙→丙→丁D化学能含量甲→乙→丙→丁A.A B.B C.C D.D10.为探究湿度对绿豆发芽的影响,小明同学设计了一组对照试验,在甲和乙两个相同花盆中种品种和数量相同的绿豆,并对光、温度和水加以控制,下表显示的部分数据中,表中①②两处分别是()花盆阳光温度水甲向阳处30℃充足乙①20℃②A.向阳处,不充足B.暗室,不充足C.向阳处,充足D.暗室,不充足11.利用显微镜观察植物根尖的永久切片,得到如图所示的根尖结构图,图中按细胞的特点把根尖划分成1、2、3、4四个部位,其中的哪一部位是植物从土壤中吸收水分和无机盐的主要部位?()A.根冠 B.成熟区 C.伸长区 D.分生区12.孙悟同学对自家房前屋后的几种植物:玉米、花生、马尾松、铁线蕨、葫芦藓、水绵,进行了描述,以下正确的是()A.水绵没有根、茎、叶,生活在水中B.玉米、花生、马尾松都能开花结果C.玉米、花生、马尾松、铁线蕨、葫芦藓都有根、茎、叶D.花生与玉米的种子都有种皮、胚根、胚芽、胚轴、胚乳13.某同学在校园内发现一种不认识的植物,观察后记录如下:①植株高大;②叶针形;③有球花和球果,没有真正的花和果实。
西安郭杜大学城学校初中数学九年级下期中经典题
![西安郭杜大学城学校初中数学九年级下期中经典题](https://img.taocdn.com/s3/m/9de739cc31126edb6e1a10e8.png)
一、选择题1.(0分)[ID :11128]下列说法正确的是( )A .小红小学毕业时的照片和初中毕业时的照片相似B .商店新买来的一副三角板是相似的C .所有的课本都是相似的D .国旗的五角星都是相似的2.(0分)[ID :11115]在Rt ABC ∆中,90,2,1C AC BC ∠=︒==,则cos A 的值是( ) A .255 B .55 C .52 D .123.(0分)[ID :11100]若37a b =,则b a a -等于( ) A .34 B .43 C .73 D .374.(0分)[ID :11099]已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( )A .AB 2=AC •BC B .BC 2=AC •BC C .AC =512-BCD .BC =512-AC 5.(0分)[ID :11096]如图,在同一平面直角坐标系中,反比例函数y =k x与一次函数y =kx ﹣1(k 为常数,且k >0)的图象可能是( ) A . B . C . D . 6.(0分)[ID :11092]在△ABC 中,若|cosA −12|+(1−tanB)2=0,则∠C 的度数是( ) A .45° B .60° C .75° D .105° 7.(0分)[ID :11074]在同一直角坐标系中,函数k y x=和y=kx ﹣3的图象大致是( ) A . B . C .D .8.(0分)[ID :11070]河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3,则AC 的长是( )A .10米B .53米C .15米D .103米9.(0分)[ID :11069]如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A .1:3B .1:4C .2:3D .1:210.(0分)[ID :11064]如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+ 11.(0分)[ID :11061]如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP=2,BP=6,∠APC=30°,则CD 的长为( )A 15B .5C .15D .812.(0分)[ID :11057]图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变13.(0分)[ID :11053]若△ABC ∽△A′B′C′且34AB A B ='',△ABC 的周长为15cm ,则△A′B′C′的周长为( )cm.A .18B .20C .154D .80314.(0分)[ID :11035]若270x y -=. 则下列式子正确的是( ) A .72x y = B .27x y = C .27x y = D .27x y = 15.(0分)[ID :11037]制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )A .360元B .720元C .1080元D .2160元二、填空题16.(0分)[ID :11202]如图,P (m ,m )是反比例函数9y x=在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为_____.17.(0分)[ID :11190]如图,已知AD 为ABC ∆的角平分线,DE AB ∥,如果23AE EC =,那么AE AB=______.18.(0分)[ID :11186]如图,CAB BCD ∠=∠,2AD =,4BD =,则BC =______.19.(0分)[ID :11170]利用标杆CD 测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E .若标杆CD 的高为1.5米,测得DE =2米,BD =16米,则建筑物的高AB 为_____米.20.(0分)[ID :11162]如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.21.(0分)[ID :11148]如图,在平面直角坐标系中,已知点A 、B 的坐标分别为(8,0)、(0,23),C 是AB 的中点,过点C 作y 轴的垂线,垂足为D ,动点P 从点D 出发,沿DC 向点C 匀速运动,过点P 作x 轴的垂线,垂足为E ,连接BP 、EC .当BP 所在直线与EC 所在直线垂直时,点P 的坐标为____22.(0分)[ID :11227]如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成.利用它可以把线段按一定的比例伸长或缩短,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OD ,OB =3OC ),然后张开两脚,这时CD =2,则AB =_____.23.(0分)[ID:11217]如图,点A在双曲线y=6x(x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上且BC:CA=1:2,双曲线y=kx(x>0)经过点C,则k=_____.24.(0分)[ID:11193]一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.25.(0分)[ID:11178]如图,已知AD AE,请你添加一个条件,使得ADC AEB△≌△,你添加的条件是_____.(不添加任何字母和辅助线)三、解答题26.(0分)[ID:11304]马路两侧有两根灯杆AB、CD,当小明站在点N处时,在灯C的照射下小明的影长正好为NB,在灯A的照射下小明的影长为NE,测得BD=24m,NB=6m,NE=2m.(1)若小明的身高MN=1.6m,求AB的长;(2)试判断这两根灯杆的高度是否相等,并说明理由.27.(0分)[ID:11297]已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.28.(0分)[ID:11236]如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.29.(0分)[ID:11319]如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B 处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)30.(0分)[ID:11239]如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.B4.D5.B6.C7.A8.B9.D10.D11.C12.D13.B14.A15.C二、填空题16.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三17.【解析】【分析】由证得【详解】∵∴△CED∽△CAB∴∵∴∵为的角平分线∴∠ADE=∠BAD=∠DAE∴故填:【点睛】此题考查相似三角形的判定与性质根据平行线证得三角形相似由此得到边的比值关系推导出18.【解析】【分析】角对应相等的两个三角形相似可证得△ABC∽△CBD再根据相似三角形的性质可解【详解】解:∵∠B=∠B∠CAB=∠BCD∴△ABC∽△CBD∴BC:BD=AB:BC∴BC:BD=(AD19.5【解析】【分析】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可【详解】解:∵AB∥CD∴△EBA∽△ECD∴即∴AB=135(米)故答案为:135【点睛】此题主要考查相似三角形的性质解题20.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体然后进一步计算即可得出答案【详解】根据俯21.(1)【解析】【分析】先根据题意求得CD和PE的长再判定△EPC∽△PDB列出相关的比例式求得DP的长最后根据PEDP的长得到点P的坐标【详解】由题意可知OB=2AO=8∵CD⊥BOC是AB的中点∴22.6【解析】【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似然后利用相似三角形的性质求解【详解】∵OA=3ODOB=3CO∴OA:OD=BO:CO=3:1∠AOB=∠DO23.2【解析】【分析】根据反比例函数系数k的几何意义即可得到结论【详解】解:连接OC∵点A在双曲线y=(x>0)上过点A作AB⊥x轴于点B∴S△OAB=×6=3∵BC:CA=1:2∴S△OBC=3×=124.6【解析】符合条件的最多情况为:即最多为2+2+2=625.或或【解析】【分析】根据图形可知证明已经具备了一个公共角和一对相等边因此可以利用ASASASAAS证明两三角形全等【详解】∵∴可以添加此时满足SAS;添加条件此时满足ASA;添加条件此时满足AAS故三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】观察图形,看它们的形状是否相同,形状相同的两个图形是相似图形.【详解】A.小明上幼儿园时的照片和初中毕业时的照片,形状不相同,不相似;B.商店新买来的一副三角板,形状不相同,不相似;C.所有的课本都是相似的,形状不相同,不相似;D.国旗的五角星都是相似的,形状相同,相似.故选D.【点睛】本题考查了相似图形,相似图形是指形状相同的图形,仔细观察看每组图形是否相同,如果相同就相似,否则就不相似.2.A解析:A【解析】【分析】根据勾股定理,可得AB的长,根据余弦函数等于邻边比斜边,可得答案.【详解】如图,在Rt△ABC中,∠C=90°,由勾股定理,得22=5AC BC+∴cosA=2555ACAB==,故选A.【点睛】本题考查了锐角三角函数的定义以及勾股定理,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.B解析:B【解析】由比例的基本性质可知a=37b,因此b aa-=347337b bb-=.故选B. 4.D解析:D 【解析】【分析】根据黄金分割的定义得出51BC ACAC AB-==,从而判断各选项.【详解】∵点C是线段AB的黄金分割点且AC>BC,∴51BC ACAC AB-==,即AC2=BC•AB,故A、B错误;∴AC=512AB,故C错误;51-AC,故D正确;故选D.【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.5.B解析:B当k>0时,直线从左往右上升,双曲线分别在第一、三象限,故A、C选项错误;∵一次函数y=kx-1与y轴交于负半轴,∴D选项错误,B选项正确,故选B.6.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】,tanB=1,由题意,得 cosA=12∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.7.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.8.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.9.D解析:D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=14DB,则DE:EB=1:3,∴DF:AB=1:3.∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.10.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.11.C解析:C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴22=15OC OH∴15故选C.【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键12.D解析:D【解析】【分析】由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得2,CF=32,则C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以2,而2;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于2x×2=2xy,其值为定值.【详解】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都是直角三角形;观察反比例函数图像得x =3,y =3,则反比例解析式为y=9x.A 、当x =3时,y =3,即BC=CD=3,所以,,C 点与M 点重合,则EC=EM ,所以A 选项错误;B 、当y =9时,x =1,即BC=1,CD=9,所以,,,所以B 选项错误;C 、因为x y =2×xy =18,所以,EC•CF 为定值,所以C 选项错误;D 、因为BE•DF=BC•CD=xy =9,即BE•DF 的值不变,所以D 选项正确.故选:D .【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.13.B解析:B【解析】∵△ABC ∽△A ′B ′C ′,∴34ABC AB A B C A B ''=''='的周长的周长, ∵△ABC 的周长为15cm ,∴△A ′B ′C ′的周长为20cm .故选B .14.A解析:A【解析】【分析】 直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y . A .72x y =,则2x =7y ,故此选项正确; B .27x y=,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.15.C解析:C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.二、填空题16.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三解析:9332+.【解析】【详解】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△P AB是等边三角形,∴∠P AH=60°.∴根据锐角三角函数,得3∴OB3∴S△POB=12OB•PH933+.17.【解析】【分析】由证得【详解】∵∴△CED ∽△CAB ∴∵∴∵为的角平分线∴∠ADE=∠BAD=∠DAE ∴故填:【点睛】此题考查相似三角形的判定与性质根据平行线证得三角形相似由此得到边的比值关系推导出 解析:35【解析】【分析】由DE AB ∥证得【详解】∵DE AB ∥,∴△CED ∽△CAB, ∴DE CE AB AC =, ∵23AE EC =, ∴35DE CE AB AC ==, ∵AD 为ABC ∆的角平分线,DE AB ∥,∴∠ADE=∠BAD=∠DAE, ∴AE AB =35DE CE AB AC ==, 故填:35. 【点睛】 此题考查相似三角形的判定与性质,根据平行线证得三角形相似,由此得到边的比值关系,推导出AE AB的值. 18.【解析】【分析】角对应相等的两个三角形相似可证得△ABC ∽△CBD 再根据相似三角形的性质可解【详解】解:∵∠B=∠B ∠CAB=∠BCD ∴△ABC ∽△CBD ∴BC :BD=AB :BC ∴BC :BD=(AD 解析:【解析】【分析】角对应相等的两个三角形相似可证得△ABC ∽△CBD ,再根据相似三角形的性质可解.【详解】解:∵∠B=∠B ,∠CAB=∠BCD ,∴△ABC ∽△CBD ,∴BC:BD=AB:BC,∴BC:BD=(AD+BD):BC,即BC:4=(2+4):BC,∴.故答案为:.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.19.5【解析】【分析】根据同一时刻同一地点物高与影长成正比列式求得CD 的长即可【详解】解:∵AB∥CD∴△EBA∽△ECD∴即∴AB=135(米)故答案为:135【点睛】此题主要考查相似三角形的性质解题解析:5【解析】【分析】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可.【详解】解:∵AB∥CD,∴△EBA∽△ECD,∴CD EDAB EB=,即1.52216AB=+,∴AB=13.5(米).故答案为:13.5【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定与性质.20.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体然后进一步计算即可得出答案【详解】根据俯解析:7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,∴527+=,∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.21.(1)【解析】【分析】先根据题意求得CD和PE的长再判定△EPC∽△PDB列出相关的比例式求得DP的长最后根据PEDP的长得到点P的坐标【详解】由题意可知OB=2AO=8∵CD⊥BOC是AB的中点∴解析:(1,3)【解析】【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【详解】由题意可知,OB=23,AO=8,∵CD⊥BO,C是AB的中点,∴BD=DO=12BO==PE,CD=12AO=4.设DP=a,则CP=4﹣a,当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP,又∵EP⊥CP,PD⊥BD,∴∠EPC=∠PDB=90°,∴△EPC∽△PDB.DP DBPE PC∴=∴343aa=-,∴a1=1,a2=3(舍去).∴DP=1,∵PE=3,∴P(1,3).考点:1相似三角形性质与判定;2平面直角坐标系.22.6【解析】【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似然后利用相似三角形的性质求解【详解】∵OA=3ODOB=3CO∴OA:OD=BO:CO=3:1∠AOB=∠DO解析:6【解析】【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【详解】∵OA=3OD,OB=3CO,∴OA:OD=BO:CO=3:1,∠AOB=∠DOC,∴△AOB∽△DOC,∴31 AO ABOD CD==,∴AB=3CD,∵CD=2,∴AB=6,故答案为:6.【点睛】本题考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题.23.2【解析】【分析】根据反比例函数系数k的几何意义即可得到结论【详解】解:连接OC∵点A在双曲线y=(x>0)上过点A作AB⊥x轴于点B∴S△OAB=×6=3∵BC:CA=1:2∴S△OBC=3×=1解析:2【解析】【分析】根据反比例函数系数k的几何意义即可得到结论.【详解】解:连接OC,∵点A 在双曲线y =6x (x >0)上,过点A 作AB ⊥x 轴于点B , ∴S △OAB =12×6=3, ∵BC :CA =1:2,∴S △OBC =3×13=1, ∵双曲线y =k x(x >0)经过点C , ∴S △OBC =12|k |=1, ∴|k |=2,∵双曲线y =k x(x >0)在第一象限, ∴k =2,故答案为2.【点睛】本题考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数系数k 的几何意义,熟练掌握反比例函数系数k 的几何意义是解题的关键.24.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=625.或或【解析】【分析】根据图形可知证明已经具备了一个公共角和一对相等边因此可以利用ASASASAAS 证明两三角形全等【详解】∵∴可以添加此时满足SAS ;添加条件此时满足ASA ;添加条件此时满足AAS 故解析:AB AC =或ADC AEB ∠=∠或ABE ACD ∠=∠.【分析】根据图形可知证明ADC AEB ≌已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等.【详解】∵A A ∠∠= ,AD AE =,∴可以添加AB AC = ,此时满足SAS ;添加条件ADC AEB ∠∠= ,此时满足ASA ;添加条件ABE ACD ∠∠=,此时满足AAS ,故答案为:AB AC =或ADC AEB ∠∠=或ABE ACD ∠∠=;【点睛】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.三、解答题26.(1)AB=6.4m ;(2)AB =CD ,理由见解析.【解析】【分析】(1)直接利用相似三角形的判定与性质分析得出答案;(2)直接利用平行线分线段成比例定理分析得出答案.【详解】(1)∵MN ∥AB ,∴△MNE ∽ABE ,∴MN AB =NE BE . ∵NB =6,NE =2,MN =1.6,∴1.6AB =28,∴AB =6.4(m ); (2)这两根灯杆的高度相等,理由如下:∵MN ∥CD ,BD =24,∴MN AB =NE BE =28=14,∴MN CD =BN BD =624=14,∴AB =CD .【点睛】本题考查了相似三角形的应用,正确得出相似三角形是解题的关键.27.(1)见解析;(2)见解析.【解析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.28.(1) FD=5; (2)证明见解析.【解析】【分析】(1)利用三角形中位线的性质得出DE∥AB,进而得出∠DEC =∠B,即可得出FD=DE,即可得出答案;(2)利用等腰三角形的性质和平行线的性质得出∠B=∠A=∠CED=∠CDE,即可得出∠CDE=∠F,即可得出△CDE∽△DFE.【详解】解:(1)∵D、E分别是AC、BC的中点,∴DE//AB,DE=12AB=5又∵DE//AB,∴∠DEC= ∠B.而∠F= ∠B,∴∠DEC =∠B,∴FD=DE=5;(2)∵AC=BC,∴∠A=∠B.又∠CDE=∠A,∠CED= ∠B,∴∠CDE=∠B.而∠B=∠F,∴∠CDE=∠F,∠CED=∠DEF,∴△CDE∽△DFE.【点睛】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质和平行线的性质等知识,熟练利用相关性质是解题关键.29.此时轮船所在的B处与灯塔P的距离是98海里.【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=PC PA,∴PC=PA•cos ∠(海里),在Rt △PCB 中,cos ∠BPC=PC PB ,∴PB=cos PC BPC =∠≈98(海里), 答:此时轮船所在的B 处与灯塔P 的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.30.证明见解析.【解析】【分析】由∠BAE=∠CAD 知∠BAE+∠EAC=∠CAD+∠EAC ,即∠BAC=∠EAD ,再根据线段的长得出65AB AC AE AD ==,据此即可得证. 【详解】 ∵∠BAE =∠CAD ,∴∠BAE+∠EAC =∠CAD+∠EAC ,即∠BAC =∠EAD ,∵AB =18,AC =48,AE =15,AD =40, ∴65AB AC AE AD ==, ∴△ABC ∽△AED .【点睛】本题主要考查相似三角形的判定,解题的关键是掌握两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似.。
西安郭杜大学城学校数学高一上期中经典题
![西安郭杜大学城学校数学高一上期中经典题](https://img.taocdn.com/s3/m/ef1cd4b969eae009591bec0a.png)
