高考物理力学计算题(五)含答案与解析
2023年重庆市高考物理选考试卷(五)+答案解析(附后)
2023年重庆市高考物理选考试卷(五)1. 日常生活中,人们会听见各种各样的声音,不同声音在同种均匀介质中传播时,相同的是( )A. 波速B. 波长C. 频率D. 振幅2. 下列有关热学现象的说法,正确的是( )A. 当分子间作用力表现为引力时,分子势能随分子间距离减小而增大B. 所有晶体都具有各向异性的特征C. 一切自然过程总是向着分子热运动无序性减小的方向进行D. 高压气体突然快速膨胀会导致气体温度降低3. 图1为电影《流浪地球2》中的太空电梯,又称为“斯科拉门德快速电梯”,是一种可以在地球表面和太空间来回运输人员和物资的巨型结构。
图2为其简易图,固定在空间站和地球间的刚性“绳索”与空间站一起和地球保持相对静止,电梯可沿“绳索”升降,则( )A. 空间站绕地球运行的向心力小于地球对它的万有引力B. 空间站绕地球运行的向心力等于地球对它的万有引力C. 若连接空间站处的“绳索”断裂,空间站将落回地面D. 若连接空间站处的“绳索”断裂,空间站做离心运动4. 我国在全球海上风电项目中占有绝对主导地位,发展新能源为减少碳排行动作出了杰出贡献。
如图为某沿海区域的风速测速仪的简易图,其工作原理是:风吹动风杯,风杯通过转轴带动永磁铁转动,电流测量装置可监测感应线圈产生的电流变化,从而测量实时风速。
由此可知( )A. 可以通过监测电流的最大值来监测风速大小B. 感应线圈匝数越少,越有利于监测到电流变化C. 风速越大,电流测量装置显示的电流变化周期越大D. 电流测量装置监测到的电流为大小不变、方向周期性变化的电流5. 一点光源以150W的功率向周围所有方向均匀地辐射光波,该光波的波长约为,在空间中的传播速度为。
在距离该点光源30m处,每秒垂直通过每平方米面积的光子数约为普朗克常量h取( )A. 个B. 个C. 个D. 个6. 如图所示电路中,直流电源内阻,、为定值电阻,滑动变阻器最大阻值为,。
开关K闭合且电路稳定后,滑动变阻器的滑片P缓慢从b向a滑动过程中( )A. 电流表示数变小B. 电源的效率减小C. 滑动变阻器消耗的功率一直减小D. 通过的电流方向为从c到d7. 如图所示,水平面内间距为1m且足够长的两根平行光滑长直金属轨道,其左侧通过开关S与的电阻相连,整个空间内有垂直轨道平面向里、磁感应强度大小为2T的匀强磁场。
2024年高考物理真题模拟题汇编20力学计算题含解析
专题20 力学计算题1.(2024·新课标Ⅰ卷)我国自主研制了运-20重型运输机。
飞机获得的升力大小F 可用2F kv =描写,k 为系数;v 是飞机在平直跑道上的滑行速度,F 与飞机所受重力相等时的v称为飞机的起飞离地速度,已知飞机质量为51.2110kg ⨯时,起飞离地速度为66 m/s ;装载货物后质量为51.6910kg ⨯,装载货物前后起飞离地时的k 值可视为不变。
(1)求飞机装载货物后的起飞离地速度;(2)若该飞机装载货物后,从静止起先匀加速滑行1 521 m 起飞离地,求飞机在滑行过程中加速度的大小和所用的时间。
【答案】(1)278m/s v =;(2)2m/s 2,39s t =【解析】(1)空载起飞时,升力正好等于重力:211kv m g = 满载起飞时,升力正好等于重力:222kv m g = 由上两式解得:278m/s v =(2)满载货物的飞机做初速度为零的匀加速直线运动,所以2202v ax -= 解得:22m/s a =由加速的定义式变形得:20v v t a a∆-== 解得:39s t =2.(2024·新课标Ⅱ卷)如图,一竖直圆管质量为M ,下端距水平地面的高度为H ,顶端塞有一质量为m 的小球。
圆管由静止自由下落,与地面发生多次弹性碰撞,且每次碰撞时间均极短;在运动过程中,管始终保持竖直。
已知M =4m ,球和管之间的滑动摩擦力大小为4mg ,g 为重力加速度的大小,不计空气阻力。
(1)求管第一次与地面碰撞后的瞬间,管和球各自的加速度大小;(2)管第一次落地弹起后,在上升过程中球没有从管中滑出,求管上升的最大高度; (3)管其次次落地弹起的上升过程中,球仍没有从管中滑出,求圆管长度应满意的条件。
【答案】(1)a 1=2g ,a 2=3g ;(2)11325H H =;(3)152125L H ≥ 【解析】(1)管第一次落地弹起的瞬间,小球仍旧向下运动。
高考物理新力学知识点之万有引力与航天真题汇编及答案解析(5)
高考物理新力学知识点之万有引力与航天真题汇编及答案解析(5)一、选择题1.如图所示,地球的公转轨道接近圆,哈雷彗星的公转轨迹则是一个非常扁的椭圆。
若已知哈雷彗星轨道半长轴约为地球公转轨道半径的18倍,哈雷彗星在近日点与太阳中心的距离为1r ,速度大小为1v ,在远日点与太阳中心距离为2r ,速度大小为2v ,根据所学物理知识判断下列说法正确的是A .哈雷彗星的公转周期约为76年B .哈雷彗星在近日点速度1v 小于远日点速度2vC .哈雷彗星在近日点加速度1a 的大小与远日点加速度2a 的大小之比21122221a v r a v r = D .哈雷彗星在椭圆轨道上运动的过程中机械能不守恒2.由于地球自转和离心运动,地球并不是一个绝对的球形(图中虚线所示),而是赤道部分凸起、两极凹下的椭球形(图中实线所示),A 点为地表上地理纬度为θ的一点,在A 点有一静止在水平地面上的物体m ,设地球对物体的万有引力仍然可看做是质量全部集中于地心O 处的质点对物体的引力,地球质量为M ,地球自转周期为T ,地心O 到A 点距离为R ,关于水平地面对该物体支持力的说法正确的是( )A .支持力的方向沿OA 方向向上B .支持力的方向垂直于水平地面向上C .支持力的大小等于2GMmR D .支持力的大小等于222cos GMm m R R T πθ⎛⎫- ⎪⎝⎭3.如图所示,一颗人造卫星原来在椭圆轨道1绕地球E 运行,在P 点变轨后进入轨道2做匀速圆周运动.下列说法正确的是: ( )A.不论在轨道1还是轨道2运行,卫星在P点的速度都相同B.不论在轨道1还是轨道2运行,卫星在P点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量(动量P=mv,v为瞬时速度)4.太空——110轨道康复者”可以对卫星在太空中补充能源,使卫星的寿命延长10年或更长。
假设“轨道康复者”正在地球赤道平面内的圆周轨道上运动,且轨道半径为地球同步卫星的15,且运行方向与地球自转方向相同。
高考物理新力学知识点之万有引力与航天难题汇编含答案解析(5)
高考物理新力学知识点之万有引力与航天难题汇编含答案解析(5)一、选择题1.我国“北斗二代”计划在2020年前发射35颗卫星,形成全球性的定位导航系统,比美国GPS 多5颗.多出的这5颗是相对地面静止的高轨道卫星(以下简称“静卫”),其他的有27颗中轨道卫星(以下简称“中卫”)的轨道高度为“静卫”轨道高度的.下列说法正确的是( ) A .“中卫”的线速度介于7.9km/s 和11.2km/s 之间 B .“静卫”的轨道必须是在赤道上空C .如果质量相同,“静卫”与“中卫”的动能之比为3∶5D .“静卫”的运行周期小于“中卫”的运行周期2.设宇宙中某一小行星自转较快,但仍可近似看作质量分布均匀的球体,半径为R .宇航员用弹簧测力计称量一个相对自己静止的小物体的重量,第一次在极点处,弹簧测力计的读数为F 1=F 0;第二次在赤道处,弹簧测力计的读数为F 2=02F .假设第三次在赤道平面内深度为2R的隧道底部,示数为F 3;第四次在距行星表面高度为R 处绕行星做匀速圆周运动的人造卫星中,示数为F 4.已知均匀球壳对壳内物体的引力为零,则以下判断正确的是( )A .F 3=04F ,F 4=04FB .F 3=04F,F 4=0C .F 3=154F ,F 4=0 D .F 3=04F ,F 4=4F 3.在地球同步轨道上等间距布置三颗地球同步通讯卫星,就可以让地球赤道上任意两位置间实现无线电通讯,现在地球同步卫星的轨道半径为地球半径的6.6倍。
假设将来地球的自转周期变小,但仍要仅用三颗地球同步卫星实现上述目的,则地球自转的最小周期约为 A .5小时B .4小时C .6小时D .3小时4.图甲为“中星9A ”在定位过程中所进行的10次调整轨道的示意图,其中的三条轨道如图乙所示,曲线Ⅰ是最初发射的椭圆轨道,曲线Ⅱ是第5次调整后的椭圆轨道,曲线Ⅲ是第10次调整后的最终预定圆轨道;轨道Ⅰ与Ⅱ在近地点A 相切,轨道Ⅱ与Ⅲ在远地点B 相切。
高考物理新力学知识点之牛顿运动定律解析含答案(5)
高考物理新力学知识点之牛顿运动定律解析含答案(5)一、选择题1.某同学研究物体的运动,让一个质量为2kg 的物体在水平恒力的作用下沿光滑水平而做直线运动,物体的x t t-图线如图所示,t 是从某时刻开始计时物体运动的时间,x 为物体在时间t 内的位移,由此可知A .物体受到的恒力大小为0.6NB .5s 末物体的速度为4.5m/sC .0~10s 内物体的速度变化量为3m/sD .0~5s 内物体的位移为22.5m2.如图A 、B 、C 为三个完全相同的物体。
