中职数学基础模块上册《指数函数、对数函数的应用》word教案

合集下载

中职数学(基础模块上册)同步教学(语文版)《指数函数、对数函数应用》课件

中职数学(基础模块上册)同步教学(语文版)《指数函数、对数函数应用》课件
解:设今后城镇常住人口平均增长率为1.17%,从2017年末到2035年 共18年,
经过1年(即2018年末),城镇常住人口数为
81347+81347 1.17%=81347(1+1.17%)(万人)
新知应用
经过2年(即2019年末),城镇常住人口数为
81347+81347 1.17%+81347(1+1.17%)1.17% =81347(1+1.17%)(2 万人)
lg
4
,
lg 4 x 3 6.
3 答:大约经过6年后,木材可以
lg1.05
增长到40000米3.
巩固练习
2.某工厂年产值为a万元,计划从今年起年产值平均增长率 为10%,试写出年产值与年数变化的函数关系式,并求出大 约多少年后年产值可以翻两番.(lg 2 0.3010,lg1.1 0.0414) 解:设年产值为y,年数为x,则 y a(110%)x.
a1.1x 4a, 即1.1x 4. 两边取常用对数,得lg1.1x 2 lg 2, x lg 2 2 0.3010 14.5.
lg1.1 0.0414 答:大约经过15年后年产值可翻两番.
归纳总结
课后拓展
1.必做题 课本P139 习题 2.选做题 学习指导用书P80、81 练习 3.课外延伸 预习下一节指数函数、对数函数应用
第四单元 指数函数与对数函数
4.6 指数函数、对数函数应用
情境引入
2008年3月,在福布斯全球财富排行榜上,77岁的美国人沃伦·巴菲特成 为了全球首富.而在1962年,巴菲特的个人资产仅有100万美元.46年来, 他依靠在股票、外汇等市场上的投资,平均年增长率约达27.11%,到 2008年,作为全球首富的巴菲特究竟拥有多少资产呢?

语文版中职数学基础模块上册4.7《指数函数、对数函数的应用》word教案

语文版中职数学基础模块上册4.7《指数函数、对数函数的应用》word教案
解:设在他工作后的第x年,他当年的存款额为
Y=1000(1+20%)x
由1000(1+20%)x=4000,
得1.2x=4
两边取常用对数,得x㏒1.2=lg4
利用计算器求得x= ≈7.6
所以,从他工作后的第八年开始,他当年的存款数额超过4000元
例2通常候鸟每年秋天从北方飞往南方过冬。若某种候鸟的飞行速度y(m/s)可以表示为函数y=5log,其中x为这种候鸟在飞行过程中耗氧量的单位数。
(1)该种候鸟的耗氧量是40个单Байду номын сангаас时,它的飞行速度是多少?
(2)该种候鸟的飞行速度为15 m/s时,它的耗氧量是多少个单位?
解:(1)由题意,y=5㏒2 =5㏒24=10
因此,候鸟此时飞行速度为10m/s。
(2)由题意,15=5㏒2
所以3=㏒2 , =23
X=80
因此,候鸟此时耗氧量是80个单位。
1.认真读题,找出函数解析式模型
2.解题过程中主要步骤:
(1)阅读理解
(2)建立目标函数
(3)按要求解决数学问题
3.转化为对数式、指数式求未知量
作业布置
延伸体验
课后反思
教学相长
江苏省启东职业教育中心校
“15/20/10”集体备课导学案
课题:指数函数、对数函数实际应用第课时总第个导学案
任课教师:授课时间:年月日
教学
三维
目标
知识目标:指数型函数、对数型函数的实际应用;
能力目标:掌握由指数型函数求幂的问题转化为求对数值的问题的方法;
情感目标:培养良好的思维习惯,树立数学应用于实际的理念。
教学重点
从实际背景中抽象出函数模型的方法

