第五版物理化学第二章习题答案
天津大学第五版-物理化学课后习题答案(全)
![天津大学第五版-物理化学课后习题答案(全)](https://img.taocdn.com/s3/m/ca3b46ad2af90242a895e5b3.png)
第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学(天大第五版全册)课后习题答案
![物理化学(天大第五版全册)课后习题答案](https://img.taocdn.com/s3/m/38ad83d13968011ca2009185.png)
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载物理化学(天大第五版全册)课后习题答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容气体pVT性质1-1物质的体膨胀系数与等温压缩系数的定义如下:试导出理想气体的、与压力、温度的关系?解:对于理想气体,pV=nRT1-5 两个体积均为V的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为终态(f)时1-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽去前后,H2及N2的摩尔体积是否相同?(3)隔板抽去后,混合气体中H2及N2的分压力之比以及它们的分体积各为若干?解:(1)抽隔板前两侧压力均为p,温度均为T。
(1)得:而抽去隔板后,体积为4dm3,温度为,所以压力为(2)比较式(1)、(2),可见抽去隔板后两种气体混合后的压力仍为p。
(2)抽隔板前,H2的摩尔体积为,N2的摩尔体积抽去隔板后所以有,可见,隔板抽去前后,H2及N2的摩尔体积相同。
(3)所以有*1-17 试由波义尔温度TB的定义式,试证范德华气体的TB可表示为TB=a/(bR)式中a、b为范德华常数。
解:先将范德华方程整理成将上式两边同乘以V得求导数当p→0时,于是有当p→0时V→∞,(V-nb)2≈V2,所以有 TB= a/(bR)第二章热力学第一定律2-1 1mol理想气体于恒定压力下升温1℃,试求过程中气体与环境交换的功W。
物理化学(天大第五版全册)课后习题答案
![物理化学(天大第五版全册)课后习题答案](https://img.taocdn.com/s3/m/6232e68d50e79b89680203d8ce2f0066f5336409.png)
物理化学(天⼤第五版全册)课后习题答案第⼀章⽓体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V-=??? =κα试导出理想⽓体的V α、T κ与压⼒、温度的关系解:对于理想⽓体,pV=nRT111 )/(11-=?=?==??? =T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=?=?=???? ????-=???? ????-=p p V V pnRT V p p nRT V p V V T T T κ 1-5 两个体积均为V 的玻璃球泡之间⽤细管连接,泡内密封着标准状况条件下的空⽓。
若将其中⼀个球加热到100℃,另⼀个球则维持0℃,忽略连接管中⽓体体积,试求该容器内空⽓的压⼒。
解:⽅法⼀:在题⽬所给出的条件下,⽓体的量不变。
并且设玻璃泡的体积不随温度⽽变化,则始态为 )/(2,2,1i i i i RT V p n n n =+=终态(f )时+=?+=+=ff ff f ff f f fT T T T R Vp T V T V R p n n n ,2,1,1,2,2,1,2,1 kPaT T T T T p T T T T VR n p f f f f i i ff f f f 00.117)15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+=???+=? ??+=(1)保持容器内温度恒定时抽去隔板,且隔板本⾝的体积可忽略不计,试求两种⽓体混合后的压⼒。
(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同(3)隔板抽去后,混合⽓体中H 2及N 2的分压⼒之⽐以及它们的分体积各为若⼲解:(1)抽隔板前两侧压⼒均为p ,温度均为T 。
p dmRT n p dmRT n p N N H H ====33132222 (1)得:223N Hn n =⽽抽去隔板后,体积为4dm 3,温度为,所以压⼒为3331444)3(2222dm RT n dm RT n dm RT n n V nRT p N N N N ==+== (2)⽐较式(1)、(2),可见抽去隔板后两种⽓体混合后的压⼒仍为p 。
第五版物理化学第二章习题答案
![第五版物理化学第二章习题答案](https://img.taocdn.com/s3/m/1ac2bb9c67ec102de3bd894d.png)