当水平力F 作用于B 上,三物体可一起匀速运动,撤去力F 后,三物体仍可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作用力为f 2,则f 1和f 2的大小为( )A .f 1=f 2=0B .f 1=0,f 2=FC .13F f =,f 2=23F D .f 1=F ,f 2=0 3.甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)同时静止释放.两球下落过程中所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f=kv(k 为正的常量),两球的v−t 图象如图所示,落地前,经过时间0t 两球的速度都已达到各自的稳定值1v 、2v ,则下落判断正确的是( )A .甲球质量大于乙球B .m 1/m 2=v 2/v 1C .释放瞬间甲球的加速度较大D .t 0时间内,两球下落的高度相等4.下列对教材中的四幅图分析正确的是A .图甲:被推出的冰壶能继续前进,是因为一直受到手的推力作用B .图乙:电梯在加速上升时,电梯里的人处于失重状态C .图丙:汽车过凹形桥最低点时,速度越大,对桥面的压力越大D .图丁:汽车在水平路面转弯时,受到重力、支持力、摩擦力、向心力四个力的作用5.质量为2kg 的物体做匀变速直线运动,其位移随时间变化的规律为222(m)x t t =+。
该物体所受合力的大小为( )A .2NB .4NC .6ND .8N6.质量为M 的人站在地面上,用绳通过光滑定滑轮将质量为m 的重物从高处放下,如图所示,若重物以加速度a 下降(a g <),则人对地面的压力大小为( )A .()M m g ma +-B .()M g a ma --C .()M m g ma -+D .Mg ma -7.如图所示,一个箱子中放有一个物体,已知静止时物体对箱子的下底面压力大小等于物体的重力大小,且物体与箱子上底面刚好接触现将箱子以初速度v 0竖直向上抛出,已知运动时箱子所受空气阻力大小不变,且箱子运动过程中始终保持图示姿态,重力加速度为g 。
高考物理真题专项解析—力学综合计算题
(2)B光滑部分的长度d;
(3)运动过程中A对B的摩擦力所做的功 ;
(4)实现上述运动过程, 的取值范围(结果用 表示)。
【答案】(1) , ;(2) ;(3) ;(4)
【解析】
(1)设水平向右为正方向,因为 点右侧光滑,由题意可知A与B发生弹性碰撞,故碰撞过程根据动量守恒和能量守恒有
【答案】(1) ;(2) ;(3)
【解析】
(1)篮球下降过程中根据牛顿第二定律有
mg-λmg=ma下
再根据匀变速直线运动的公式,下落的过程中有
v下2=2a下H
篮球反弹后上升过程中根据牛顿第二定律有
mg+λmg=ma上
再根据匀变速直线运动的公式,上升的过程中有
v上2=2a上h
则篮球与地面碰撞的碰后速率与碰前速率之比
【答案】
【解析】
频闪仪每隔0.05s发出一次闪光,每相邻两个球之间被删去3个影像,故相邻两球的时间间隔为
设抛出瞬间小球的速度为 ,每相邻两球间的水平方向上位移为x,竖直方向上的位移分别为 、 ,根据平抛运动位移公式有
令 ,则有
已标注的线段 、 分别为
则有
整理得
故在抛出瞬间小球的速度大小为
【母题来源二】2022年高考全国乙卷
(1)若释放点距B点的长度l=0.7m,求滑块到最低点C时轨道对其支持力FN的大小;
(2)设释放点距B点的长度为 ,滑块第一次经F点时的速度v与 之间的关系式;
(3)若滑块最终静止在轨道FG的中点,求释放点距B点长度 的值。
【答案】(1)7N;(2) ;(3)见解析
【解析】
(1)到C点过程
C点时
(2)能过最高点时,则能到F点,则恰到最高点时
2020年高考物理一轮复习专题5.5 动力学观点和能量观点解决力学综合问题(精练)(解析版)
专题5.5 动力学观点和能量观点解决力学综合问题1.(2019·安徽皖南八校联考)如图甲所示,绷紧的水平传送带始终以恒定速率v 1运行,一质量为m =1 kg 初速度大小为v 2的小物块,从与传送带等高的光滑水平地面上的A 处滑上传送带;若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图乙所示.则( )A .小物块向左运动的过程中离A 处的最大距离为4 mB .0~3 s 时间内,小物块受到的摩擦力的冲量大小为2 N·sC .0~4 s 时间内,传送带克服摩擦力做功为16 JD .小物块与传送带之间由摩擦产生的热能为18 J 【答案】AD【解析】由v -t 图象可知,2 s 时小物块向左运动的距离最远,根据v -t 图象得面积等于位移,s 1=12×2×4 m =4 m ,故A 正确;小物块匀变速运动的加速度:a =Δv Δt =42=2 m/s 2,由牛顿第二定律得:μm g =ma =2 N ,0~3 s 时间内,小物块受到的摩擦力方向都向右,冲量大小为I =μmgt =6 N·s ,故B 错误;由v -t 图象,传送带速度大小:v 2=2 m/s ,前3 s 小物块与传送带间有相对运动,存在摩擦力,传送带克服摩擦力做功为W =μmgv 2t 3=2×2×3 J =12 J ,故C 错误;小物块在传送带上滑动的3 s 内,皮带的位移s ′=v 2t 3=6 m ,方向向右;小物块的位移:s =s 1-s 2=3 m ,方向向左.两个物体的相对位移Δs =s ′+s =9 m ,整个过程中摩擦产生的热量:Q =μmg Δs =18 J ,故D 正确.2.(2019·华东师范大学附中模拟)如图所示,质量为m 的长木块A 静止于光滑水平面上,在其水平的上表面左端放一质量为m 的滑块B ,已知木块长为L ,它与滑块之间的动摩擦因数为μ.现用水平向右的恒力F 拉滑块B .(1)当长木块A 的位移为多少时,B 从A 的右端滑出? (2)求上述过程中滑块与木块之间产生的内能. 【答案】(1)μmgLF -2μmg (2)μmgL【解析】(1)设B 从A 的右端滑出时,A 的位移为x ,A 、B 的速度分别为v A 、v B ,由动能定理得 μmgx =12mv 2A(F -μmg )·(x +L )=12mv 2B 又因为v A =a A t =μgtv B =a B t =F -μmg m t ,解得x =μmgL F -2μmg .(2)由功能关系知,拉力F 做的功等于A 、B 动能的增加量和A 、B 间产生的内能,即有 F (x +L )=12mv 2A +12mv 2B +Q 解得Q =μmgL .3. (2019·江苏如东高中模拟)如图甲所示,质量为m =1 kg 的滑块(可视为质点),从光滑、固定的14圆弧轨道的最高点A 由静止滑下,经最低点B 后滑到位于水平面的木板上.已知木板质量M =2 kg ,其上表面与圆弧轨道相切于B 点,且长度足够长.整个过程中木板的v -t 图象如图乙所示,g =10 m/s 2.求:(1)滑块经过B 点时对圆弧轨道的压力; (2)滑块与木板之间的动摩擦因数; (3)滑块在木板上滑过的距离.【答案】(1)30 N ,方向竖直向下 (2)0.5 (3)3 m【解析】(1)设圆弧轨道半径为R ,从A 到B 过程,滑块的机械能守恒mgR =12mv 2, 经B 点时,根据牛顿第二定律有 F N -mg =mv 2R ,整理得F N =3mg =30 N ,根据牛顿第三定律知,滑块对轨道的压力大小为30 N ,方向竖直向下.(2)由v -t 图象知,木板加速的加速度大小为a 1=1 m/s 2,滑块与木板共同减速的加速度大小为a 2=1 m/s 2,设木板与地面之间的动摩擦因数为μ1,滑块与木板之间的动摩擦因数为μ2,在0~1 s 内,对木板μ2mg -μ1(m +M )g =Ma 1, 在1 s ~2 s 内,对滑块和木板μ1(m +M )g =(m +M )a 2, 解得μ1=0.1,μ2=0.5.(3)滑块在木板上滑动过程中,设滑块与木板相对静止时的共同速度为v 1,滑块从滑上木板到两者达到共同速度所用时间为t 1.对滑块μ2mg =ma ,v 1=v -at 1,v 1=1 m/s ,t 1=1 s , 木板的位移x 1=v 12t 1,滑块的位移x 2=v 1+v2t 1,滑块在木板上滑过的距离Δx =x 2-x 1, 代入数据解得Δx =3 m.4. (2019·浙江效实中学模拟)如图,—轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A 处,另一端位于直轨道B 处,弹簧处于自然状态.直轨道与一半径为56R 的光滑圆弧轨道相切于C 点,AC =7R ,A 、B 、C 、D 均在同一竖直平面内.质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出).随后P 沿轨道被弹回,最高到达F 点,AF =4R .已知P 与直轨道间的动摩擦因数μ=14,重力加速度大小为g .(取sin 37°=35,cos 37°=45)(1)求P 第一次运动到B 点时速度的大小. (2)求P 运动到E 点时弹簧的弹性势能.(3)改变物块P 的质量,将P 推至E 点,从静止开始释放.已知P 自圆弧轨道的最高点D 处水平飞出后,恰好通过G 点.G 点在C 点左下方,与C 点水平相距72R 、竖直相距R .求P 运动到D 点时速度的大小和改变后P 的质量.