一、选择题1.(0分)[ID :11825]设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ( ) A .{}1,3- B .{}1,0C .{}1,3D .{}1,52.(0分)[ID :11816]f (x)=-x 2+4x +a ,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( ) A .-1B .0C .1D .23.(0分)[ID :11811]若35225a b ==,则11a b+=( ) A .12B .14C .1D .24.(0分)[ID :11808]已知函数()1ln 1xf x x-=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭5.(0分)[ID :11805]三个数0.32,20.3,0.32log 的大小关系为( ).A .20.30.3log 20.32<< B .0.320.3log 220.3<<C .20.30.30.3log 22<<D .20.30.30.32log 2<<6.(0分)[ID :11802]设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 7.(0分)[ID :11801]设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 8.(0分)[ID :11779]已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=( )A .50-B .0C .2D .509.(0分)[ID :11775]已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( ) A .a c b >>B .a b c >>C .c a b >>D .c b a >>10.(0分)[ID :11774]若函数()(1)(0xxf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .11.(0分)[ID :11792]函数223()2xx xf x e +=的大致图像是( )A .B .C .D .12.(0分)[ID :11766]函数f(x)=23x x +的零点所在的一个区间是 A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)13.(0分)[ID :11735]设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭ ,c =2525⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .a>c>b B .a>b>c C .c>a>bD .b>c>a14.(0分)[ID :11729]已知函数f(x)={(2a −1)x +7a −2,(x <1)a x ,(x ≥1)在(-∞,+∞)上单调递减,则实数 a 的取值范围是( ) A .(0,1)B .(0,12)C .[38,12)D .[38,1)15.(0分)[ID :11817]函数2y 34x x =--+ )A .(41)--,B .(41)-,C .(11)-,D .(11]-,二、填空题16.(0分)[ID :11919]已知函数241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,则函数(())3f f x =的零点的个数是________.17.(0分)[ID :11912]已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += .18.(0分)[ID :11892]若1∈{}2,a a, 则a 的值是__________19.(0分)[ID :11889]已知偶函数()f x 满足3()8(0)f x x x =-≥,则(2)0f x ->的解集为___ ___20.(0分)[ID :11886]已知函数()xxf x e e -=-,对任意的[3,3]k ∈-,(2)()0f kx f x -+<恒成立,则x 的取值范围为______.21.(0分)[ID :11885]设f(x)={1−√x,x ≥0x 2,x <0,则f(f(−2))=________22.(0分)[ID :11879]已知2a=5b=m ,且11a b+=1,则m =____. 23.(0分)[ID :11853]若4log 3a =,则22a a -+= .24.(0分)[ID :11842]非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.25.(0分)[ID :11829]若关于 x 的方程2420x x a ---= 在区间 (1, 4) 内有解,则实数 a 的取值范围是_____.三、解答题26.(0分)[ID :12028]已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值; (2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式27.(0分)[ID :12021]已知2256x ≤且21log 2x ≥,求函数2()log 2x f x =⋅的最大值和最小值.28.(0分)[ID :12000]已知函数()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.(1)求实数m 的值;(2)若函数()f x 在区间[]1,2a --上单调递增,求实数a 的取值范围.29.(0分)[ID :11984]已知二次函数()2f x ax bx c =++.(1)若方程()0f x =两个根之和为4,两根之积为3,且过点(2,-1).求()0f x ≤的解集;(2)若关于x 的不等式()0f x >的解集为(2,1)-. (ⅰ)求解关于x 的不等式20cx bx a ++>(ⅱ)设函数2(1)(),(1)(1)b x cg x x a x +-=<-,求函数()g x 的最大值 30.(0分)[ID :12024]计算下列各式的值:(1)()11102327102π20.25927--⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭.(2)()221log 3lg52lg2lg5lg2-++++⋅.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.C 3.A 4.D 5.A 6.D 7.B 8.C 9.A 10.A11.B12.B13.A14.C15.C二、填空题16.4【解析】【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得当时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查17.【解析】若则在上为增函数所以此方程组无解;若则在上为减函数所以解得所以考点:指数函数的性质18.-1【解析】因为所以或当时不符合集合中元素的互异性当时解得或时符合题意所以填19.【解析】【分析】通过判断函数的奇偶性增减性就可以解不等式【详解】根据题意可知令则转化为由于偶函数在上为增函数则即即或即或【点睛】本题主要考查利用函数的性质(奇偶性增减性)解不等式意在考查学生的转化能20.【解析】【分析】先判断函数的单调性和奇偶性根据单调性和奇偶性化简题目所给不等式利用一次函数的性质求得的取值范围【详解】由于故函数为奇函数而为上的增函数故由有所以即将主变量看成()表示一条直线在上纵坐21.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1-22.10【解析】因为2a=5b=m所以a=log2mb=log5m由换底公式可得=logm2+logm5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数23.【解析】【分析】【详解】∵∴∴考点:对数的计算24.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【25.-6-2)【解析】【分析】转化成f(x)=与有交点再利用二次函数的图像求解【详解】由题得令f(x)=所以所以故答案为-6-2)【点睛】本题主要考查二次方程的有解问题考查二次函数的图像和性质意在考查学三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C2.C解析:C 【解析】因为对称轴2[0,1]x =∉,所以min max ()(0)2()(1)31f x f a f x f a ===-∴==+= 选C.3.A解析:A 【解析】 【分析】由指数式与对数式的转化,结合换底公式和对数的运算,即可求解. 【详解】由题意3225,5225a b==根据指数式与对数式的转化可得35log 225,log 225a b == 由换底公式可得lg 2252lg15lg 2252lg15,lg 3lg 3lg 5lg 5a b ==== 由对数运算化简可得11lg 3lg 52lg152lg15a b +=+ lg3lg52lg15+=lg1512lg152== 故选:A 【点睛】本题考查了指数式与对数式的转化,对数的运算及换底公式的应用,属于中档题.4.D解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数,而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.5.A解析:A 【解析】 【分析】利用指数函数与对数函数的单调性即可得出. 【详解】∵0<0.32<1,20.3>1,log 0.32<0, ∴20.3>0.32>log 0.32. 故选A . 【点睛】本题考查了指数函数与对数函数的单调性,属于基础题.6.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内7.B解析:B 【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算8.C解析:C 【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=, 因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++,因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=,从而(1)(2)(3)(50)(1)2f f f f f ++++==,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.9.A解析:A 【解析】由0.50.6log 0.51,ln 0.50,00.61><<<,所以1,0,01a b c ><<<,所以a c b >>,故选A .10.A解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数, 所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减,故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.11.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 12.B解析:B 【解析】试题分析:因为函数f(x)=2x +3x 在其定义域内是递增的,那么根据f(-1)=153022-=-<,f (0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B . 考点:本试题主要考查了函数零点的问题的运用.点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间.13.A解析:A 【解析】试题分析:∵函数2()5xy =是减函数,∴c b >;又函数25y x =在(0,)+∞上是增函数,故a c >.从而选A考点:函数的单调性.14.C解析:C 【解析】 【分析】由函数单调性的定义,若函数f(x)在(−∞,+∞)上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当x =1时,f 1(x)≥f 2(x),求解即可. 【详解】若函数f(x)={(2a −1)x +7a −2,(x <1)a x ,(x ≥1)在(−∞,+∞)上单调递减,则{2a −1<00<a <1(2a −1)×1+7a −2≥a,解得38≤a <12.故选C. 【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证y 随x 的增大而减小,故解答本题的关键是f 1(x)的最小值大于等于f 2(x)的最大值.15.