第二章热力学第一定律1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-1mol水蒸气(H2O,g)在100℃,下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-p ambΔV =-p(V l-V g ) ≈ pVg = nRT =在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) = H2(g) + 1/2O2(g)解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-p ambΔV =-(p2V2-p1V1)≈-p2V2 =-n2RT=-系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=,Wa=-;而途径b的Q b=-。
求W b.解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a= ΔU b 由热力学第一定律可得Qa + Wa = Q b + W b∴ W b = Q a + W a-Q b = -始态为25℃,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到 -28.47℃,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律4mol 某理想气体,温度升高20℃, 求ΔH-ΔU 的值。
第五版物理化学第二章习题答案
![第五版物理化学第二章习题答案](https://img.taocdn.com/s3/m/70470e7202d276a201292e62.png)
第二章热力学第一定律2.1 1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-8.314J2.2 1mol水蒸气(H2O,g)在100℃,101.325kPa下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-pamb ΔV =-p(Vl-Vg) ≈ pVg = nRT = 3.102kJ2.3 在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) =H2(g) + 1/2O2(g)解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-pamb ΔV =-(p2V2-p1V1)≈-p2V2=-n2RT=-3.718kJ2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=2.078kJ,Wa=-4.157kJ;而途径b的Q b=-0.692kJ。
求W b.解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a= ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b∴ W b = Q a + W a-Q b = -1.387kJ2.5 始态为25℃,200 kPa 的5 mol 某理想气体,经途径a ,b 两不同途径到达相同的末态。
途经a 先经绝热膨胀到 -28.47℃,100 kPa ,步骤的功;再恒容加热到压力200 kPa 的末态,步骤的热。
途径b 为恒压加热过程。
求途径b 的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律2.6 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
[物理化学(上册)完整习题答案解析]第五版高等教育出版社
![[物理化学(上册)完整习题答案解析]第五版高等教育出版社](https://img.taocdn.com/s3/m/ef45d9fe240c844769eaee4b.png)
第一章 气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:11TT p V pV V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T T VV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p VV pnRT V p p nRT V pV V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学(天津大学第五版)课后答案
![物理化学(天津大学第五版)课后答案](https://img.taocdn.com/s3/m/d29adbe08762caaedd33d47c.png)
第一章气体的pVT关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm Vl O H ==-=ρ n=m/M=pV/RT1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为)/(2,2,1i i i i RT V p n n n =+=终态(f )时 ⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=ff ff f ff f ff T T T T R Vp T V T V R p n n n,2,1,1,2,2,1,2,1 1-6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
