四年级奥数.计数综合.几何计数

合集下载

四年级奥数第二讲图形的计数问题含答案

四年级奥数第二讲图形的计数问题含答案

四年级奥数第⼆讲图形的计数问题含答案第⼆讲图形的计数问题⼀、知识点:⼏何图形计数问题往往没有显⽽易见的顺序,⽽且要数的对象通常是重叠交错的,要准确计数就需要⼀些智慧了.实际上,图形计数问题,通常采⽤⼀种简单原始的计数⽅法-⼀枚举法.具体⽽⾔,它是指把所要计数的对象⼀⼀列举出来,以保证枚举时⽆⼀重复、.⽆⼀遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.⼆、典例剖析:例(1)数出右图中总共有多少个⾓分析:在∠AOB内有三条⾓分线OC1、OC2、OC3,∠AOB被这三条⾓分线分成4个基本⾓,那么∠AOB内总共有多少个⾓呢?⾸先有这4个基本⾓,其次是包含有2个基本⾓组成的⾓有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本⾓组成的⾓有2个(即∠AOC3、∠C1OB),最后是包含有4个基本⾓组成的⾓有1个(即∠AOB),所以∠AOB内总共有⾓:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个⾓。

练⼀练:数⼀数右图中总共有多少个⾓?答案: 总共有⾓:10+9+8+…+4+3+2+1=55(个)例(2 )数⼀数共有多少条线段?共有多少个三⾓形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三⾓形,先看在△AGH中,在GH上有3个分点,分成基本⼩三⾓形有4个.所以在△AGH中共有三⾓形4+3+2+1=10(个).在△AMN与△ABC中,三⾓形有同样的个数,所以在△ABC中三⾓形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三⾓形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三⾓形30个。

小学四年级奥数知识点 第八讲 几何中的计数问题(二)

小学四年级奥数知识点 第八讲 几何中的计数问题(二)
(1+2+3+…+m)×(1+2+3+…+n).
例2 如右图数一数图中长方形的个数.
解:AB边上分成的线段有:
5+4+3+2+1=15.
BC边上分成的线段有:
3+2+1=6.
所以共有长方形:
(5+4+3+2+1)×(3+2+1)=15×6=90(个).
二、数正方形
例3 数一数下页各个图中所有正方形的个数.(每个小方格为边长为1的正方形)
分析 图Ⅰ中,边长为1个长度单位的正方形有:
2×2=4(个),边长为2个长度单位的正方形有:
1×1=1(个).
所以,正方形总数为1×1+2×2=1+4=5(个).
图Ⅱ中,边长为1个长度单位的正方形有3×3=9(个);
最后把每一步中每个图形所包含三角形个数求出相加再乘以4就是整个图形中所包含的三角形的个数.
解:Ⅰ.在小矩形AEOH中:
①由一个三角形构成的有8个.
②由两个三角形构成的三角形有5个.
③由三个或三个以上三角形构成的三角形有5个.
这样在一个小矩形内有17个三角形.
Ⅱ.在由两个小矩形组合成的图形中,如矩形AEGD,共有5个三角形.
尖朝下的三角形的个数也是从1开始的连续自然数的和,它的第一个和恰是尖朝上的第二个和,依次各个和都比上一个和少最大的两个加数,以此类推直到零为止.
例7 页图数一数图中有多少个三角形.
解:参考例6所总结的规律把图中三角形分成尖朝上和尖朝下的两类:
Ⅰ.尖朝上的三角形有五种:

小学奥数教程之-几何计数(三)教师版 (162) 全国通用(含答案)

小学奥数教程之-几何计数(三)教师版 (162) 全国通用(含答案)

1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边. 数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.ED CBA数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.模块一、立体几何计数【例 1】 用同样大小的正方体小木块堆成如下图的立体图形,那么一共用了__________块小正方体。

四年级奥数—几何中的计数问题

四年级奥数—几何中的计数问题

几何中的计数问题
例1、数一数下列图形中各有多少条线段。

例2、数一数下图中共有多少个角。

例3、数一数下图中共有多少个角。

例4、下图中,各有多少个三角形。

例5、如下图中,数一数共有多少条线段,多少个三角形。

例6、如下图中,共有多少个角。

例7、如下图,数一数共有多少个长方形。

例8、数一数下图中长方形的个数。

例9、数一数下面各图中所有正方形的个数。

例10、数一数下图中有多少个正方形。

例11、数一数下图三角形的个数。

例12、数一数下图中三角形的个数。

例13、数一数下图中三角形的个数。

例14、数一数下图中三角形的个数。

练:1、数一数下面各图中有多少条线段。

2、数一数下面各图中有多少个角。

3、数一数下面各图中,各有多少条线段。

4、数一数下面各图中,各有多少条线段,各有多少个三角形。

5、下面图中有多少个正方形。

6、下图中有多少个长方形。

7、下图中有多少个三角形。

8、下图中有多少个长方形。

9、下图中各有多少个三角形。

小学奥数 几何计数(三) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  几何计数(三) 精选练习例题 含答案解析(附知识点拨及考点)

1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.ED CBA数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.模块一、立体几何计数【例 1】 用同样大小的正方体小木块堆成如下图的立体图形,那么一共用了__________块小正方体。

(完整word版)四年级奥数第二讲_图形的计数问题含答案,推荐文档

(完整word版)四年级奥数第二讲_图形的计数问题含答案,推荐文档

第二讲图形的计数问题一、知识点:几何图形计数问题常常没有不言而喻的次序,并且要数的对象往常是重叠交织的,要正确计数就需要一些智慧了.实质上,图形计数问题,往常采纳一种简单原始的计数方法-一列举法.详细而言,它是指把所要计数的对象一一列举出来,以保证列举时无一重复、.无一遗漏,而后计算其总和.正确地解答较复杂的图形个数问题,有助于培育同学们思想的有序性和优秀的学习习惯.二、典例解析:例( 1)数出右中共有多少个角解析:在∠ AOB内有三条角分线 OC1、OC2、OC3,∠ AOB被这三条角分线分红 4 个基本角,那么∠ AOB内总合有多少个角呢?第一有这 4 个基本角,其次是包括有 2 个基本角构成的角有 3 个(即∠ AOC2、∠ C1OC3、∠ C2OB),而后是包括有 3 个基本角构成的角有 2 个(即∠ AOC3、∠C1OB),最后是包括有 4 个基本角构成的角有 1 个(即∠ AOB),所以∠ AOB内总合有角:4+3+2+1=10(个)解:4+3+ 2+ 1=10(个)答:中共有10 个角。

一:数一数右中共有多少个角?答案 :共有角:10+9+8+⋯ +4+3+2+1=55(个)例( 2)数一数共有多少条线段?共有多少个三角形?解析:①要数多少条线段:先看线段3 条基本线段,再看 BC、 MN、GH 这AB、AD、 AE、AF、 AC、上各有3 条线段上各有 3 个分点,各分红2 个分点,各分红4 条基本线段 .所以图中总合有线段是:(3+2+1)× 5+( 4+3+2+1)× 3=30+30=60(条) .②要数有多少个三角形,先看在△ AGH中,在 GH上有 3 个分点,分红基本小三角形有 4 个. 所以在△ AGH中共有三角形 4+3+2+1=10(个) . 在△ AMN与△ ABC中,三角形有相同的个数,所以在△ ABC中三角形个数总合:(4+3+2+1)× 3=10× 3=30(个)解::①在△ ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ ABC中共有三角形是:(4+3+2+1)× 3=10× 3=30(个)答:在△ ABC中共有线段60 条,共有三角形30 个。