中职数学基础模块上册第四章指数、对数函数教案集

中职数学基础模块上册第四章指数、对数函数教案集

4.1.1 分数指数幂【教学目标】1. 理解整数指数幂及其运算律,并会进行有关运算.2. 培养学生的观察、分析、归纳等逻辑思维能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养学生合作交流等良好品质.【教学重点】零指数幂、负整指数幂的定义.【教学难点】零指数幂及负整指数幂的定义过程,整数指数幂的运算.【教学方法】这节课主要采用问题解决法和分组教学法.在引入指数幂时,以在国际象棋棋盘上放米粒为导入素材,既体现数学的应用价值,也能引起学生的学习兴趣.从正整指数的运算法则中的a mm-n(m>n,a≠0)a n=a这一法则出发,通过取消m>n的限制引入了零指数幂和负整指数幂的定义,从而把正整指数幂推广到整数指数幂.在本节教学中,要以取消m>n这一条件为出发点,让学生积极大胆地猜想,以此增强学生的参与意识,从而提高学生的学习兴趣.指数(n N+)4.1.1 实数指数幂及其运算法则【教学目标】1. 了解根式的概念和性质;理解分数指数幂的概念;掌握有理数指数幂的运算性质.2. 会对根式、分数指数幂进行互化.培养学生的观察、分析、归纳等逻辑思维能力.3. 培养学生用事物之间普遍联系的观点看问题.【教学重点】分数指数幂的概念以及分数指数幂的运算性质.【教学难点】对分数指数幂概念的理解.【教学方法】这节课主要采用问题解决教学法.在引入分数指数幂时,先讲方根的概念,根据方根的定义,得到根式具有的性质.在利用根式的运算性质对根式的化简过程中,引导学生注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.在对根式的性质进行练习以后,为了解决运算的合理性,引入了分数指数幂的概念,从而将指数幂推广到了有理数范围.在学生掌握了有理指数幂的运算性质后,将有理指数幂推广到实数指数幂.考虑到职校学生的实际情况,并没有给出严格的推证.【教学过程】一、根式有关概念定义:一般地,若x n=a (n>1,n N),则x叫做a的n次方根.例如:(1) 由32=9知,3是9的二次方根(平方根);由(-3)2=9知,-3也是9的二次方根(平方根);(2) 由(-5)3=-125知,-5是-125的三次方根(立方根);(3) 由64=1 296知,6是1 296的4次方根.有关结论:三、分数指数幂一般地,我们规定:a 1n =na (a >0); a m n=n a m =(n a )m (a >0,m ,n N +,且mn 为既约分数). a -m n=1 a m n (a >0,m ,n N +,且m n为既约分数) . 四、实数指数幂的运算法则 (1) a α a β=a α+β; (2) (a α)β=a α β; (3) (a b )α=a α b α. 以上a α,a β中,a >0,b >0,且α,β为任意实数. 练习1 835×825 =83+25=81=8; 823=(813)2=22=4; 33×33×63=3×312×313×316=31+12+13+16=32=9; (a 23b 14)3=(a 23)3·(b 14)3=a 2b 34. 例1利用函数型计算器计算(精确到0.001): (1)0.21.52;(2)3.14-2;(3)3.123. 例2利用函数型计算器计算函数值. 已知f (x )=2.71x ,求f (-3),f (-2),f (-1),f (1),f (2),f (3)(精确到0.001). 请同学们结合教材在小组内合作完成. 练习2 教材 P 73,练习1.2,.4.1.2 幂函数举例【教学目标】1. 了解幂函数的概念,会求幂函数的定义域,会画简单幂函数的图象.2. 培养学生用数形结合的方法解决问题.注重培养学生的作图、读图的能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质. 【教学重点】 幂函数的定义. 【教学难点】会求幂函数的定义域,会画简单幂函数的图象. 【教学方法】这节课主要采用启发式和讲练结合的教学方法.从函数y =x ,y =x 2,y =1x 等导入,通过观察这类函数的解析式,归纳其共性,引入幂函数的概念.在例1求函数的定义域中,对于分数指数及负整指数的幂函数要转化为分式或根式的形式,讲解时,注意引导,让学生在解答问题的过程中自己归纳总结规律.函数图象是研究函数性质的有利工具,教师在讲授例2时,可以采用分组的方式,让学生一起合作完成函数的图象,并从本例中找出幂函数的某些性质.【教学过程】 一、幂函数的概念一般地,形如y =x的函数我们称为幂函数.学生回答练习1,进一步理解幂函数的概念.针对学生的回答,教师结合定义点评.在教师的引导下利用指数幂的有关定义,师生共同完成例题.学生寻找规律,形成解题规律.师:由上例我们可以看出,当幂函数的指数为负整数时,一般是先将函数表达式转化为分式形式;当幂函数的指数为分数时,一般是先将函数表达式转化为根式,然后再来求函数的定义域.教师根据学生的解答进行点评,并给予相应评价.师:函数图象可以直观反映函数性质,是研究函数性质的有利工具,请同学们回顾一下,作函数图象分为哪三步?学生回答.学生分组完成列表.4.1.3 指数函数【教学目标】1. 掌握指数函数的定义、图象、性质及其简单的应用.2. 培养学生用数形结合的方法解决问题的能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养独立思考等良好的个性品质.【教学重点】指数函数的图象与性质.【教学难点】指数函数的图象性质与底数a的关系.【教学方法】这节课主要采用讲练结合和小组合作的教学方法.本节课由生活中的真实例子导入新课,引入指数函数的定义,并通过一组练习深化指数函数的定义.先通过列表——描点——连线得到指数函数的图象,然后在教师的启发下,充分利用函数的图象来研究函数的性质.为了加强学生对函数性质的应用,增加了一道求函数定义域的例题,然后安排一定数量的练习,体现练为主线,讲练结合的教学方法.【教学过程】则对于x 的某些数值,可使a x 无意义.如 (-2)x,这时对于x =14 ,x =12 ,…等等,在实数范围内函数值不存在. (3) 若a =1, 则对于任何x ∈R ,a x =1,是一个常量,没有研究的必要性. 为了避免上述各种情况,所以规定a >0且a 1. 在规定以后,对于任何x ∈R ,a x 都有意义,且 a x >0. 因此指数函数的定义域是R ,值域是 (0,+∞). 练习1 指出下列函数哪些是指数函数: (1) y =4⋅3x ; (2) y =πx ; (3) y =0.3x ; (4)y =x 3. 二、指数函数的图象和性质 在同一坐标系中分别作出函数y =2x 和y =(12)x的图象. (1)列表:略. (2)描点:略. (3)连线:略. xy123-1-2 -3 12 3 45 6789 O y =2x y =(12)x4.2.1 对数【教学目标】1. 理解对数的概念,掌握对数式与指数式的互化.2. 培养学生的类比、分析、转化能力,提高理解和运用数学符号的能力.3. 通过对数概念的建立,明确事物的辩证发展和矛盾转化的观点,培养学生科学严谨的治学态度.【教学重点】对数的概念,对数式与指数式的相互转化.【教学难点】对数概念及性质的理解掌握.【教学方法】这节课主要采用启发式和分组合作教学法.在教学过程中遵循学生是教学的主体的精神,要给学生提供各种可能的参与机会,调动学生学习的积极性,使学生化被动为主动.利用多媒体辅助教学,引导学生从实例出发,认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生积极思维,通过课堂练习、学生讨论的方式来加深理解重点,更好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.4.2.2 积、商、幂的对数【教学目标】1. 掌握积、商、幂的对数运算法则,并会进行有关运算.2. 培养学生的观察,分析,归纳等逻辑思维能力.3.培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质.【教学重点】积、商、幂的对数运算法则的应用.【教学难点】积、商、幂的对数运算法则的推导.【教学方法】本节教学采用引导发现式教学方法,并充分利用多媒体辅助教学,体现“教师为主导、学生为主体”的教学原则.通过教师在教学过程中的点拨启发,使学生主动思考.通过分组合作的教学方式,使学生在合作中快乐学习,培养学生的团结协作能力和集体主义情操.通过设置三组“低台阶,小坡度”的练习,满足各层次学生的学习需求,从而培养学生的计算能力和学习数学的兴趣.【教学过程】4.2.3 换底公式与自然对数【教学目标】1. 掌握换底公式,了解自然对数,能利用换底公式求对数值.2. 培养学生的逻辑思维能力和应用能力.3.培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质.【教学重点】换底公式.【教学难点】利用换底公式求值、化简及证明.【教学方法】本节采用启发引导式教学,并利用多媒体以体现“教师为主导,学生为主体”的教学原则.通过一个特殊例子导出课题.针对本节课的特点,教师应多引导,多启发,与学生之间进行适当交流和讨论,在应用换底公式时可设定不同层次的题目,让各层次同学都能掌握公式,从而培养学生学习数学的兴趣和运用公式的能力.4.2.4 对数函数【教学目标】1.掌握对数函数的概念,图象和性质,并会简单的应用.2. 培养学生用数形结合的方法去解决问题.注重培养学生的观察,分析,归纳等逻辑思维能力.3. 培养学生发现、探索、创新的精神;培养合作交流、独立思考等良好的个性品质.【教学重点】对数函数的图象、性质及其运用.【教学难点】对数函数图象和性质的发现过程,培养数形结合的思想.【课时】2课时.【教学方法】这节课主要采用启发式和引导发现式的教学方法,结合对数函数的特点,让学生动手做,动脑想,大胆猜,以学生的研究为主体采用,引导发现式的教学方法并充分利用多媒体辅助教学.这样既增强学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,从而提高学习兴趣.通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受.【教学过程】4.3指数、对数函数的应用【教学目标】1. 能够运用指数函数、对数函数知识解决某些简单的实际应用问题.2. 通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了指数函数、对数函数知识的应用价值.3. 通过对实际问题的研究解决,渗透了数学建模的思想,提高学生学习数学的兴趣.【教学重点】通过指数、对数函数的应用,培养学生分析、解决问题的能力和运用数学的意识.【教学难点】根据实际问题建立相应的指数函数和对数函数模型.【教学方法】这节课主要采用问题解决法和分组合作的教学方法.在教学过程中,从学生身边的实例开始,引起学生的兴趣,体会所学知识的应用和重要性,提高学生学习数学的兴趣,培养学生分析问题和解决问题的能力.通过本节内容让学生体会指数函数与对数函数是解决有关自然科学领域中实际问题的重要工具,是今后进一步学习的基础.教师应当结合学生的专业特点,增设有关例题,突出数学为专业课服务的教学理念.【教学过程】。

中职生数学基础模块上册课《指数、对数函数的应用》

中职生数学基础模块上册课《指数、对数函数的应用》

课程重点与难点
指数函数和对数 1 函数的基本概念 和性质
指数函数和对数 2 函数的图像和性

指数函数和对数 3 函数的应用
指数函数和对数 4 函数的计算方法
和技巧
指数函数和对数 5 函数的综合应用
指数函数的应用
指数函数的定义与性质
性质:指数函数具有以下 性质:
极限:当x→∞时,y→∞; 当x→-∞时,y→0。
中职生数学基础模块上册课 《指数、对数函数的应用》
YOUR LOGO
目录
CONTENTS
1 课程概述 2 指数函数的应用 3 对数函数的应用 4 指数、对数函数在生活中的应用 5 指数、对数函数在数学中的重要性 6 总结与展望
课程概述
课程目标
01
02
03
04
掌握指数、对数 函数的基本概念 和性质
医学影像处理: 利用指数和对 数函数对医学 影像进行增强 和降噪处理
生物信息学: 利用指数和对 数函数分析基 因序列和蛋白 质结构
工程学中的应用
A
B
C
D
建筑设计:利用指数函 数计算建筑物的高度和
宽度
桥梁设计:利用对数函 数计算桥梁的跨度和承
重能力
机械设计:利用指数函 数计算机械设备的速度
和功率
电子设计:利用对数函 数计算电子设备的功耗
03
指数和对数函数 的组合:用于描 述更复杂的数据, 如人口增长、 GDP增长等
04
指数和对数函数 的应用:在统计 学中,指数和对 数函数被广泛用 于数据分析、建 模和预测。
医学中的应用
01
02
03
04
药物剂量计算: 利用指数函数 计算药物的剂 量和浓度

指数函数对数函数应用教案

指数函数对数函数应用教案

【课题】4.6指数函数与对数函数的应用【教学目标】知识目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点.能力目标:⑴正确进行实数指数幂的运算;⑵培养学生的计算技能;⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力.【教学重点】有理数指数幂的运算.【教学难点】有理数指数幂的运算.【教学设计】⑴在复习整数指数幂的运算中,学习实数指数幂的运算;⑵通过学生的动手计算,巩固知识,培养计算技能;⑶通过“描点法”作图认识幂函数的图像,通过利用软件的大量作图,总结图像规律;⑷通过知识应用巩固有理数指数幂的概念.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】:这两个函数的定义域不同,在定义域内它们都是增函数.两个函数的图像都经过坐标原点和点指出幂函数2y x -=的定义域,并作出函数图像.考虑到221x x-=,因此定义域为0+∞)(,)21x ,故函数为偶函数.其图像关于y 轴对称,可以(0,)+∞内的图像,然后再利用对称性作出函数在区内的图像.的定义域为00-∞+∞(,)(,)数为偶函数.在区间(0,)+∞内,设值列表如下:以表中的每组,x y 的值为坐标,描出相应的点光滑的曲线依次联结各点,得到函数在区间像.再作出图像关于y 轴对称图形,从而得到函数图像,如下图所示.x (1)21 2 …y … 4 114…这个函数在(0,)+∞内是减函数;函数的图像不经过坐标原点,但是经过点(1,1). 整体建构一般地,幂函数y x α=具有如下特征:随着指数α取不同值,函数y =和奇偶性会发生变化;>0时,函数图像经过原点时,函数图像不经过原点(0,0),但经过强化练习 4.1.3用描点法作出幂函数4y x =的图像并指出图像具有怎样的对用描点法作出幂函数3y x =的图像并指出图像具有怎样的对强化思想 本次课学了哪些内容? 重点和难点各是什么? 目标检测本次课采用了怎样的学习方法? 你是如何进行学习的? 你的学习效果如何?。

