九年级概率知识点总结及题型汇总(吐血推荐)

合集下载

2024九年级数学上册“第二十五章 概率初步”必背知识点

2024九年级数学上册“第二十五章 概率初步”必背知识点

2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。

对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。

必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。

2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。

取值范围:概率的取值范围是0≤p≤1。

特别地,P(必然事件)=1,P(不可能事件)=0。

二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。

2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。

树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。

三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。

即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。

四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。

2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。

如果概率相等,则游戏公平;否则,游戏不公平。

五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。

示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。

解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。

因此,抽到红桃的概率为P=13/54。

2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。

新人教版九年级上册数学[随机事件和概率--知识点整理及重点题型梳理]

新人教版九年级上册数学[随机事件和概率--知识点整理及重点题型梳理]

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习随机事件和概率--知识讲解【学习目标】1、通过对生活中各种事件的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断;2、初步理解概率定义,通过具体情境了解概率意义.【要点梳理】要点一、必然事件、不可能事件和随机事件【 391875 名称:随机事件与概率初步:随机事件】1.定义:(1)必然事件在一定条件下重复进行试验时,在每次试验中必然会发生的事件,叫做必然事件.(2)不可能事件在每次试验中都不会发生的事件叫做不可能事件.(3)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.要点诠释:1.必然发生的事件和不可能发生的事件均为“确定事件”,随机事件又称为“不确定事件”;2.要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.要点二、概率的意义概率是从数量上刻画了一个随机事件发生的可能性的大小.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫做事件A的概率(probability),记为.要点诠释:(1)概率是频率的稳定值,而频率是概率的近似值;(2)概率反映了随机事件发生的可能性的大小;(3) 事件A的概率是一个大于等于0,且小于等于1的数,,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1.【典型例题】类型一、随机事件1.(1)指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?①若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在 90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.【答案与解析】①④是必然事件;②③是不可能事件;⑤⑥是随机事件.【总结升华】准确掌握定义,依据定义判别.【 391875 名称:随机事件与概率初步:经典例题1】举一反三【变式1】下列事件是必然事件的是( ).A.明天要下雨;B.打开电视机,正在直播足球比赛;C.抛掷一枚正方体骰子,掷得的点数不会小于1;D.买一张彩票,一定会中一等奖.【答案】C.【变式2】下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生;B.生活中,如果一个事件可能发生,那么它就是必然事件;C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生;D.生活中,如果一个事件不是必然事件,那么它就不可能发生.【答案】C.2. 在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球. 【答案与解析】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【总结升华】了解并掌握三种事件的区别和联系.举一反三【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.【答案】不公平,小于3的点数有1、2,大于3的点数有4、5、6,因此,它们的可能性是不同的,所以不公平.可设计掷出的点数为偶数时甲胜,掷出的点数为奇数时乙胜.类型二、概率3.(2015春•山亭区期末)一只口袋里放着4个红球、8个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.(1)取出红球的概率为,白球有多少个?(2)取出黑球的概率是多少?(3)再在原来的袋中放进多少个红球,能使取出红球的概率达到?【答案与解析】解:(1)设袋中有白球x个.由题意得:4+8+x=4×5,解得:x=8,答:白球有8个;(2)取出黑球的概率为:,答:取出黑球的概率是,(3)设再在原来的袋中放入y个红球.由题意得:3(4+y)=20+y,或2(4+y)=8+8,解得:y=4,答:再在原来的袋中放进4个红球,能使取出红球的概率达到.【总结升华】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.举一反三【变式】(2014•宁波模拟)中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.B.C.D.【答案】D.【 391875 名称:随机事件与概率初步:例6及思考题】投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率nm(1)计算表中各场次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少? 【答案与解析】 (1)投篮次数n 8 10 12 9 16 10 进球次数m 6897127进球频率nm0.75 0.8 0.75 0.78 0.75 0.7 (2)P(进球)≈0.75.【总结升华】频率和概率的关系:当大量重复试验时,频率会稳定在概率附近. 举一反三【变式】某射手在同一条件下进行射击,结果如下表所示:射击次数(n) 10 20 50 100 200 500 击中靶心次数(m)9 19 44 91 178 451 击中靶心频率()(1)计算表中击中靶心的各个频率(精确到0.01);(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)?【答案】 (1)击中靶心的各个频率依次是:0.90,0.95,0.88,0.91,0.89,0.90. (2)这个射手击中靶心的概率约为0.9.。

九年级概率知识点总结及题型汇总

九年级概率知识点总结及题型汇总

概率知识点总结及题型汇总一、确定事件:包括必然事件和不可能事件1、在一定条件下必然要发生的事件,叫做必然事件。

必然事件是指一定能发生的事件,或者说发生的可能性是100%;如:从一包红球中,随便取出一个球,一定是红球。

2、在一定条件下不可能发生的事件,叫做不可能事件。

不可能事件是指一定不能发生的事件,或者说发生的可能性是0,如:太阳从西边出来。

这是不可能事件。

3、必然事件的概率为1,不可能事件的概率为0二、随机事件在一定条件下可能发生也可能不发生的事件,叫做随机事件。

一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一个随机事件发生的可能性的大小用概率来表示。

三、例题:指出下列事件中,哪些是必然事件,哪些是随机事件,哪些是不可能事件,哪些是确定事件?①一个玻璃杯从一座高楼的第10层楼落到水泥地面上会摔破;②明天太阳从西方升起;③掷一枚硬币,正面朝上;④某人买彩票,连续两次中奖;⑤今天天气不好,飞机会晚些到达.解:必然事件是①;随机事件是③④⑤;不可能事件是②.确定事件是①②三、概率1、一般地,对于一个随机事件A ,把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A) .(1)一个事件在多次试验中发生的可能性,反映这个可能性大小的数值叫做这个事件发生的概率。

(2)概率指的是事件发生的可能性大小的的一个数值。

2、概率的求法:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m种结果,那么事件A 发生的概率为P(A) = mn.(1)一般地,所有情况的总概率之和为1。

(2)在一次实验中,可能出现的结果有限多个.(3)在一次实验中,各种结果发生的可能性相等.(4)概率从数量上刻画了一个随机事件发生的可能性的大小,事件发生的可能性越大,则它的概率越接近1;反之,事件发生的可能性越小,则它的概率越接近0。

(5)一个事件的概率取值:0≤P(A)≤1当这个事件为必然事件时,必然事件的概率为1,即P(必然事件)=1不可能事件的概率为0,即P(不可能事件)=0随机事件的概率:如果A为随机事件,则0<P(A)<1(6)可能性与概率的关系事件发生的可能性越大,它的概率越接近于1,事件发生的可能性越小,则它的概率越接近0.3、求概率的步骤:(1)列举出一次试验中的所有结果(n个);(2)找出其中事件A发生的结果(m个);(3)运用公式求事件A的概率:P(A) = mn.5、在求概率时,一定要是发生的可能性是相等的,即等可能性事件等可能性事件的两种特征:(1)出现的结果有限多个; (2)各结果发生的可能性相等;例1:图1指针在转动过程中,转到各区域的可能性相等,图3中的第一个图,指针在转动过程中,转到各区域的可能性不相等,由上图可知,在求概率时,一定是出现的可能性相等,反映到图上来说,一定是等分的。