4年级奥数几何计数问题例题

4年级奥数几何计数问题例题

例1.用3根等长的火柴可以摆成一个等边三角形.如图19-1,用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形昀每边由20根火柴组成,那么一共要用多少根火柴?[分析与解]把大的等边三角形分为20“层”分别计算火柴的根数:最上一“层”只用了3根火柴;从上向下数第二层用了3×2=6根火柴;从上向下数第三层用了3×3=9根火柴;……从上向下数第20层用了3×20=60根火柴.所以,总共要用火柴3×(1+2+3+…+20)=630根.【巩固提高】1.如下图,一个三角形分成36个小三角形.把每个小三角形涂上红色或蓝色,两个有公共边的小三角形要涂上不同的颜色,已知涂成红色的三角形比涂成蓝色的三角形多,那么多_____个.2.右图是由小立方体码放起来的,其中有一些小方体看不见.图中共有_____个小立方体.3.数一数,下图是由_____个小立方体堆成的.要注意那些看不见的.例2.如图19-2,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?[分析与解]横放需1996×4根,竖放需1997×3根,共需1996×4+1997×3=13975根.【巩固与提高】1.如图下图是一个4×328的长方形,每个小正方形的边长为1厘米,请你计算这个图形中所有线段的长度之和是多少?例3.图19-3是一个跳棋棋盘,请你计算出棋盘上共有多少个棋孔?[分析与解]把棋盘分割成一个平行四边形和四个小三角形,如下图.平行四边形中棋孔数为9×9=81,每个小三角形中有10个棋孔,所以棋孔共有81+10×4=121个.或直接数出有121个.例4.如图19-4,在桌面上,用6个边长为l的正三角形可以拼成一个边长为1的正六边形.如果在桌面上要拼出一个边长为6的正六边形,那么,需要边长为1的正三角形多少个?[分析与解]如图AB=6,组成△AOB需要边长为1的正三角形共:1+3+5+7+9+11=36个,而拼成边长为6的正六边形需要6个△AOB,因此总共需要边长为1的正三角形36×6=216个.【巩固提高】如图一个正六边形,每条边上均与分布着998个点(不包括两个端点),分别连接不相邻的两条边上相互对应的两点,这样就把这个六边形分割成多个等边三角形,请问可以分割出多少个等边三角形?例5.如图19-5,其中的每条线段都是水平的或竖直的,边界上各条线段的长度依次为5厘米、7厘米、9厘米、2厘米和4厘米、6厘米、5厘米、1厘米.求图中长方形的个数,以及所有长方形面积的和.[分析与解]确定好长方形的长和宽,长方形就唯一确定,而图中只需确定好横向线段,竖向线段,即可.于是横向线段有(1+2+3+4)=10种选法,竖向线段也有(1+2+3+4)=10种选法,则共有10×10=100个长方形.这些长方形的面积和为:(5+7+9+2+12+16+11+21+18+23)×(4+6+5+1+10+11+6+15+12+16)=124×86=10664(平方厘米).例6.如图19-6,18个边长相等的正方形组成了一个3×6的方格表,其中包含“*”的长方形及正方形共有多少个?[分析与解]我们把所求的长、正方形按占有的行数分为三类,每类的长、正方形的个数相等.其中只占有下面一行的有如下12种情况:于是共有12×3=36个正、长方形包含“*”.【巩固提高】1.下图中长方形(包括正方形)总个数是_____.2.如图19-10,AB,CD,EF,MN互相平行,则图中梯形个数与三角形个数的差是多少?[分析与解]图中共有三角形(1+2+3+4)×4=40个,梯形(1+2+3+4)×(1+2+4)=60个,梯形比三角形多60-40=20个.例7.图19-7是由若干个相同的小正方形组成的.那么,其中共有各种大小的正方形多少个?[分析与解]每个4×4正方形中有:边长为1的正方形4×4个;边长为2的正方形3×3个;边长为3的正方形2×2个,边长为4的正方形1×1个.总共有4×4+3×3+2×2+1×1=30个正方形.现在5个4×4的正方形,它们重叠部分是4个2×2的正方形.因此,图中正方形的个数是30×5-5×4=130.例8.图19-8中共有多少个三角形?[分析与解]边长为1的正三角形,有16个.边长为2的正三角形,尖向上的有3个,尖向下的也有3个.因此共有16+3+3=22个.例9.图19-9是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形.那么,图中包含“*”的各种大小的正三角形一共有多少个?[分析与解]设小正三角形的边长为1,分三类计算计数包含*的三角形中,边长为1的正三角形有1个;边长为2的正三角形有4个,边长为3的正三角形有1个;因此,图中包含“*”的所有大、小正三角形一共有1+4+1=6个.【巩固提高】1.图形中有_____个三角形.2.下图中共有_____个正方形.例10.在图19-1l中,共有多少个不同的三角形?[分析与解]下图中共有35个三角形,两个叠加成题中图形时,又多出5+5×2=15个三角形,共计35×2+15=85个三角形.【巩固提高】在下图中有多少条线段,有多少个三角形?例11.如图19-12,一块木板上有13枚钉子.用橡皮筋套住其中的几枚钉子,可以构成三角形、正方形、梯形等等,如图19-13.那么,一共可以构成多少个不同的正方形?[分析与解]按正方形的面积分类,设最小的正方形面积为1,面积为1的正方形有5个,如图a所示;面积为2的正方形有4个,如图b所示;面积为4的正方形有1个,如图c所示;还有1个面积比4大的正方形,如图d所示;于是,一共可以构成5+4+1+1=11个不同的正方形.【巩固提高】1.如下图,方格纸上放了20枚棋子,以棋子为顶点的正方形共有_____个.3.如图19-14,用9枚钉子钉成水平和竖直间隔都为1厘米的正方阵.用一根橡皮筋将3枚不共线的钉子连结起来就形成一个三角形.在这样得到的三角形中,面积等于1平方厘米的三角形共有多少个?[分析与解]我们分三种情况来找面积为1平方厘米的三角形,这些三角形的底与高分别为1厘米或2厘米,利用正方形的对称性:(1)等腰直角三角形,如下图a所示有△AOC,△COE,△EOG,△GOA,△BOH,△DFB,△FHD,△HBF,共计8个,其中以AC,CF,FG,GA为底的各一个,以BF,DH为底的各两个.(2)直角三角形,如图b所示有△ACH,△CHD,△ACD,△DHA,△BEF,△BCE,△CEF,△CFB,△DEG,△DGH,△EGH,△EHD,△GAB,△GBF,△FAB,△FGA,共计16个,其中以AD、CH、BE、CF、DG、EH、FA、GB为斜边的各两个.(3)钝角三角形,如图c所示有△ABE,△AHE,△ADE,△AFE,△CBG,△CFG,△CDG,△CHG共计8个,其中以AE、CG为边的各四个.于是,综上所述,共有面积为1平方厘米的三角形32个.例12.如图19-15,木板上钉着12枚钉子,排成三行四列的长方阵.那么用橡皮筋共可套出多少个不同的三角形?[分析与解]我们先任意选取三个点,那么第1个点有12个位置可以选择,第2个点有11个位置可以选择,第3个点有10个位置可以选择,但是每6种选法对应的都是同一个图形,如下图,ABC,ACB,BAC,BCA,CAB,CBA 均是同一个图形.所以有12×11×10÷6=220种选法,但是如果这3点在同一条直线上就无法构成三角形,其中每行有4种情况,共3×4;每列有1种情况,共1×4;2个边长为2的正方形的4条对角线,共4种情况.所以,可以套出220-3×4-1×4-4=200个不同的三角形.【巩固提高】1.下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的3个点为顶点,可以构成三角形.在这些三角形中,与阴影三角形有同样大小面积的有多少个?例13.如图19-16,正方形ACEG的边界上有A,B,C,D,E,F,G这7个点,其中B,D,F分别在边AC,CE,EG上.以这7个点中的4个点为顶点组成的不同四边形的个数等于多少?[分析与解]如果暂时不考虑点之间的排列位置关系,从7个点中任取4个点,则第一个点有7个位置可选,第二个点有6个位置可选,第三个点有5个位置可选,第四个点有4个位置可选,而不考虑先后,那么有4×3×2×1=24种选法的实质是一样的,所有可能的组合数目应该是(7×6×5×4)÷24=35.我们只要从中减去不能构成四边形的情形.对图19-16而言,任取4个点而又不构成四边形的情形只能发生在所取的4个点中有3个来自正方形ACEG的一条边,而另一个则任意选取的时候,例如选定A、B、C3点,第4个点无论如何选取都不能构成四边形.正方形的4条边中有3条都存在这样的情况.而每次这种情况发生时,第4个顶点的选取有4种可能.所取的顶点只有4个,因此不可能出现同时选择了2条有3点共线的边的情况.那么需要排除的情况有4×3=12种.所以,满足题意的四边形个数有35-12=23个.【巩固提高】如下图,在三角形AFJ的边界上有A,B,C,……J,K,L共12个点,以这12个点中的3个点位顶点的三角形共有多少个?。