最新物理化学第1-2章课后答案(傅献彩_第五版)(南京大学化学化工学院)
![最新物理化学第1-2章课后答案(傅献彩_第五版)(南京大学化学化工学院)](https://img.taocdn.com/s3/m/d22a8174da38376bae1fae06.png)
第二章热力学第一定律建筑词典大全附中文详细解释I第一节一般术语1. 工程结构building and civil engineering structures房屋建筑和土木工程的建筑物、构筑物及其相关组成部分的总称。
2. 工程结构设计design of building and civil engineering structures在工程结构的可靠与经济、适用与美观之间,选择一种最佳的合理的平衡,使所建造的结构能满足各种预定功能要求。
3. 房屋建筑工程building engineering一般称建筑工程,为新建、改建或扩建房屋建筑物和附属构筑物所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
4. 土木工程civil engineering除房屋建筑外,为新建、改建或扩建各类工程的建筑物、构筑物和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
5. 公路工程highway engineering为新建或改建各级公路和相关配套设施等而进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
6. 铁路工程railway engineering为新建或改建铁路和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
7. 港口与航道工程port ( harbour ) and waterway engineering为新建或改建港口与航道和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
8. 水利工程hydraulic engineering为修建治理水患、开发利用水资源的各项建筑物、构筑物和相关配设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
9. 水利发电工程(水电工程)hydraulic and hydroelectric engineering以利用水能发电为主要任务的水利工程。
第五版物理化学第二章习题集规范标准答案
![第五版物理化学第二章习题集规范标准答案](https://img.taocdn.com/s3/m/4dedec5c76eeaeaad1f3309a.png)
第二章热力学第一定律2.1 1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-8.314J2.2 1mol水蒸气(H2O,g)在100℃,101.325kPa下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-pambΔV =-p(Vl-Vg) ≈ pVg = nRT = 3.102kJ2.3 在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) =H2(g) + 1/2O2(g)解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-pambΔV =-(p2V2-p1V1)≈-p2V2=-n2RT=-3.718kJ2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=2.078kJ,Wa=-4.157kJ;而途径b的Q b=-0.692kJ。
求W b.解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a= ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b∴ W b = Q a + W a-Q b = -1.387kJ2.5 始态为25℃,200 kPa 的5 mol 某理想气体,经途径a ,b 两不同途径到达相同的末态。
途经a 先经绝热膨胀到 -28.47℃,100 kPa ,步骤的功;再恒容加热到压力200 kPa 的末态,步骤的热。
途径b 为恒压加热过程。
求途径b 的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律2.6 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
天津大学第五版-物理化学课后习题答案(全)
![天津大学第五版-物理化学课后习题答案(全)](https://img.taocdn.com/s3/m/ca3b46ad2af90242a895e5b3.png)
第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学第五版课后习题答案
![物理化学第五版课后习题答案](https://img.taocdn.com/s3/m/870566c5680203d8cf2f242a.png)
大学物理化学课后答案详解第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡密封着标准状态下的空气。