中职数学基础模块上册《指数函数、对数函数的应用》word教案

中职数学基础模块上册《指数函数、对数函数的应用》word教案

第四单元 指数函数与对数函数一 教学要求1.理解有理数指数幂的概念,掌握幂的运算法则.2.了解幂函数的概念,了解幂函数y =x ,y =x 2,y =x 3,y = x21,y =x -1,y =x -2的图像.3.理解指数函数的概念、图像和性质.4.理解对数的概念(包括常用对数、自然对数),了解对数的运算法则.5.了解对数函数的概念、图像和性质.6.了解指数函数和对数函数的实际应用.7.通过幂与对数的计算,培养学生计算工具使用技能;结合生活、生产实例,讲授指数函数、对数函数模型,培养学生数学思维能力和分析与解决问题能力. 二 教材分析和教学建议(一) 编写思想1.通过温故知新完成由正整数指数幂到实数指数幂及其运算的逐步推广.让学生体验推广的过程,培养学生的数学思维方式.2.指数函数是中职数学学习中新引进的第一个基本初等函数,因此,教材先给出了指数函数的实际背景,然后对指数函数概念的建立、指数函数图像的绘制、指数函数的基本性质,作了完整的介绍.3.教材从具体问题引进对数概念,由求指数的逆运算引入对数运算,并研究对数运算的性质.4.对数函数同指数函数一样,是以对数概念和运算法则作为基础展开的.对数函数的研究过程也同指数函数的研究过程一样,目的是让学生对建立和研究一个具体函数的方法有较完整的认识.5.专设一节研究指数函数、对数函数的应用.本单元教学的重点是指数函数与对数函数的概念、图像及其单调性.本单元教学的难点是分数指数幂的概念、对数的概念,以及指数函数、对数函数单调性的应用.(二) 课时分配本单元教学约需12课时,分配如下(仅供参考):4.1有理数指数幂约1课时4.2实数指数幂及其运算法则约1课时4.3幂函数约1课时4.4指数函数的图像与性质约3课时4.5对数约2课时4.6对数函数的图像与性质约2课时4.7指数函数、对数函数的应用约1课时归纳与总结约1课时(三) 内容分析与教学建议4.1 有理数指数幂1.指数概念是由相同因式相乘发展而来的,回顾指数运算的发展过程,对学生学好这部分知识是十分必要的.2.讲解整数指数,是由正整数指数的意义及运算法则引入零指数、负整数指数的概念.3.在讲分数指数之前,先介绍方根的概念,在方根的定义和整数指数运算法则的基础上,引入正分数指数和负分数指数的概念,这里要让学生多做些练习,以掌握这个新的概念.4.2 实数指数幂及其运算法则1.整数指数幂的运算性质,对于分数指数幂也同样适用.为此教材给出了如下运算性质:a r·a s = a r+s(a>0,r, s∈Q),(a r )s= a rs(a>0,r,s∈Q),(a·b) r=a r b r (a,b>0,r∈Q).需要学生注意的是括号中限制条件的变化.当指数从整数指数推广到了有理数指数后,-2=3-8=(-8)13=(-8)26=6(-8)2=664=2.教学中,建议让学生用自己的语言叙述指数运算的三条性质.2.考虑到中职生的实际情况,教材只指出了“可以把有理数指数幂推广到无理数指数幂”,并未通过“用有理数逼近无理数”的思想引进无理数指数幂.3.在教学中要加强计算工具的使用,要让学生切实掌握利用计算器计算实数指数幂的题目,了解计算器的基本功能.4.3 幂函数本节教材只介绍了幂函数的定义,以及y=x,y=x2,y=x3,y=x21,y=x-1,y=x-2等几个幂函数的图像,教学中应注意把握好这个尺度.4.4 指数函数的图像与性质1.教材由两个实例引入了指数函数的概念,然后采用约定式定义法定义了指数函数,即“形如y=a x(a>0且a≠1)的函数叫做指数函数”.这个定义要求底a>0,且a≠1.这一点学生容易忽略,教学中应加以强调.2.教材采用描点法在同一坐标系中画出了两个指数函数的图像.这一过程应在课堂上展示给学生,以加深对指数函数图像形状特征的了解,为了使图像较为准确,所描的点可适当多一些,列表时,可借助于计算器.但是,对于学习基础较差的学生,教师只需要学生论证指数函数的图形特征、位置,对描点法作图可以不做要求.3.指数函数的性质是利用图像的直观性得到的,其中单调性是重点.它的应用主要是两方面:(1) 比较两个同底的幂的大小;(2) 解同底的指数不等式.4.5 对数1.现代工农业生产和科学技术研究工作中,需要计算大量的繁复的数据.如果利用对数计算,可以简化计算过程,特别是在高次乘方和开方中可以极大减轻劳动强度.因此对数是一种常用的计算工具和方法.在向学生进行关于对数知识和新的计算方法——对数计算的教学同时,要特别重视培养学生利用对数进行计算的技能.这不仅有助于解决几何、三角、物理中的计算问题,还能为参加生产实践或进一步学习打好基础.本节教材分两部分,即对数、对数运算法则.第一部分,在学习了指数概念的基础上,由实例引入对数的定义,接着研究对数式与指数式的关系和互化,再介绍对数恒等式及其应用.第二部分,着重研究对数运算法则及其应用.本节教材的重点是对数的定义、运算法则.难点是对数概念的正确建立及应用,而关键在于正确理解对数与指数关系,掌握它们的特性,加强综合练习.2.先举实例,要求出(1+6%)x=4,2x=10中的x值,需要一种新的计算方法——利用对数进行计算的方法,来适应数值计算需要.接着通过具体数字例子到一般式a b=N,b=log a N,引入对数的定义.把对应的指数简称为对数,再用符号表示.这样从具体到抽象,便于学生接受.通过指数式a b=N与对数式log a=b的对照比较,看出两个式子中a,b,N三者之间的关系是一样的,都是a的b次幂等于N,只是表示形式不同而已.从而使学生再次领会对应的指数就是对数,达到正确掌握对数、底数、真数三者之间的关系的目的以及对数式与指数式之间的密切联系,以加深对对数定义的理解.3.在引入对数定义后,教材简要地说明规定了a >0且a ≠1后,N >0,因此在实数集内零与负数没有对数,但对数可以是任何实数(正数、负数和零) .4.对数运算法则是对数运算的根据.利用它可以使数和式的乘、除、乘方运算化成低一级的对数的加、减、乘运算,从而简化计算.因此它也是学习对数的一个关键内容.对数运算法则是根据对数的定义和幂的运算法则导出的.教学时,可以进行对比:5.利用对数运算法则进行式子的恒等变形(包括化简),是利用对数进行计算的基本技能,因此必须加强练习,使学生能牢固掌握和熟练运用.要注意防止可能产生的错误,例如:(1) log a (M ±N)=log a M ±log a N ,(2) log a M ·log a N =log a M +log a N ,(3) log a M ·log a N =log a (M+N ),(4) log aN M =aNaM log log , (5) log a N M =log a (M-N ) , (6) log a M p =(log a M ) p ,(7) log a (-M )=-log a M .产生以上这些错误,有些是把积、商、幂的对数与对数的积、商、幂混淆起来所致,有些是把对数符号当做单独的数来使用所致.教学时,可以用具体数字(如设底数是2,M =4,N =8等)代入以上各式,启发学生自己去揭示和分析产生错误的原因,从而纠正错误.由于计算器的出现,使得复杂的数学计算有了新的工具,从而对《对数表》和《反对数表》的教学与使用越来越趋于淡化.因此,本教材删去了关于《对数表》和《反对数表》的有关内容.而采用计算器演示操作的方式,向学生介绍利用科学计算器计算对数的有关问题,而且操作步骤与结果的呈现方式便于学生掌握与理解.4.6 对数函数的图像与性质1.教材在分析对数式x=log 2 y 的基础上引入对数函数,主要分析由对数式确定的对应法则是不是函数关系.在教学中可根据指数函数y =2x 的图像做些简单说明,在此基础上给出对数函数的约定式定义:“形如y =log a x (a >0且a ≠1)的函数,叫做对数函数” .2.教材仍然采用了描点法画出四个对数函数y =log2x ,y =log 21x ,y=lg x ,y =log101x 的图像,并据此分析,归纳出对数函数的图像的特征.同指数函数,对于学习基础较差的学生,只需记住对数函数图形特征、位置,对描点法作图可不做要求.3.对数函数的单调性可由图像直观地分析出.4.7 指数函数、对数函数的应用教材安排了两道指数函数应用题,一道对数函数应用题,目的是引导学生运用所学知识解决实际问题.鉴于学生水平,讲解时仍需因势力导,不能急于求成,多帮学生进行分析,使他们能领会题目条件的要求,从而顺利列出函数解析式,最后使问题得解.(四) 复习建议1.构建知识结构2.梳理知识要点见本单元教材《归纳与总结》.3.需要注意的问题(1) 指数幂a n 当扩大到有理数时,要注意底数a 的变化范围.(2) 在对数式log a N =b 中要注意底数a >0且a ≠1,真数N >0等条件,这些条件在解题或变形中常常用到.(3) 在掌握指数函数、对数函数的图像和性质时,要对底数分两种情况讨论,即分为 a >1与0<a <1两种情况.4.典型例题见本单元教材《归纳与总结》,其中例1复习对数函数定义域的求法;例2是利用指数函数、对数函数的单调性比较大小;例3是考查指数函数、对数函数的图像特征.5.解题指导函数的图像是学习函数时必须掌握的内容,函数的一些性质就是由图像直接得出的,函数的图像是数形结合的体现.每学习一种函数时,应熟悉函数图像的特征,这样既便于函数的性质的理解,也便于应用图像和性质解题.应该怎样记函数图像呢?现介绍一种记忆方法——分析与实验相结合.分析——根据图像的定义域、值域、奇偶性等记住图像的基本方位.实验——记住图像上的关键点,再用特殊数值实验函数的变化,从而得出函数的整个图像或不同函数图像间的关系.(1) 应牢记指数函数y=a x ,当a >1和0<a <1时图像的基本形状和位置.图像特点①:对任意的a >0且a ≠1,y=a x 图像都过(0,1)(因为a 0=1) .图像特点②:底互为倒数的两个指数函数图像关于y 轴对称.例如:y =2x 和y =(21)x (即y =2-x )的图像关于y 轴对称. 图像特点③:图像在x 轴上方,与x 轴没有交点(因为ax >0) .事实上,指数函数的图像比较好画,即使忘记了图像的形状和位置,只须取几个点就可以描绘出来.但要注意,因为y =a x (a >0,a ≠1)的定义域是R ,故取点时,x 取正数、零、负数都应考虑到.(2) 要牢记对数函数y=log a x ,当a >1和0<a <1时图像的基本形状和位置.图像特点①:对任意的a >0且a ≠1,y =log a x 图像都过(1,0)(因为log a 1=0) .图像特点②:底互为倒数的两个对数函数图像关于x 轴对称.例如:y =lg x 和y=log 101x 的图像关于x 轴对称.图像特点③:图像在y 轴右方,与y 轴没有交点(因为y =log a x 的定义域为(0,+∞)).(3) 指数函数、对数函数图像一起记.根据指数函数、对数函数互为反函数得出:当a >1或0<a <1时,指数函数、对数函数的图像分别关于直线y=x 对称(如图4-1和图4-2),因此两个图像可以一起记.(4) 对图像的高低,我们仍采用数值实验法.例如:对y =2x , y =10x ,取x =1,因为21<101,所以在x >0时,y =10x 图像在y =2x 图像上方,可以推测,在x <0时,y=10x 图像在y =2x 图像的下方,且在(0,1)点处,两图像是交叉的.图4-1 图4-2根据y =(21)x ,y =(101)x 图像分别与y =2x ,y =10x 图像关于y 轴对称,可以得出,在x <0时,y =x ⎪⎭⎫ ⎝⎛101图像在y =x ⎪⎭⎫ ⎝⎛21图像的上方,在x >0时,亦相反. 例如,对y =log 2x ,y =lg x ,取x =10,因为log 210>1,lg10=1,所以log 210>lg10,可以推测,在x >1时,y =log 2x 图像在y =lg x 图像上方,当x ∈(0,1)时,亦相反,即图像在点(1,0)外是交叉的.根据y =log 21x ,y =log 101x 的图像分别与y =log 2x,y =lg x 的图像关于x 轴对称,可以得出,在x >1时,y= log 101x 图像在y = log 21x 图像的上方,在x ∈(0,1)时,亦相反.这样,可以很快地画出y =log 2x ,y =log 3x ,y =lg x ,y = log 21x ,y =log 31x ,y =log 101x 在同一坐标系中的图像(如图4-3) .下面利用图像来解题.例1 设a >0且a ≠1,在同一坐标系中,y =a x ,y =log a (-x )的图像只能是图4-4中的( ).图4-4分析:因为函数y =log a (-x )的定义域为(-∞,0),所以否定(A),(D) .因为y =log a (-x )与y =log a x 的图像关于y 轴对称,所以在(B),(C)中,由y =log a (-x )的图像得a >1,所以选B .图4-3例2(1) log a2<log b2<0,试比较a,b,1的大小;(2) 若a>0,试比较log3a,log5a,log0.5a的大小;(3) 试比较log0.71.5,log0.82.5的大小.分析:(1) 作出图4-5,可以得出0<b<a<1.(2) 作出图4-6可以得出,当a∈(0,1)时,log3a<log5a<log0.5a;图4-5 当a=1时,log5a=log3a=log0.5a=0;当a>1时,log0.5a<log5a<log3a.(3) 作出图4-7得出log0.82.5<log0.71.5.也可以这样考虑,log0.82.5<log0.81.5,log0.81.5<log0.71.5.所以 log0.82.5<log0.71.5.。