小学奥数全国推荐四年级奥数通用学案附带练习题解析答案33几何计数(一)

小学奥数全国推荐四年级奥数通用学案附带练习题解析答案33几何计数(一)

年级四年级学科奥数版本通用版课程标题几何计数(一)在几何中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等。

这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的。

通常采用一种简单原始的计数方法——枚举法。

具体而言,它是指把所要计数的对象一一列举出来,以保证枚举时无一重复、无一遗漏,然后计算其总数。

我们把直线上两点间的部分称为线段,这两个点称为线段的端点。

线段是组成三角形、正方形、长方形、多边形等图形最基本的元素。

因此,观察图形中的线段,探寻线段与线段之间、线段与其他图形之间的联系,对于了解图形、分析图形是很重要的。

数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n条“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条。

数角:数角与数线段相似,线段图形中的点类似于角图形中的边。

数三角形:可用数线段的方法(对应法)数如图所示的三角形,因为DE上有15条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形。

同样一边在BC 上构成的三角形也有15个,所以图中共有30个三角形。

例1数出下图中有多少条线段。

A B CD分析与解:方法一:我们可以采用以线段左端点分类来数的方法。

以A点为左端点的线段有:AB、AC、AD 3条;以B点为左端点的线段有:BC、BD 2条;以C点为左端点的线段有:CD 1条。

所以,图中共有线段3+2+1=6(条)。

方法二:把图中线段AB、BC、CD看做基本线段来数,那么,由1条基本线段构成的线段有:AB、BC、CD 3条;由2条基本线段构成的线段有:AC、BD 2条;由3条基本线段构成的线段有:AD 1条。

所以,图中一共有3+2+1=6(条)线段。

例2 数出下图中总共有多少个角。

分析与解:在∠AOB 内有三条角分线1OC 、2OC 、3OC ,∠AOB 被这三条角分线分成4个基本角,那么∠AOB 内总共有多少个角呢?首先有OB C OC C OC C AOC 332211∠∠∠∠、、、这4个基本角,其次是由2个基本角组成的角有3个(即∠2AOC 、∠31OC C 、∠OB C 2),然后是由3个基本角组成的角有2个(即∠3AOC 、∠OB C 1),最后是由4个基本角组成的角有1个(即∠AOB ),所以∠AOB 内总共有角:4+3+2+1=10(个)。

小学四年级奥数 第41讲:几何计数

小学四年级奥数 第41讲:几何计数
2

1
【例5】(★★★★) 在下图中只包含一个★的长方形有多少个?
★ ★
【例6】(★★★★) 如图,用9枚钉子钉成水平和竖直间隔都为1的正方阵。用一根橡 皮筋将3枚不共线的钉子连接起来就形成一个三角形。其中面积为 1的三角形有多少个?
【例7】(★★★★★) 图中一共有多少个三角形?
本讲总结 枚举法——按照大小和位置 对应法——找到对应关系 容斥原理——不重不漏 和面积相关——熟悉公式 利用图形对称性 重点例题:例4,例5,例6
几何计数
【例1】(★★) 下图中可以数出多少个三角形?
【例2】(★★★★) 如图,木板上钉着20个钉子,形成4行5列的正方形钉阵。那么橡 皮筋一共能套出 个正方形。
【例3】(★★★) 用橡皮筋可以在6×6的格点阵中套出多少个如图所示的格点三角 形?(三角形可旋转、翻转)
【例4】(★★★) 下图中包含★的长方形共有多少个?

小学奥数知识体系之几何计数-四五年级组

小学奥数知识体系之几何计数-四五年级组

几何计数几何计数分类数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE上有15条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形也有15个,所以图中共有30个三角形.数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n条线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个.【例1】数出右图中有多少条线段练习1:数出右图中有多少个锐角练习2:数一数下面图中各有多少个三角形。

练习3:从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?【例题2】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习1:下图中共有____个正方形.练习2:图中有______个正方形.【例3】下面的55⨯和64⨯图中共有____个正方形.练习1:在图中(单位:厘米): ①一共有几个长方形?②所有这些长方形面积的和是多少?练习2:如图,其中的每条线段都是水平的或竖直的,边界上各条线段的长度依次为5厘米、7厘米、9厘米、2厘米和4 厘米、6厘米、5厘米、1厘米.求图中长方形的个数,以及所有长方形面积的和.【例4】如图,其中同时包括两个☆的长方形有 个.练习1:在下图中,不包含☆的长方形有________个.(6级)练习2:图中含有“※”的长方形总共有________个.(6级)练习3:由20个边长为1的小正方形拼成一个45 长方形中有一格有“☆”图中含有“☆”的所有长方形(含正方形)共有 个,它们的面积总和是 . (第六届走美决赛试题)作业题:1:如图是由18个大小相同的小正三角形拼成的四边形.其中某些相邻的小正三角形可以拼成较大的正三角形若干个.那么,图中包含“*”号的大、小正三角形一共有______个.※※*2:如图AB,CD,EF,MN互相平行,则图中梯形个数与三角形个数的差是多少?3:图中共有多少个三角形?4:下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的3个点为顶点,可以构成三角形.在这些三角形中,与阴影三角形有同样大小面积的有多少个?。