若将其中的一个球加热到100 C,另一个球则维持0 C,忽略连接细管中气体体积,试求该容器空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜通氮气直到4倍于空气的压力,尔后将釜混合气体排出直至恢复常压。
重复三次。
求釜最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 C,使部分水蒸气凝结为水。
物理化学(天大第五版全册)课后习题答案
![物理化学(天大第五版全册)课后习题答案](https://img.taocdn.com/s3/m/e40499cdd1f34693dbef3e54.png)
第一章气体pVT 性质1-1物质的体膨胀系数V与等温压缩系数T的定义如下:11TTpVpV VTV V 试导出理想气体的V、T与压力、温度的关系?解:对于理想气体,pV=nRT111)/(11TT V VpnR VT p nRT V T V V ppV1211)/(11ppV VpnRT Vpp nRT VpV VT T T1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为)/(2,2,1i i iiRT V p n n n终态(f )时ff ff f ff f ff T T T T RV p T V T V R p n n n,2,1,1,2,2,1,2,1kPaT T T T T p T T T T VR np ff ff ii ff f f f00.117)15.27315.373(15.27315.27315.373325.10122,2,1,2,1,2,1,2,11-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。
H 2 3dm 3p TN 2 1dm 3p T(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同?(3)隔板抽去后,混合气体中H 2及N 2的分压力之比以及它们的分体积各为若干?解:(1)抽隔板前两侧压力均为p ,温度均为T 。
pdmRTn p dmRTn p N NH H33132222(1)得:223NHn n 而抽去隔板后,体积为4dm 3,温度为,所以压力为3331444)3(2222dmRTn dmRTn dmRT n n VnRT pN N N N(2)比较式(1)、(2),可见抽去隔板后两种气体混合后的压力仍为p 。
物理化学 第五版 答案02 热力学第一定律习题解答
![物理化学 第五版 答案02 热力学第一定律习题解答](https://img.taocdn.com/s3/m/e842b165f5335a8102d22075.png)
湖北民院化环院——天大教材——热力学第一定律课外练习解答
ο 查表得 Δ f H m (H 2 O,g) -241.818kJ mol 1 ο ο H1 =Δ r H m Δf H m (H 2 O,g) 1mol -241.818kJ
子气体
Cv,m 2.5R , Cv, p 3.5R , C p ,m / Cv,m 1.4 ,
1
碳 ( CO2,
g ) 的 标 准 摩 尔 生 成 焓
o f Hm
分 别 为
1molH2 O
(2)
424.72kJ mol1、 285.83kJ mol1、 309.509kJ mol1 。应用这些数据求 25℃时下列
0.25 molO 2 2.8214 molN 2 25 ο C,100kPa
根据热力学第一定律
氮气: n ( N 2 ) 0.79 3.5714mol 2.8214mol 剩余氧气: n (O 2 ) (0.21 3.5714 0.5)mol 0.25mol
1molH 2 0.75molO 2 2.8214 molN 2 25 C,100kPa (1)
W , Q , H , U 。
3
HCOOH(l )+2O2 (g)=2H 2O(l )+2CO 2 (g)
o o o o c Hm (HCOOCH3 , l ) 2 f H m (CO 2 , g ) 2 f H m (H 2 O, l ) f H m (HCOOCH 3 , l )
T2
T3
由于 p1V1 p2V2 ,则 T3 T1 ,对有理想气体ΔH 和ΔU 只是温度的函数 ΔH=ΔU=0 该途径只涉及恒容和恒压过程,因此计算功是方便的
物理化学(天大第五版全册)课后习题答案
![物理化学(天大第五版全册)课后习题答案](https://img.taocdn.com/s3/m/7b578a515f0e7cd184253688.png)
第一章 气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:11TT p V p V VT V V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+=终态(f )时 ⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=f f ff f f f f f f T T T T R Vp T V T V R p n n n ,2,1,1,2,2,1,2,1 kPaT T T T T p T T T T VR n p f f f f i i ff ff f 00.117)15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=1-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同?(3)隔板抽去后,混合气体中H 2及N 2的分压力之比以及它们的分体积各为若干? 解:(1)抽隔板前两侧压力均为p ,温度均为T 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学第一定律第二章℃,求过程中系统与环境交换的功。