九年级数学(RJ)-第27讲 概率--知识方法归纳

九年级数学(RJ)-第27讲 概率--知识方法归纳
事ห้องสมุดไป่ตู้类型
概率
例:下列4个事件:①异两数相加,和为负数;②异两数相减,差为正数;③异两数相乘,积为正数;④异两数相除,商为负数.其中必然事件是④,不可能事件是③.
确定性事件
1或0
必然事件
1
不可能事件
0
不确定性事件(随机事件)
0<P(A)<1
知识点二:随机事件概率的计算
4.随机事件概率的计算方法
(1)一步完成:直接列举法,运用概率公式计算;
(2)两步完成:列表法、画树状图法;
(3)两步以上:画树状图法
树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
知识点三:几何概率的计算*
5.几何概率的计算方法
求出阴影区域面积与总面积之比即为该事件发生的概率.
几何概率的考查一般结合特殊三边形、四边形或圆的基本性质,不一定把具体的面积求出来,只需要求出比值即可.
第27讲概率
一、知识清单梳理
知识点一:概率内容
关键点拨
1.概率及公式
定义
表示一个事件发生的可能性大小的数.
例:设有12只型相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是 .
概率公式
P(A)= (m表示试验中事件A出现的次数,n表示所有等可能出现的结果的次数).
2.用频率可以估计概率
一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么事件A发生的概率P(A)=p= .
例:在一个不透明的布袋中装有黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则摸到白球的概率为0.7.

九年级数学简单事件的概率知识点复习

九年级数学简单事件的概率知识点复习

数学中,简单事件的概率是一个非常重要的知识点。

在九年级数学中,我们通常会学习概率的基本概念、求解概率的方法以及概率问题的应用等。

一、基本概念1.试验和样本空间:试验是指具有明确结果的随机事件,样本空间是试验所有可能结果的集合。

2.随机事件和必然事件:随机事件是指试验的一些结果,必然事件是指在所有可能结果中一定会发生的事件。

3.事件的概率:事件A的概率是指事件A发生的可能性大小,用P(A)表示,0≤P(A)≤14.互斥事件和对立事件:互斥事件是指两个事件不可能同时发生,对立事件是指两个事件只可能发生一个。

二、求解概率的方法1.频率法:对一个试验进行多次重复,统计一些事件发生的次数与试验总次数之比,作为概率的估计值。

2.几何法:利用几何图形的面积来表示概率的大小,通常用于连续随机事件。

3.等可能概型法:试验的所有可能结果是等概率的,概率可以通过事件的个数与样本空间的个数之比来计算。

三、概率问题的应用1.古典概型问题:对于等可能概型的问题,可以使用排列组合等方法来求解概率。

2.排列和组合问题:在计算概率时,有时需要使用排列和组合的知识来求解事件的个数。

3.包含事件的概率:利用集合的概念,可以求解包含事件的概率,如事件的和、交、差等。

4.独立事件的概率:当两个事件发生与否互不影响时,可以将它们分别的概率相乘来计算它们同时发生的概率。

5.条件概率:当事件的发生依赖于另一个事件的已经发生时,可以使用条件概率来计算这一事件的概率。

6.超几何分布:在实际问题中,有时会涉及到不放回抽样的情况,可以使用超几何分布来求解相关的概率问题。

以上就是九年级数学中关于简单事件的概率的基本知识点的复习内容。

希望对你的学习有所帮助!。

北师版初三数学上册第三章概率知识点讲解附作业

北师版初三数学上册第三章概率知识点讲解附作业

北师版初三数学上册第三章概率知识点讲解附作业九年级(上册)第三章概率的进一步认识一.频数与频率频数:在数据统计中,每个对象出现的次数叫做频数,频率:每个对象出现的次数与总次数的比值为频率。

即 频数频率总次数概率的意义和大小:概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值。

必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件发生的概率在0与1之间。

频率与概率的区别:随着实验次数的增加,实验结果出现的频率逐渐趋于一个常数,则把这个常数看做实验结果的概率。

注意:①频率就是频率,频率不是概念②频率是通过实验得到的,概率就通过计算得到的③通过频率估计概率时,只看最多实验次数一项的频率,此项的频率即等于概率,而不是求所有频率的平均值二.通过实验运用稳定的频率来估计某一时间的概率在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近。

我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的频率。

三.利用画树状图或列表法求概率(重难点)①树状图的画法有两钟,可以横画也可以竖着画,其中树状图在画法上要写“开始”然后是“第一次”“第二次”“结果”②列表法的使用必须保证是两个元素的才方便使用,因为表格最方便的是使用两个轴向。

其中表格的类型有三种,一种是标准型,第二种是中间有一条斜线型,第三种是中间加数据型,比如和,奇数,偶数等四.概率题型①公平题②方程题③用频率估计概念④画树状图列表求概率(重点)⑤游戏设定1、在抛一枚质地均匀的硬币的实验中,如果没有硬币,则下列实验不能作为替代物的是()A、一枚均匀的骰子,B、瓶盖,C、两张相同的卡片,D、两张扑克牌2、密码锁的密码是一个四位数字的号码,每位上的数字都可以是0到9中的任一个,某人忘了密码的最后一位号码, 此人开锁时,随意拔动最后一位号码正好能把锁打开的概率是______.若此人忘了中间两位号码,随意拔动中间两位号码正好能把锁打开的概率是______.3、某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是.4、从一个装有2黄2黑的袋子里有放回地两次摸到的都是黑球的概率是 .5、如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是……( )A.1925; B.1025; C.625;D.5 256、为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计出这个湖里有______条鱼.7、在一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为了估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球()A、28个B、30个C、36个D、42个8、有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面,则甲、乙都不赢。

九年级概率知识点总结

九年级概率知识点总结

九年级概率知识点总结九年级概率知识点总结概率数学比较重点的知识,下面是小编整理的相关内容,欢迎阅读参考!1、统计科学记数法:一个大于10的数可以表示成A*10N的形式,其中1小于等于A小于10,N是正整数。

扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。

②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。

各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

近似数字和有效数字:①测量的结果都是近似的。

②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N 叫做这个N个数的算术平均数,记为X(上边一横)。

加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

②一组数据中出现次数最大的那个数据叫做这个组数据的众数。

③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的`信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。

调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。

②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。

九年级数学上册第二十五章概率初步知识点总结归纳完整版(带答案)

九年级数学上册第二十五章概率初步知识点总结归纳完整版(带答案)