小学奥数 几何计数(二) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  几何计数(二) 精选练习例题 含答案解析(附知识点拨及考点)

1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.ED CBA数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.教学目标知识要点7-8-2.几何计数(二)例题精讲模块二、复杂的几何计数【例1】如下图在钉子板上有16个点,每相邻的两个点之间距离都相等,用绳子在上面围正方形,你可以得到个正方形.【考点】复杂的几何计数【难度】4星【题型】填空【关键词】学而思杯,2年级,第4题【解析】先看横着的正方形如下图⑴,可以得到94114++=个正方形,再看斜着的正方形如下图⑵可以得到4个正方形,如下图⑶可以得到2个正方形.这样一共可以得到144220++=个正方形.⑴⑵⑶<考点> 图形计数【答案】20个【巩固】如图,44⨯的方格纸上放了16枚棋子,以棋子为顶点的正方形有个.【解析】根据正方形的大小,分类数正方形.共能组成五种大小不同的正方形(如右图).⨯的正方形:1个;⨯的正方形:4个;33⨯的正方形:9个;2211以11⨯正方形对角线为边长的正方形:4个;以12⨯长方形对角线为边长的正方形:2个.故可以组成9414220++++=(个)正方形.【巩固】下图是3×3点阵,同一行(列)相邻两个点的距离均为1。