人教版中职数学基础模块上册《指数与指数函数》教案 (一)

人教版中职数学基础模块上册《指数与指数函数》教案 (一)

人教版中职数学基础模块上册《指数与指数函数》教案 (一)人教版中职数学基础模块上册《指数与指数函数》教案是一篇重要的教学材料,主要涉及到指数的定义、性质、指数运算和常用指数函数的概念、定义、图象及其性质等方面。

下面,本文将从教学目标、教学重难点、教学步骤、黑板设计和教学方法等方面对该教案进行分析。

一、教学目标本章节主要教学目标如下:(1)经过本课的学习,学生能够正确掌握指数的基本概念、性质和运算规律;(2)能够熟练地应用指数和对数的运算法则,解决各种实际问题;(3)了解各种常用指数函数的概念、定义、图象及其性质,进而能够应用指数函数解决相关问题。

二、教学重难点(1)指数的定义和性质,以及指数运算的法则;(2)常用指数函数的概念、定义、图象及其性质;(3)指数、对数与指数函数的应用。

三、教学步骤以下是本节课的教学步骤:(1)导入新知识通过教师提出问题,引导学生回忆指数、对数基本概念,导入指数与指数函数的定义。

(2)教学重点1:指数的定义与性质详细介绍指数、底数等概念,并讲解指数的性质,例如幂等律、乘法律、除法律和负指数律等。

(3)教学重点2:指数运算规律介绍指数的加减、乘除法规则,并通过讲解一些典型例题,帮助学生掌握指数运算的技巧。

(4)教学重点3:常用指数函数的概念、定义、图象及其性质分别讲解指数函数、对数函数、底为e的自然指数函数和常函数等,说明其定义和图象性质。

(5)课堂练习通过课后练习,巩固和加深学生对本节内容的理解。

四、黑板设计本节课的黑板设计如下:(1)指数的定义和性质指数 a 中的 a 表示底数,n 表示指数,an 表示幂,如 2^3 = 8 幂等律an·am=an+m乘法律 aⁿ·aⁿ=aⁿ⁺ⁿ除法律 aⁿ÷aⁿ=aⁿ⁻ⁿ且 a⁰=1(2) 指数运算规律aⁿ·aᵐ=aⁿ⁺ᵐ(a≠0)aⁿ÷aᵐ=aⁿ⁻ᵐ(a≠0,n≥m)(3) 常用指数函数指数函数:y=a^x(a>0且a≠1)对数函数:y=loga(x)或y=aⁿ∙x自然指数函数:y=e^x常函数:y=k(k≠0)五、教学方法本节课的教学方法包括五种:(1)提问法:通过提出问题,让学生自己思考,帮助学生理解概念,加深对知识点的印象。