九年级数学上册第二十五章概率初步知识点总结归纳完整版单选题1、小明在一次用“频率估计概率”的实验中,把对联“海水朝朝朝朝朝朝朝落,浮云长长长长长长长消”中的每个汉字分别写在同一种卡片上,然后把卡片无字的面朝上,随机抽取一张,并统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能是()A.抽出的是“朝”字B.抽出的是“长”字C.抽出的是独体字D.抽出的是带“氵”的字答案:D分析:根据利用频率估计概率得到实验的概率在0.2左右,再分别计算出四个选项中的概率,然后进行判断.根据拆线图知:概率在0.2左右,,不符合题意;A:抽出的是“朝”字的概率是720,不符合题意;B:抽出的是“长”字的概率是720,不符合题意;C:抽出的是独体字的概率是920=20%,符合题意,D:抽出的是带“氵”的字的概率为420故选:D.小提示:本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.2、分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()A .B .C .D .答案:A分析:结合图形求出各个阴影部分所占的比例即为小球落在阴影部分的概率,进行比较即可. 解:A 、小球落在阴影部分的概率为14; B 、小球落在阴影部分的概率为12; C 、小球落在阴影部分的概率为59;D 、小球落在阴影部分的概率为39=13; 小球落在阴影部分的概率最小的是A , 故选:A .小提示:题目主要考查概率的基本计算方法,理解题意,掌握概率的基本计算方法是解题关键.3、孟德尔被誉为现代遗传学之父,他通过豌豆杂交实验,发现了遗传学的基本规律.如图,纯种高茎豌豆和纯种矮茎豌豆杂交,子一代都是高茎豌豆,子一代种子种下去,自花传粉,获得的子二代豌豆由DD 、Dd 、dd 三种遗传因子控制.由此可知,子二代豌豆中含遗传因子D 的概率是( )A .14B .38C .12D .34 答案:D分析:画出遗传图解,即可得到答案. 解:画图如下:共有4种情况,而出现高茎的有3种结果, ∴子二代豌豆中含遗传因子D 的概率是34,故选:D小提示:本题主要考查了求概率,正确画出树状图是解答本题的关键.4、《田忌赛马》原文:忌数与齐诸公子驰逐重射.孙子见其马足不甚相远,马有上、中、下辈.于是孙子谓田忌曰:“君弟重射,臣能令君胜.”田忌信然之,与王及诸公子逐射千金.及临质,孙子曰:“今以君之下驷与彼上驷,取君上驷与彼中驷,取君中驷与彼下驷.”既驰三辈毕,而田忌一不胜而再胜,卒得王千金. 小建同学用数学模型来分析:齐王与田忌的上中下三个等级的三匹马的战斗力分别用数字标记如下表.每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.若齐王的三匹马和田忌的三匹马都随机出场,则田忌能赢得比赛的概率为( )A .2B .3C .4D .6答案:D分析:通过列表法或树状图把所有可能的情况列出来,然后利用概率公式求出事件发生的概率进行判断即可. 解:画树状图如图所示,从图中可以看出,齐王与田忌赛马,共有18种等可能的情况,其中田忌能赢有3种情况, P 田忌赢=318=19. 故选:D .小提示:本题考查了用列表法与树状图求概率,列表法适应于两步完成的事件概率的求法,树状图法适应于两步或两步以上完成的事件概率的求法.5、某人在做抛掷硬币试验中,抛掷n 次,正面朝上有m 次,若正面朝上的频率是P =mn ,则下列说法正确的是( )A .P 一定等于0.5B .多投一次,P 更接近0.5C .P 一定不等于0.5D .投掷次数逐渐增加,P 稳定在0.5附近 答案:D分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做此事件概率的估计值,从而可得答案.解:根据频率和概率的关系可知,投掷次数逐渐增加,P 稳定在0.5附近, 故选:D .小提示:考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生.6、在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49 B .13 C .29D .19答案:A分析:首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果, ∴两次都摸到黄球的概率为49,故选A .小提示:此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.7、如图,已知正六边形ABCDEF 内接于半径为r 的⊙O ,随机地往⊙O 内投一粒米,落在正六边形内的概率为( )A .3√32πB .√32πC .√34πD .以上答案都不对 答案:A分析:连接OB ,过点O 作OH ⊥AB 于点H ,由正六边形的特点可证得△OAB 是等边三角形,由特殊角的三角函数值可求出OH 的长,利用三角形的面积公式即可求出△OAB 的面积,进而可得出正六边形ABCDEF 的面积,即可得出结果.解:如图:连接OB ,过点O 作OH ⊥AB 于点H ,∵六边形ABCDEF 是正六边形, ∴∠AOB =60°, ∵OA =OB =r ,∴△OAB 是等边三角形, ∴AB =OA =OB =r ,∠OAB =60°,在Rt △OAH 中,OH =OA ⋅sin∠OAB =r ×√32=√32r , ∴S △OAB =12AB ⋅OH =12r ×√32r =√34r 2, ∴正六边形的面积=6×√34r 2=3√32r 2, ∵⊙O 的面积=πr 2,∴米粒落在正六边形内的概率为:3√32r 2πr 2=3√32π, 故选:A .小提示:本题考查了正多边形和圆、正六边形的性质、等边三角形的判定与性质、解直角三角形;熟练掌握正六边形的性质,通过作辅助线求出△OAB 的面积是解决问题的关键.8、如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C ,都可使小灯泡发光.任意闭合其中一个开关,则小灯泡发光的概率等于( ).A .12B .13C .14D .34答案:C分析:让小灯泡发光的情况数除以总情况数即为发光的概率. 解:共有4个开关,闭合其中一个开关,有4种情况, 只有闭合D 才能使灯泡发光, ∴小灯泡发光的概率=14. 故选:C .小提示:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.9、用图中两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色,即可配成紫色(若指针指在分界线上,则重转),则配成紫色的概率为( )A .16B .13C .12D .23答案:C分析:列表得出所有等可能的情况数,找出能配成紫色的情况数,即可求出所求的概率. 解:列表如下:3种, 则P (配成紫色)=36=12, 故选:C .小提示:本题考查的是用列表法或画树状图法求概率,熟练掌握概率=所求情况数与总情况数之比是解题的关键.10、从−√2,0,√4,π,3.5这五个数中,随机抽取1个,则抽到无理数的概率是( )A .15B .25C .35D .45答案:B解:这里的无理数有−√2,π,共2个, ∴P (抽到无理数)=25. 故选:B .小提示:本题主要考查了列举法求概率,解决问题的关键是熟练掌握用列举法求概率的方法. 填空题11、现有张正面分别标有数字0,1,2,3,4,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程x 2−2x +a2=0有实数根,且关于x 的分式方程1−ax x−2+2=12−x有解的概率为______.答案:16分析:根据一元二次方程有实数根,求出a 的取值范围,再根据分式方程有解,求出a 的取值范围,综合两个结果即可得出答案.一元二次方程x 2−2x +a2=0有实数根,∴4−4×a2≥0. ∴a ≤2, ∴a =0,1,2, 关于x 的分式方程1−ax x−2+2=12−x的解为:x =22−a,且2−a ≠0且x ≠2, 解得:a ≠2且a ≠1, ∴a =0,∴使得关于x 的一元二次方程,x 2−2x +a2=0有实数根,且关于x 的分式方程1−axx−2+2=12−x 有解的概率为:16. 所以答案是:16小提示:本题考查一元二次方程有实数根、分式方程有解和概率的计算公式,掌握一元二次方程有实数根和分式方程有解是解题的关键.12、盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x和y满足的关系式为 __.答案:y=53x分析:根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可.解:∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是38,∴可得关系式xx+y =38,∴x和y满足的关系式为y=53x.所以答案是:y=53x.小提示:此题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13、小林掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有1、2、3、4、5、6,他把第一次掷得的点数记为x,第二次掷得的点数记为y,则分别以这两次掷得的点数值为横、纵坐标的点A(x,y)恰好在直线y=−2x+8上的概率是______.答案:112分析:首先根据题意列出表格,然后由表格求得所有等可能的结果与点B(x,y)恰好在直线y=−2x+8上的情况,再利用概率公式求得答案.解:列表如下:),(2,4),(3,2),∴点B(x,y)恰好在直线y=−2x+8上的概率是:336=112.所以答案是:112.小提示:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14、口袋里装有红球和白球共10个,这些球除颜色外其余均相同.每次将球搅拌均匀,任意摸出一个球,记下颜色后再放回口袋里,摸了100次,其中发现有69次摸到白球,则白球的个数约为___________个.答案:7分析:利用频率估计概率可估计摸到白球的概率,再用口袋里球的总个数乘以摸到白球的频率即可得出答案.解:∵共摸了100次球,发现有69次摸到白球,∴摸到白球的概率为0.69,∴口袋中白球的个数大约10×0.69≈7(个).所以答案是:7.小提示:本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.15、现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.答案:316分析:画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=316.所以答案是:316.小提示:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.解答题16、2019年第六届世界互联网大会在桐乡乌镇召开,现从全校学生中选出15名同学参加会议相关服务工作,其中9名男生,6名女生.(1)若从这15名同学中随机选取1人作为联络员,求选到男生的概率.(2)若会议的某项服务工作只在A,B两位同学中选一人,准备用游戏的方式决定谁参加.游戏规则是:四个乒乓球上的数字分别为1,2,3,6(乒乓球只有数字不同,其余完全相同),将乒乓球放在不透明的纸箱中,从中任意摸取两个,若取到的两个乒乓球上的数字之和大于6则选A,否则选B,从是否公平的角度看,该游戏规则是否合理,用树状图或表格说明理由.答案:(1)35;(2)该游戏规则合理;理由见解析.分析:(1)直接根据概率公式计算;(2)先画出树状图,展示所有12种等可能的结果数,再找出两个数字之和大于6所占的结果数,计算出选A的概率和选B的概率,然后比较两概率大小判断该游戏规则是否合理.(1)选到男生的概率=915=35;(2)画树状图:共有12种等可能的结果数,其中两个数字之和大于6占6种,所以选A的概率=612=12,则选B的概率=1−12=12,由于选甲的概率等于选乙的概率,所以该游戏规则合理.小提示:本题考查列表法与树状图法,解题的关键是利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17、根据公安部交管局下发的通知,自2020年6月1日起,将在全国开展“一带一盔”安全守护行动,其中就要求骑行摩托车、电动车需要佩戴头盔.某日我市交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“30≤x<40”部分所对应扇形的圆心角的度数为_______;(3)在这50人中女性有______人;(4)若从年龄在“x<20”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到2名男性的概率.答案:(1)10;(2)180°;(3)18;(4)P(恰好抽到2名男性)=16.分析:(1)用50-4-25-8-3可求出m的值;(2)用360°乘以年龄在“30≤x<40”部分人数所占百分比即可得到结论;(3)分别求出每个年龄段女性人数,然后再相加即可;(4)年龄在“x<20”的4人中,男性有2人,女性有2人,分别用A1,A2表示男性,用B1,B2表示女性,然后画出树状图表示出所有等可能结果数,以及关注的事件数,然后利用概率公式进行求解即可.解:(1)m=50-4-25-8-3=10;所以答案是:10;(2)360°×2550=180°;所以答案是:180°;(3)在这50人中女性人数为:4×(1-50%)+10×(1-60%)+25×(1-60%)+8×(1-75%)+3×(1-100%)=2+4+10+2+0=18;所以答案是:18;(4)设两名男性用A1,A2表示,两名女性用B1,B2表示,根据题意:可画出树状图:或列表:2种,故P(恰好抽到2名男性)=212=16.小提示:此题考查了列表法或树状图法求概率以及频数分布表.用到的知识点为:概率=所求情况数与总情况数之比.18、从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).答案:(1)13(2)12分析:(1)利用例举法例举所有的等可能的情况数,再利用概率公式进行计算即可;(2)先列表得到所有的等可能的情况数以及符合条件的情况数,再利用概率公式进行计算即可.(1)解:由甲一定参加比赛,再从其余3名学生中任意选取1名,共有甲、乙,甲、丙,甲、丁三种等可能,符合条件的情况数有1种,∴甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是13.(2)列表如下:所以一定有乙的概率为:612=1 2 .小提示:本题考查的是利用例举法,列表的方法求解简单随机事件的概率,概率公式的应用,掌握“例举法与列表法求解概率”是解本题的关键.。