四年级上册奥数知识点总结第7课-几何中的计数问题.doc

四年级上册奥数知识点总结第7课-几何中的计数问题.doc

奥数知识点第7课・几何中的计数问题(1)笫七讲几何中的计数问题(一)几何中的计数问题包括:数线段、数角、数长方形、数正方形、数三角形、数综合图形等•通过这一讲的学习,可以帮助我们养成按照一定顺序去观察、思考问题的良好习惯,逐步学会通过观察、思考探寻事物规律的能力.一、数线段我们把直线上两点间的部分称为线段,这两个点称为线段的端点•线段是组成三角形、正方形、长方形、多边形等最基本的元素•因此,观察图形中的线段,探寻线段与线段之间、线段与其他图形之间的联系,对于了解图形、分析图形是很重要的.例1数一数下列图形中各有多少条线段.A B C A B C p A B C DE(1)(2)(3)例2数出右图中总共有多少个角•ClC2C3例3数一数右图中总共有多少个角?三、数三角形例4如右图中,各个图形内各有多少个三角形?A例5如右图中,数一数共有多少条线段?共有多少个三角形?例6如右图中,共有多少个角?习题七1 •数一数下图中,各有多少条线段?2.数一数下图中各有多少角?3•数一数下图中,各有多少条线段?4•数一数下图中,各有多少条线段,各有多少个三角形?(1) (2)课后作业:(1) (2)CB答案:第七讲几何中的计数问题(一)形、曙麟「專湃羯蟲聽辟思考问题的良好习惯, 逐歩学会通过观察、思考探寻事物规律的能力.一、数线段我们把直线上两点间的部分称为线段,这两个点称为线段的端点•线段是组成三角形、正方形、长方形、多边形等最基本的元素•因此,观察图形中的线敲犧評之间' 线段煮他图形之间的联系’对于了解图形' 分析例1数一数下列图形中各有多少条线段.B C A B C D A B C DE(1)(2)(3)分析要想使数出的每一个图形中线段的总条数,不重复、不遗漏,就需要按照一定的顺序、按照一定的规律去观察、去数•这样才不至于杂乱无章、毫无头绪•我们可以按照两种顺序或两种规律去数.第一种:按照线段的端点顺序去数,如上图(1)中,线段最左边的端点是A,即以A为左端点的线段有AB、AC两条以B为左端点的线段有BC—条,所以上图(1)中共有线段2 +1 = 3条•同样按照从左至右的顺序观察图(2)中,以A为左端点的线段有AB、AC、AD三条,以B为左端点的线段有BC、BD两条,以C为左端点曲线段有CD—条・E斤以上页图〔2)中共有殳腰为3 +2 +1 = 6条.第二种:按照基本线段多少的顺序去数•所谓基本线段是指一条大线段中若有n个分点,则这条大线段就被这n个分点分成n+1条小线段,这每条小线段称为基本线段•如上页图(2)中,线段AD上有两个分点B、C,这时分点B、C把AD 分成AB、BC^ CD三条基本线巖,那么线段AD总箕有参少条线段?首宪有三条基本线段,其次是包含有二条基本线段的是:AC、BD二条,然后是包含有三条基本线段的是AD这样一条•所以线段AD上总共有线段3+2 + 1 = 6条,又如上页图(3)中线段AE上有三个分点B、C、D,这样分点B、C、D把线段AE分为AB、BC、CD、DE四条基本线段,那么线段AE上总共有多少条线段?按照基本线段多少的顺序是:首先有4条基本线段,其次是包含有二条基本线段的有3条,然后是包含有三条基本线段的有2条,最后是包含有4条基本线段的有一条,所以线段AE 上总共有线段是4 + 3 + 2 + 1 = 10条.解:①2 + 1 = 3 (条)・②3 + 2+1 = 6 (条)・第一种:按照线段的端点顺序去数,如上图(1)中,线段最左边的端点是A,即以A 为左端点的线段有AB、AC两条以B为左端点的线段有BC—条,所以上图(1)中共有线段2 +1 = 3条•同样按照从左至右的顺序观察图(2)中,以A为左端点的线段有AB、AC、AD三条,以B为左端点的线段有BC、BD两条,以C为左端点商线段有CD—条•所以上页图⑵ 申共有妄腰为3 +2 +1 = 6条.第二种:按照基本线段多少的顺序去数•所谓基本线段是指一条大线段中若有门个分点,则这条大线段就被这n个分点分成门+1条小线段,这每条小线段称为基本线段•如上页图(2)中,线段AD上有两个分点B、C,这时分点B、C把AD 分成AB、BC、CD三条基本线農,邮么线段AD总唉有参少条线段?音晁有三条基本殘段,其次是包备有二条基本殁段的是:AC、BD二条,然后是包含有三条基未线段0勺是AD这样一秦•所以线腰AD丄总共有线段3 + 2 + 1 = 6条,又如上页图(3)中线段AE上有三个分点B、C、D,这样分点B、C、D把线段AE分为AB、BC、CD、DE四条基本线段,那么线段AE上总共有多少条线段?按照基本线段多少的顺序是:音先有4素量本线段,箕次是包•备有二累盘未殳陵馬有3氯然后是包鸟有三条基车塚凌6勺有2条,最后是窃含有4条基未线段的有一条,紡以冬段AE 上总共有线段是4丄3 + 2丄1 = 10条.解:①2 + 1 = 3 (条)・②3 + 2 + 1 = 6〔条)・③ 4+3+2+1=10(条)・小结:上述三例说明:要想不重复、不遗漏地数出所有线段,必须按照一定顺序有规律的去数,这个规律就是:线段的总条数等于从1开始的连续几个自然数的和,这个连续自然数的和的最大的加数是线段分点数加1或者是线段所有点数(包括线段的两个端点)减1 •也就是基本线段的条数•例如右图中线段AF上麻有点数(包岳两个端点A、F)共有6个,所以从1开始的连续自然数的和申最大的加数是6-1 = 5,或者线段AF上的分点有4个(B、C、D、E)•所以从1开始的连续自然数的和中最大的加数是4 + 1 = 5.也就是线段AF上基本线段(AB、BC、CD、DE、EF)的条数是5•所以线段AF上总共有线段的条数是5+4 +3 +2 + 1 =15 (条)・二数角例2数出右图中总共有多少个角.分析在ZAOB内有三条角分线OC1、OC2、OC3, ZAOB被这三条角分线分成4 个基本角,那么ZAOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个〔即ZAOC2. ZC1OC3、ZC2OB),然后是包含有3 个基本角组成的角有2个(即ZAOC3、ZC1OB),最后是包含有4个基本角组成的角有1个(即ZAOB),所以ZAOB内总共有角:4+3+2+1=10(个)・解:4+3+2+1=10(个)・小结:数角的方法可以采用例1数线段的方法来数,就是角的总数等于从1 开始的几个连续自然数的和,这个和里面的最大的加数是角分线的条数加1,也就是基本角的个数.例3数一数右图中总共有多少个角?W:因为ZAOB内角分线0C1、OC2-OC9共有9条,即9+1二10个基本角.所以总共有角:10+9+8+…+4+3+2+1=55 (个).三.数三角形例4如右图中,各个图形内各有多少个三角形?分析可以采用类似例1数线段的两种方法来数,如图(2):第一种方法:先数以AB为一条边的三角形共有:△ABD、ZXABE、Z\ABF、ZXABC四个三角形.再数以AD为一条边的三角形共有:△ADE、ZXADF、ZXADC三个三角形.以AE为一条边的三角形共有:△AEF、ZXAEC二个三角形.最后以AF为一条边的三角形共有AAFC—个三角形.所以三角形的个数总共有4+3+2+1=10.第二种方法:先数图中小三角形共有:△ABD、ZXADE、Z\AEF、ZXAFC四个三角形.再数由两个小三角形组合在一起的三角形共有:△ABE、AADF. ZXAEC三个三角形,以三个小三角形组合在一起的三角形共有: △ABF 、ZXADC 二个三角形,最后数以四个小三角形组合在一起的只有AABC —个. 所以图中三角形的个数总共有:4+3+2+1=10 (个)・ 解:①3+2+1 二6 (个) ② 4+3+2+1=10 (个)・答:图(1)及图(2)中各有三角形分别是6个和10个.小结:计算三角形的总数也等于从1开始的几个连续自然数的和,其中最大例5如右图中,数一数共有多少条线段?共有多少个三角形?分析在数的过程中应充分利用上几例总结的规律,明确数什么?怎么数?这样两个问题•数:就是要数出图中基本线段(基本三角形)的条 数,算:就是以基本线段(基本三角形)条数为最大加数的从1开始的连续几个 自然数的和.①要数多少条线段:先看线段AB 、AD 、AE 、AF 、AC 、上各有2个分点,各分 成3条基本线段,再看BC 、MN 、GH 这3条线段上各有3个分点,各分成4条基本线 最・0T 以鹵中总共有第段是:(3+2+1) X5+(4+3+2+1) X 3二30+30=60 (条).②要数有多少个三角形,先看在AAGH 中,在GH 上有3个分点,分成基本小 三的加数就是三角形一边上的分点数加1,也就是三角形这边上分成的基本线段的 条数.角形有4个•所以在ZXAGH中共有三角形4+3+2+1=10 (个)•在ZXAMN与ZXABC 中,三角形有同样的个数,所以在ZXABC中三角形个数总共:〔4+3+2+1) X 3=10X3=30 (个)・解:①在△ ABC中共有线段是:〔3+2+1) X5+(4+3+2+1) X 3二30+30二60〔条)②在△ABC中共有三角形是:(4+3+2+1) X 3=10X3=30〔个)・例6如右图中,共有多少个角?分析本题虽然与上几例有区别,但仍可以采用上几例所总结的规律去解决.Zl、Z2、Z3、Z4我们可视为4个基本角,由2个基本角组成的有:Z1与Z2、Z2与Z3、Z3与Z4、Z4与Z1,共4个角•由3个基本角组成的角有:Z 1、上2与Z3; Z2. Z3与上4; Z3、上4与Z1;上4、Z1与上2,共4个角,由4个基本角组成的角只有一个.所以图中总共有角是:4X3+1二13 (个)・解:所以图中共有角是:4X3+1二13 (个)・小结:由本题可以推出一般情况:若周角中含有n个基本角,那么它上面角的总薮是n (n-1) +1.课后作业答案:习题七解答1 •①在AB线段上有4个分点,所以它上面线段的总条数为:5+4+3+2+1二15 (条)・②在线段AB上有3个分点,所以它上面线段的总条数为:4+3+2+1=10 (条)・在线段CD上有4个分点:所以它上面线段的总条数为:5+4+3+2+1=15 (条)・・・・整个图(2)共有线段10+15二25 (条)・③在线段AB上有3个分点,它上面线段的条数为:44-34-2+1=10 (条)・在线段CD上有2个分点,它上面线段的条数为:占。