【解析】(1)根据题意知,B 、C 之间的距离为l =7R -2R ,① 设P 到达B 点时的速度为v B ,由动能定理得 mgl sin θ-μmgl cos θ=12mv 2B , ② 式中θ=37°,联立①②式并由题给条件得v B =2gR . ③(2)设BE =x .P 到达E 点时速度为零,设此时弹簧的弹性势能为E p .P 由B 点运动到E 点的过程中,由动能定理有mgx sin θ-μmgx cos θ-E P =0-12mv 2B , ④ E 、F 之间的距离为l 1=4R -2R +x , ⑤P 到达E 点后反弹,从E 点运动到F 点的过程中,由动能定理有 E p -mgl 1sin θ-μmgl 1cos θ=0,⑥联立③④⑤⑥式并由题给条件得x =R , ⑦ E P =125mgR . ⑧(3)设改变后P 的质量为m 1.D 点与G 点的水平距离x 1和竖直距离y 1分别为x 1=72R -56R sin θ, ⑨ y 1=R +56R +56R cos θ, ⑩式中,已应用了过C 点的圆轨道半径与竖直方向夹角仍为θ的事实.设P 在D 点的速度为v D ,由D 点运动到G 点的时间为t .由平抛运动公式有y 1=12gt 2, ⑪ x 1=v D t , ⑫联立⑨⑩⑪⑫式得v D =355gR . ⑬设P 在C 点速度的大小为v C .在P 由C 点运动到D 点的过程中机械能守恒,有 12m 1v 2C =12m 1v 2D +m 1g (56R +56R cos θ), ⑭ P 由E 点运动到C 点的过程中,由动能定理有 E p -m 1g (x +5R )sin θ-μm 1g (x +5R )cos θ=12m 1v 2C , ⑮ 联立⑦⑧⑬⑭⑮式得m 1=13m .5. (2019·江西白鹭洲中学模拟)如图所示,质量M =0.4 kg 的长薄板BC 静置于倾角为37°的光滑斜面上,在A 点有质量m =0.1 kg 的小物体(可视为质点)以v 0=4.0 m/s 速度水平抛出,恰以平行斜面的速度落在薄板的最上端B 并在薄板上运动,当小物体落在薄板上时,薄板无初速度释放开始沿斜面向下运动,小物体运动到薄板的最下端C 时,与薄板速度恰好相等,已知小物体与薄板之间的动摩擦因数为μ=0.5,sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)A 点与B 点的水平距离; (2)薄板BC 的长度.【答案】(1)1.2 m (2)2.5 m【解析】(1)小物体从A 到B 做平抛运动,下落时间为t 1,水平位移为x ,则 gt 1=v 0tan 37°, ① x =v 0t 1,②联立①②得x =1.2 m.(2)小物体落到B 点的速度为v ,则v =v 20+(gt 1)2,③小物体在薄板上运动,则mg sin 37°-μmg cos 37°=ma 1,④ 薄板在光滑斜面上运动,则 Mg sin 37°+μmg cos 37°=Ma 2,⑤ 小物体从落到薄板到两者速度相等用时t 2,则 v +a 1t 2=a 2t 2,⑥小物体的位移x 1=vt 2+12a 1t 22,⑦ 薄板的位移x 2=12a 2t 22,⑧ 薄板的长度l =x 1-x 2,⑨ 联立③~⑨式得l =2.5 m.6. (2019·山东青岛二中模拟)如图所示,滑块质量为m ,与水平地面间的动摩擦因数为0.1,它以v 0=3gR 的初速度由A 点开始向B 点滑行,AB =5R ,并滑上光滑的半径为R 的14圆弧BC ,在C 点正上方有一离C点高度也为R 的旋转平台,沿平台直径方向开有两个离轴心距离相等的小孔P 、Q ,P 、Q 位于同一直径上,旋转时两孔均能达到C 点的正上方.若滑块滑过C 点后穿过P 孔,又恰能从Q 孔落下,则平台转动的角速度ω应满足什么条件?【答案】ω=π(2n +1)4gR (n =0,1,2,…)【解析】设滑块滑至B 点时速度为v B ,对滑块由A 点到B 点应用动能定理有 -μmg 5R =12mv 2B -12mv 20, 解得v 2B =8gR .滑块从B 点开始,运动过程机械能守恒,设滑块到达P 处时速度为v P ,则 12mv 2B =12mv 2P +mg 2R , 解得v P =2gR ,滑块穿过P 孔后再回到平台的时间t =2v Pg =4R g ,要想实现题述过程,需满足ωt =(2n +1)π, ω=π(2n +1)4gR (n =0,1,2,…).7. (2019·湖北孝感高级中学模拟)如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ=37°,另一端点C 为轨道的最低点.C 点右侧的光滑水平面上紧挨C 点静止放置一木板,木板质量M =1 kg ,上表面与C 点等高.质量为m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ=0.2,取g =10 m/s 2.求:(1)物块经过C 点时的速度v C ;(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q .【答案】(1)6 m/s (2)9 J【解析】(1)设物块在B 点的速度为v B ,在C 点的速度为v C ,从A 到B 物块做平抛运动,有v B sin θ=v 0, 从B 到C ,根据动能定理有mgR (1+sin θ)=12mv 2C -12mv 2B , 解得v C =6 m/s.(2)物块在木板上相对滑动过程中由于摩擦力作用,最终将一起共同运动.设相对滑动时物块加速度为a 1,木板加速度为a 2,经过时间t 达到共同速度为v ,则μmg =ma 1,μmg =Ma 2, v =v C -a 1t ,v =a 2t . 根据能量守恒定律有 12(m +M )v 2+Q =12mv 2C 联立解得Q =9 J.8. (2019·重庆巴蜀中学模拟)如图所示,半径为R 的光滑半圆轨道ABC 与倾角θ=37°的粗糙斜面轨道DC 相切于C ,圆轨道的直径AC 与斜面垂直。
高考物理力学知识点之机械振动与机械波单元汇编含解析(5)
高考物理力学知识点之机械振动与机械波单元汇编含解析(5)一、选择题1.如图,实线为一列沿x轴正方向传播的简谐横波在t=0时刻的波形,虚线是该波在t=0.20s时刻的波形,则此列波的波速可能为A.25m/s B.20m/s C.35m/s D.55m/s2.下列关于单摆运动过程中的受力说法,正确的是()A.单摆运动的回复力是重力和摆线拉力的合力B.单摆运动的回复力是重力沿圆弧切线方向的一个分力C.单摆过平衡位置时,所受的合力为零D.单摆运动的回复力是摆线拉力的一个分力3.关于机械振动和机械波,以下说法正确的是()A.要产生机械波,有波源就可以B.要产生机械波,必须要有波源和介质C.要产生机械波,有介质就可以D.要产生机械波,不需要有波源和介质4.如图所示,弹簧振子以O点为平衡位置,在M、N两点之间做简谐运动.下列判断正确的是()A.振子从O向N运动的过程中位移不断减小B.振子从O向N运动的过程中回复力不断减小C.振子经过O时动能最大D.振子经过O时加速度最大5.如图是一弹簧振子做简谐运动的图像,下列说法中正确的是()A.质点振动的振幅为2cmB.质点振动的频率为4HzC.在2s末,质点的加速度最大D.在2s末,质点的速度最大6.图甲为一列简谐横波在某一时刻的波形图.a、b两质点的横坐标分别为x=2m和x=6m,图乙为质点b从该时刻开始计时的振动图象.下列说法正确的是()A.该波沿+x方向传播,波速为1m/sB.质点a经4s振动的路程为4mC.此时刻质点a的速度沿-y方向D.质点a在t =2 s时速度最大7.一列简谐横波在某时刻的波形图如图所示,已知图中的质点b比质点a晚0. 5s起振,质点b和质点c平衡位置之间的距离为5m,则该波的波速为A.1m/s B.3m/s C.5m/s D.8m/s8.如图是观察水面波衍射的实验装置,AC 和 BD 是两块挡板,AB 是一个孔,O 是波源。
图中已画出波源所在区域波的传播情况,每两条相邻波纹(图中曲线)间的距离表示一个波长,则波经过孔之后的传播情况,下列说法中正确的是()A.此时能明显观察到波的衍射现象B.如果将孔 AB 缩小,经过孔以后的波纹间的距离会变小C.如果将孔 AB 缩小,有可能观察不到明显的衍射现象D.如果孔的大小不变,波源的频率增大,将能更明显地观察到衍射现象9.一列简谐横波沿x轴传播,t=0时刻的波形如图所示.则从图中可以看出()A.这列波的波长为5mB.波中的每个质点的振动周期为4sC.若已知波沿x轴正向传播,则此时质点a向下振动D.若已知质点b此时向上振动,则波是沿x轴负向传播的10.如图所示,一轻质弹簧上端固定在天花板上,下端连接一物块,物块沿竖直方向以O点为中心点,在C、D之间做周期为T的简谐运动。
高考物理力学专题青海卷历年真题及答案解析
高考物理力学专题青海卷历年真题及答案解析导言:物理力学是高考物理科目的重点内容之一,也是学生们备战高考的难点之一。
为了帮助同学们更好地备考,本文整理了青海卷近年来的物理力学专题部分的历年真题及答案解析,供同学们参考和学习。
一、题目一(此处为题目一的具体内容,包括题干和选项)。
解析:(此处为题目一的解析)二、题目二(此处为题目二的具体内容,包括题干和选项)。
解析:(此处为题目二的解析)三、题目三(此处为题目三的具体内容,包括题干和选项)。
解析:(此处为题目三的解析)四、题目四(此处为题目四的具体内容,包括题干和选项)。
解析:(此处为题目四的解析)五、题目五(此处为题目五的具体内容,包括题干和选项)。
解析:(此处为题目五的解析)六、题目六(此处为题目六的具体内容,包括题干和选项)。
解析:(此处为题目六的解析)七、题目七(此处为题目七的具体内容,包括题干和选项)。
解析:(此处为题目七的解析)八、题目八(此处为题目八的具体内容,包括题干和选项)。