1mol理想气体在恒定压力下温度升高12.1n = 1mol解:理想气体),应用式(2.2.3对于理想气体恒压过程) =-8.314J(nRT-p(V-V) =--nRTW =-pΔV =11amb22下全部凝结成液态水。
求过程的功。
假设:100℃,101.325kPa2.2 1mol水蒸气(HO,g)在2相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol水蒸气可看作理想气体, 应用式(2.2.3)恒温恒压相变过程, p(V-V) ≈ pVg =nRT = 3.102kJW =-pΔV =-g ambl水(H,求过程的体积功。
O,l)2.3 在25℃及恒定压力下,电解1mol21/2O(g) HO(l) =H(g) + 222解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-pΔV =-(pV-pV)≈-pV=-nRT=-3.718kJ 2222amb2 112.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q=2.078kJ,Wa=-a4.157kJ;而途径b的Q=-0.692kJ。
求W.bb解: 热力学能变只与始末态有关,与具体途径无关,故ΔU = ΔU ba由热力学第一定律可得 Qa + Wa = Q + W bb∴ W = Q + W -Q= -1.387kJ b baa两不同途径到达相同的末℃,200 kPaba,的5 mol某理想气体,经途径 2.5 始态为25;再恒容加热到压力100 kPa,步骤的功a先经绝热膨胀到 -28.47℃,态。
途经的。
途径b为恒压加热过程。
求途径200 kPa的末态,步骤的热b及。
解:先确定系统的始、末态nRT15.8.314×298×513m==0.V0619=1200000P1nRT5×8.314×244.583m1016==0=VV=.2P100000ΔU=W+Q=(-5.57+25.42)kJ=19.85kJ aa 对于途径b,其功为W=-pΔV=-200000(0.1016-0.0619)J=-7.932kJ1b根据热力学第一定律的值。
ΔH-ΔU, 4mol2.6 某理想气体,温度升高20℃求解:根据焓的定义-3。
求1mol水(HO,l)在25℃的密度ρ=997.04kg·m℃下:(1)压力从100kPa2.7 已知水在252增加至200kPa时的ΔH;(2)压力从100kPa增加至1Mpa时的ΔH。
假设水的密度不随压力改变,在此压力范围内水的摩尔热力学能近似认为与压力无关。
-3-3-1 kg· = 18.015 × 10: 已知ρ= 997.04kg·mmol M解H2O凝聚相物质恒温变压过程, 水的密度不随压力改变,1molHO(l)的体积在此压力范围可认2为不变, 则 V = m /ρ= M/ρH2OΔH -ΔU = Δ(pV) = V(pp) 1 2 -摩尔热力学能变与压力无关, ΔU = 0∴ΔH = Δ(pV) = V(pp) 1 2 -1) ΔH -ΔU = Δ(pV) = V(pp) = 1.8J1 2 -2) ΔH -ΔU = Δ(pV) = V(pp) = 16.2J1 2 -2.8 某理想气体C=3/2R。
今有该气体5mol在恒容下温度升高50℃。
求过程的W,Q,ΔH v,m和ΔU。
解: 理想气体恒容升温过程 n = 5mol C= 3/2R V,mQ =ΔU = n CΔT = 5×1.5R×50 = 3.118kJ V,mV W = 0ΔH = ΔU + nRΔT = n CΔT p,m= n (C+ R)ΔT = 5×2.5R×50 = 5.196kJ V,m2.9 某理想气体C=5/2R。
今有该气体5mol在恒压下温度降低50℃。
求过程的W,Q,ΔU v,m和ΔH。
解: 理想气体恒压降温过程 n = 5molC= 5/2R C= 7/2R p,m V,mQ =ΔH = n CΔT = 5×3.5R×(-50) = -7.275kJ p,mp W =-pΔV =-p(V-V) =-(nRT-nRT) = 2.078kJ122amb1ΔU =ΔH-nRΔT = nCΔT = 5×2.5R×(-50) = -5.196kJ V,m3,先恒容加热使压力升高至100kPa,50dmC=7/2R。
由始态2mol2.10 某理想气体,p,m3。
求整个过程的W,Q,ΔH,再恒压冷却使体积缩小至200kPa25dm 和ΔU。
解:过程图示如下和只是温,则由于,对有理想气体度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律3的恒容密闭容器中有一绝热隔板,其两侧分别为0℃,4mol2.15 容积为0.1m的Ar(g)及150℃,2mol的Cu(s)。