石头老师四年级奥数竞赛班图形计数专题

石头老师四年级奥数竞赛班图形计数专题

航创四年级竞赛班图形计数专题一、知识点:几何图形计数问题往往没有显而易见的顺序,而且要数的对象通常是重叠交错的,要准确计数就需要一些智慧了.实际上,图形计数问题,通常采用一种简单原始的计数方法-一枚举法.具体而言,它是指把所要计数的对象一一列举出来,以保证枚举时无一重复、.无一遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.二、典例剖析:例(1)数出右图中总共有多少个角练一练:数一数右图中总共有多少个角?例(2 )数一数共有多少条线段?共有多少个三角形?练一练:共有多少个三角形?例(3)数一数图中长方形的个数练一练: 数一数图中长方形的个数例(4)数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形).练一练:下图共有几个正方形?例(5)数一数图中三角形的个数练一练:数一数图中三角形的个数例(6)数一数图中一共有多少个三角形?练一练:数一数图中一共有多模拟测试( 2 )一、填空题(每小题5分)1、.下列图形各有几条线段( )条 ( )条 ( )条2、一条直线上共有50个点,可以数出( )条线段.3、数一数下图共有( )条线段.( )条. ( )条.4、下图中各有( )个三角形.5、数一数下图有( )个长方形.6、右图一共有( )个长方形?7、右图一共有( )个正方形?8、下图共有( )个平行四边形.9、一共有( )个梯形.10、下图共有( )个三角形.二、简答题(每小题10分)1、右图的图形中一共有多少个三角形?2、下图共有几个正方形?3、下图共有多少个长方形?4、下图中一共有多少个三角形?5、下图共有几个三角形?.6. 下图中有几个长方形?7.下图中有几个含星号的三角形或者长方形?模拟测试( 2 )解答一、填空题1、a有10条, b有15条, c有21条.2、50⨯49÷2=1225(条).3、36; 27.4. 33;5、30个.图中AB边上共有线段4+3+2+1=10条.BC边上共有线段: 2+1=3(条),把AB 上的每一条线段作为长, BC边上每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以图中共有长方形为:(4+3+2+1)⨯(2+1)=10⨯3=30(个).6、一共有64个.7、一共有18个.解:分三类计算,边长是1的正方形有2+4=13(个),边长为2的正方形有4(个),边长为3 的正方形有1个.因此,图中共有正方形13+4+1=18(个).8、315个=7(=÷⨯÷⨯(个)⨯⨯)215315621)26(59、45个最好的办法是先数出长方形和梯形的总数,再减去长方形的个数.长方形和梯形的总数为:(1+2+3+4+5+6)×(1+2)=63(个)长方形的个数为:(1+2+3)×(1+2)=18(个)梯形的总数为:63-18=45(个)10、 126个Ⅰ.尖朝上的三角形有五种:=8+7+6+5+4=30(1)W①上=7+6+5+4=22(2)W②上(3)W=6+5+4=15③上(4)W=5+4=9④上(5)W=4⑤上∴尖朝上的三角形共有:30+22+15+9+4=80(个)Ⅱ.尖朝下的三角形有四种:(1) W=3+4+5+6+7=25①下=2+3+4+5=14(2)W②下=1+2+3=6(3)W③下=1(4)W④下尖朝下的三角形共有25+14+6+1=46(个)∴80+46=126个.二、简答题1、解:①单个三角形有6个.②两个图形组成的有4个.③三个图形组成的有1个.④四个图形组成的有2个.⑤八个图形组成的有1个.答:一共有: 6+4+1+2+1=14个.2、解:一共有正方形52+42+32+22+12=25+16+9+4+1=55(个).答:一共有正方形55个。