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C二、填空题16.4【解析】【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得当时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查 解析:4 【解析】 【分析】根据分段函数的解析式当0x ≤时,令()3f x =,则2413x x --+=,解得2x =-±0x >时,()31xf x =>,1x =,做出函数()f x ,1,22y y y ==-=--.【详解】241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,∴当0x ≤时,()()2241255f x x x x =--+=-++≤,令()3f x =,则2413x x --+=,解得2x =-±120,423,-<-+<-<--当0x >时,()31xf x =>,令()3f x =得1x =,作出函数()f x ,1,22,22y y y ==-=--由图像可知,()f x 与1y =有两个交点,与22y =-+ 则(())3f f x =的零点的个数为4. 故答案为:4 【点睛】本题考查了分段函数的零点个数,考查了数形结合的思想,属于基础题.17.【解析】若则在上为增函数所以此方程组无解;若则在上为减函数所以解得所以考点:指数函数的性质解析:32-【解析】若1a >,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+=,此方程组无解;若01a <<,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=-,解得1{22a b ==-,所以32a b +=-.考点:指数函数的性质.18.-1【解析】因为所以或当时不符合集合中元素的互异性当时解得或时符合题意所以填解析:-1 【解析】 因为{}21,a a∈,所以1a =或21a=,当1a =时,2a a =,不符合集合中元素的互异性,当21a =时,解得1a =或1a =-,1a =-时2a a ≠,符合题意.所以填1a =-.19.【解析】【分析】通过判断函数的奇偶性增减性就可以解不等式【详解】根据题意可知令则转化为由于偶函数在上为增函数则即即或即或【点睛】本题主要考查利用函数的性质(奇偶性增减性)解不等式意在考查学生的转化能 解析:{|40}x x x ><或【解析】 【分析】通过判断函数的奇偶性,增减性就可以解不等式. 【详解】根据题意可知(2)0f =,令2x t -=,则转化为()(2)f t f >,由于偶函数()f x 在()0,∞+上为增函数,则()(2)f t f >,即2t>,即22x -<-或22x ->,即0x <或4x >.【点睛】本题主要考查利用函数的性质(奇偶性,增减性)解不等式,意在考查学生的转化能力,分析能力及计算能力.20.【解析】【分析】先判断函数的单调性和奇偶性根据单调性和奇偶性化简题目所给不等式利用一次函数的性质求得的取值范围【详解】由于故函数为奇函数而为上的增函数故由有所以即将主变量看成()表示一条直线在上纵坐解析:11,2⎛⎫- ⎪⎝⎭【解析】 【分析】先判断函数()f x 的单调性和奇偶性,根据单调性和奇偶性化简题目所给不等式,利用一次函数的性质,求得x 的取值范围. 【详解】由于()()f x f x -=-故函数为奇函数,而()1xxf x e e =-为R 上的增函数,故由(2)()0f kx f x -+<,有()()()2f kx f x f x -<-=-,所以2kx x -<-,即20xk x +-<,将主变量看成k ([3,3]k ∈-),表示一条直线在[]3,3-上纵坐标恒小于零,则有320320x xx x-+-<⎧⎨+-<⎩,解得112x-<<.所以填11,2⎛⎫-⎪⎝⎭.【点睛】本小题主要考查函数的单调性和奇偶性的运用,考查化归与转化的数学思想方法,考查一元一次不等式组的解法,属于中档题.21.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1-解析:-1【解析】【分析】由分段函数的解析式先求出f(−2)的值并判定符号,从而可得f(f(−2))的值.【详解】∵f(x)={1−√x,x≥0x2,x<0,−2<0,∴f(−2)=(−2)2=4>0,所以f(f(−2))=f(4)=1−√4=−1,故答案为-1.【点睛】本题主要考查分段函数的解析式,属于简单题. 求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.22.10【解析】因为2a=5b=m所以a=log2mb=log5m由换底公式可得=logm2+logm5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数解析:10【解析】因为2a=5b=m,所以a=log2m,b=log5m,由换底公式可得11a b+=log m2+log m5=log m10=1,则m=10.点睛:(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.23.【解析】【分析】【详解】∵∴∴考点:对数的计算【解析】【分析】 【详解】∵4log 3a =,∴432a a =⇒=222a-+== 考点:对数的计算24.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1}, 【解析】 【分析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素. 【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-.若 2a ab =,则0a =,此时2b b =,故1b = ,此时{}0,1S =. 若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =. 综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-. 【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.25.-6-2)【解析】【分析】转化成f(x)=与有交点再利用二次函数的图像求解【详解】由题得令f(x)=所以所以故答案为-6-2)【点睛】本题主要考查二次方程的有解问题考查二次函数的图像和性质意在考查学解析:[-6,-2) 【解析】 【分析】转化成f(x)=242x x --与y a =有交点, 再利用二次函数的图像求解. 【详解】由题得242x x a --=,令f(x)=()242,1,4x x x --∈,所以()()[)2242266,2f x x x x =--=--∈--, 所以[)6,2a ∈-- 故答案为[-6,-2) 【点睛】本题主要考查二次方程的有解问题,考查二次函数的图像和性质,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.三、解答题 26.(1)23-;(2)见解析;(3)()1x f x x -=+ 【解析】 【分析】(1)利用函数的奇偶性求解.(2)函数单调性定义,通过化解判断函数值差的正负;(3)函数为R 奇函数,x 〈0的解析式已知,利用奇函数图像关于原点对称,即可求出x 〉0的解析式. 【详解】(1)由函数f (x )为奇函数,知f (2)=-f (-2)=23-· (2)在(-∞,0)上任取x 1,x 2,且x 1<x 2, 则()()1212121111111111f x f x x x x x ⎛⎫⎛⎫-=+-+=- ⎪ ⎪----⎝⎭⎝⎭ ()()211211x x x x -=-- 由x 1-1<0,x 2-1<0,x 2-x 1>0,知f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 由定义可知,函数y =f (x )在区间(-∞,0]上单调递减.· (3)当x >0时,-x <0,()111f x x -=-+ 由函数f (x )为奇函数知f (x )=-f (-x ),()1111x f x x x -∴=-+=++ 【点睛】本题考查了函数奇偶性的应用和单调性的定义,利用奇偶性求函数值和解析式主要应用奇偶性定义和图像的对称性;利用定义法证明函数单调性关键是作差后式子的化解,因为需要判断结果的正负,所以通常需要将式子化成乘积的形式.27.最小值为14-,最大值为2. 【解析】【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤ ()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭.当23log ,2x = ()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.28.(1)2;(2)(]1,3. 【解析】 【分析】(1)设0x <,可得0x ->,求出()f x -的表达式,利用奇函数的定义可得出函数()y f x =在0x <时的解析式,由此可求出实数m 的值;(2)作出函数()y f x =的图象,可得出函数()y f x =的单调递增区间为[]1,1-,于是可得出[][]1,21,1a --⊆-,进而得出关于实数a 的不等式组,解出即可. 【详解】(1)()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩为奇函数,当0x <时,0x ->,则()()()2222f x x x x x -=--+⨯-=--, 则()()22f x f x x x =--=+,2m ∴=;(2)由(1)可得()222,00,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,作出函数()y f x =如下图所示:由图象可知,函数()y f x =的单调递增区间为[]1,1-, 由题意可得[][]1,21,1a --⊆-,则121a -<-≤,解得13a .因此,实数a 的取值范围是(]1,3. 【点睛】本题考查奇函数解析式的求解,同时也考查了利用函数在区间上的单调性求参数,考查运算求解能力,属于中等题.29.(1){}13x x ≤≤;(2)(ⅰ)1(,)(1,)2-∞-⋃+∞;(ⅱ)2-. 【解析】 【分析】(1)由韦达定理及函数过点(2,-1),列方程组()432421b a ca f abc ⎧-=⎪⎪⎪=⎨⎪=++=-⎪⎪⎩求解即可;(2)(ⅰ)由不等式的解集与方程的根可得012a ba ca ⎧⎪<⎪⎪-=-⎨⎪⎪=-⎪⎩,则20cx bx a ++>可化为2210x x -->,再解此不等式即可;(ⅱ)由(ⅰ)得()g x =4(1)()21x x ⎡⎤--++⎢⎥-⎣⎦,再利用均值不等式求函数的最大值,一定要注意取等的条件,得解. 【详解】(1)由题意可得()432421b ac af a b c ⎧-=⎪⎪⎪=⎨⎪=++=-⎪⎪⎩,解得143a b c =⎧⎪=-⎨⎪=⎩,()243f x x x ∴=-+,解不等式()0f x ≤,即2430x x -+≤,即()()130x x --≤,解得13x ≤≤, 因此,不等式()0f x ≤的解集为{}13x x ≤≤;(2)(ⅰ)由题意可知012a b aca⎧⎪<⎪⎪-=-⎨⎪⎪=-⎪⎩,所以20cx bx a ++>可化为210c bx x a a ++<,即2210x x -++<,得2210x x -->,解得21x <-或1x > 所求不等式的解集为1(,)(1,)2-∞-⋃+∞.(ⅱ)由(ⅰ)可知22(1)(1)2()(1)(1)b x c a x a g x a x a x +-++==--=231x x +=-2(1)2(1)41x x x -+-+=-=4(1)()21x x ⎡⎤--++⎢⎥-⎣⎦ , 因为1,x <所以10x ->,所以4(1)()41x x-+≥-,当且仅当411x x -=-时即1x =-时取等号 ,所以4(1)()41x x ⎡⎤-+≤-⎢⎥-⎣⎦,4(1)()221x x ⎡⎤-≤-++≤-⎢⎥-⎣⎦所以当1x =-时,()max 2g x =- . 【点睛】本题考查了二次函数解析式的求法及不等式的解集与方程的根的关系,重点考查了利用均值不等式求函数的最大值及取等的条件,属中档题.30.(1)9512;(2)3. 【解析】 【分析】(1)利用指数的运算法则化简求值.(2)利用对数的运算法则化简求值. 【详解】(1)原式113113232232232256415415395111892743323412----⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--+=--+=--+=⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(或写成11712). (2)原式()()2log 3111113lg522lg22lg55231322222lg lg lg -=++⋅++=+++⨯=++=. 【点睛】 本题主要考查指数对数的运算法则,意在考查学生对这些知识的掌握水平和分析推理计算能力.。