初中《概率》知识点归纳

初中《概率》知识点归纳

初中《概率》知识点归纳初中《概率》知识点归纳1、科学记数法:把一个数字写成的形式的记数方法。

2、统计图:形象地表示收集到的数据的图。

3、扇形统计图:用圆和扇形来表示总体和部分的关系,扇形大小反映部分占总体的百分比的大小;在扇形统计图中,每个部分占总体的百分比等于该部分对应的扇形圆心角与360°的比。

4、条形统计图:清楚地表示出每个项目的具体数目。

5、折线统计图:清楚地反映事物的变化情况。

6、确定事件包括:肯定会发生的必然事件和一定不会发生的不可能事件。

7、不确定事件:可能发生也可能不发生的事件;不确定事件发生的可能性大小不同;不确定。

8、事件的概率:可用事件结果除以所以可能结果求得理论概率。

9、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位为止的数字。

10、游戏双方公平:双方获胜的可能性相同。

11、算数平均数:简称“平均数”,最常用,受极端值得影响较大;加权平均数12、中位数:数据按大小排列,处于中间位置的数,计算简单,受极端值得影响较小。

13、众数:一组数据中出现次数最多的数据,受极端值得影响较小,跟其他数据关系不大。

中学数学概率知识点归纳214、平均数、众数、中位数都是数据的代表,刻画了一组数据的“平均水平”。

15、普查:为了一定目的对考察对象进行全面调查;考察对象全体叫总体,每个考察对象叫个体。

16、抽样调查:从总体中抽取部分个体进行调查;从总体中抽出的一部分个体叫样本(有代表性)。

17、随机调查:按机会均等的原则进行调查,总体中每个个体被调查的概率相同。

18、频数:每次对象出现的次数。

19、频率:每次对象出现的次数与总次数的比值20、级差:一组数据中最大数据与最小数据的差,刻画数据的离散程度21、方差:各个数据与平均数之差的平方的平均数,刻画数据的离散程度22、方差计算公式23、标准方差:方差的算数平方根刻画数据的离散程度。