小学奥数--几何计数25道

小学奥数--几何计数25道

【题型】应用题【题目】用3根等长的火柴可以摆成一个等边三角形.如图19-1,用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形昀每边由20根火柴组成,那么一共要用多少根火柴?【答案】630【解析】把大的等边三角形分为20“层”分别计算火柴的根数:最上一“层”只用了3根火柴;从上向下数第二层用了3×2=6根火柴;从上向下数第三层用了3×3=9根火柴;……从上向下数第20层用了3×20=60根火柴.所以,总共要用火柴3×(1+2+3+…+20)=630根.【难度】难度3【知识点】几何计数【题目】如图19-2,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?【答案】13975【解析】横放需1996×4根,竖放需1997×3根,共需1996×4+1997×3=13975根.【难度】难度2【知识点】几何计数【题目】图19-3是一个跳棋棋盘,请你计算出棋盘上共有多少个棋孔?【答案】【解析】把棋盘分割成一个平行四边形和四个小三角形,如下图.平行四边形中棋孔数为9×9=81,每个小三角形中有10个棋孔,所以棋孔共有81+10×4=121个.或直接数出有121个.【难度】难度3【知识点】几何计数【题目】如图19-4,在桌面上,用6个边长为l的正三角形可以拼成一个边长为1的正六边形.如果在桌面上要拼出一个边长为6的正六边形,那么,需要边长为1的正三角形多少个?【答案】【解析】如图AB=6,组成△AOB需要边长为1的正三角形共:1+3+5+7+9+11=36个,而拼成边长为6的正六边形需要6个△AOB,因此总共需要边长为1的正三角形36×6=216个.【难度】难度4【知识点】几何计数【题目】如图19-5,其中的每条线段都是水平的或竖直的,边界上各条线段的长度依次为5厘米、7厘米、9厘米、2厘米和4厘米、6厘米、5厘米、1厘米.求图中长方形的个数,以及所有长方形面积的和.【答案】100,10664【解析】确定好长方形的长和宽,长方形就唯一确定,而图中只需确定好横向线段,竖向线段,即可.于是横向线段有(1+2+3+4)=10种选法,竖向线段也有(1+2+3+4)=10种选法,则共有10×10=100个长方形.这些长方形的面积和为:(5+7+9+2+12+16+11+21+18+23)×(4+6+5+1+10+11+6+15+12+16)=124×86=10664(平方厘米).【难度】难度4【知识点】几何计数【题目】如图19-6,18个边长相等的正方形组成了一个3×6的方格表,其中包含“*”的长方形及正方形共有多少个?【答案】36【解析】我们把所求的长、正方形按占有的行数分为三类,每类的长、正方形的个数相等.其中只占有下面一行的有如下12种情况:于是共有12×3=36个正、长方形包含“*”.【难度】难度4【知识点】几何计数【题目】图19-7是由若干个相同的小正方形组成的.那么,其中共有各种大小的正方形多少个?【答案】130【解析】每个4×4正方形中有:边长为1的正方形4×4个;边长为2的正方形3×3个;边长为3的正方形2×2个,边长为4的正方形1×1个.总共有4×4+3×3+2×2+1×1=30个正方形.现在5个4×4的正方形,它们重叠部分是4个2×2的正方形.因此,图中正方形的个数是30×5-5×4=130.【难度】难度4【知识点】几何计数【题目】图19-8中共有多少个三角形?【答案】22【解析】边长为1的正三角形,有16个.边长为2的正三角形,尖向上的有3个,尖向下的也有3个.因此共有16+3+3=22个.【难度】难度2【知识点】几何计数【题目】图19-9是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形.那么,图中包含“*”的各种大小的正三角形一共有多少个?【答案】6【解析】设小正三角形的边长为1,分三类计算计数包含*的三角形中,边长为1的正三角形有1个;边长为2的正三角形有4个,边长为3的正三角形有1个;因此,图中包含“*”的所有大、小正三角形一共有1+4+1=6个.【难度】难度2【知识点】几何计数【题目】如图19-10,AB,CD,EF,MN互相平行,则图中梯形个数与三角形个数的差是多少?【答案】20【解析】图中共有三角形(1+2+3+4)×4=40个,梯形(1+2+3+4)×(1+2+4)=60个,梯形比三角形多60-40=20个.【难度】难度3【知识点】几何计数【题目】在图19-1l中,共有多少个不同的三角形?【答案】85【解析】下图中共有35个三角形,两个叠加成题中图形时,又多出5+5×2=15个三角形,共计35×2+15=85个三角形.【难度】难度5【知识点】几何计数【题目】如图19-12,一块木板上有13枚钉子.用橡皮筋套住其中的几枚钉子,可以构成三角形、正方形、梯形等等,如图19-13.那么,一共可以构成多少个不同的正方形?【答案】11【解析】按正方形的面积分类,设最小的正方形面积为1,面积为1的正方形有5个,如图a所示;面积为2的正方形有4个,如图b所示;面积为4的正方形有1个,如图c所示;还有1个面积比4大的正方形,如图d所示;于是,一共可以构成5+4+1+1=11个不同的正方形.【难度】难度3【知识点】几何计数【题目】如图19-14,用9枚钉子钉成水平和竖直间隔都为1厘米的正方阵.用一根橡皮筋将3枚不共线的钉子连结起来就形成一个三角形.在这样得到的三角形中,面积等于1平方厘米的三角形共有多少个?【答案】32【解析】我们分三种情况来找面积为1平方厘米的三角形,这些三角形的底与高分别为1厘米或2厘米,利用正方形的对称性:(1)等腰直角三角形,如下图a所示有△AOC,△COE,△EOG,△GOA,△BOH,△DFB,△FHD,△HBF,共计8个,其中以AC,CF,FG,GA为底的各一个,以BF,DH为底的各两个.(2)直角三角形,如图b所示有△ACH,△CHD,△ACD,△DHA,△BEF,△BCE,△CEF,△CFB,△DEG,△DGH,△EGH,△EHD,△GAB,△GBF,△FAB,△FGA,共计16个,其中以AD、CH、BE、CF、DG、EH、FA、GB为斜边的各两个.(3)钝角三角形,如图c所示有△ABE,△AHE,△ADE,△AFE,△CBG,△CFG,△CDG,△CHG共计8个,其中以AE、CG为边的各四个.于是,综上所述,共有面积为1平方厘米的三角形32个.【难度】难度4【知识点】几何计数【题目】如图19-15,木板上钉着12枚钉子,排成三行四列的长方阵.那么用橡皮筋共可套出多少个不同的三角形?【答案】200【解析】我们先任意选取三个点,那么第1个点有12个位置可以选择,第2个点有11个位置可以选择,第3个点有10个位置可以选择,但是每6种选法对应的都是同一个图形,如下图,ABC,ACB,BAC,BCA,CAB,CBA均是同一个图形.所以有12×11×10÷6=220种选法,但是如果这3点在同一条直线上就无法构成三角形,其中每行有4种情况,共3×4;每列有1种情况,共1×4;2个边长为2的正方形的4条对角线,共4种情况.所以,可以套出220-3×4-1×4-4=200个不同的三角形.【难度】难度2【知识点】几何计数【题目】如图19-16,正方形ACEG的边界上有A,B,C,D,E,F,G这7个点,其中B,D,F分别在边AC,CE,EG上.以这7个点中的4个点为顶点组成的不同四边形的个数等于多少?【答案】12【解析】如果暂时不考虑点之间的排列位置关系,从7个点中任取4个点,则第一个点有7个位置可选,第二个点有6个位置可选,第三个点有5个位置可选,第四个点有4个位置可选,而不考虑先后,那么有4×3×2×1=24种选法的实质是一样的,所有可能的组合数目应该是(7×6×5×4)÷24=35.我们只要从中减去不能构成四边形的情形.对图19-16而言,任取4个点而又不构成四边形的情形只能发生在所取的4个点中有3个来自正方形ACEG的一条边,而另一个则任意选取的时候,例如选定A、B、C3点,第4个点无论如何选取都不能构成四边形.正方形的4条边中有3条都存在这样的情况.而每次这种情况发生时,第4个顶点的选取有4种可能.所取的顶点只有4个,因此不可能出现同时选择了2条有3点共线的边的情况.那么需要排除的情况有4×3=12种.所以,满足题意的四边形个数有35-12=23个.【难度】难度4【知识点】几何计数【题目】数一数下列图形中各有多少条线段.【答案】15【解析】要想使数出的每一个图形中线段的总条数,不重复、不遗漏,就需要按照一定的顺序、按照一定的规律去观察、去数.这样才不至于杂乱无章、毫无头绪.我们可以按照两种顺序或两种规律去数.第一种:按照线段的端点顺序去数,如上图(1)中,线段最左边的端点是A,即以A为左端点的线段有AB、AC两条以B为左端点的线段有BC一条,所以上图(1)中共有线段2+1=3条.同样按照从左至右的顺序观察图(2)中,以A 为左端点的线段有AB、AC、AD三条,以B为左端点的线段有BC、BD两条,以C为左端点的线段有CD一条.所以上页图(2)中共有线段为3+2+1=6条. 第二种:按照基本线段多少的顺序去数.所谓基本线段是指一条大线段中若有n 个分点,则这条大线段就被这n个分点分成n+1条小线段,这每条小线段称为基本线段.如上页图(2)中,线段AD上有两个分点B、C,这时分点B、C把AD 分成AB、BC、CD三条基本线段,那么线段AD总共有多少条线段?首先有三条基本线段,其次是包含有二条基本线段的是:AC、BD二条,然后是包含有三条基本线段的是AD这样一条.所以线段AD上总共有线段3+2+1=6条,又如上页图(3)中线段AE上有三个分点B、C、D,这样分点B、C、D把线段AE分为AB、BC、CD、DE四条基本线段,那么线段AE上总共有多少条线段?按照基本线段多少的顺序是:首先有4条基本线段,其次是包含有二条基本线段的有3条,然后是包含有三条基本线段的有2条,最后是包含有4条基本线段的有一条,所以线段AE上总共有线段是4+3+2+1=10条.解:①2+1=3(条).② 3+2+1=6(条).③ 4+3+2+1=10(条).小结:上述三例说明:要想不重复、不遗漏地数出所有线段,必须按照一定顺序有规律的去数,这个规律就是:线段的总条数等于从1开始的连续几个自然数的和,这个连续自然数的和的最大的加数是线段分点数加1或者是线段所有点数(包括线段的两个端点)减1.也就是基本线段的条数.例如右图中线段AF 上所有点数(包括两个端点A、F)共有6个,所以从1开始的连续自然数的和中最大的加数是6—1=5,或者线段AF上的分点有4个(B、C、D、E).所以从1开始的连续自然数的和中最大的加数是4+1=5.也就是线段AF上基本线段(AB、BC、CD、DE、EF)的条数是5.所以线段AF上总共有线段的条数是5+4+3+2+1=15(条).【难度】难度3【知识点】几何计数【题目】数出下图中总共有多少个角.【答案】10【解析】在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:4+3+2+1=10(个).解:4+3+2+1=10(个).小结:数角的方法可以采用例1数线段的方法来数,就是角的总数等于从1开始的几个连续自然数的和,这个和里面的最大的加数是角分线的条数加1,也就是基本角的个数.【难度】难度3【知识点】几何计数【题目】数一数下图中总共有多少个角?【答案】55【解析】因为∠AOB内角分线OC1、OC2…OC9共有9条,即9+1=10个基本角. 所以总共有角:10+9+8+…+4+3+2+1=55(个).【难度】难度3【知识点】几何计数【题目】如下图中,各个图形内各有多少个三角形?【答案】(1)6(2)10【解析】可以采用类似例1数线段的两种方法来数,如图(2):第一种方法:先数以AB为一条边的三角形共有:△ABD、△ABE、△ABF、△ABC四个三角形.再数以AD为一条边的三角形共有:△ADE、△ADF、△ADC三个三角形.以AE为一条边的三角形共有:△AEF、△AEC二个三角形.最后以AF为一条边的三角形共有△AFC一个三角形.所以三角形的个数总共有4+3+2+1=10.第二种方法:先数图中小三角形共有:△ABD、△ADE、△AEF、△AFC四个三角形.再数由两个小三角形组合在一起的三角形共有:△ABE、△ADF、△AEC三个三角形,以三个小三角形组合在一起的三角形共有:△ABF、△ADC二个三角形,最后数以四个小三角形组合在一起的只有△ABC一个.所以图中三角形的个数总共有:4+3+2+1=10(个).解:①3+2+1=6(个)② 4+3+2+1=10(个).答:图(1)及图(2)中各有三角形分别是6个和10个.小结:计算三角形的总数也等于从1开始的几个连续自然数的和,其中最大的加数就是三角形一边上的分点数加1,也就是三角形这边上分成的基本线段的条数.【难度】难度3【知识点】几何计数【题目】如下图中,数一数共有多少条线段?共有多少个三角形?【答案】60,30【解析】分析在数的过程中应充分利用上几例总结的规律,明确数什么?怎么数?这样两个问题.数:就是要数出图中基本线段(基本三角形)的条数,算:就是以基本线段(基本三角形)条数为最大加数的从1开始的连续几个自然数的和.①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三角形,先看在△AGH中,在GH上有3个分点,分成基本小三角形有4个.所以在△AGH中共有三角形4+3+2+1=10(个).在△AMN与△ABC 中,三角形有同样的个数,所以在△ABC中三角形个数总共:(4+3+2+1)×3=10×3=30(个).解:①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三角形是:(4+3+2+1)×3=10×3=30(个).【难度】难度3【知识点】几何计数【题目】如右图中,共有多少个角?【答案】13【解析】分析本题虽然与上几例有区别,但仍可以采用上几例所总结的规律去解决. ∠1、∠2、∠3、∠4我们可视为4个基本角,由2个基本角组成的有:∠1与∠2、∠2与∠3、∠3与∠4、∠4与∠1,共4个角.由3个基本角组成的角有:∠1、∠2与∠3;∠2、∠3与∠4;∠3、∠4与∠1;∠4、∠1与∠2,共4个角,由4个基本角组成的角只有一个.所以图中总共有角是:4×3+1=13(个).解:所以图中共有角是:4×3+1=13(个).小结:由本题可以推出一般情况:若周角中含有n 个基本角,那么它上面角的总数是 n (n-1)+1.【难度】难度4【知识点】几何计数【题目】在图中(单位:厘米):①一共有几个长方形?②所有这些长方形面积的和是多少?374218125【答案】100,12384【解析】①一共有(4321)(4321)100+++⨯+++=(个)长方形;②所求的和是[][]51281(512)(128)(81)(5128)(1281)(51281)2473(24)(47)(73)(247)(473)(2473)+++++++++++++++++++⨯+++++++++++++++++++ 1448612384=⨯=(平方厘米)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何计数
知识结构
一、公式计算法
几何计数内容很广,包括数线段的条数,角的个数,长方形、正方形、三角形、平行四边形、梯形等图形的个数,也包括数立体图形的个数。