现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的ΔH 。
-1-1-1-1,K·及24.435 J·mol的摩尔定压热容已知:Ar(g)和Cu(s)C分别为20.786J·molK·p,m且假设均不随温度而变。
解: 恒容绝热混合过程 Q = 0 W = 0∴由热力学第一定律得过程ΔU=ΔU(Ar,g)+ΔU(Cu,s)= 0ΔU(Ar,g) = n(Ar,g) C (Ar,g)×(t-0) 2V,mΔU(Cu,S) ≈ΔH (Cu,s) = n(Cu,s)C(Cu,s)×(t-150) 2p,m解得末态温度 t = 74.23℃2又得过程ΔH =ΔH(Ar,g) + ΔH(Cu,s)=n(Ar,g)C(Ar,g)×(t-0) + n(Cu,s)C(Cu,s)×(t-150) 2p,mp,m2 = 2.47kJ或ΔH =ΔU+Δ(pV) =n(Ar,g)RΔT=4×8314×(74.23-0)= 2.47kJ33时的体积功W。
300K恒温下从2dm可逆膨胀到40dm2.21 求1molN(g)在r2(1)假设N(g)为理想气体;2(2)假设N(g)为范德华气体,其范德华常数见附录。
2解: 题给过程为 n = 1mol(2.6.1)应用式(1) N(g)为理想气体 p = nRT/V2∴(g)为范德华气体) N(22-36-2-63-1molb= 39.13× 10·已知n=1mol a =140.8×10Pa·mm·mol 所以2.22 某双原子理想气体1mol从始态350K,200kPa经过如下四个不同过程达到各自的平衡态,求各过程的功W。
(1)恒温下可逆膨胀到50kPa;(2)恒温反抗50kPa恒外压不可逆膨胀;(3)绝热可逆膨胀到50kPa;(4)绝热反抗50kPa恒外压不可逆膨胀。
解: 双原子理想气体n = 5mol; C=( 5/2)R ; C R)7/2(= p,m V,m2.23 5mol双原子理想气体从始态300K,200kPa,先恒温可逆膨胀到压力为50kPa,再绝热可逆压缩到末态压力200kPa。
求末态温度T及整个过程的W,Q,ΔUΔH和ΔH。
解: 理想气体连续pVT变化过程. 题给过程为由绝热可逆过程方程式得与中间过程无关,只取决于始末态ΔU 和1) ΔH(TΔH = n CΔT = n C-T) = 21.21kJ1p,mp,m3) = 15.15kJ-TΔT = n CΔU = n C(T1V,mV,m3W-T(TΔT = n C =ΔU = n C) = 15.15kJ2V,m23V,m + W W = W ∴2.14kJ = -21W = 17.29kJ-Q =ΔU 由热力学第一定律得3)s=101.325kPap,在此温度、压力下水的摩尔蒸发℃的饱和蒸气压在O,l)已知水2.27 (H1002。
焓.求在100℃,101.325kPa下使1kg水蒸气全部凝结成液体水时的W,Q,ΔU ΔH和ΔH。
设水蒸气适用理想气体状态方程式。
解: 题给过程的始末态和过程特性如下:-1 = 55.509mol n = m/M = 1kg/18.015g·mol题给相变焓数据的温度与上述相变过程温度一致,直接应用公式计算W=-pΔV =-p(V-V)≈pVg = nRT=172.2kJ g lambgΔU = Q + W =-2084.79kJ p℃,此时冰的比熔化焓。
水的平均比定下冰的熔点为已知100kPa02.28求在绝热容器内向1kg50℃的水中投入0.1kg0压热容℃的冰后,系统末态的温度。
计算时不考虑容器的热容。
解:假设冰全部熔化,末态温度为t:整个过程绝热ΔH = ΔH +ΔH +ΔH312其中℃ t = 38.21 整理可得末态温度.℃,饱和蒸气压为20℃的水,将其加热并蒸发成1802.30 蒸气锅炉中连续不断地注入1kg水蒸气所需要的热量。
1.003Mpa的水蒸气。
求每生产,水的平均摩尔定压热容O,l)在100℃的摩尔蒸发焓已知:水(H2(HO,g)的摩尔定压热容与温度的函数关系见附录。
,水蒸气2: 解在此条件下冰的摩尔熔化焓。
℃.O,s) 100kPa下冰(H的熔点为02.31 2已知在-10~0℃范围内过冷水(HO,l)和冰的摩尔定压热容分别为2和。
求在常压及-10℃下过冷水结冰的摩尔凝固焓。
的过冷水凝固为冰、263.15K下,水和冰互相平衡,所以在解: 在100kPa、273.15K100kPa 就偏离了平衡条件,因此该过程为不可逆相变化,设计途径如下:℃的摩尔蒸发焓,水和水蒸气在10025~在已知水2.32 (HO,l)2℃范围间的平均摩尔定压热容分别为100和℃时水的摩尔蒸发焓。
求在25解:由已知温度的相变焓求未知温度的相变焓,常压下对气体摩尔焓的影响通常可以忽略,(2.7.4)p68可直接应用公式℃时的25℃的标准摩尔生成焓的数据,计算下列反应在2.34 应用附录中有关物质在25和。
解:分别计算如下题给各反应的和:(1)(2)(3)2.35 应用附录中有关物质的热化学数据,计算25℃时反应的标准摩尔反应焓,要求: (1)应用附录中25℃的标准摩尔生成焓的数据;(2)应用附录中25℃的标准摩尔燃烧焓的数据.解: (1) 由得:(2) 先分别求出CHOH(l)、HCOOCH(l)的标准摩尔燃烧焓. 33应用附录查出在25℃时: 的燃烧反应分别为(l)CHOH(l)、HCOOCH33再应用公式得:。