【学生卷】西安郭杜大学城学校小学英语三年级上册期中经典题
![【学生卷】西安郭杜大学城学校小学英语三年级上册期中经典题](https://img.taocdn.com/s3/m/784fc76edd88d0d232d46a9a.png)
一、单选题1.( 2分 ) 当你想知道对方的名字时,应该说:A. I'm Mike.B. What's your name?2.( 2分 ) —What's your name?—___________A. What's your name?B. Goodbye.C. My name's Pipi.3.( 2分 ) —_______—I'm John.A. What's your name?B. Hello!C. Bye!4.( 2分 ) Show me your__________.A. pencilB. crayonC. eraser5.( 2分 ) 朋友介绍John跟你认识,你应该说:A. What's your name?B. How are you?C. Nice to meet you. 6.( 2分 ) —How are you?— _________A. How are you?B. OK.C. I'm fine, thank you.7.( 2分 ) 我看见一头大象。
A. I see an orange.B. I see an elephant.8.( 2分 ) —_______ are you?—I'm fine.A. HowB. How oldC. What9.( 2分 ) 当你对第一次认识的人说:“Nice to meet you.”你听到的回答是:_________A. Nice to meet you, too.B. Me, too.C. OK!10.( 2分 ) 选出下列单词中和其他两项不同类的一项。
A. cakeB. breadC. water11.( 2分 ) What's ________ name?A. youB. yourC. Sarah12.( 2分 ) Look at me. This is my_________.A. armB. legC. foot二、填空题13.( 5分 ) 选出相应的答语。
2020-2021西安郭杜大学城学校初二数学下期中一模试卷(附答案)
![2020-2021西安郭杜大学城学校初二数学下期中一模试卷(附答案)](https://img.taocdn.com/s3/m/37fd20ac04a1b0717fd5dd61.png)
2020-2021西安郭杜大学城学校初二数学下期中一模试卷(附答案)一、选择题1.已知P (x ,y )是直线y =1322x -上的点,则4y ﹣2x +3的值为( ) A .3B .﹣3C .1D .02.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下: 阅读时间(小时) 2 2.5 3 3.5 4 学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是( ) A .众数是8 B .中位数是3 C .平均数是3 D .方差是0.343.如图,ABC V 中,CD AB ⊥于,D E 是AC 的中点.若6,5,AD DE ==则CD 的长等于( )A .5B .6C .8D .104.下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形. A .1个 B .2个C .3个D .4个 5.下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 2 6.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3< 7.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A.1B.2C.5D.38.有一个直角三角形的两边长分别为3和4,则第三边的长为()A.5B.7C.5D.5或79.如图,已知圆柱底面的周长为4dm,圆柱的高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm10.下列各组数据中,不可以构成直角三角形的是()A.7,24,25B.2223,4,5C.53,1,44D.1.5,2,2.511.如图,要测量被池塘隔开的A,B两点的距离,小明在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,并分别找出它们的中点D,E,连接DE,现测得DE =45米,那么AB等于()A.90米B.88米C.86米D.84米12.已知一次函数y=﹣x+m和y=2x+n的图象都经过A(﹣4,0),且与y轴分别交于B、C两点,则△ABC的面积为()A.48B.36C.24D.18二、填空题13.一次函数的图像经过点A(3,2),且与y轴的交点坐标是B(0,2),则这个一次函数的函数表达式是________________.14.一次函数y=(m+2)x+3-m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m的取值范围是____.15.函数21x y x +=-中,自变量x 的取值范围是 . 16.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .17.计算2(2233)+的结果等于_____.18.已知一个三角形的周长是48cm ,以这个三角形三边中点为顶点的三角形的周长为_______cm . 19.若函数()12m y m x-=+是正比例函数,则m=__________.20.设2a =,3b =,用含,a b 的代数式表示0.54,结果为________.三、解答题21.已知a ,b ,c 在数轴上如图:化简:()22a a b c a b c -++-++.22.已知方程组2313x y m x y m+=--⎧⎨-=+⎩的解满足x 为负数,y 为非正数(1)求m 的取值范围; (2)化简()2m 3m 2--+(3)在第(1)小题的取值范围内,当m 为何整数时,不等式2mx-x<2m-1的解集为x>1? 23.如图,在平面直角坐标系中,点(6,0)A -,(4,3)B -,边AB 上有一点(,2)P m ,点C ,D 分别在边OA ,OB 上,联结CD ,//CD AB ,联结PC ,PD ,BC .(1)求直线AB 的解析式及点P 的坐标; (2当CQ BQ =时,求出点C 的坐标;(3)在(2)的条件下,点R 在射线BC 上,ABO RBO S S ∆∆=,请直接写出点R 的坐标. 24.观察下列等式:3= 4= 5=L (1)写出式⑤:___________________;(2)试用含n (n 为自然数,且1n ≥)的等式表示这一规律,并加以验证. 25.已知一次函数图象经过(-2,1)和(1,3)两点. (1)求这个一次函数的解析式; (2)当3x =时,求y 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据点P (x ,y )是直线y=1322x -上的点,可以得到y 与x 的关系,然后变形即可求得所求式子的值. 【详解】∵点P (x ,y )是直线y=1322x -上的点, ∴y=1322x -, ∴4y=2x-6, ∴4y-2x=-6, ∴4y-2x+3=-3, 故选B . 【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性2.B解析:B 【解析】 【分析】A 、根据众数的定义找出出现次数最多的数;B 、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C 、根据加权平均数公式代入计算可得;D 、根据方差公式计算即可. 【详解】解: A 、由统计表得:众数为3,不是8,所以此选项不正确;B 、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C 、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D 、S 2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确; 故选B . 【点睛】本题考查方差;加权平均数;中位数;众数.3.C解析:C 【解析】 【分析】先根据直角三角形的性质求出AC 的长,再根据勾股定理即可得出结论. 【详解】解:∵ABC V 中,CD AB ⊥于D , ∴∠ADC =90°,则ADC V 为直角三角形, ∵E 是AC 的中点,DE =5, ∴AC =2DE =10,在Rt ADC V 中,AD =6,AC =10,∴8CD =,故选:C .【点睛】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.4.C【解析】【分析】根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3个,故选C.【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.5.D解析:D【解析】分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.详解:A、a2与a3不是同类项,无法计算,故此选项错误;B、,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.C解析:C【解析】【分析】【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x <ax+4的解集为3x 2<. 故选C .7.C解析:C 【解析】 【分析】直接根据题意画出平移后的三角形进而利用勾股定理得出BE 的长. 【详解】 如图所示:22125BE +=故选:C . 【点睛】此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.8.D解析:D 【解析】 【分析】分4是直角边、4是斜边,根据勾股定理计算即可. 【详解】当4是直角边时,斜边2234+, 当4是斜边时,另一条直角边22473-= 故选:D . 【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.9.A解析:A 【解析】 【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可. 【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度,Q 圆柱底面的周长为4dm ,圆柱高为2dm ,2AB dm \=,2BC BC dm =?,22222448AC \=+=+=,22AC dm \=,∴这圈金属丝的周长最小为242AC dm =.故选:A . 【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.10.B解析:B 【解析】 【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可. 【详解】解:A 、72+242=625=252,故是直角三角形,不符合题意;B 、222222(3)(4)81256337(5)+=+=≠,故不是直角三角形,符合题意;C 、12+(34)2=2516=(54)2,故是直角三角形,不符合题意; D 、1.52+22=6.25=2.52,故是直角三角形,不符合题意; 故选:B . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.11.A解析:A 【解析】 【分析】根据中位线定理可得:AB=2DE=90米.【详解】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=12 AB.∵DE=45米,∴AB=2DE=90米.故选A.【点睛】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.12.C解析:C【解析】【分析】把A(﹣4,0)分别代入一次函数y=﹣x+m和y=2x+n中,求得m和n的值,根据所得的两个解析式,求得点B和点C的坐标,以BC为底,点A到BC的垂线段为高,求出△ABC的面积即可.【详解】把点A(﹣4,0)代入一次函数y=﹣x+m得:4+m=0,解得:m=﹣4,即该函数的解析式为:y=﹣x﹣4,把点A(﹣4,0)代入一次函数y=2x+n得:﹣8+n=0,解得:n=8,即该函数的解析式为:y=2x+8,把x=0代入y=﹣x﹣4得:y=0﹣4=﹣4,即B(0,﹣4),把x=0代入y=2x+8得:y=0+8=8,即C(0,8),则边BC的长为8﹣(﹣4)=12,点A到BC的垂线段的长为4,S△ABC11242=⨯⨯=24.