中职数学(基础模块)上册第四章《指数函数与对数函数》教学设计

中职数学(基础模块)上册第四章《指数函数与对数函数》教学设计

中职数学(基础模块)上册第四章《指数函数与对数函数》教学设计4.1实数指数幂(1)教学目标:⑴复习整数指数幂的知识;⑵了解n次根式的概念;⑶理解分数指数幂的定义.教学重点:分数指数幂的定义.教学难点:根式和分数指数幂的互化.课时安排:2课时.教学过程:120.、且∈Nn+这样就将整数指数幂推广到有理数指数幂.44.1实数指数幂(2)教学目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点. 教学重点:有理数指数幂的运算.教学难点:有理数指数幂的运算.课时安排:2课时.5教学过程:0.将下列各根式写成分数指数幂:;20将下列各分数指数幂写成根式:79过 程活动 活动 意图以表中的每组,x y 的值为坐标,描出相应的点),(y x ,再用光滑的曲线依次联结这些点,分别得到函数y =x 3和函数21xy =的图像,如下图所示.总结:这两个函数的定义域不同,在定义域内它们都是增函数.两个函数的图像都经过坐标原点和点(1,1). 例7 指出幂函数2y x -=的定义域,并作出函数图像.分析 考虑到221x x-=,因此定义域为00-∞+∞(,)(,),由于2211()x x =-,故函数为偶函数.其图像关于y 轴对称,可以先作出区间(0,)+∞内的图像,然后再利用对称性作出函数在区间(,0)-∞内的图像.解 2y x -=的定义域为00-∞+∞(,)(,).由分析过程知道函数为偶函数.在区间(0,)+∞内,设值列表如下:x 0 41 1 4 9 … y =21x21123…x…121 2 …y… 4 114… 讲解 引领 归纳质疑分析强调 讲解领会 了解 观察 体会 思考 理解 主动 求解特点 引导 学生 掌握 描点 作图 的方 法 突出 数形 结合 的数 学思 想 注意 是否 理解 知识 点 可以 适当10过 程活动 活动 意图以表中的每组,x y 的值为坐标,描出相应的点),(y x ,再用光滑的曲线依次联结各点,得到函数在区间(0,)+∞内的图像.再作出图像关于y 轴对称图形,从而得到函数2-=x y 的图像,如下图所示.总结:这个函数在(0,)+∞内是减函数;函数的图像不经过坐标原点,但是经过点(1,1). 引领 归纳领会 观察 体会交给 学生 自我 探究 引导 学生 总结 函数 图像 的特点*理论升华 整体建构一般地,幂函数y x α=具有如下特征:(1) 随着指数α取不同值,函数y x α=的定义域、单调性和奇偶性会发生变化;(2) 当α>0时,函数图像经过原点(0,0)与点(1,1);当α<0时,函数图像不经过原点(0,0),但经过(1,1)点.引领 总结 强调 领会 理解 记忆 及时 总结 例题 中的 规律*运用知识 强化练习 教材练习4.1.31.用描点法作出幂函数4y x =的图像并指出图像具有怎样的对称性?2.用描点法作出幂函数3y x =的图像并指出图像具有怎样的对称性?提问 巡视 指导 动手 求解 交流了解 学生 知识 掌握 情况*归纳小结 强化思想 本次课学了哪些内容? 重点和难点各是什么?引导回忆培养 学生 总结114.2指数函数教学目标:⑴ 理解指数函数的图像及性质; ⑵ 了解指数模型,了解指数函数的应用.教学重点:⑴指数函数的概念、图像和性质; ⑵ 指数函数的应用实例.教学难点:指数函数的应用实例.课时安排:2课时.教学过程:13过 程活动 活动 意图归纳观察函数图像发现:1.函数2x y =和y =1()2x 的图像都在x 轴的上方,向上无限伸展,向下无限接近于x 轴;2.函数图像都经过(0,1)点;3.函数y =x 2的图像自左至右呈上升趋势;函数y =1()2x 的图像自左至右呈下降趋势.推广利用软件可以作出a 取不同值时的指数函数的图像. 展示 引导 分析 说明观察 体会 理解可以 由学 生独 立完 成 引导学生仔细观察函数图象的特点数形结合*动脑思考 明确新知 一般地,指数函数xy a =()01a a >≠且具有下列性质:(1) 函数的定义域是(),-∞+∞.值域为(0,)+∞;(2) 函数图像经过点(0,1),即当0x =时,函数值1y =; (3) 当>1a 时,函数在(),-∞+∞内是增函数;当0<<1a 时,函数在(),-∞+∞内是减函数. 归纳强调体会 记忆结合 图形 由学 生自 我归 纳强 调关 键点*巩固知识 典型例题例1 判断下列函数在(),-∞+∞内的单调性: (1) 4xy =; (2)3xy -=; (3)32xy =. 说明观察通过 例题 进一 步理14x.10)年该市国内生产总值为(亿元).年该市国民生产总值为(亿元).164.3 对数教学目标:⑴理解对数的概念,理解常用对数和自然对数的概念;⑵掌握利用计算器求对数值的方法;⑶了解积、商、幂的对数.教学重点:指数式与对数式的关系.教学难点:17对数的概念.课时安排:2课时.教学过程:19204.4 对数函数教学目标:(1)了解对数函数的图像及性质特征;(2)了解对数函数的实际应用.教学重点:对数函数的图像及性质.教学难点:对数函数的应用中实际问题的题意分析.课时安排:2课时.教学过程:2224过 程活动 活动 意图(,)x y ,用光滑曲线依次联结各点,得到函数12log y x =的图像,如下图所示:观察函数图像发现:1.函数2log y x =和12log y x =的图像都在x 轴的右边;2.图像都经过点()1,0;3.函数2log y x =的图像自左至右呈上升趋势;函数12log y x =的图像自左至右呈下降趋势.展示 分析观察 体会引导 学生 细观 函数 象的 特点*动脑思考 探索新知一般地,对数函数log a y x =( a >0且a ≠1)具有下列性质:(1)函数的定义域是(0,)+∞,值域为R ;(2)当1x =时,函数值0y =;(3)当a >1时,函数在(0,)+∞内是增函数;当0<a <1时,函数在(0,)+∞内是减函数. 引导 总结 强调体会 理解 记忆结合 图形 自我 归纳*运用知识 强化练习 例1 求下列函数的定义域:(1)2log (4)y x =+; (2)ln y x =. 分析 要依据“对数的真数大于零”求函数的定义域. 解 (1)由x +4>0得4x >-,所以函数2log (4)y x =+的定义域为(4,)-+∞;说明 强调 引领观察 思考 主动通过 例题 进一 步理 解对 数函0, 0. >得1,0.xx⎧⎨>⎩,ln x的定义域为[1,强化练习252627。

《5.5 指数函数与对数函数的应用》教学设计教学反思-2023-2024学年中职数学高教版21基础模

《5.5 指数函数与对数函数的应用》教学设计教学反思-2023-2024学年中职数学高教版21基础模

《指数函数与对数函数的应用》教学设计方案(第一课时)一、教学目标1. 掌握指数函数与对数函数的性质及其应用;2. 能够运用指数函数与对数函数解决实际问题;3. 培养数学建模和逻辑推理的能力。

二、教学重难点1. 教学重点:指数函数与对数函数的性质及其图像;2. 教学难点:将实际问题转化为指数函数或对数函数模型,并解决实际问题。

三、教学准备1. 准备教学用具:黑板、白板、笔、几何画板等;2. 准备教学资料:相关例题、习题及实际应用案例;3. 设计教学流程:引入课题、讲解知识、组织讨论、总结反馈。

四、教学过程:本节课是中职数学课程《指数函数与对数函数的应用》教学的第一课时。

以下是具体的教学过程:1. 导入新课:首先,通过展示一些实际生活中的指数函数和对数函数图像和应用案例,引导学生思考这些函数在现实生活中的应用,并引出本节课的主题——指数函数与对数函数的应用。

2. 讲解指数函数的概念和性质:通过实例讲解指数函数的定义、图像和性质,让学生了解指数函数的特征和变化规律。

同时,结合实际生活中的应用案例,让学生更好地理解指数函数的应用价值。

3. 讲解对数函数的概念和性质:对数函数是本节课的另一个重点,通过实例讲解对数函数的定义、图像和性质,让学生了解对数函数的特征和变化规律。

同时,结合指数函数的应用,让学生更好地理解对数函数的重要性。

4. 实践操作:组织学生进行实践操作,通过绘制指数函数和对数函数的图像、分析图像特征和变化规律,让学生更加深入地理解这两个函数的概念和性质。

同时,结合实际生活中的应用案例,让学生学会如何运用指数函数和对数函数解决实际问题。

5. 小组讨论:组织学生进行小组讨论,讨论指数函数和对数函数在实际生活中的应用,以及如何运用这两个函数解决实际问题。

通过小组讨论,培养学生的团队协作能力和问题解决能力。

6. 课堂总结:对本节课的内容进行总结,强调指数函数和对数函数在现实生活中的应用价值,并鼓励学生将所学知识应用到实际生活中去。

人教版中职数学基础模块上册《函数的应用》教案 (一)