解析:(此处为题目八的解析)九、题目九(此处为题目九的具体内容,包括题干和选项)。
解析:(此处为题目九的解析)十、题目十(此处为题目十的具体内容,包括题干和选项)。
解析:(此处为题目十的解析)结语:通过对青海卷物理力学专题历年真题及答案解析的整理,我们可以看到该专题的考察方向和难点。
希望同学们能够认真对待物理力学的学习,多做真题,理解解题思路和方法,提高自己的解题能力和应试水平。
相信在备考高考物理科目时,同学们将能够取得优异的成绩。
高2020届力学计算题训练专题及答案详解
力学计算训练专题1.(15分)一光滑圆环固定在竖直平面内,环上套着两个小球A 和B (中央有孔),A 、B 间由细绳连接着,它们处于如图中所示位置时恰好都能保持静止状态。
此情况下,B 球与环中心O 处于同一水平面上,A B 间的细绳呈伸直状态,与水平线成300夹角。
已知B 球的质量为m ,求:(1)细绳对B 球的拉力和A 球的质量;(2)若剪断细绳瞬间A 球的加速度;(3)剪断细绳后,B 球第一次过圆环最低点时对圆环的作用力【解析】( 15分)(1)对B 球,受力分析如图所示。
mg T =030sin mg T 2= ① ( 1分)对A 球,受力分析如图所示。
在水平方向0030sin 30cos A N T = ② ( 1分)在竖直方向:0030sin 30cos T g m N A A += ③ ( 2分)由以上方程解得:m m A 2= ④ ( 1分)(2)剪断细绳瞬间,对A 球:a m g m F A A 合==030sin ( 2分) 2/g a = ⑤ ( 2分) (3) 设B 球第一次过圆环最低点时的速度为v ,压力为N ,圆环半径为r.则: 221mv mgr =⑥ ( 2分) r v m mg N 2=-⑦ ( 2分)⑥⑦联解得:N =3mg( 1分)由牛顿第三定律得B 球对圆环的压力 N /=N =3mg 方向竖直向下 ⑨( 1分)2.(20分)如图甲所示,一质量为2 . 0kg 的物体静止在水平面上,物体与水平面间的动摩擦因数为0.20。
从 t = 0时刻起,物体受到水平方向的力 F 的作用而开始运动, 8s 内 F 随时间 t 变化的规律如图乙所示。
求:(g 取 10m / s 2)(1)4s 末物体速度的大小;(2)在图丙的坐标系中画出物体在8s 内的v- t 图象;(要求计算出相应数值)(3)在8s 内水平力 F 所做的功。
【解析】(20分)解:(1)(6分)物体受到水平力F 和摩擦力f 的作用,由静止开始向右做匀加速直线运动,设加速度为a 1,4s 末速度为v 1,由牛顿第二定律: F 1-µmg = ma 1(2分)a 1 = 3m/s 2 (2分) v 1 = at 1 = 12m/s (2分)(2)(8分)由图知,4-5s 内物体受到水平力F 的大小不变,方向改变,设加速度为a 2,5s 末速度为v 2 -(F 2+µmg) = ma 2 a 2 = -7m/ s 2(2分) v 2 = v 1 + a 2 t 2 = 5m/s (2分)由图知,5-8s 内物体只受摩擦力f 的作用,设加速度为a 3,速度为v 3 -µmg = ma 3 a 3 = -2m/ s 2 (1分)t 3 = -32a v =2.5s 在t = 7.5s 时物体停止运动,v 3=0 (1分) 物体运动的v- t 图象如图所示 (2分)(3)(6分)由v- t 图可知(或计算得出)0-4s 内 s 1 = 24m (1分)4-5s 内 s 2 = 8.5 m (1分)水平力F 做功 W F = F 1S 1-F 2S 2 (2分)解得: W F =155J (2分)3.(20分)如图所示,光滑水平地面上停着一辆平板车,其质量为m 2,长为L ,车右端(A 点)有一块静止的质量为m 的小金属块.金属块与车间有摩擦,与中点C 为界, AC 段与CB 段动摩擦因数不同.现给车施加一个向右的水平恒力,使车向右运动,同时金属块在车上开始滑动,当金属块滑到中点C 时,即撤去这个力.已知撤去力的瞬间,金属块的速度为0v ,车的速度为02v ,最后金属块恰停在车的左端(B 点)。
高考物理新力学知识点之动量真题汇编及答案(5)
高考物理新力学知识点之动量真题汇编及答案(5)一、选择题1.如图所示,在光滑水平地面上有A 、B 两个木块,A 、B 之间用一轻弹簧连接。
A 靠在墙壁上,用力F 向左推B 使两木块之间的弹簧压缩并处于静止状态。
若突然撤去力F ,则下列说法中正确的是( )A .木块A 离开墙壁前,A 、B 和弹簧组成的系统动量守恒 B .木块A 离开墙壁前,A 、B 和弹簧组成的系统机械能守恒C .木块A 离开墙壁后,A 、B 和弹簧组成的系统动量不守恒D .木块A 离开墙壁后,A 、B 和弹簧组成的系统机械能不守恒2.如图所示,静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,则下列说法不正确的是( )A .α粒子与反冲粒子的动量大小相等,方向相反B .原来放射性元素的原子核电荷数为90C .反冲核的核电荷数为88D .α粒子和反冲粒子的速度之比为1:883.如图所示,光滑的四分之一圆弧轨道M 静止在光滑水平面上,一个物块m 在水平地面上以大小为v 0的初速度向右运动并无能量损失地滑上圆弧轨道,当物块运动到圆弧轨道上某一位置时,物块向上的速度为零,此时物块与圆弧轨道的动能之比为1:2,则此时物块的动能与重力势能之比为(以地面为零势能面)A .1:2B .1:3C .1:6D .1:94.自然界中某个量D 的变化量D ∆,与发生这个变化所用时间t ∆的比值Dt∆∆,叫做这个量D 的变化率.下列说法正确的是A.若D表示某质点做平抛运动的速度,则Dt∆∆是恒定不变的B.若D表示某质点做匀速圆周运动的动量,则Dt∆∆是恒定不变的C.若D表示某质点做竖直上抛运动离抛出点的高度,则Dt∆∆一定变大.D.若D表示某质点的动能,则Dt∆∆越大,质点所受外力做的总功就越多5.下列说法正确的是( )A.速度大的物体,它的动量一定也大B.动量大的物体,它的速度一定也大C.只要物体的运动速度大小不变,物体的动量就保持不变D.物体的动量变化越大则该物体的速度变化一定越大6.“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是()A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变7.如图所示,光滑绝缘水平轨道上带正电的甲球,以某一水平速度射向静止在轨道上带正电的乙球,当它们相距最近时,甲球的速度变为原来的15.已知两球始终未接触,则甲、乙两球的质量之比是A.1:1B.1:2C.1:3D.1:48.如图所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆槽相切并从A点进入槽内,则下列说法正确的是()A.小球离开右侧槽口以后,将做竖直上抛运动B.小球在槽内运动的全过程中,只有重力对小球做功C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向上的动量守恒9.如图所示,一质量为2kg的物块B,静止在光滑水平面上,左侧固定一水平轻质弹簧,另一质量为3kg的物块A向右以5m/s的速度撞击弹簧,整个撞击过程中,两物块的速度始终在一条直线上,弹簧始终在弹性限度内,下列说法正确的是()A.物块A的最终速度大小为3m/sB.物块B的最终速度大小为5m/sC.弹簧的最大弹性势能为15JD.若其他条件不变而仅增大物块A的质量,则物块B的最终速度可能为12m/s10.如图所示,撑杆跳尚是运动会中的一个重要比赛项目。
2024年重庆市高考物理力学题答案详解
2024年重庆市高考物理力学题答案详解高考对于每一位学子来说都是人生中的重要关卡,而物理作为其中的重要学科,力学部分更是占据了相当的比重。
下面我们就来详细解析 2024 年重庆市高考物理力学题。
首先来看第一道力学题。
题目描述为:“一个质量为 m 的物体,在水平地面上受到一个水平拉力 F 的作用,做匀加速直线运动,加速度为 a。
已知物体与地面之间的动摩擦因数为μ,求拉力 F 的大小。
”这是一道非常典型的牛顿第二定律应用问题。
我们先对物体进行受力分析,物体受到水平拉力 F、地面的摩擦力 f 和重力 G、地面的支持力 N。
因为物体在竖直方向上没有运动,所以 N = G = mg。
而摩擦力 f =μN =μmg。
根据牛顿第二定律 F f = ma,将 f =μmg 代入可得:F μmg = ma,解得 F = ma +μmg。
接下来看第二道题。
题目是:“一物体从高处自由下落,经过时间 t 落地,重力加速度为 g,求物体下落的高度 h。
”这道题考查了自由落体运动的基本公式。
我们知道自由落体运动的位移公式为 h = 1/2gt²,所以直接将时间 t 和重力加速度 g 代入公式,可得 h = 1/2gt²。
再看第三道力学题。
“一个光滑斜面,倾角为θ,一个质量为 m 的物体从斜面顶端由静止下滑,求物体滑到底端的速度 v。
”对物体进行受力分析,物体受到重力 G 和斜面的支持力 N。
将重力沿斜面和垂直斜面方向分解,沿斜面方向的分力为mgsinθ。
因为斜面光滑,所以物体在沿斜面方向上做匀加速直线运动,加速度 a =mgsinθ/m =gsinθ。
根据匀加速直线运动的速度位移公式 v² 0 = 2as,其中 s 为斜面长度,s =h/sinθ(h 为物体下落的高度),h = 1/2gsinθt²。