24、一组数据的级差、方差、标准方差越小,这组数据就越稳定。

九年级数学上册第二十五章概率初步知识点归纳总结(精华版)(带答案)

九年级数学上册第二十五章概率初步知识点归纳总结(精华版)(带答案)

九年级数学上册第二十五章概率初步知识点归纳总结(精华版)单选题1、七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为( )A .932B .516C .38D .716答案:C分析:首先设正方形的面积,再表示出阴影部分面积,然后可得概率.解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为12,则点取自黑色部分的概率为:1+124=38,故选C .小提示:此题主要考查了概率,关键是表示图形的面积和阴影部分面积.2、在一个不透明的口袋中,放置3个黄球,1个红球和n 个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率(如图所示),则n 的值最可能是( )A .4B .5C .6D .7 答案:C分析:根据图知,经过大量实验,蓝球出现的频率稳定在0.6附近,再根据频率公式逐项判断即可.解:根据图知,经过大量实验,蓝球出现的频率稳定在0.6附近, 则n1+3+n =0.6,当n =4时,41+3+4=0.5≠0.6,故A 不符合题意; 当n =5时,51+3+5=59≠0.6,故B 不符合题意; 当n =6时,61+3+6=0.6,故C 符合题意; 当n =7时,71+3+7=711≠0.6,故D 不符合题意;∴n 的值最可能是6, 故选:C .小提示:本题考查频数与频率,能从图中获取到蓝球出现的频率稳定在0.6附近是解答的关键.3、如图,电路连接完好,且各元件工作正常.随机闭合开关S 1,S 2,S 3中的两个,能让两个小灯泡同时发光的概率为( )A .16B .12C .23D .13答案:D分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两个小灯泡同时发光的情况,再利用概率公式求解即可求得答案. 解:画树状图得:∵共有6种等可能的结果,能让两个小灯泡同时发光的有2种情况,∴能让两个小灯泡同时发光的概率为26=13;故选:D.小提示:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.4、一只不透明的袋子中装有若干个白球和红球,共计20个,这些球除颜色外都相同.将球搅匀,每次从中随机摸出一个球,记下颜色后放回、再搅匀、再摸球,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.3,由此可估计袋子中红球的个数约为()A.6B.14C.5D.20答案:B分析:根据白球的概率可估计红球的概率,即可求解.解:红球的个数为:20×(1−0.3)=14(个),故选:B.小提示:本题考查用频率估计概率,当进行大量重复试验时,频率稳定在概率附近.5、一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回,不断重复上述过程.小明共摸了100次,其中80次摸到白球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个答案:C分析:小明共摸了100次,其中80次摸到白球,20次摸到黑球,摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.解:由题可得:3÷100−8080=12(个).所以答案是:12.小提示:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.6、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( ) A .12B .23C .16D .56答案:C分析:利用列表法或树状图即可解决.分别用r 、b 代表红色帽子、黑色帽子,用R 、B 、W 分别代表红色围巾、黑色围巾、白色围巾,列表如下:1种,根据概率公式,恰好为红色帽子和红色围巾的概率是16. 故选:C .小提示:本题考查了简单事件的概率,常用列表法或画树状图来求解.7、不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( ) A .ba+b B .ba C .aa+b D .ab 答案:A分析:根据概率公式直接求解即可. ∵共有(a +b)个球,其中红球b 个∴从中任意摸出一球,摸出红球的概率是ba+b . 故选A .小提示:本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.8、如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .38B .12C .58D .1 答案:A分析:根据阴影部分的面积所占比例得出概率即可. 解:由图知,阴影部分的面积占图案面积的38,即这个点取在阴影部分的概率是38,故选:A .小提示:本题主要考查几何概率的知识,熟练根据几何图形的面积得出概率是解题的关键. 9、如图,若随机向8×8正方形网格内投针,则针尖落在阴影部分的概率为( )A .12B .58C .9π64D .2564 答案:D分析:利用割补法求得阴影面积,再根据几何概率计算求值即可; 解:将上边和左边的弓形面积补到下边和右边可得阴影面积为5×5=25, 该图形总面积为8×8=64, ∴针尖落在阴影部分的概率=2564, 故选: D .小提示:本题考查了几何概率:事件的概率可以用部分线段的长度(部分区域的面积)和整条线段的长度(整个区域的面积)的比来表示.10、如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是( )A.1号B.2号C.3号D.4号答案:C分析:根据圆周角可得1区域的圆心角度数,然后计算各个区域的可能性,比较大小即可得.解:1区域的圆心角为:360°−50°−125°−65°=120°,∴落在1区域的可能性为:120°360°=13,落在2区域的可能性为:50°360°=536,落在3区域的可能性为:125°360°=2572,落在4区域的可能性为:65°360°=1372,∵536<1372<13<2572,∴落在3区域的可能性最大,故选:C.小提示:题目主要考查可能性的计算及大小比较,理解题意,掌握可能性的计算方法是解题关键.填空题11、一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是___________.答案:0.32分析:由题意依据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率进行分析即可.解:一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是0.32.所以答案是:0.32.小提示:本题考查利用频率估计概率,解答本题的关键是掌握频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12、如图,数学活动小组自制了一个飞镖盘.若向飞镖盘内投掷飞镖(落在边界线重新投掷),则飞镖落在阴影区域的概率是_____.答案:13分析:利用阴影部分面积除以总面积=投掷在阴影区域的概率,进而得出答案.解:由题意可得,投掷在阴影区域的概率是:39=13.所以答案是:13.小提示:此题主要考查了几何概率,求出阴影部分面积与总面积的比值是解题关键.13、疫情期间,进入学校都要进入测温通道,体温正常才可进入学校.某校有3个测温通道,分别记为A,B,C通道.学生可随机选取其中的一个通道测温进校园,某日早晨,小王和小李两位同学在进入校园时,恰好选择不同通道测温进校园的概率是_____________.答案:23分析:画树状图展示所有9种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.画树状图为:共有9种等可能的情况,其中小王和小李从不同通道测温进校园的有6种情况,侧小王和小李两位同学在进入校园时,恰好选择不同通道测温进校园的概率是69=23,所以答案是:23.小提示:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.14、小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上和一个反面向上,则小亮赢;若出现一个正面向上和两个反面向上,则小文赢.有下列说法:①小强赢的概率最小;②小文和小亮赢的概率相等;③小文赢的概率是38;④这是一个公平的游戏.其中,正确的是__________(填序号). 答案:①②③分析:利用树状图得出三人分别赢得概率,然后依次判断即可. 解:画树状图得:所以共有8种可能的情况.三个正面向上或三个反面向上的情况有2种,所以P (小强赢)=28=14;出现2个正面向上一个反面向上的情况有3种,所以P (小亮赢)=38;出现一个正面向上2个反面向上的情况有3种,,所以P (小文赢)=38, ∵14<38,∴小强赢的概率最小,①正确; 小亮和小文赢的概率均为38,②正确; 小文赢的概率为38,③正确;三个人赢的概率不一样,这个游戏不公平,④错误; 所以答案是:①②③.小提示:题目主要考查利用树状图求概率,熟练掌握运用树状图求概率的方法是解题关键.15、有三张完全一样正面分别写有字母A ,B ,C 的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是_________. 答案:13分析:根据题意列出图表得出所有等情况数和抽取的两张卡片上的字母相同的情况数,然后根据概率公式即可得出答案.解:根据题意列表如下:3种情况, 所以P (抽取的两张卡片上的字母相同)=39=13.小提示:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验. 解答题16、寒冬战疫,西安常安,感谢每一位为这座城拼命的人!一个不透明的口袋里装有分别标有汉字“西”、“安”、“常”、“安”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)若从中任取一球,球上的汉字刚好是“安”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用画树状图或列表法,求出甲取出的两个球上的汉字恰能组成“西安”的概率。