人教版中职数学基础模块上册《函数的应用》教案 (一)

人教版中职数学基础模块上册《函数的应用》教案 (一)人教版中职数学基础模块上册《函数的应用》教案是一份非常重要的教学资源,它是中职数学教学过程中介绍函数概念、使用函数解决实际问题的重要教学内容之一。

本教案将帮助学生深入了解函数及其应用,并提供了大量的练习题,有助于学生掌握应用函数解决实际问题的方法和技能。

一、教学目标本教案的目标是使学生对函数的概念和应用有更深刻的理解,了解函数的分类、性质和应用场景,能够运用函数知识解决实际问题。

二、课程设置1.函数的定义及类型首先讲解函数的定义及分类,包括一次函数、二次函数、指数函数、对数函数等等,让学生了解函数的基本特征。

2.函数的性质及应用通过实际问题引导学生了解函数的性质和应用,如最大值、最小值、单调增减、奇偶性等。

3.应用题的讲解根据学生的实际水平和能力进行不同难度的应用题讲解,帮助学生学习如何将函数应用于解决实际问题,如利用函数求解最优解、预测数据趋势等等。

4.练习题提供大量的练习题供学生练习,让学生通过练习加深对函数的理解,并提高运用函数解决实际问题的能力。

三、教学方法和评价方式本教案采用多媒体课件、展示板、讲解、互动练习等多种教学方法,通过生动的实例和具体的应用,让学生更好地理解并掌握函数的应用。

同时利用不同难度的测试和作业评估学生的学习成果,帮助学生找出自身需要加强的地方,加强学习效果。

四、总结人教版中职数学基础模块上册《函数的应用》教案是对学生掌握函数理论及其应用提供了很好的帮助,通过分析、解决应用题目,培养了学生独立思考解决问题的能力。

同时,老师也应加强课堂互动,不断调整教学方法和手段,为学生提供更好的教学体验。

中职数学基础模块4.3指数、对数函数的应用教学设计教案人教版

中职数学基础模块4.3指数、对数函数的应用教学设计教案人教版
位有效数字 ). 解 已知 y=C ek x 其中 C,k 是 答,如有问题先在小组内解决, 小组内解决不了的问题, 在全班
待定的常数. 内解决.
由已知条件, 当 x= 0 时,y= 101;
当 x=1 000 时, y= 90, 得方程组
让学生在解答过程 中,体会数学建模的一
第 2 页 (总 页)
师生共同明确解决实际应 用问题的步骤.
解决实际问题的步骤:
实 际问题 ( 读懂问 题、抽象 概 括 )→ 建立数学模型 (演算、推理 )→数
学模型的解 (还原说明 )→ 实际问题的
解.其中读懂问题是指读出新概念、 新字母,读出相关制约,这是解决问
一个明确的数学关系, 这是解决
题的基础; 建立数学模型是指在抽象、 问题.
气压强为 96 k Pa.
练习 已知某细菌的生长过程满足函 数关系式 Q(t)= Q0ekt,其中 t 为时间,
单位为分钟, Q 为细菌的数量.如果
一开始的细菌数量为 1 000 只,而在
学生结合例题进行练习.
20 分钟后变为 3 000 只,求一小时后 细菌的数量.
指数函数、对数函数、幂函数在
社会学、经济学和物理学等领域中有 着广泛的应用.
太原市教研科研中心研制
101= Cek·0 ,

90

k·1000
Ce


由①得 C= 101,代入②得
课时 教 学流 程
学生体会自然对数的应用. 般步骤.
ek ·1000=
90 ≈ 101
0.891
1,
即 1 000 k= ln 0.891 1;
1 000 k=- 0.115 3.
所以

4.3指数函数与对数函数应用(教案)-【中职专用】高一数学同步精品课堂(人教版2021·基础模块上册

4.3指数函数与对数函数应用(教案)-【中职专用】高一数学同步精品课堂(人教版2021·基础模块上册

4.3指数函数与对数函数应用(教案)-【中职专用】高一数学同步精品课堂(人教版2021·基础模块上册)教案课题:指数函数与对数函数应用授课形式:板书讲解、课堂练习、小组讨论教学目标:1.学习指数函数和对数函数的概念及其基本性质;2.掌握指数函数与对数函数的应用,能熟练求解相关实际问题;3.培养学生分析和解决实际问题的能力,提高学生的数学应用能力。

教学重点:1.掌握指数函数和对数函数的基本概念及其性质;2.掌握指数函数和对数函数的应用,能够解决相关实际问题。

教学难点:1.了解指数函数和对数函数在实际生活中的应用;2.学生需要了解指数函数与对数函数的性质,以便能够解决相关题目。

教学内容:一、知识点概述1.指数函数的概念及性质指数函数可以表示为y=a^x,其中a为底数,x为指数。

指数函数的图像是一个由点(0,1)开始,向右上方逐渐增加的曲线。

2.对数函数的概念及性质对数函数可以表示为y=loga x,其中a为底数,x为实数。

对数函数的图像是一条反比例函数的直线。

3.指数函数和对数函数的应用指数函数和对数函数在实际生活中有广泛的应用,如在经济、生物、物理等多个领域中都有应用。

二、教学过程1.引入通过实例引入,让学生了解指数函数和对数函数的概念,并引导学生思考它们在生活中的应用。

例如:有一家公司每年的利润增长率是10%,现在的利润是100万元,请问过了3年后,这家公司的利润是多少?这个问题就需要用到指数函数及其应用。

2.讲解通过讲解,让学生了解指数函数和对数函数的概念及其性质,并引导学生思考相关的实际应用。

例如:在经济学中,指数函数和对数函数的应用十分重要。

其中,经济学家用指数函数来刻画经济的增长速度和衰退速度。

而对数函数则用于计算复合利率、解决债券投资问题等。

3.练习通过课堂练习,让学生独立解决实际问题,并通过小组讨论,让学生了解不同的解题方法和思路。

例如:第一题:一个投资人购买了一套房,房子每年的增值率为6%,现在的房价是100万元,请问过了2年后,这套房子的价格是多少?第二题:如果十年前你在股市上投了100万元,现在的收益率是10%,请问现在你的投资价值是多少?4.总结通过总结,让学生温习和理解今天所学的知识点和方法,并评估今天的教学效果和学生的学习情况。

指数函数对数函数应用教案

指数函数对数函数应用教案

【课题】4.6指数函数与对数函数的应用【教学目标】知识目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点.能力目标:⑴正确进行实数指数幂的运算;⑵培养学生的计算技能;⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力.【教学重点】有理数指数幂的运算.【教学难点】有理数指数幂的运算.【教学设计】⑴在复习整数指数幂的运算中,学习实数指数幂的运算;⑵通过学生的动手计算,巩固知识,培养计算技能;⑶通过“描点法”作图认识幂函数的图像,通过利用软件的大量作图,总结图像规律;⑷通过知识应用巩固有理数指数幂的概念.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】:这两个函数的定义域不同,在定义域内它们都是增函数.两个函数的图像都经过坐标原点和点指出幂函数2y x -=的定义域,并作出函数图像.考虑到221x x-=,因此定义域为0+∞)(,)21x,故函数为偶函数.其图像关于y 轴对称,可以(0,)+∞内的图像,然后再利用对称性作出函数在区内的图像.的定义域为00-∞+∞(,)(,)这个函数在(0,)+∞内是减函数;函数的图像不经过坐标原点,但是经过点(1,1).整体建构=具有如下特征:一般地,幂函数y xα随着指数α取不同值,函数y=和奇偶性会发生变化;>0时,函数图像经过原点(0,0)时,函数图像不经过原点(0,0),但经过(1,1)强化练习4.1.3用描点法作出幂函数4=的图像并指出图像具有怎样的对y x。

高教版中职数学(基础模块)上册4.3《对数》word教案

高教版中职数学(基础模块)上册4.3《对数》word教案
*创设情景兴趣导入
问题
2的多少次幂等于8?
2的多少次幂等于9?
推广
已知底和幂,如何求出指数,如何用底和幂表示出指数的问题.
解决
为了解决这类问题,引进一个新数——对数.
利用问题引起学生的好奇心和求知欲
5
*动脑思考探索新知
概念
如果 ,那么b叫做以a为底N的对数,记作 ,其中a叫做对数的底,N叫做真数.
例如, 写作 ,3叫做以2为底8的对数; 写作 , 叫做以9为底3的对数; 写作 ,−3叫做以10为底0.001的对数.
强调
对数
的写