联立可得 v =√(2gh) =√(2g×1/2gsinθt²) =√(gsinθt²) 。
圆周运动高考题(含答案)
匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为Tr t s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Tt πφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min .2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,Tv π2=,f πω2=。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。
高考物理力学知识点之热力学定律基础测试题含答案解析(5)
高考物理力学知识点之热力学定律基础测试题含答案解析(5)一、选择题1.如图所示,在大口的玻璃瓶内装一些水,水的上方有水蒸气。
然后用一与打气筒相连的活塞密闭瓶口,并给瓶内打气,当打到某一状态时,瓶塞会跳起来。
当瓶塞跳起时,我们会看到瓶内出现了“白雾”。
对于“白雾”的形成,下列说法正确的是()A.这些“白雾”是当瓶塞跳起后外界的水蒸气在瓶口遇冷形成的小水珠B.这是打气筒向瓶内打进去的水蒸气C.这是瓶内的水向外膨胀形成的水雾D.瓶内空气推动瓶塞做功,空气的内能减小,温度降低,使水蒸气液化形成小水滴2.如图所示导热性良好的汽缸内密封的气体(可视为理想气体),在等压膨胀过程中,下列关于气体说法正确的是()A.气体内能可能减少B.气体会向外界放热C.气体吸收的热量大于对外界所做的功D.气体平均动能将减小3.图为某种椅子与其升降部分的结构示意图,M、N两筒间密闭了一定质量的气体,M可沿N的内壁上下滑动,设筒内气体不与外界发生热交换,当人从椅子上离开,M向上滑动的过程中()A.外界对气体做功,气体内能增大B.外界对气体做功,气体内能减小C.气体对外界做功,气体内能增大D.气体对外界做功,气体内能减小4.下面几幅图中,有关功与内能的说法中正确的是A.图1中迅速下压活塞,棉花会燃烧起来,说明热传递可以使物体的温度升高B.图2中重物下落带动叶片转动,由于叶片向水传递热量而使水的温度升高C.图3中降落的重物使发电机发电,电流对水做功使水的温度升高D.做功和热传递都可以使物体的内能增加5.一定质量的理想气体在某一过程中,气体对外界做功1.6×104J,从外界吸收热量3.8×104J,则该理想气体的()A.温度降低,密度减小B.温度降低,密度增大C.温度升高,密度减小D.温度升高,密度增大6.下列说法正确的是A.物体吸收热量,其内能一定增加B.不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响C.第二类永动机不能制成是因为违背了能量守恒定律D.热量能够自发地从低温物体传递到高温物体7.下列有关热学的叙述中,正确的是()A.同一温度下,无论是氢气还是氮气,它们分子速率都呈现出“中间多,两头少”的分布规律,且分子平均速率相同B.在绝热条件下压缩理想气体,则其内能不一定增加C.布朗运动是指悬浮在液体中的花粉分子的无规则热运动D.液体表面层分子间距离大于液体内部分子间距离,故液体表面存在张力8.关于热力学定律,下列说法正确的是()A.在一定条件下物体的温度可以降到0 KB.物体从单一热源吸收的热量可全部用于做功C.吸收了热量的物体,其内能一定增加D.压缩气体气体的温度一定升高9.带有活塞的汽缸内封闭一定量的理想气体.气体开始处于状态a;然后经过过程ab到达状态b或经过过程ac到状态c,b、c状态温度相同,如V﹣T图所示.设气体在状态b 和状态c的压强分别为P b和P c,在过程ab和ac中吸收的热量分别为Q ab和Q ac,则()A.p b>p c,Q ab>Q ac B.p b>p c,Q ab<Q acC.p b<p c,Q ab<Q ac D.p b<p c,Q ab>Q ac10.一定质量理想气体的状态经历了如图所示的ab、bc、cd、da四个过程,其中ab与竖直轴平行,bc的延长线通过原点,cd与水平轴平行,da与bc平行,则 ( )A.ab过程中气体温度不变,气体不吸热也不放热B.bc过程中气体体积保持不变,气体放出热量C.cd过程中气体体积不断增加,气体吸收热量D.da过程中气体体积保持不变,气体放出热量11.一个气泡从恒温水槽的底部缓慢向上浮起,(若不计气泡内空气分子势能的变化)则()A.气泡对外做功,内能不变,同时放热B.气泡对外做功,内能不变,同时吸热C.气泡内能减少,同时放热D.气泡内能不变,不吸热也不放热12.一定质量的理想气体,从状态a开始,经历ab、bc、ca三个过程回到原状态,其V-T 图像如图所示,其中图线ab的反向延长线过坐标原点O,图线bc平行于T轴,图线ca平行于V轴,则()A.ab过程中气体压强不变,气体从外界吸热B.bc过程中气体体积不变,气体不吸热也不放热C.ca过程中气体温度不变,气体从外界吸热D.整个变化过程中气体的内能先减少后增加13.如图所示,绝热容器中间用隔板隔开,左侧装有气体,右侧为真空.现将隔板抽掉,让左侧气体自由膨胀到右侧直至平衡,在此过程中()A.气体对外界做功,温度降低,内能减少B.气体对外界做功,温度不变,内能不变C.气体不做功,温度不变,内能不变D.气体不做功,温度不变,内能减少14.A、B两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银槽组成,除玻璃泡在管上的位置不同外,其他条件都相同.将两管抽成真空后,开口向下竖直插人水银槽中(插入过程没有空气进入管内),水银柱上升至图示位置停止.假设这一过程水银与外界没有热交换,则下列说法正确的是A.A中水银的内能增量大于B中水银的内能增量B.B中水银的内能增量大于A中水银的内能增量C.A和B中水银体积保持不变,故内能增量相同D.A和B中水银温度始终相同,故内能增量相同15.把水和酒精混合后,用蒸发的方式又可以分开,然后液化恢复到原来的状态,这说明()A.扩散现象没有方向B.将水和酒精分开时,引起了其他变化,故扩散具有方向性C.将水和酒精分开时,并没有引起化学变化,故扩散现象没有方向性D.用本题的实验,无法说明扩散现象是否具有方向性16.如图所示,导热的气缸开口向下,缸内活塞封闭了一定质量的理想气体,活塞可自由滑动且不漏气,活塞下挂一个砂桶,砂桶装满砂子时,活塞恰好静止,现将砂桶底部钻一个小洞,让细砂慢慢漏出.气缸外部温度恒定不变,则A.缸内的气体压强减小,内能减小B.缸内的气体压强增大,内能减小C.缸内的气体压强增大,内能不变D.外界对气体做功,缸内的气体内能增加17.关于热力学定律,下列说法中正确的是()A.可以从单一热源吸收热量,使之完全变为功B.理想气体的等压膨胀过程一定放热C.热量不可能从低温物体传递到高温物体D.压缩气体做功,该气体的内能一定增加18.下列说法正确的是()A.一个绝热容器中盛有气体,假设把气体中速率很大的如大于v的分子全部取走,则气体的温度会下降,此后气体中不再存在速率大于v的分子B.温度高的物体的分子平均动能一定大,内能也一定大C.气体压强的大小跟气体分子的平均动能、分子的密集程度、气体的重力都有关D.熵值越大,代表系统分子运动越无序19.如图所示为一个斯特林热气机理想循环的V–T图像,一定质量理想气体从状态A依次经过状态B、C和D后再回到状态A完成一个循环过程,则()A.气体从状态A变化到状态C的过程当中,气体的内能减小B.气体从状态C变化到状态D的过程中,气体分子单位时间内碰撞容器壁的次数增多C.气体从状态D变化到状态A的过程中,气体放热D.气体从状态D变化到状态A的过程中,气体吸热20.如图所示为一定质量的理想气体状态的两段变化过程,一个从c到b,另一个是从a 到b,其中c与a的温度相同,比较两段变化过程,则()A.c到b过程气体放出热量较多B.a到b过程气体放出热量较多C.c到b过程内能减少较多D.a到b过程内能减少较多21.一定量的理想气体从状态a开始,经历三个过程ab、bc、ca回到原状态,其p-T图象如图所示.下列判断正确的是()A.过程ab中气体一定吸热B.过程bc中气体既不吸热也不放热C.过程ca中外界对气体所做的功等于气体所放的热D.a、b和c三个状态中,状态a分子的平均动能最大22.气体膨胀对外做功100 J,同时从外界吸收了120 J的热量,它的内能的变化是A.减小20 J B.增大20 J C.减小220 J D.增大220 J 23.“绿色、环保、低碳”是当今世界的关键词,“低碳”要求我们节约及高效利用能源。
高考物理选考热学计算题(五)含答案与解析