图形的计数一般有两种思考方法:公式计算法和分类计数法。

三年级学习的线段、长方形和正方形的计数就属于公式计算法。

(1)一条线段有两个端点,若这条线段上有n个点,那么线段总数是
(n-1)+(n+2)+…+3+2+1
(2)如果一个长方形的长边上有n个小格,宽边上有m个小格,那么长方形的总数是
(1+2+3+…+n)×(1+2+…+m)
(3)如果把正方形各边都n等分,那么正方形的总数是
n2+(n-1)2+(n-2)2+…+32+22+12
上面计算线数的方法也可用于计算角的个数,而且,根据这些计数方法在以后还可以类推出立体图形的计算方法。

二、对应法
将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.
重难点
(1)分类数图形。

(2)对应法数图形。

例题精讲
一、分类数图形
【例 1】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层,共
用了多少根小棍?
【巩固】如图所示,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?
【例 2】图中有______个正方形.
【巩固】数一数:图中共有________ 个正方形。

【例 3】 右图中三角形共有 个.
【巩固】 数一数图中有_______个三角形.
【例 4】 图中共有多少个三角形?
C
B A
【巩固】 下图是由边长为1的小三角形拼成,其中边长为4的三角形有_____个。

【例 5】 如图,每个小正方形的面积都是l 平方厘米。

则在此图中最多可以画出__________个面积是4平
方厘米的格点正方形(顶点都在图中交叉点上的正方形)。

【巩固】图中的每个小方格都是面积为1的正方形,面积为2的矩形有个。

二、对应法数图形
【例 6】在8×8的方格棋盘中,取出一个由三个小方格组成的“L”形(如图),一共有多少种不同的方法?
【例 7】在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?
【巩固】用一张如图所示的纸片盖住66 方格表中的四个小方格,共有多少种不同的放置方法?
三、几何计数综合
【例 8】如图,连接一个正六边形的各顶点.问图中共有多少个等腰三角形(包括等边三角形)?
【巩固】如右图是一个跳棋棋盘,请你算算棋盘上共有多少个棋孔?
【例 9】如图所示,在直线AB上有7个点,直线CD上有9个点.以AB上的点为一个端点、CD上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB与CD
之间的交点数.
A
B
C D 【巩固】图中可数出的三角形的个数为.
【例 10】用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?面
积等于2平方厘米的三角形有多少个?
【巩固】下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的3个点为顶点,可以构成三角形.在这些三角形中,与阴影三角形有同样大小面积的有多少个?
【例 11】一张长方形纸片,长是宽的2倍,先对折成正方形,再对折成长方形,再对折成正方形,……,共对折7次,将纸打开展平,数一数用折痕分割成的正方形共有多少个?
【巩固】将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作.按上述规则完成五次操作后,剪去所得的小正方形的左下角.问:当展开这张正方形纸后,一共有多少个小洞孔?
【例 12】一个圆上有12个点A1,A2,A3,…,A11,A12.以它们为顶点连三角形,使每个点恰好是一个三角形的顶点,且各个三角形的边都不相交.问共有多少种不同的连法?
A 12
A 11A 10A 9
A 8
A 7
A 6
A 5
A 4
A 3A 2
A 1
【随练1】 数一数,图中有_________________个三角形。

【随练2】 用3根等长的火柴可以摆成一个等边三角形.如图用这样的等边三角形拼合成一个更大的等边
三角形.如果这个大等边三角形的每边由20根火柴组成,那么一共要用多少根火柴?
【作业1】 图中共有 个三角形。

课堂检测
家庭作业
【作业2】右图是半个正方形,它被分成一个一个小的等腰直角三角形,图中,正方形有个,三角形有个。

【作业3】图中共有个正方形。

【作业4】用三根火柴可拼成一个小“△”,若用108根火柴拼成如图所示形状的大三角形,请你数一数共有多少个三角形?
【作业5】图中每个小正方形的边长都是l厘米,则在图中最多可以画出面积是3平方厘米的格点三角形(顶点在图中交叉点上的三角形)____个。

【作业6】如图所示,在边长为1的小正方形组成的4×4方格图中,共有25个格点。

在以格点为顶点的直角三角形中,两条直角边长分别是1和3的直角三角形共有个。

教学反馈
学生对本次课的评价
○特别满意○满意○一般
家长意见及建议
家长签字:。

相关文档
最新文档