50
*自我探索使用工具
准备计算器,观察计算器上的按键并阅读相关的使用说明书,小组完成利用计算器计算对数的方法.
计算下列各式的值(精确到0.0001):
(1) ;(2) ;(3) ;
(4) ;(5) ;(6) .
教材练习4.3.2
1.用计算器计算下列各式的值(精确到0.0001):
(1) ;(2) ;(3) ;
法则2: (M>0,N>0);
法则3: =n (n为整数,M>0).
特别
强调
法则
中的
关键
要点
70
*巩固知识典型例题
例5用 , , 表示下列各式:
(1) ;(2) ;(3) .
分析要正确使用对数的运算法则.
解(1) = + + ;
(2) = = ;
(3) = + =2 + .
通过
例题
进一
步理
解掌
握对
数的
(1) ;(2) ;
(3) ;(4) .
3.求下列对数的值:

中职数学基础模块4.3指数、对数函数的应用教学设计教案人教版

中职数学基础模块4.3指数、对数函数的应用教学设计教案人教版

课时教学设计首页(试用)太原市教研科研中心研制101 = Ce k0, ①$ “k 1000 令190= Ce •②由①得C = 101,代入②得k 100090 门OQ*I 4e =而〜0.891 1,即1 000 k= In 0.891 1 ;1 000 k=- 0.115 3.4所以k=- 1.153 X 10 .所以y与x的函数关系是—1.153X 10-4x y= 101 e . 当x= 600时,得—1.153X10-4X 600 y= 101 e 〜94.25 ,当y= 96时,得1.153X 10-4x96= 101 e .. 96—1.153X 10-x= In 而■ —1.153X10-4x=- 0.051,104所以x= 0.051 X --------- 〜442.32 .1.153因此,在咼600 m处,大气压强为94.25 k Pa;在咼442.32 m 处,大气压强为96 k Pa.练习已知某细菌的生长过程满足函数关系式Q(t) = Q°e k t,其中t为时间,单位为分钟,Q 为细菌的数量•如果一开始的细菌数量为 1 000只,而在20分钟后变为3 000只,求一小时后细菌学生体会自然对数的应用.教师在学生解答完后,选择有代表性的解答过程,利用实物投影仪将所选解题过程进行投影,教师进行点评.学生结合例题进行练习.般步骤.学生在解答过程中体会现代计算技术所带来的方便.加强练习,体会指数函数与对数函数在实际生活等方面的应用.指数函数、对数函数、幕函数在社会学、经济学和物理学等领域中有着广泛的应用.解决实际问题的步骤:实际问题(读懂问题、抽象概括)7建立数学模型(演算、推理尸数学模型的解(还原说明)7实际问题的解.其中读懂问题是指读出新概念、新字母,读出相关制约,这是解决问题的基础;建立数学模型是指在抽象、简化、明确变量和参数的基础上建立师生共同明确解决实际应用问题的步骤.一个明确的数学关系,这是解决问题.的关键总结本节主要内容,有利于学生学习如何运用数学知识解决实际问题.太原市教研科研中心研制课时教学设计尾页(试用)☆补充设计☆板书设计指数函数、对数函数、幕函数在社会学、经济学和物理学等领域中有着广泛的应用.解决实际问题的步骤:实际问题(读懂问题、抽象概括)7建立数学模型(演算、推理)7数学模型的解(还原说明)7实际问题的解•其中读懂问题是指读出新概念、新字母,读出相关制约,这是解决问题的基础;建立数学模型是指在抽象、简化、明确变量和参数的基础上建立作业设计必做题:教材P118,习题第4题;选做题:教材P118,习题第5题.教学后记。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四单元 指数函数与对数函数一 教学要求1.理解有理数指数幂的概念,掌握幂的运算法则.2.了解幂函数的概念,了解幂函数y =x ,y =x 2,y =x 3,y = x21,y =x -1,y =x -2的图像.3.理解指数函数的概念、图像和性质.4.理解对数的概念(包括常用对数、自然对数),了解对数的运算法则.5.了解对数函数的概念、图像和性质.6.了解指数函数和对数函数的实际应用.7.通过幂与对数的计算,培养学生计算工具使用技能;结合生活、生产实例,讲授指数函数、对数函数模型,培养学生数学思维能力和分析与解决问题能力. 二 教材分析和教学建议(一) 编写思想1.通过温故知新完成由正整数指数幂到实数指数幂及其运算的逐步推广.让学生体验推广的过程,培养学生的数学思维方式.2.指数函数是中职数学学习中新引进的第一个基本初等函数,因此,教材先给出了指数函数的实际背景,然后对指数函数概念的建立、指数函数图像的绘制、指数函数的基本性质,作了完整的介绍.3.教材从具体问题引进对数概念,由求指数的逆运算引入对数运算,并研究对数运算的性质.4.对数函数同指数函数一样,是以对数概念和运算法则作为基础展开的.对数函数的研究过程也同指数函数的研究过程一样,目的是让学生对建立和研究一个具体函数的方法有较完整的认识.5.专设一节研究指数函数、对数函数的应用.本单元教学的重点是指数函数与对数函数的概念、图像及其单调性.本单元教学的难点是分数指数幂的概念、对数的概念,以及指数函数、对数函数单调性的应用.(二) 课时分配本单元教学约需12课时,分配如下(仅供参考):4.1有理数指数幂约1课时4.2实数指数幂及其运算法则约1课时4.3幂函数约1课时4.4指数函数的图像与性质约3课时4.5对数约2课时4.6对数函数的图像与性质约2课时4.7指数函数、对数函数的应用约1课时归纳与总结约1课时(三) 内容分析与教学建议4.1 有理数指数幂1.指数概念是由相同因式相乘发展而来的,回顾指数运算的发展过程,对学生学好这部分知识是十分必要的.2.讲解整数指数,是由正整数指数的意义及运算法则引入零指数、负整数指数的概念.3.在讲分数指数之前,先介绍方根的概念,在方根的定义和整数指数运算法则的基础上,引入正分数指数和负分数指数的概念,这里要让学生多做些练习,以掌握这个新的概念.4.2 实数指数幂及其运算法则1.整数指数幂的运算性质,对于分数指数幂也同样适用.为此教材给出了如下运算性质:a r·a s = a r+s(a>0,r, s∈Q),(a r )s= a rs(a>0,r,s∈Q),(a·b) r=a r b r (a,b>0,r∈Q).需要学生注意的是括号中限制条件的变化.当指数从整数指数推广到了有理数指数后,-2=3-8=(-8)13=(-8)26=6(-8)2=664=2.教学中,建议让学生用自己的语言叙述指数运算的三条性质.2.考虑到中职生的实际情况,教材只指出了“可以把有理数指数幂推广到无理数指数幂”,并未通过“用有理数逼近无理数”的思想引进无理数指数幂.3.在教学中要加强计算工具的使用,要让学生切实掌握利用计算器计算实数指数幂的题目,了解计算器的基本功能.4.3 幂函数本节教材只介绍了幂函数的定义,以及y=x,y=x2,y=x3,y=x21,y=x-1,y=x-2等几个幂函数的图像,教学中应注意把握好这个尺度.4.4 指数函数的图像与性质1.教材由两个实例引入了指数函数的概念,然后采用约定式定义法定义了指数函数,即“形如y=a x(a>0且a≠1)的函数叫做指数函数”.这个定义要求底a>0,且a≠1.这一点学生容易忽略,教学中应加以强调.2.教材采用描点法在同一坐标系中画出了两个指数函数的图像.这一过程应在课堂上展示给学生,以加深对指数函数图像形状特征的了解,为了使图像较为准确,所描的点可适当多一些,列表时,可借助于计算器.但是,对于学习基础较差的学生,教师只需要学生论证指数函数的图形特征、位置,对描点法作图可以不做要求.3.指数函数的性质是利用图像的直观性得到的,其中单调性是重点.它的应用主要是两方面:(1) 比较两个同底的幂的大小;(2) 解同底的指数不等式.4.5 对数1.现代工农业生产和科学技术研究工作中,需要计算大量的繁复的数据.如果利用对数计算,可以简化计算过程,特别是在高次乘方和开方中可以极大减轻劳动强度.因此对数是一种常用的计算工具和方法.在向学生进行关于对数知识和新的计算方法——对数计算的教学同时,要特别重视培养学生利用对数进行计算的技能.这不仅有助于解决几何、三角、物理中的计算问题,还能为参加生产实践或进一步学习打好基础.本节教材分两部分,即对数、对数运算法则.第一部分,在学习了指数概念的基础上,由实例引入对数的定义,接着研究对数式与指数式的关系和互化,再介绍对数恒等式及其应用.第二部分,着重研究对数运算法则及其应用.本节教材的重点是对数的定义、运算法则.难点是对数概念的正确建立及应用,而关键在于正确理解对数与指数关系,掌握它们的特性,加强综合练习.2.