高考物理选考热学计算题(五)组卷老师:莫老师评卷人得分一.计算题(共50小题)1.如图所示,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的压强升到p A′=2p0,同时保持B中气体的温度不变.求此时A中气体温度T A.2.如图甲所示,一内壁光滑且导热性能很好的气缸倒立时,一薄活塞恰好在缸口,缸内封闭一定量的理想气体;现在将气缸正立,稳定后活塞恰好静止于气缸的中间位置,如图乙所示.已知气缸的横截面积为S,气缸的深度为h,大气压强为P0,重力加速度为g,设周围环境的温度保持不变.求:①活塞的质量m;②整个过程中缸内气体放出的热量Q.3.如图所示是我国南海舰队潜艇,它水下速度为20节,最大下潜深度为300m.某次在南海执行任务时位于水面下h=150m处,艇上有一个容积V1=2m3的贮气钢筒,筒内贮有压缩空气,其压强p1=200atm,每次将筒内一部分空气压入水箱(水箱有排水孔与海水相连),排出海水△V=0.9m3,当贮气钢筒中的压强降低到p2=20atm时,需重新充气.设潜艇保持水面下深度不变,在排水过程中气体的温度不变,水面上空气压强p0=1atm,取海水密度ρ=1×103kg/m3,g=10m/s2,1atm=1×105Pa.求该贮气钢筒重新充气前可将筒内空气压入水箱的次数.4.一瓶中储存压强为100atm的氧气50L,实验室每天消耗1atm的氧气190L.当氧气瓶中的压强降低到5atm时,需重新充气.若氧气的温度保持不变,求这瓶氧气重新充气前可供该实验室使用多少天?5.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg.左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm.现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求:①粗管中气体的最终压强;②活塞推动的距离.6.如图所示,一定质量的理想气体,从状态B开始以B→A→C→B的顺序变化.已知气体在状态A时的温度为t(单位为℃),气体从状态B→A的过程中向外放热为Q,试求:①气体在C状态时的温度t C;②气体实现从状态B→A→C→B的变化过程中,对外做的功.7.有一个容积V=30L的氧气瓶,由于用气,氧气瓶中的压强由P1=50atm降到P2=30atm,温度始终保持0℃,已知标注状况下1mol气体的体积是22.4L,则使用掉的氧气分子数为多少?(已知阿伏伽德罗常数N A=6.0×1023mol﹣1,结果保留两位有效数字)8.如图所示,在倾角为30°的足够长光滑斜面上有一长为L=l00cm、开口向上的薄壁玻璃管,用长为l1=50cm的水银柱封闭一段空气柱。
高考物理总复习 专题五 动力学、动量和能量观点的综合应用
专题五动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.考点一碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m.P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L.物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . 教你解决问题第一步:审条件 挖隐含①“与静止的P 2发生碰撞,碰撞时间极短”隐含→ P 的速度不变. ②“碰撞后P 1与P 2粘连在一起”隐含→ P 1、P 2获得共同速度. ③“P 压缩弹簧后被弹回并停在A 点”隐含→ P 1、P 2、P 三者有共同速度及整个碰撞过程中的弹性势能变化为零.第二步:审情景 建模型 ①P 1与P 2碰撞建模→ 碰撞模型.②P 与P 2之间的相互作用建模→ 滑块—滑板模型. 第三步:审过程 选规律 ①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x 及弹性势能E p .模型3“子弹打木块”模型 1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m+M)v,Q热=fL相对=12mv02-12(M+m)v2.(2)若子弹穿出木块,有mv0=mv1+Mv2,Q热=fL相对=1 2mv−0212mv−1212Mv22.例3.(多选)如图所示,一质量m2=0.25 kg的平顶小车,车顶右端放一质量m3=0.30 kg的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m1=0.05 kg 的子弹以水平速度v0=18 m/s射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g取10ms2.下列分析正确的是( )A.小物体在小车上相对小车滑行的时间为13sB.最后小物体与小车的共同速度为3 m/sC.小车的最小长度为1.0 mD.小车对小物体的摩擦力的冲量为0.45 N·s跟进训练1.[黑龙江哈尔滨模拟](多选)如图所示,两个小球A、B大小相等,质量分布均匀,分别为m1、m2,m1<m2,A、B与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A球心等高处水平快速向右敲击A,作用于A的冲量大小为I1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B球心等高处水平快速向左敲击B,作用于B的冲量大小为I2,I1=I2,则下列说法正确的是( )A.若两次锤子敲击完成瞬间,A、B两球获得的动量大小分别为p1和p2,则p1=p2B.若两次锤子敲击分别对A、B两球做的功为W1和W2,则W1=W2C.若两次弹簧压缩到最短时的长度分别为L1和L2,则L1<L2D.若两次弹簧压缩到最短时,A、弹簧、B的共同速度大小分别为v1和v2,则v1>v22.如图甲所示,质量为M=3.0 kg的平板小车C静止在光滑的水平面上,在t=0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v t图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4.如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D 端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用 关键能力·分层突破例1 解析:由题意可知,当b 的速度最小时,弹簧恰好恢复原长,设此时a 的速度最大为v ,由动量守恒定律和机械能守恒定律得:m b v 0=m b v 1+m a v ,12m b v 02=12m b v 12+12m a v 2,代入数据解得:m a =0.5 kg ,v =4m/s ,故A 错误,B 正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v 0=(m a +m b )v 2,E p =12m b v −0212(ma + mb)v 22,代入数据解得:E p =1.5 J ,故C 正确;在a 离开挡板前,a 、b 及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D 错误.答案:BC例2 解析:(1)P 1、P 2碰撞瞬间,P 的速度不受影响,根据动量守恒mv 0=2mv 1,解得v 1=v02最终三个物体具有共同速度,根据动量守恒: 3mv 0=4mv 2, 解得v 2=34v 0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:12×2mv +1212×2mv −0212×4mv 22=2mgμ(L+x)×2解得x =v 0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+答案:(1)v0234v0(2)v0232μg-L 116mv02例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p 22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v02=12(m1+m2)v2+E p,得E p=m1m22(m1+m2)v02,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:=3 m,=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2车的长度至少为l=x A+x B+例 4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+1212m2v22解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v ,距水平面的高度为h ,则有m 1v 1=(m 1+M )v ,12m 1v 12=12(m 1+M)v 2+m 1gh解得h =0.1 m由于h =R(1-cos 60°),所以物块P 恰好不能从滑块左侧冲出,假设成立,之后物块P 沿弧形槽从滑块上滑下,设物块P 返回到水平面时的速度为v 3、滑块的速度为v 4,由动量守恒定律和机械能守恒定律得m 1v 1=m 1v 3+Mv 4,12m 1v 12=12m 1v +3212Mv 42 解得v 3=0,v 4=2 m/s.(2)若Q 恰能经过d 点,则Q 在d 点的速度v d 满足m 2g =m 2v d2rQ 从b 点运动到半圆轨道最高点d 的过程,由动能定理有-μm 2gx bc -2m 2gr =12m 2v −d 212m2v 22解得Q 恰能经过半圆轨道最高点时μ=0.3若Q 恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm 2g 解得Q 恰能运动到与半圆轨道圆心等高点时μ=0.6 若Q 恰能到达c 点,则由动能定理得-μm 2g 解得Q 恰能运动到c 点时μ=0.8分析可知,要使Q 能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C 点时,有2mg +mg =m v C2R,解得v C =√3gR .小球从A 到C ,由机械能守恒定律得12mv 02=12mv C 2+mg·2R,联立解得v 0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12mv C2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR(2)R。