北师大版九年级上册数学[概率的进一步认识--知识点整理及重点题型梳理]

北师大版九年级上册数学[概率的进一步认识--知识点整理及重点题型梳理]

新北师大版九年级上册初中数学重难点突破知识点梳理及重点题型巩固练习概率的进一步认识--知识讲解【学习目标】1.进一步认识频率与概率的关系,加深对概率的理解;2.会用列表和画树状图等方法计算简单事件发生的概率;3.能利用重复试验的频率估计随机事件的概率;4.学会运用概率知识解决简单的实际问题.【要点梳理】要点一、用树状图或表格求概率1.树状图当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)树形图法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同.2.列表法当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)列表法适用于涉及两步试验的随机事件发生的概率.3.用列举法求概率的一般步骤(1)列举(列表、画树状图)事件所有可能出现的结果,并判断每个结果发生的可能性是否都相等;(2)如果都相等,再确定所有可能出现的结果的个数n 和其中出现所求事件A 的结果个数m ;(3)用公式计算所求事件A 的概率.即P (A )=n m . 要点二、用频率估计概率1.频率与概率的定义频率:在相同条件下重复n 次试验,事件A 发生的次数m 与试验总次数n 的比值.概率:事件A 的频率nm 接近与某个常数,这时就把这个常数叫做事件A 的概率,记作P (A ). 2.频率与概率的关系事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值.要点诠释:(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复试验的条件下可以近似地作为这个事件的概率;(2)频率和概率在试验中可以非常接近,但不一定相等;(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.3.利用频率估计概率当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.要点诠释:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.【典型例题】类型一、用树状图或表格求概率1.同时抛掷两枚均匀硬币,正面都同时向上的概率是()A.13B.14C.12D.34【答案】B.【解析】可能性有(正,正),(正,反),(反,正),(反,反)4种,正面都同时向上的占1种,所以概率为1 4 .【总结升华】利用树状图法列出所有的可能,看符合题意的占多少.举一反三:【变式1】袋中装有一个红球和一个黄球,它们除了颜色外其余均相同,随机从中摸出一球,记录下颜色放回袋中,充分摇匀后,再随机从中摸出一球,两次都摸到黄球的概率是()A.13B.12C.14D.34【答案】C.【变式2】随机地掷两次骰子,两次掷得的点数相同的概率是().A.13B.14C.112D.16【答案】D.2.(2016•大庆)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.【思路点拨】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.【答案】C.【解析】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选C.【总结升华】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.举一反三:【变式1】从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为()A.19B.18C.29D.13【答案】D.【变式2】如图是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_____.【答案】P(停在阴影部分)=23.类型二、频率与概率3.关于频率和概率的关系,下列说法正确的是()A. 频率等于概率B. 当试验次数很大时,频率稳定在概率附近C. 当试验次数很大时,概率稳定在频率附近D. 试验得到的频率与概率不可能相等【思路点拨】对于某个确定的事件来说,其发生的概率是固定不变的,而频率是随着试验次数的变化而变化的.【答案】B.【解析】事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.【总结升华】概率是频率的稳定值,而频率是概率的近似值.类型三、利用频率估计概率4. 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1)计算并完成表格:转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率(2)请估计,当很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到 1°)【答案与解析】(1) 0.68、0.74、0.68、0.69、0.6825、0.701;(2) 0.70;(3) 由(1)的频率值可以得出P(获得铅笔)=0.70;(4) 0.70×360°=252°.【总结升华】(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.5.(2015春•泰兴市期末)在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).【思路点拨】(1)根据频率估计概率,可得到摸到红球的概率为20%,然后利用概率公式计算a的值;(2)根据概率公式分别计算出摸出一个球是红球或白球或蓝球的概率,然后根据概率的大小判断这三个事件发生的可能性的大小.【答案与解析】解:(1)a=4÷20%=20;(2)在一个暗箱里放有20个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,蓝求有6个,所以从中任意摸出一个球,该球是红球的概率=20%;该球是白球的概率==50%;该球是蓝球的概率==30%,所以可能性从小到大排序为:①③②. 【总结升华】用频率估计概率,强调“同样条件,大量试验”.举一反三:【变式1】为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条. 【答案】条 .【变式2】一只箱子里原有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出两个球,用树状图或列表法列举出所有可能并求两次摸出球的都是白球的概率.(2)若从箱子中任意摸出一个球是红球的概率为53,则需要再加入几个红球? 【答案】类型四、概率的简单应用6. 把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当张牌面数字相同时,小王胜;当张牌面数字不相同时,小李胜.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.【思路点拨】(1)问属于古典概型;(2)问可以采用列表法或树状图法列出所有的可能,计算小王和小李各自取胜的概率,再去做判断.【答案与解析】(1)P(抽到牌面数字4)=;(2)游戏规则对双方不公平,理由如下:3 4 53 (3,3)(3,4)(3,5)4 (4,3)(4,4)(4,5)5 (5,3)(5,4)(5,5)一共有9种可能的结果,每种结果发生的可能性相等,∴P(牌面数字相同)=;P(牌面数字不相同)=23,∴小李胜的概率要大,游戏不公平.【总结升华】列表法可以不重不漏地列出所有可能的结果.举一反三:【变式】(2015•漳州)在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.【答案】解:(1)根据题意画图如下:∵从表中可以看出所有可能结果共有12种,其中数字之和小于9的有4种,∴P(小明获胜)==;(2)∵P(小明获胜)=,∴P(小东获胜)=1﹣=,∴这个游戏不公平.。