故选C.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握代入法求一次函数的解析式是解题的关键.二、填空题13.y=x-2【解析】【分析】一次函数关系式y=kx+b将AB两点坐标代入解一元一次方程组可求kb的值确定一次函数关系式【详解】设一次函数关系式y=kx+b将A(32)B(0-2)代入得解得一次函数解析解析:y=43x-2. 【解析】 【分析】一次函数关系式y=kx+b ,将A 、B 两点坐标代入,解一元一次方程组,可求k 、b 的值,确定一次函数关系式. 【详解】设一次函数关系式y=kx+b , 将A (3,2)、B (0,-2)代入,得322k b b +⎧⎨-⎩==,解得432k b ⎧⎪⎨⎪-⎩==, 一次函数解析式为y=43x-2. 故答案为:y=43x-2. 【点睛】此题考查利用待定系数法求一次函数解析式,解题关键在于利用待定系数法进行求解.14.-2<m <3【解析】【分析】【详解】解:由已知得:解得:-2<m <3故答案为:-2<m <3解析:-2<m <3 【解析】 【分析】 【详解】 解:由已知得:2030m m >>+⎧⎨-⎩,解得:-2<m <3. 故答案为:-2<m <3.15.x≠1【解析】x≠1解析:x≠1 【解析】10x -≠,x≠116.40【解析】【分析】作出辅助线因为△ADF 与△DEF 同底等高所以面积相等所以阴影图形的面积可解【详解】如图连接EF ∵△ADF 与△DEF 同底等高∴S=S 即S−S=S−S 即S=S=15cm 同理可得S=S解析:40 【解析】 【分析】作出辅助线,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.【详解】如图,连接EF∵△ADF与△DEF同底等高,∴SADFV =S DEFV即SADFV −S DPFV=S DEFV−S DPFV,即S APDV =S EPFV=15cm2,同理可得S BQCV =S EFQV =25cm2,∴阴影部分的面积为S EPFV +S EFQV =15+25=40cm2.故答案为40.【点睛】此题考查平行四边形的性质,解题关键在于进行等量代换.17.35+12【解析】【分析】利用完全平方公式计算【详解】原式=8+12+27=3 5+12故答案为:35+12【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式然后进行二次根式的乘除解析:6【解析】【分析】利用完全平方公式计算.【详解】原式=6+27=6.故答案为:6.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.18.【解析】【分析】根据三角形中位线定理得到DE=BCDF=ACEF=AB根据三角形的周长公式计算得到答案【详解】解:根据题意画出图形如图所示点DEF分别是ABACBC的中点∴DE=BCDF=ACEF=解析:24【解析】【分析】根据三角形中位线定理得到DE=12BC ,DF=12AC ,EF=12AB ,根据三角形的周长公式计算,得到答案.【详解】 解:根据题意,画出图形如图所示,点D 、E 、F 分别是AB 、AC 、BC 的中点,∴DE=12BC ,DF=12AC ,EF=12AB , ∵原三角形的周长为48,∴AB+AC+BC=48,则新三角形的周长=DE+DF+EF=12×(AB+AC+BC )=24(cm ) 故答案为:24cm .【点睛】 本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.19.2【解析】【分析】根据正比例函数的定义可得|m|-1=1m+2≠0【详解】因为函数是正比例函数所以|m|-1=1m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义理解定义是关键解析:2【解析】【分析】根据正比例函数的定义可得|m|-1=1,m+2≠0.【详解】因为函数()12m y m x-=+是正比例函数,所以|m|-1=1,m+2≠0所以m=2故答案为2【点睛】考核知识点:正比例函数的定义.理解定义是关键. 20.【解析】【分析】将化简后代入ab 即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型解析:3 10 ab【解析】【分析】将0.54化简后,代入a,b即可.【详解】解:54546936323 0.54100⨯⨯=====,∵2a=,3b=,∴3 0540 .1=ab故答案为:310 ab.【点睛】本题考查了二次根式的乘除法法则的应用,解题的关键是将0.54化简变形,本题属于中等题型.三、解答题21.a-【解析】【分析】直接利用数轴得出a<0,a+b<0,c-a>0,b+c<0,进而化简得出答案.【详解】解:如图所示:∴a<0,a+b<0,c-a>0,b+c<0,()22a abc a b c+-+=-+++---a abc a b c=a-;【点睛】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键.22.(1)4m25-≤<;(2)1-2m;(3)0【解析】【分析】(1)解方程组用m 的代数式表示出x 、y ,根据x 为负数,y 为非正数列出关于m 的不等式组,解之求得m 的范围;(2)根据绝对值的性质去绝对值符号,再合并即可得;(3)根据不等式的性质得出2m-1<0,求得m 的范围,结合m 为整数及(1)中m 的范围可得答案.【详解】解:(1)解方程组2313x y m x y m +=--⎧⎨-=+⎩得:m 225m 42x y -⎧=⎪⎪⎨--⎪=⎪⎩, ∵x 为负数,y 为非正数, ∴m 2025m 402-⎧<⎪⎪⎨--⎪≤⎪⎩, 解得:4m 25-≤<; (2)当4m 25-≤<时,m 3m 3m 23m m 212m -=--+=---=-;(3)()2m 12m 1x -<-的解是x 1>,∴2m 10-<,∴12m <, ∵4m 25-≤<, ∴m=0.【点睛】 本题考查了解二元一次方程组和一元一次不等式,解决本题的关键是得出关于m 的不等式组并求解.23.(1)直线AB 解析式为y =32x +9,P 点坐标为(-143,2)(2)C 点坐标为(-2,0)(3)R (2,-6).【解析】【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得直线AB 的解析式,再把P 点坐标代入直线解析式可求得P点坐标;(2)由条件可证明△BPQ≌△CDQ,可证得四边形BDCP为平行四边形,由B、P的坐标可求得BP的长,则可求得CD的长,利用平行线分线段成比例可求得OC的长,则可求得C的坐标;(3)由条件可知AR∥BO,故可先求出直线OB,BC的解析式,再根据直线平行求出AR 的解析式,联立直线AR、BC即可求出R点坐标.【详解】(1)设直线AB解析式为y=kx+b,把A、B两点坐标代入可得4360k bk b-+=⎧⎨-+=⎩,解得329kb⎧=⎪⎨⎪=⎩,∴直线AB解析式为y=32x+9,∵(,2)P m在直线AB上,∴2=−32m+9,解得m=-143,∴P点坐标为(-143,2);(2)∵//CD AB,∴∠PBQ=∠DCQ,在△PBQ和△DCQ中PBQ DCQCQ BQPQB DQC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PBQ≌△DCQ(ASA),∴BP=CD,∴四边形BDCP为平行四边形,∵(4,3)B-,(-143,2),∴CD=BP221413(4)(32)3-++-=∵A(-6,0),∴OA =6,AB=∵CD ∥AB ,∴△COD ∽△AOB ∴CO CD AO AB =,即6CO =,解得CO =2, ∴C 点坐标为(-2,0);(3)∵ABO RBO S S ∆∆=,∴点A 和点R 到BO 的距离相等,∴BO ∥AR ,设直线BO 的解析式为y=nx ,把(4,3)B -代入得3=-4n ,解得n=-34x ∴直线BO 的解析式为y=-34x , ∴设直线AR 的解析式为y=-34x+e , 把A(-6,0)代入得0=-34×(-6)+e 解得e=-92∴直线AR 的解析式为y=-34x-92, 设直线BC 解析式为y =px +q , 把C 、B 两点坐标代入可得4320k b k b -+=⎧⎨-+=⎩,解得323k b ⎧=-⎪⎨⎪=-⎩, ∴直线AB 解析式为y =-32x-3, 联立3942332y x y x ⎧=--⎪⎪⎨⎪=--⎪⎩解得26x y =⎧⎨=-⎩∴R (2,-6).【点睛】本题为一次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、勾股定理、平行四边形的判定和性质、相似三角形的判定与性质、三角形的面积等知识点,解题的关键是熟知待定系数法求出函数解析式.24.(17.=(21n =+(n 为自然数,且1n ≥ ),验证见解析.【解析】【分析】(1)根据规律解答即可;(2)根据完全平方公式以及二次根式的性质解答即可.【详解】解:(1)Q3=4=5=L7.=7.=(21.n =+理由如下:∵n 为自然数,且n ≥1,∴1.n ===+ 【点睛】本题主要考查了二次根式的性质,熟练掌握完全平方公式是解答(2)的关键.25.(1)2733y x =+;(2)y 的值是133. 【解析】【分析】(1)设该直线解析式为()0y kx b k =+≠,把(-2,1)和(1,3)代入可得关于k 、b 的二元一次方程组,解方程组求出k 、b 的值即可得答案;(2)把x=3代入(1)中所求的解析式,求出y 值即可得答案.【详解】(1)设该直线解析式为()0y kx b k =+≠,∵一次函数图象经过(-2,1)和(1,3)两点, ∴213k b k b -+=⎧⎨+=⎩, 解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩.故该一次函数解析式为:2733y x =+; (2)把3x =代入(1)中的函数解析2733y x =+得:27133333y =⨯+=, ∴3x =时,y 的值是133. 【点睛】 本题主要考查了待定系数法求一次函数解析式,根据一次函数图象上的点的坐标特征列出方程组求解是解题关键.。
2020-2021西安郭杜大学城学校小学五年级数学上期中一模试卷(附答案)
![2020-2021西安郭杜大学城学校小学五年级数学上期中一模试卷(附答案)](https://img.taocdn.com/s3/m/764055b9a8114431b90dd8f5.png)
2020-2021西安郭杜大学城学校小学五年级数学上期中一模试卷(附答案)一、选择题1.下面各式,与1786÷125相等的式子是()A. 178.6÷1.25B. 17.86÷12.5C. 1.786÷0.1252.李叔叔家今年一共收获了12.5吨苹果,用一辆载重3吨的卡车来运,至少运()次才能运完.A. 3B. 4C. 53.a是不等于0的正数,下面算式中()的得数最大。
A. a ÷0.5B. a÷2C. a×0.54.8.47475475…的循环节是()A. 47B. 47475C. 75D. 4755.小明坐在班级的最后一列,他的位置是(6,5);小刚坐在班级的最后一行,他的位置是(4,7)。
这个班级共有()名学生。
A. 20B. 24C. 35D. 426.数对(5,4)和(5,2)表示的位置在()。
A. 同一行B. 同一列C. 无法确定7.如图,小亮从家到学校要穿过一个居民小区,若小区的道路均为南北或东西方向,下面线表达不正确的是()。
A. (1,4)→(1,1)→(4,1)B. (1,4)→(2,4)→(2,2)→(4,2)→(4,1)2C. (1,4)→(3,4)→(4,2)→(4,1)8.如果用(4,6)表示王菲的位置,那么王菲坐在第()列,第()行。
A. 6 4B. 4 6C. 无法确定9.1.24×0.24的积保留两位小数是()A. 0.29B. 0.30C. 0.3D. 0.03 10.对于方程5.4x-0.4 x =2.8得到5 x =2.8,运用的是()。
A. 乘法交换律B. 乘法分配律C. 乘法结合律11.两个因数相乘,积有四位小数,已知一个因数是3.9,另一个因数()是3.615。
A. 可能 B. 一定 C. 不可能12.给一个长2.5m、宽0.9m的长方形宣传栏刷油漆,每平方米要用油漆0.9kg,一共需要()千克油漆。
2020-2021西安郭杜大学城学校初一数学下期中一模试卷(附答案)
![2020-2021西安郭杜大学城学校初一数学下期中一模试卷(附答案)](https://img.taocdn.com/s3/m/0f245570551810a6f52486c1.png)
C.∠3=∠4得到AD∥BC,不能判断AB//CD,故C错误;
D.∠BAD=∠BCD,不能判断AB//CD,故D错误;
故选A.