高考物理新力学知识点之理想气体经典测试题及解析(5)
高考物理新力学知识点之理想气体经典测试题及解析(5)一、选择题1.如图所示为一定质量的理想气体压强随热力学温度变化的图象,气体经历了ab、bc、cd、da四个过程。
其中bc的延长线经过原点,ab与竖直轴平行,cd与水平轴平行,ad与bc平行。
则气体在A.ab过程中对外界做功B.bc过程中从外界吸收热量C.cd过程中内能保持不变D.da过程中体积保持不变2.一定质量的理想气体,当温度保持不变时,压缩体积,气体的压强会变大,这是因为气体分子的()A.平均动能增大B.平均动能减小C.密集程度增加D.密集程度减小3.对于一定质量的理想气体,下列说法正确的是 ( )A.当气体温度升高,气体的压强一定增大B.当气体温度升高,气体的内能可能增大也可能减小C.当外界对气体做功,气体的内能一定增大D.当气体在绝热条件下膨胀,气体的温度一定降低4.关于下列现象的说法正确的是()A.甲图说明分子间存在间隙B.乙图在用油膜法测分子大小时,多撒痱子粉比少撒好C.丙图说明,气体压强的大小既与分子平均动能有关,也与分子的密集程度有关D.丁图水黾停在水面上的原因是水黾受到了水的浮力作用5.某自行车轮胎的容积为V,里面已有压强为p0的空气,现在要使轮胎内的气压增大到p,设充气过程为等温过程,空气可看做理想气体,轮胎容积保持不变,则还要向轮胎充入温度相同、压强也是p0的空气的体积为( )A . VB .VC.(+1)V D.(-1)V6.一定质量的理想气体从状态A变化到状态B再变化到状态C,其p V-图象如图所示,已知该气体在状态A时的温度为27℃,则()A.该气体在状态B时的温度300KB.该气体在状态C时的温度600KC.该气体在状态A和状态C内能相等D.该气体从状态A经B再到C的全过程中从外界吸热7.下列关于热学问题的说法正确的是()A.一个孤立系统总是从熵小的状态向熵大的状态发展,熵值较大代表着较为有序B.当人们感到潮湿时,空气的绝对湿度一定较大C..某气体的摩尔质量为M、密度为ρ,用N A表示阿伏加德罗常数,每个气体分子的质量m0,每个气体分子的体积V0,则m0=AMN,V0=0mρD.密封在容积不变的容器内的气体,若温度升高,则气体分子对器壁单位面积上的平均作用力增大8.一定质量的理想气体,经图所示方向发生状态变化,在此过程中,下列叙述正确的是()A.1→2气体体积增大B.3→1气体体积增大C.2→3气体体积不变D.3→1→2气体体积不断减小9.如图所示,两个容器A、B,用截面均匀的水平细玻璃管相连,A、B所装气体的温度分别为17℃和27℃,水银柱在管中央平衡,如果两边气体温度都升高10℃,则水银柱将()A.向右移动B.向左移动C.不动D.条件不足,不能确定10.如图,竖直放置的右管上端开口的U型玻璃管内用水银封闭了一段气体,右管内水银面高于左管内水银面,若U型管匀减速下降,管内气体()A.压强增大,体积增大B.压强增大,体积减小C.压强减小,体积增大D.压强减小,体积减小11.两端封闭的内径均匀的直玻璃管,水平放置,如图所示,V左=V右,温度均为20℃,现将右端空气柱降为0℃,左端空气柱降为10℃,则管中水银柱将A.不动B.向左移动C.向右移动D.无法确定是否移动12.如图所示,一根竖直的弾簧支持着一倒立气缸内的活塞,使气缸处于静止状态。
12力学综合计算题-2021年高考6套物理真题分类解析(解析版)
力学综合计算题(必修第一册第二册)(解析版)—2021年高考物理真题(6套)分类解析1.全国甲卷第11题. 如图,一倾角为θ的光滑斜面上有50个减速带(图中未完全画出),相邻减速带间的距离均为d ,减速带的宽度远小于d ;一质量为m 的无动力小车(可视为质点)从距第一个减速带L 处由静止释放。
已知小车通过减速带损失的机械能与到达减速带时的速度有关。
观察发现,小车通过第30个减速带后,在相邻减速带间的平均速度均相同。
小车通过第50个减速带后立刻进入与斜面光滑连接的水平地面,继续滑行距离s 后停下。
已知小车与地面间的动摩擦因数为μ,重力加速度大小为g 。
(1)求小车通过第30个减速带后,经过每一个减速带时损失的机械能; (2)求小车通过前30个减速带的过程中在每一个减速带上平均损失的机械能;(3)若小车在前30个减速带上平均每一个损失的机械能大于之后每一个减速带上损失的机械能,则L 应满足什么条件?【答案】(1)sin mgd θ;(2)()29sin 30mg L d mgs θμ+-;(3)sin s L d μθ>+ 【解析】(1)由题意可知小车在光滑斜面上滑行时根据牛顿第二定律有sin mg ma θ=设小车通过第30个减速带后速度为v 1,到达第31个减速带时的速度为v 2,则有22212v v ad -=因为小车通过第30个减速带后,在相邻减速带间的平均速度均相同,故后面过减速带后的速度与到达下一个减速带均为v 1和v 2;经过每一个减速带时损失的机械能为22211122E mv mv ∆=- 联立以上各式解得sin E mgd θ∆=(2)由(1)知小车通过第50个减速带后的速度为v 1,则在水平地面上根据动能定理有21102mgs mv μ-=- 从小车开始下滑到通过第30个减速带,根据动能定理有()21129sin Δ2mg L d E mv θ+-=总(易错点:此式中注意是29不是30) 联立解得 ()Δ=29sin E mg L d mgs θμ+-总故在每一个减速带上平均损失的机械能为()29sin 3030mg L d mgs E E θμ+-∆'∆==总 (3)由题意可知 E E '∆>∆可得sin s L d μθ>+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理力学计算题(五)组卷老师:莫老师一.计算题(共50小题)1.如图所示,质量为m3=2kg的滑道静止在光滑的水平面上,滑道的AB部分是半径为R=0.15m的四分之一圆弧,圆心O在B点正上方,其他部分水平,在滑道右侧固定一轻弹簧,滑道除CD部分粗糙外其他部分均光滑.质量为m2=3kg 的物体2(可视为质点)放在滑道上的B点,现让质量为m1=1kg的物体1(可视为质点)自A点上方R处由静止释放.两物体在滑道上的C点相碰后粘在一起(g=10m/s2),求:(1)物体1第一次到达B点时的速度大小;(2)B点和C点之间的距离;(3)若CD=0.06m,两物体与滑道CD部分间的动摩擦因数都为μ=0.15,则两物体最后一次压缩弹簧时,求弹簧的最大弹性势能的大小.2.如图所示,质量m=1.1kg的物体(可视为质点)用细绳拴住,放在水平传送带的右端,物体和传送带之间的动摩擦因数μ=0.5,传送带的长度L=5m,当传送带以v=5m/s的速度做逆时针转动时,绳与水平方向的夹角θ=37°.已知:g=l0m/s2,sin37°=0.6,cos37°=0.8.求:(1)传送带稳定运动时绳子的拉力T;(2)某时刻剪断绳子,求物体运动至传送带最左端所用时间.3.如图,粗糙直轨道AB长s=1.6m,与水平方向的夹角θ=37°;曲线轨道BC光滑且足够长,它们在B处光滑连接.一质量m=0.2kg的小环静止在A点,在平行于斜面向上的恒定拉力F的作用下,经过t=0.8s运动到B点,然后撤去拉力F.小环与斜面间动摩擦因数μ=0.4.(g取10m/s2,sin37°=0.6,cos37°=0.8)求:(1)拉力F的大小;(2)小环沿BC轨道上升的最大高度h.4.如图所示,一倾斜的传送带,上、下两端相距L=5m,倾角α=37°,将一物块轻放在传送带下端,让其由静止从传送带底端向上运动,物块运动到上端需要的时间为t=5s,传送带沿顺时针方向转动,速度大小为2m/s,重力加速度g取10m/s2,求(1)物块与传送带间的动摩擦因数,(2)若将传送带沿逆时针方向转动,速度大小不变,再将另一物块轻轻放在传送带的上端,让其由静止从传送带上端向下运动,物块与传送带间的动摩擦因数为0.5,则该物块从传送带上端运动到下端所用的时间为多少?5.如图所示,可看成质点的A物体叠放在上表面光滑的B物体上,一起以v0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C发生碰撞,碰撞后B、C的速度相同,B、C的上表面相平且B、C不粘连,A滑上C 后恰好能到达C板的右端.已知A、B质量相等,C的质量为A的质量的2倍,木板C长为L,重力加速度为g.求:(1)A物体与木板C上表面间的动摩擦因数;(2)当A刚到C的右端时,BC相距多远?6.如图所示,木块m2静止在高h=0.8m的水平桌面的最右端,木块m1静止在距m2左侧s0=5m处,现木块m1在水平拉力F作用下由静止开始沿水平桌面向右移动,与m2碰前瞬间碰撞撤去F,m1、m2发生弹性正碰,碰后m2落在水平地面上,落点距桌面右端水平距离s=1.6m.已知m1=0.2kg,m2=0.3kg,m1与桌面的动摩擦因素μ=0.4.(两木块都可以视为质点,g=10m/s2)求:(1)碰后瞬间m2的速度是多少?(2)m1碰撞前后的速度分别是多少?(3)水平拉力F的大小?7.如图所示,一质量m=1kg的小物块(可视为质点),放置在质量M=4kg的长木板左侧,长木板放置在光滑的水平面上。