第25章 概率初步 初中数学人教版九年级上册知识点精讲精练

第25章 概率初步 初中数学人教版九年级上册知识点精讲精练

第二十五章概率初步知识点思维导图知识点一:随机事件与概率1. 事件的类型事件的类型定义举例必然事件在一定条件下,必然会发生的事件,称为必然事件.在一个只装有红球的袋中摸球,摸出红球.确定性事件不可能事件在一定条件下,必然不会发生的事件,称为不可能事件.在一个只装有红球的袋中摸球,摸出白球.随机事件(不确定性事件)在一定条件下,可能发生也可能不发生的事件,称为随机事件.在一个装有红球和白球的袋中摸球,摸出红球.2. 事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.(1)必然事件:试验中必然发生的事件,其发生的可能性为100%或1;(2)不可能事件:试验中不可能发生的事件,其发生的可能性为0;(3)随机事件:试验中可能发生也可能不发生的事件,其发生的可能性介于0和1之间.3. 概率:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).4. 概率的计算一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=,0≤P(A)≤1.当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0.5. 事件发生的可能性与概率的关系事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0.6. 计算简单事件的概率的主要类型(1)个数类型:如摸球、掷骰子等可以表示出所有可能出现的结果的试验;(2)面积类型:如果随机试验是向S区域内掷一点,那么掷在区域A(A在S内)内的概率P=.【例1】一个不透明的口袋中装有只有颜色不同的5个球,其中有3个白球和2个黑球.(1)求从中随机取出一个黑球的概率;(2)若往口袋中再放入x个白球和8个黑球,从口袋中随机取出一个白球的概率是,求x的值.【例1】【解析】(1)由题意知从中随机取出一个球共有5种情况,其中是黑球的有2种可能,根据概率公式计算可得;(2)利用概率公式:,列出关于x的分式方程,解之可得.【答案】解:(1)∵口袋中共装有5个球,其中黑球有2个,∴从中随机取出一个黑球的概率是.(2)根据题意,得,解得x=2,经检验,x=2是分式方程的根,所以x=2.【巩固】1. 投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A. 两枚骰子向上一面的点数之和大于1B. 两枚骰子向上一面的点数之和等于1C. 两枚骰子向上一面的点数之和大于12D. 两枚骰子向上一面的点数之和等于122. 如图,六边形广场由6个大小完全相同的灰色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在灰色正三角形区域的概率为_____________.【巩固答案】1. D3.知识点二:用直接列举法(枚举法)求概率当事件涉及的对象比较单一且出现的等可能结果数目较少时,就可以直接列举出所有等可能的结果,再利用概率公式P(A)=(在一次试验中,有n种等可能的结果,事件A包含其中的m种结果)求事件发生的概率.注意:(1)直接列举试验结果时,要有一定的顺序性,保证结果不重不漏.(2)用列举法求概率的前提有两个:①所有可能出现的结果是有限个;②每个结果出现的可能性相等.(3)所求概率是一个准确数,一般用分数表示.【例2】有4根细木棒,长度分别为2 cm,3 cm,4 cm,5 cm,从中任选3根,恰好能搭成一个三角形的概率是__________.【例2】【解析】从4根细木棒中任选3根,有①2 cm,3 cm,4 cm;②3 cm,4 cm,5 cm;③2 cm,3 cm,5 cm;④2 cm,4 cm,5 cm,共4种选法,恰好能搭成一个三角形的有①②④共3种,故恰好能搭成一个三角形的概率是.【答案】【巩固】1. 为支援某贫困山区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后3位由5,1,2这三个数字组成,但具体顺序忘记了. 则她第一次就拨通正确电话的概率是()A. B. C. D.2. 小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A. B. C. D.【巩固答案】1. C2. D知识点三:用列表法求概率1. 列表法列表法就是用表格的形式反映事件发生的各种结果出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.2. 适用条件当一次试验涉及两个因素,并且可能出现的等可能结果数目较多时,为不重不漏地列出所有可能的结果,常采用列表法.3. 具体步骤(1)选其中的一次操作(或一个条件)为横行,另一次操作(或另一个条件)为竖行,列出表格;(2)运用概率公式P(A)=计算概率.注意:用列表法列举所有可能出现的结果时,要注意“放回”与“不放回”的区别.【例3】不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( )A.B.C.D.【例3】【解析】两次摸球的所有可能出现的结果列表如下:红球绿球红球(红球,红球)(绿球,红球)绿球(红球,绿球)(绿球,绿球)由表可知,共有4种等可能的结果,其中两次都是红球的结果只有1种,所以P (两次都摸到红球)=. 故选D.【答案】D 【巩固】1. “学雷锋”活动月中,“飞翼”班组织学生开展志愿者服务活动,小晴和小霞从“图书馆、博物馆、科技馆”三个场馆中随机选择一个参加活动,两个恰好选择同一场馆的概率是( )A.B.C.D.2. 某校举行以“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( )A.B.C.D.3. 一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为( )A.B.C.D.【巩固答案】1.A 2. D 3. C第一次第二次知识点四:用画树状图法求概率1. 画树状图法画树状图法是用树状图的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的次数和方式,并求出概率的方法.2. 适用条件当一次试验涉及三个或更多个因素时,列表就不方便了,为不重不漏地列出所有等可能的结果,通常采用画树状图法来求事件发生的概率.注意:(1)当试验包含两步时,用列表法比较方便,当然此时也可以用画树状图法;当试验包含三步或三步以上时,不能用列表法,用画树状图法比较方便.(2)树状图中,从左到右(或从上往下),每一条路径都表示一种可能的结果,并且每种结果出现的可能性相同.【例4】小刚一家三口参加“懂法纪,知敬畏”网上答题活动,每人获得一次抽奖机会,有三个彩球,分别代表特等奖,一等奖,谢谢参与,随机点击其中一个,翻开即为所得奖项. 三人都随机点击其中一个,则三人获得的奖项都不相同的概率是()A. B. C. D.【例4】【解析】用A、B、C分别表示特等奖,一等奖和谢谢参与,画树状图如下:由树状图可知,共有27种等可能的结果,三人获得的奖项都不相同的结果有6种,∴P(三人获得的奖项都不相同)==. 故选D.【答案】D【巩固】1. 经过某十字路口的汽车,可能直行,也可能左转或右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,恰好选择同一方向的概率是()A. B. C. D.2. 小明与两位同学进行乒乓球比赛,用“手心、手背”游戏确定出场顺序. 设每人每次出手心、手背的可能性相同. 若有一人与另外两人不同,则此人最后出场. 三人同时出手一次,小明最后出场比赛的概率为___________.【巩固答案】1. C2.知识点五:用频率估计概率1. 频率:试验中,某事件发生的次数与总次数的比值叫做频率.2. 用频率估计概率:从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性. 因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.3. 适用对象:当试验的所有可能结果不是有限个,或各种结果发生的可能性不相等时,可通过事件发生的频率来估计概率.4. 计算方法:一般地,在大量重复试验中,如果时间A发生的频率稳定于某个常数p,那么估计事件A发生的概率P(A)=p.5. 频率与概率的关系区别:频率是试验值或使用时的统计值,与试验人、试验时间、试验地点等有关;概率是理论值,与其他外界因素无关.联系:试验次数越多,频率越趋向于概率.【例5】某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能是()A. 袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B. 掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C. 先后两次掷一枚质地均匀的硬币,两次都出现反面D. 先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【例5】【解析】A项,取到红球的概率为;B 项,向上的面的点数是偶数的概率为;C 项,先后两次掷一枚质地均匀的硬币,等可能的结果有(正,正),(正,反),(反,正),(反,反),共4种,所以两次都出现反面的概率为;D 项,列表如下:123456123456723456783456789456789105678910116789101112由表可知共有36种等可能的结果,其中两次向上的面的点数之和为7或超过9的结果有12种,所以所求概率为. 结合题图可知选D.【答案】D【巩固】第一次和第二次1. 不透明的盒子中有白球和黄球若干个,它们除了颜色外其他完全相同,某同学进行了如下试验:每次摸出一个小球,记下颜色后放回盒中,如此重复400次,其中摸出白球100次. 由此估计摸出黄球的概率为()A. B. C. D.2. 下列说法合理的是()A. 小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是B. 抛掷一枚质地均匀的正六面体骰子,出现6的概率是的意思是每6次就有1次掷得6C. 某彩票的中奖机会是2%,则买100张彩票一定会有2张中奖D. 在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51【巩固答案】1. D2. D。