【点睛】
本题主要考查了平行线的判定的运用,解题时注意:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行.
D、 是 的平方根,正确;
故选:D
【点睛】
本题考查了立方根、平方根,解决本题的关键是熟记平方根、立方根的定义.
8.D
解析:D
【解析】
【分析】
解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.
【详解】
,
解不等式①得,x>-1;
解不等式②得,x≤1;
∴不等式组的解集是﹣1<x≤1.
不等式组的解集在数轴上表示为:
故选:A.
【点睛】
考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.
5.D
解析:D
【解析】
【分析】
【详解】
解:∵1<2<4,∴1< <2,
∴﹣2< <﹣1,∴2< <3,
∴a=2,b= , ,
∴ .
故选D.
【点睛】
本题考查估算无理数的大小.
6.C
解析:C
【解析】
【分析】
24.解下列方程组:
(1) (2)
25.解方程组:
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE的度数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安郭杜大学城学校2020年期中单元测试一、选择题1.甲、乙、丙三辆汽车同时以相同的速度经过某一路标,此后甲一直做匀速直线运动,乙先加速后减速,丙先减速后加速,它们经过下一路标时的速度仍相同,则A.甲车先经过下一个路标B.乙车先经过下一个路标C.丙车先经过下一个路标D.无法判断谁先经过下一个路标2.粗细均匀的电线架在A、B两根电线杆之间.由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是()A.冬季,电线对电线杆的拉力较大B.夏季,电线对电线杆的拉力较大C.夏季与冬季,电线对电线杆的拉力一样大D.夏季,电线杆对地的压力较大3.如图所示为某医院体检中心的身高测量仪。
测量仪顶部向下发射波速为340m/s的超声波,超声波遇到障碍物后反射回来,被测量仪接收,测量仪记录发射和接收的时间间隔。
已知测量仪没有站人时,顶部距离台面3.0m,当一学生站在台面规定位置后,测量仪记录的时间间隔为0.01s,则该学生的身高最接近()A.110cmB.130cmC.150cmD.170cm4.如图所示,人站立在体重计上,下列说法正确的是()A.人对体重计的压力和体重计对人的支持力是一对平衡力B.人对体重计的压力和体重计对人的支持力是一对作用力和反作用力C .人所受的重力和人对体重计的压力是一对平衡力D .人所受的重力和人对体重计的压力是一对作用力和反作用力5.利用无人小飞机进行航拍,地面操控者进行以下操作时,能把无人机看成质点的是 A .观察飞机通过一个标志杆所需时间B .调整飞机的飞行姿态C .调整飞机旋转机翼D .调整飞机与被摄物体的高度差6.一石块从楼顶自由落下,不计空气阻力,取210m/s g =.石块在下落过程中,第4s 末的速度大小为( )A .10m/sB .20m/sC .30m/sD .40m/s7.物体做匀变速直线运动,在0t =时速度大小为1m/s ,方向向西;在2s t =时速度大小为5m/s ,方向向东.则在此过程中该物体的加速度( )A .大小为22m/s ,方向向东B .大小为22m/s ,方向向西C .大小为23m/s ,方向向东D .大小为23m/s ,方向向西8.如图所示,一质点从0t =时刻由静止开始做匀加速直线运动,A 和B 是原点x t -图线上的两个点,该质点运动的加速度大小为( )A .24m/s 7B .22m/s 3C .25m/s 8 D .22m/s9.图(a )所示,一只小鸟沿着较粗的树枝从 A 缓慢移动到 B ,将该过程抽象为质点从圆弧A 点移动到 B 点,如图(b ),以下说法正确的是A .树枝对小鸟的弹力减小,摩擦力减小B .树枝对小鸟的弹力增大,摩擦力减小C .树枝对小鸟的弹力增大,摩擦力增大D .树枝对小鸟的弹力减小,摩擦力增大10.如图,给物体一个初速度后,物体沿粗糙斜面向上滑动。
在向上滑动的过程中,关于物体受到的力,下列说法正确的是( )A.受重力、沿斜面向上的冲力、斜面的支持力B.受重力、沿斜面向上的冲力、沿斜面向下的滑动摩擦力C.受重力、斜面的支持力、沿斜面向下的滑动摩擦力D.受重力、斜面的支持力、沿斜面向上的冲力、沿斜面向下的滑动摩擦力、沿斜面向下的下滑力11.射箭是奥运会正式比赛项目.运动员将箭射出后,箭在空中飞行过程中受到的力有( )A.重力B.重力、弓弦的弹力C.重力、空气作用力D.重力、弓弦的弹力、空气作用力12.有下列几种情景,请根据所学知识选择对情景的分析和判断正确的说法 ( )A.嫦娥四号运载火箭点火后即将升空,因火箭还没运动,所以加速度一定为零B.高速公路上高速行驶的轿车紧急刹车,此时轿车速度变化很快,所以加速度也大C.运行的磁悬浮列车在轨道上高速行驶,因其速度很大,所以加速度也一定很大D.江泉高架桥的下桥匝道指示牌数字“40”,意思是车辆平均速度限定在40km/h及以下13.某质点在0~3s内运动的v-t图象如图所示,关于质点的运动,下列说法中正确的是()A.质点在第1s内的平均速度等于第2s内的平均速度B.t=3s时,质点的位移最大C.质点在第2s内的加速度与第3s内的加速度大小相等,方向相反D.质点在第2s内的位移与第3s内的位移大小相等,方向相反14.某质点向东运动12m,又向西运动20m,又向北运动6m,则它运动的路程和位移大小分别是A.2m,10m B.38m,10mC.14m,6m D.38m,6m15.在运用公式v t=v0+at 时,关于各个物理量的符号下列说法中正确的是()①必须规定正方向,式中的v t、v0、a 才取正、负号②在任何情况下a>0 表示加速运动,a<0 表示做减速运动③习惯上总是规定物体开始运动的方向为正方向,a>0 表示做加速运动,a<0 表示做减速运动④v t的方向总是与v0的方向相同A.①③B.②④C.①②D.③④16.在下述问题中,能够把研究对象看做质点的是( )A.研究航天员翟志刚在太空出舱挥动国旗的动作B.用GPS确定打击海盗的“武汉”舰在大海中的位置C.将一枚硬币用力上抛,猜测它落地时正面朝上还是反面朝上D.欣赏进行花样滑冰的运动员的优美动作17.静止在斜面上的重物的重力可以分解为沿斜面方向向下的分力F1和垂直于斜面方向的分力F2,关于这两个分力,下列的说明正确的是()A.F1作用在物体上,F2作用在斜面上B.F2的性质是弹力C.F2就是物体对斜面的正压力D.F1和F2是与物体的重力等效的力,实际存在的就是重力18.下列各组单位中,属于国际单位制基本单位的是()A.m、N、s B.m、kg、A C.m、J、N D.W、m/s、s19.从科学方法角度来说,物理学中引入“合力”概念运用了A.控制变量方法B.等效替代方法C.理想实验方法D.建立模型方法20.在平直公路上行驶的a车和b车,其位移时间图像分别为图中直线a和曲线b.t=3s 时,直线a和曲线b刚好相切,下列说法正确的是()A.t=3s时,两车具有共同的加速度B.在运动过程中,b车始终没有超过a车C .a 车做匀速运动,b 车做加速运动D .在0-3s 的时间内,a 车的平均速度比b 车的大二、多选题21.如图,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物,用手拉住绳的另一端N .初始时,OM 竖直且MN 被拉直,OM 与MN 之间的夹角为α(2πα>).现将重物向右上方缓慢拉起,并保持夹角α不变.在OM 由竖直被拉到水平的过程中( )A .MN 上的张力逐渐增大B .MN 上的张力先增大后减小C .OM 上的张力逐渐增大D .OM 上的张力先增大后减小22.如图所示, 小球沿斜面向上做匀减速直线运动, 依次经a 、b 、c 、d 到达最高点e 。