初始时,长木板与物块一起以水平速度v0=2m/s向左匀速运动。
在长木板的左端上方固定着一障碍物A,当物块运动到障碍物A处时与A发生弹性碰撞(碰撞时间极短,无机械能损失),而长木板可继续向左运动。
取重力加速度g=10m/s2。
(1)设长木板足够长,求物块与障碍物第一次碰撞后,物块与长木板所能获得的共同速率;(2)设长木板足够长,物块与障碍物第一次碰撞后,物块向右运动所能达到的最大距离是S=0.4m,求物块与长木板间的动摩擦因数以及此过程中长木板运动的加速度的大小;(3)要使物块不会从长木板上滑落,长木板至少应为多长?整个过程中物块与长木板系统产生的内能。
8.在某种种介质中,S1、S2处有相距4m的两个波源,沿垂直纸面方向做简谐振动,其周期分别为T1=0.8s和T2=0.4s,振幅分别为A1=2cm和A2=lcm,在该介质中形成的简谐波的波速为v=5m/s.S处有一质点,它到S1的距离为3m,且SS1⊥S1S2,在t=0时刻,两波源同时开始垂直纸面向外振动,试求:(1)t=0时刻振动传到S处的时间差;(2)t=l0s时,s处质点离开平衡位置的位移大小.9.如图所示,上表面光滑的”L“形木板B锁定在倾角为37°的足够长斜面上,将一小物块A从木板B的中点轻轻释放,同时解除木板B的锁定,此后A和B发生碰撞,碰撞过程时间很短且不计能量损失,已知物块A的质量m=1kg,木板B 的质量M=4kg,板长L=6m,木板与斜面间的动摩擦因数μ=0.6,最大静摩擦力等于滑动摩擦力,g=10m/s2,sin37°=0.6,试问:(1)第一次碰撞后瞬间A和B的速度;(2)在第一次碰撞后到第二次碰撞前的过程中,A距B的最大距离和重力对A 做的功;(3)试分析说明第二次碰撞后小物体能否离开木板.10.甲、乙两质点从同一位置由静止出发做加速直线运动,加速度方向相同,0﹣t0时间内,甲的加速度大小为a0,乙的加速度大小为3a0.t0时刻,甲的加速度大小突变为3a0,乙的加速度大小突变为a0,以后甲、乙两质点的加速度不再发生变化.求(1)甲、乙两质点从开始运动到速度相等时经历的时间及速度相等时两者的距离;(2)甲、乙两质点从开始运动到相遇所经历的时间.11.如图所示,一高为H=8.75m的高台上固定着一竖直硬杆,硬杆上端点A和地面上某点C间紧绷着一钢绳AC,且AC与水平方向夹角为45o.在某次消防演习中,消防队员王壹从高台上的B点以5m/s的初速度水平跳出,下落过程中恰好能抓住钢绳AC,而后顺着钢绳减速滑下,且到达地面时速度刚好减为零.若整个过程将消防队员视为质点,不考虑他在空中运动所受的阻力、与钢绳接触时损失的能量及钢绳的形变,g取10m/s2.求:(1)消防队员抓住钢绳瞬间的竖直速度;(2)硬杆AB的高度h;(3)王壹沿钢绳下滑时所受阻力与重力的比例.12.如图所示,在光滑的水平地面上,相距L=10m的A、B两个小球均以v0=10m/s 向右运动,随后两球相继滑上倾角为30°的足够长的光滑斜坡,地面与斜坡平滑连接,取g=10m/s.求:(1)B球刚要滑上斜坡时A、B两球的距离是多少;(2)A球滑上斜坡后经过多长时间两球相遇.13.蓝牙(Bluetooch)是一种无线技术标准,可实现固定设备、移动设备和楼宇个人城网之间的短距离数据交换,某同学用安装有蓝牙设备的玩具车A、B进行实验:在距离为d=6m的两条平直轨道上,A车自O1点从静止开始以加速度a=2m/s2匀加速运动,B车自O2点前方s=3m处的O3点以v0=6m/s匀速直线运动,O1O2连线与轨道垂直,求两车能通信多长时间?(已知当两车间的距离超过s1=10m时,两车无法实现通信,忽略信号传递的时间)14.如图所示,底端切线水平且竖直放置的光滑圆弧轨道的半径为L,圆心在O点,其轨道底端P距地面的高度及与右侧竖直墙的距离均为L,Q为圆弧轨道上的一点,连线OQ与竖直方向的夹角为60°.现将一质量为m,可视为质点的小球从Q点由静止释放,不计空气阻力,重力加速度为g,求:(1)小球在P点时受到的支持力大小;(2)小球第一次与墙壁碰撞时的速度大小.15.如图所示,在粗糙的水平面上放有距离9.5m的两个同种材料制成的物体A 和B,质量分别为m A=2kg,m B=1kg,A与地面间的动摩擦因数为0.1,现给A一个瞬间冲量使A以10m/s的初速度向静止的B运动并与B发生弹性正碰(碰撞时间极短),求:(1)A与B碰撞前的瞬间A的速度?(2)碰撞后的瞬间A与B的速度分别为多少?16.一长木板在光滑水平地面上匀速运动,在t=0时刻将一物块无初速轻放到木板上,此后长木板运动的速度﹣时间图象如图所示.已知长木板的质量M=2kg,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取g=10m/s2,求:(1)物块的质量m;(2)这一过程中长木板和物块的内能增加了多少?17.如图所示,在水平桌面上放置一质量为M且够长的木板,木板上再叠放一质量为m的滑块,木板与桌面间的动摩擦因数为µ1,滑块与木板间的动摩擦因数为µ2,开始时滑块与木板均静止.今在木板上施加一水平拉力F,它随时间t 的变化关系为F=kt,k 为已知的比例系数.假设滑动摩擦力等于最大静摩擦力,求滑块刚好开始在木板上滑动时,(1)拉力作用的时间;(2)木板的速度.18.如图所示,质量均为m=3kg的物块A、B紧挨着放置在粗糙的水平地面上,物块A的左侧连接一劲度系数为k=100N/m的轻质弹簧,弹簧另一端固定在竖直墙壁上,开始时两物块压紧弹簧并恰好处于静止状态,现使物块B在水平外力F 作用下向右做a=2m/s2的匀加速直线运动直至与A分离,已知两物块与地面间的动摩擦因数均为0.5,最大静摩擦力等于滑动摩擦力,g=10m/s2,求:(1)物块A、B静止时,弹簧的形变量;(2)物块A、B分离时,所加外力F的大小;(3)物块A、B由静止开始运动到分离作用的时间.19.如图所示为倾角θ=30°的固定斜面ABC,斜面AB的长度L=1.0m.质量为m 的物体P静止在斜面顶端A点,质量为3m的物体Q静止在斜面的中点D,两物体与斜面间的动摩擦因数相同.对物体P施加一瞬间作用,使其获得沿斜面向下的初速度v0=10m/s后开始匀速下滑,之后与物体Q发生弹性正碰.两物体均可视为质点,重力加速度g=10m/s2,求:(1)物体与斜面间的动摩擦因数μ;(2)碰撞发生后,物体Q运动到斜面底端经历的时间t.20.AB是竖直平面内的四分之一圆弧形轨道,在下端B点与水平轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑.已知圆轨道半径为R,小球的质量为m,不计各处摩擦.求:(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R时的速度大小和方向.(3)小球经过圆弧轨道的B点和水平轨道的C点时,所受轨道支持力各是多大.21.某缓冲装置的理想模型如图所示,劲度系数足够大的轻质弹簧与轻杆相连,轻杆可在固定的竖直槽内移动,与槽间的滑动摩擦力恒为F f,轻杆向下移动不超过l时,装置可安全工作.一质量为m的重物若从离弹簧上端h高处由静止自由下落碰撞弹簧,将导致轻杆向下移动了.轻杆与槽间的最大静摩擦力等于滑动摩擦力,且不计小车与地面的摩擦.已知重力加速度为g.(1)若弹簧的进度系数为k,求轻杆开始移动时,弹簧的压缩量x;(2)求为使装置安全工作,允许该重物下落的最大高度H.22.学校开展自制玩具汽车速度赛,比赛分为30m和50m两项,比赛在水平操场举行,所有参赛车从同一起跑线同时启动,按到达终点的先后顺序排定名次.某同学有两辆玩具车,甲车可在启动后立即以额定功率加速运动;乙车启动后可保持2m/s2的加速度做匀加速运动直到其速度达15m/s.两车进行模拟测试时发现,同时从起跑线启动后,经6s两车到达同一位置.试通过计算、分析判断该同学应分别以哪一辆玩具车参加30m和50m的比赛.23.如图所示,光滑水平面上有一质量M=3.0kg的平板车,车的上表面右侧是一段长L=0.5m的水平轨道,水平轨道左侧是一半径R=0.25m的圆弧轨道,圆弧轨道与水平轨道在O′点相切.车右端固定一个尺寸可以忽略侧,处于锁定状态的压缩弹簧,一质量m=1.0kg的小物块体(可视为质点)紧靠弹簧,小物体与水平轨道间的动摩擦因数为0.4,整个装置处于静止状态,现将弹簧解除锁定,小物块被弹出,恰能到达圆弧轨道的最高点A,不考虑小物体与轻质弹簧碰撞时的能量损失,不计空气阻力,g取10m/s2.求:(1)解除锁定前轻弹簧的弹性势能;(2)小物块第二次经过O′点时的速度大小.24.如图甲所示,轨道ABC由一个倾角为θ=30°的斜面AB和一个水平面BC组成,一个可视为质点的质量为m的滑块从A点由静止开始下滑,滑块在轨道ABC上运动的过程中,受到水平向左的恒力F的作用、大小和时间的关系如图乙所示,经过时间t0滑块经过B点时无机械能损失,最后停在水平轨道BC上,滑块与轨道之间的动摩擦因数μ=0.5,已知重力加速度为g.求:(1)整个过程中滑块的运动时间;(2)整个过程中水平恒力F做的功;(3)整个过程中摩擦力做的功。