先举实例,要求出(1+6%)x=4,2x=10中的x值,需要一种新的计算方法——利用对数进行计算的方法,来适应数值计算需要.接着通过具体数字例子到一般式a b=N,b=log a N,引入对数的定义.把对应的指数简称为对数,再用符号表示.这样从具体到抽象,便于学生接受.通过指数式a b=N与对数式log a=b的对照比较,看出两个式子中a,b,N三者之间的关系是一样的,都是a的b次幂等于N,只是表示形式不同而已.从而使学生再次领会对应的指数就是对数,达到正确掌握对数、底数、真数三者之间的关系的目的以及对数式与指数式之间的密切联系,以加深对对数定义的理解.3.在引入对数定义后,教材简要地说明规定了a >0且a ≠1后,N >0,因此在实数集内零与负数没有对数,但对数可以是任何实数(正数、负数和零) .4.对数运算法则是对数运算的根据.利用它可以使数和式的乘、除、乘方运算化成低一级的对数的加、减、乘运算,从而简化计算.因此它也是学习对数的一个关键内容.对数运算法则是根据对数的定义和幂的运算法则导出的.教学时,可以进行对比:5.利用对数运算法则进行式子的恒等变形(包括化简),是利用对数进行计算的基本技能,因此必须加强练习,使学生能牢固掌握和熟练运用.要注意防止可能产生的错误,例如:(1) log a (M ±N)=log a M ±log a N ,(2) log a M ·log a N =log a M +log a N ,(3) log a M ·log a N =log a (M+N ),(4) log aN M =aNaM log log , (5) log a N M =log a (M-N ) , (6) log a M p =(log a M ) p ,(7) log a (-M )=-log a M .产生以上这些错误,有些是把积、商、幂的对数与对数的积、商、幂混淆起来所致,有些是把对数符号当做单独的数来使用所致.教学时,可以用具体数字(如设底数是2,M =4,N =8等)代入以上各式,启发学生自己去揭示和分析产生错误的原因,从而纠正错误.由于计算器的出现,使得复杂的数学计算有了新的工具,从而对《对数表》和《反对数表》的教学与使用越来越趋于淡化.因此,本教材删去了关于《对数表》和《反对数表》的有关内容.而采用计算器演示操作的方式,向学生介绍利用科学计算器计算对数的有关问题,而且操作步骤与结果的呈现方式便于学生掌握与理解.4.6 对数函数的图像与性质1.教材在分析对数式x=log 2 y 的基础上引入对数函数,主要分析由对数式确定的对应法则是不是函数关系.在教学中可根据指数函数y =2x 的图像做些简单说明,在此基础上给出对数函数的约定式定义:“形如y =log a x (a >0且a ≠1)的函数,叫做对数函数” .2.教材仍然采用了描点法画出四个对数函数y =log2x ,y =log 21x ,y=lg x ,y =log101x 的图像,并据此分析,归纳出对数函数的图像的特征.同指数函数,对于学习基础较差的学生,只需记住对数函数图形特征、位置,对描点法作图可不做要求.3.对数函数的单调性可由图像直观地分析出.4.7 指数函数、对数函数的应用教材安排了两道指数函数应用题,一道对数函数应用题,目的是引导学生运用所学知识解决实际问题.鉴于学生水平,讲解时仍需因势力导,不能急于求成,多帮学生进行分析,使他们能领会题目条件的要求,从而顺利列出函数解析式,最后使问题得解.(四) 复习建议1.构建知识结构2.梳理知识要点见本单元教材《归纳与总结》.3.需要注意的问题(1) 指数幂a n 当扩大到有理数时,要注意底数a 的变化范围.(2) 在对数式log a N =b 中要注意底数a >0且a ≠1,真数N >0等条件,这些条件在解题或变形中常常用到.(3) 在掌握指数函数、对数函数的图像和性质时,要对底数分两种情况讨论,即分为 a >1与0<a <1两种情况.4.典型例题见本单元教材《归纳与总结》,其中例1复习对数函数定义域的求法;例2是利用指数函数、对数函数的单调性比较大小;例3是考查指数函数、对数函数的图像特征.5.解题指导函数的图像是学习函数时必须掌握的内容,函数的一些性质就是由图像直接得出的,函数的图像是数形结合的体现.每学习一种函数时,应熟悉函数图像的特征,这样既便于函数的性质的理解,也便于应用图像和性质解题.应该怎样记函数图像呢?现介绍一种记忆方法——分析与实验相结合.分析——根据图像的定义域、值域、奇偶性等记住图像的基本方位.实验——记住图像上的关键点,再用特殊数值实验函数的变化,从而得出函数的整个图像或不同函数图像间的关系.(1) 应牢记指数函数y=a x ,当a >1和0<a <1时图像的基本形状和位置.图像特点①:对任意的a >0且a ≠1,y=a x 图像都过(0,1)(因为a 0=1) .图像特点②:底互为倒数的两个指数函数图像关于y 轴对称.例如:y =2x 和y =(21)x (即y =2-x )的图像关于y 轴对称. 图像特点③:图像在x 轴上方,与x 轴没有交点(因为ax >0) .事实上,指数函数的图像比较好画,即使忘记了图像的形状和位置,只须取几个点就可以描绘出来.但要注意,因为y =a x (a >0,a ≠1)的定义域是R ,故取点时,x 取正数、零、负数都应考虑到.(2) 要牢记对数函数y=log a x ,当a >1和0<a <1时图像的基本形状和位置.图像特点①:对任意的a >0且a ≠1,y =log a x 图像都过(1,0)(因为log a 1=0) .图像特点②:底互为倒数的两个对数函数图像关于x 轴对称.例如:y =lg x 和y=log 101x 的图像关于x 轴对称.图像特点③:图像在y 轴右方,与y 轴没有交点(因为y =log a x 的定义域为(0,+∞)).(3) 指数函数、对数函数图像一起记.根据指数函数、对数函数互为反函数得出:当a >1或0<a <1时,指数函数、对数函数的图像分别关于直线y=x 对称(如图4-1和图4-2),因此两个图像可以一起记.(4) 对图像的高低,我们仍采用数值实验法.例如:对y =2x , y =10x ,取x =1,因为21<101,所以在x >0时,y =10x 图像在y =2x 图像上方,可以推测,在x <0时,y=10x 图像在y =2x 图像的下方,且在(0,1)点处,两图像是交叉的.图4-1 图4-2根据y =(21)x ,y =(101)x 图像分别与y =2x ,y =10x 图像关于y 轴对称,可以得出,在x <0时,y =x⎪⎭⎫ ⎝⎛101图像在y =x ⎪⎭⎫ ⎝⎛21图像的上方,在x >0时,亦相反. 例如,对y =log 2x ,y =lg x ,取x =10,因为log 210>1,lg10=1,所以log 210>lg10,可以推测,在x >1时,y =log 2x 图像在y =lg x 图像上方,当x ∈(0,1)时,亦相反,即图像在点(1,0)外是交叉的.根据y =log 21x ,y =log 101x 的图像分别与y =log 2x,y =lg x 的图像关于x 轴对称,可以得出,在x >1时,y= log 101x 图像在y = log 21x 图像的上方,在x ∈(0,1)时,亦相反.这样,可以很快地画出y =log 2x ,y =log 3x ,y =lg x ,y = log 21x ,y =log 31x ,y =log 101x 在同一坐标系中的图像(如图4-3) .下面利用图像来解题.例1 设a >0且a ≠1,在同一坐标系中,y =a x ,y =log a (-x )的图像只能是图4-4中的( ).图4-4分析:因为函数y =log a (-x )的定义域为(-∞,0),所以否定(A),(D) .因为y =log a (-x )与y =log a x 的图像关于y 轴对称,所以在(B),(C)中,由y =log a (-x )的图像得a >1,所以选B .图4-3例2(1) log a2<log b2<0,试比较a,b,1的大小;(2) 若a>0,试比较log3a,log5a,log0.5a的大小;(3) 试比较log0.71.5,log0.82.5的大小.分析:(1) 作出图4-5,可以得出0<b<a<1.(2) 作出图4-6可以得出,当a∈(0,1)时,log3a<log5a<log0.5a;图4-5 当a=1时,log5a=log3a=log0.5a=0;当a>1时,log0.5a<log5a<log3a.(3) 作出图4-7得出log0.82.5<log0.71.5.也可以这样考虑,log0.82.5<log0.81.5,log0.81.5<log0.71.5.所以 log0.82.5<log0.71.5.图4-6 图4-7。

相关文档
最新文档