已知ab =bd =10m ,bc =2m ,小球从a 到c 和从c 到d 所用的时间都是2s ,设小球经b 、c 时的速度分别为v b 、v c ,则( )A .v b =29m/sB .v c =3m/sC .cd :de =16∶9D .从d 到e 所用时间为5s23.如图1,甲乙两辆汽车沿同一公路行驶,甲乙速度时间图象如图2所示,t =0时刻甲乙两车相距S 0,假设两车相遇时会错车而过,不会相撞,并且两车从运动到停止,甲的位移大于乙的位移,则关于两车运动的叙述正确的是( )A .若甲车在前,甲乙两车一定相遇一次B .若甲车在前,甲乙两车一定不相遇C .若乙车在前,且在t 1时刻前甲车追上乙车,则甲乙两车可能相遇两次D .若乙车在前,且恰在t 1时甲车追上乙车,则甲乙两车相遇一次24.如图1,甲乙两辆汽车沿同一公路行驶,甲乙速度时间图象如图2所示,t=0时刻甲乙两车相距S0,假设两车相遇时会错车而过而不会相撞,则关于两车运动的叙述正确的是()A.若甲车在前,甲乙两车有可能相遇两次B.若甲车在前,甲乙两车可能不相遇C.若乙车在前,且在t1时刻前甲车追上乙车,则甲乙两车一定相遇两次D.若乙车在前,且恰在t1时甲车追上乙车,则甲乙两车相遇一次25.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为2m的小物块A相连,质量为m的小物块B紧靠A静止在斜面上,如图所示,此时弹簧的压缩量为x0.从t=0时开始,对B施加沿斜面向上的外力,使B始终做加速度为a的匀加速直线运动.经过一段时间后,物块A、B分离.弹簧的形变始终在弹性限度内,重力加速度大小为g.若θ、m、x0、a均已知,则下列说法正确的是()A.根据已知条件,可求出从开始到物块A、B分离所用的时间B.根据已知条件,可求出物块A、B分离时的速度大小C.物块A、B分离时,弹簧的弹力恰好为零D.物块A、B分离后,物块A开始减速三、实验题26.“验证力的平行四边形定则”的实验如图甲所示,其中A为固定橡条的图钉,P为橡皮条与细绳的结点,用两把互成角度的弹簧秤把结点P拉到位置O。
弹簧秤的示数为F1、F2,为单独用一根弹簧拉到O点时的读数,F是用平行四边形法则求出F1、F2的合力。
(1)为了更准确得到合力与分力的关系,要采用作力的______(填“图示”或“示意图”)来表示分力与合力;(2)图甲中左侧测力计读数是________N(3)图乙中方向一定沿AO方向的力是________(填“F ”或“F′”)。
27.在“探究力的平行四边形定则”的实验中,某同学的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳.图乙是在白纸上根据实验结果画出的图.(1)图甲中与B相连的弹簧测力计的示数为______ N.(2)图乙中一定沿着OA方向的力是______ (选填“F”或“F′”)(3)关于本实验,下列说法正确的是______ .A.两细绳必须等长B.弹簧秤、细绳、橡皮筋都应与木板平行C.两次拉伸橡皮条,只要使橡皮条伸长到相同长度即可D.拉橡皮筋的细绳要长些,标记同一细绳方向的两点要适当远些.28.某学生做“探究弹力和弹簧伸长的关系”的实验。
实验时把弹簧竖直悬挂起来,在下端挂钩码,每增加一只钩码均记下对应的弹簧伸长的长度x,数据记录如下表所示钩码个数01234567弹力F/N0 1.0 2.0 3.0 4.0 5.0 6.07.0弹簧伸长的长度0 2.00 3.98 6.027.979.9511.8013.50x/cm(1)根据表中数据在图中作出F-x图线。
(____)(2)根据F-x图线可以求得弹簧的劲度系数为________ N/m。
(保留三位有效数字)29.某同学在做研究匀变速直线运动规律的实验时,获取了一条纸带的一部分,0、1、2、3、4、5、6、7是计数点,每相邻两计数点间还有4个点(未标出),计数点间的距离如图所示.由于粗心,该同学忘了测量3、4两个计数点之间的距离(电源频率为50 Hz).求:(1)6号计数点的瞬时速度的大小v6=________m/s.(保留三位有效数字)(2)利用逐差法处理数据,可得加速度a=______m/s2.(保留三位有效数字)(3)计数点3、4之间的距离是x4=________cm.(保留三位有效数字)30.在“用打点计时器探究匀变速直线运动速度随时间的变化规律”实验中:(1)安装纸带时,应将纸带置于复写纸(或墨粉纸盘)的下方.把纸带固定在小车上,应在放开小车_______(选填“之前”或“之后”)接通打点计时器的电源.(2)某次实验获得的纸带如图所示,O点为起始点,A、B、C、D、E、F、G为计数点,每相邻两个计数点间还有4个点没有画出,由图可知纸带的加速度为a=_______在打C点时纸带的速度为v C=_______,(以上结果均保留两位有效数字),O到G的距离为X OG=_______.四、解答题31.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m=2 kg的无人机,其动力系统所能提供的最大升力F=36N,运动过程中所受空气阻力大小恒为f=4 N.(g取10 m/s2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t=5s时离地面的高度h;(2)当无人机悬停在距离地面高度H=100m处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t1.32.跳伞运动员从悬停在距地面143m高度处的直升飞机上由静止跳下,先做自由落体运动,一段时间后打开降落伞.开始以加速度大小为12.5m/s2匀减速下降,跳伞运动员落地时的速度大小为5m/s.g取10m/s2,问:(1)跳伞运动员打开降落伞时离地面的高度是多少?(2)跳伞运动员运动的总时间是多少?33.如图所示,一个重为100N的小球被夹在竖直墙壁和A点之间,已知球心O与A点的连线与竖直方向成θ角,且θ=60°,所有接触点和面均不计摩擦.试计算小球对墙面的压力F1和对A点的压力F2.34.甬金高速东阳出口收费站增设了ETC(不停车电子收费系统)通道,汽车通过ETC通道和人工收费通道的流程如图所示,假设汽车以v0=20m/s朝收费站沿直线行驶,在靠近收费站时需要提前减速:如果过ETC通道,在收费站中心线前d=10m处减速至v=5m/s,匀速通过中心线后,再加速至v0正常行驶;如果过人工收费通道,在中心线处速度减至零,经过△t=20s缴费成功后,再启动汽车匀加速至v0正常行驶.设汽车加速和减速过程均为匀变速,且加速度大小均为a=1m/s2.求:(1)汽车过ETC通道时,从开始减速到刚恢复正常行驶过程中所需要的时间;(2)汽车过人工收费通道,从开始减速到恢复正常行驶过程中的总位移大小;(3)汽车通过ETC通道比通过人工收费通道节约的时间是多少.35.一辆汽车沿笔直的公路行驶,第1s内通过5m的距离,第2s内和第3s内各通过20m 的距离,第4s内又通过15m的距离,求汽车在最初2s内的平均速度和这4s内的平均速度各是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】设甲做匀速直线运动的速度为v ,乙先加速后减速,在运动的过程中速度大于v ,则整个过程中的平均速度大于v ;丙先减速后加速,在运动过程中的速度小于v ,则整个过程中的平均速度小于v .根据x vt =,知乙的运动时间最短,所以乙车先经过下一个路标. A .甲车先经过下一个路标,与结论不相符,选项A 错误;B .乙车先经过下一个路标,与结论相符,选项B 正确;C .丙车先经过下一个路标,与结论不相符,选项C 错误;D .无法判断谁先经过下一个路标,与结论不相符,选项D 错误;2.A解析:A【解析】试题分析:对于电线,重心在最低点,受力分析如下图所示.由共点力的平衡条件知,,由于夏天气温较高,电线因长度膨胀而使夹角θ变小,F 变小,而电线的质量一定,整体受力平衡,故夏季、冬季杆对地面的压力相等,选项A 正确. 考点:本题旨在考查共点力的平衡、力的合成与分解.3.B解析:B【解析】【详解】超声波经历的路程为3400.01 3.4s vt s m ==⨯=,因为超声波是一来一去,故单向路程为1 1.72x s m ==,所以人高 3.0 1.7 1.3130h H x m m m cm =-=-==,B 正确. 4.B解析:B【解析】【分析】【详解】AB .人对体重计的压力和体重计对人的支持力是人与体重计间的相互作用力,故A 错误,B 正确;CD .人所受的重力和人对体重计的压力方向相同,既不是相互作用力,也不是平衡力,故C 错误,D 错误;故选B 。