人教版九年级数学上册第25章《概率初步》知识小结与复习

人教版九年级数学上册第25章《概率初步》知识小结与复习

(2006年广东茂名市第10题)
为了估计湖里有多少条鱼,先从湖里捕捞 100条鱼都做上标记,然后放回湖中去,经 过一段时间,待有标记的鱼完全混合于鱼群 后,第二次再捕捞100条鱼,发现其中10条
有标记,那么你估计湖里大约有鱼 D
A. 500条 B. 600条 C. 800 条 D. 1000条
“建模”——数学思想
(1)请你完成下面表示 游戏一个回合所有可能出现 的结果的树状图;
(2)求一个回合能确 定两人先下棋的概率.
游戏规则
三人手中各持有一枚质 地均匀的硬币,他们同 时将手中硬币抛落到水 平地面为一个回合.落 地后,三枚硬币中,恰 有两枚正面向上或者反 面向上的两人先下棋; 若三枚硬币均为正面向 上或反面向上,则不能 确定其中两人先下棋.
概率的计算方法
具有等可
随 机
简单的随

机事件
能性

不具有等

可能性


计 算
复杂的随 机事件
摸拟试验
概率定义 树状图 列表 试验法
有放回摸球
无放回摸球
理论计算
试验估算 小明的方法: 多次逐个抽查
小亮的方法: 多次抽样调查
一、知识回顾
1、事先能肯定它_一__定__发生的事件称为必 然事件,它发生的概率是_____1__.
下列事件中,确定事件是( )
A、掷一枚六面分别标有1—6数字的均 匀骰子,骰子停止转动后偶数点朝上
B、从一副完整的扑克牌中任意抽出一 张牌,花色是红桃
C、任意选择电视的某一频道,正在播 放动画片
D、在同一年出生的367名学生中,至 少有两人的生日是同一天
在多次试验中,某个事件出现的次数 叫 频数 ,

九年级概率数学知识点归纳总结

九年级概率数学知识点归纳总结

九年级概率数学知识点归纳总结概率是数学中的一个重要分支,它研究的是随机事件发生的可能性。

九年级学生在学习概率数学知识时,需要掌握一些基本概念和技巧。

本文将对九年级概率数学知识点进行归纳总结,帮助学生们更好地学习和理解概率。

一、概率的基本概念在学习概率之前,我们首先需要了解一些基本概念。

概率是指事件发生的可能性大小,通常用0到1之间的数字表示。

概率为0的事件是不可能事件,概率为1的事件是必然事件。

而对于其他事件,概率介于0到1之间。

概率的计算方法有理论概率和实际概率两种,其中理论概率是根据事件的可能性计算的,实际概率是通过实验或观察得到的。

二、事件的枚举与计数在概率计算中,我们常常需要对事件进行枚举与计数。

对于一个事件,我们可以通过列举所有可能的结果来进行枚举,然后通过计数的方法求得事件发生的可能性。

这个过程中,我们需要注意排列与组合的区别。

排列指的是从一堆对象中挑选出若干个进行排列,考虑顺序;而组合是不考虑顺序的,只关心对象的选择。

三、概率的加法与乘法规则在计算复合事件的概率时,我们可以使用概率的加法与乘法规则。

加法规则适用于互斥事件,即两个事件不能同时发生;而乘法规则适用于独立事件,即一个事件的发生不会影响另一个事件的发生。

根据加法规则,互斥事件的概率等于各个事件概率之和;根据乘法规则,独立事件的概率等于各个事件概率的乘积。

四、频率与概率在概率的实际应用中,我们常常通过频率来估计概率。

频率指的是通过大量的实验或观察来统计事件发生的次数,然后计算事件的实际概率。

当实验次数足够大时,频率趋近于概率。

因此,频率可以作为概率的近似值,来指导我们的实际决策。

五、事件的独立性与相关性在概率计算中,事件的独立性与相关性是两个重要的概念。

独立事件指的是一个事件的发生与另一个事件的发生无关,两者之间没有任何关联;相关事件指的是一个事件的发生与另一个事件的发生有关,两者之间存在某种关联性。

对于独立事件,我们可以通过乘法规则计算其概率;对于相关事件,我们需要考虑它们之间的关联程度,可以使用条件概率或贝叶斯公式来计算。

中考数学复习《概率》考点及经典题型

中考数学复习《概率》考点及经典题型

中考数学复习《概率》考点及经典题型知识点一:概率 1. 概率及公式(1)定义:表示一个事件发生的可能性大小的数. (2)概率公式:P (A )=mn(m 表示试验中事件A 出现的次数,n 表示所有等可能出现的结果的次数). 2、事件和概率的表示方法一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P变式练习1:一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. 47 B. 37 C. 34 D. 13【解析】B 因为布袋里有3个红球和4个白球,共7个球,所以从中任取一个,摸出的球是红球的概率是37.变式练习2:设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是14.2. 用频率可以估计概率一般地,在大量重复试验中,如果事件A 发生的频率 会稳定在某个常数p 附近,那么事件A 发生的概率P (A )=p =m n. 变式练习1:一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. 47 B. 37 C. 34 D. 13【解析】B 因为布袋里有3个红球和4个白球,共7个球,所以从中任取一个,摸出的球是红球的概率是37.注意:(1)在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。

(2)在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。

变式练习2:在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为( )A. 2B. 3C. 4D. 12【解析】B 由已知得4个黄球占总球的13,所以共有12个球,则白球的个数为12-5-4=3(个).变式练习3:在一个不透明的布袋中装有黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则摸到白球的概率为0.7.3. 事件的类型及其概率 1)确定事件和随机事件 (1)确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。

九年级数学上册第二十五章概率初步知识点归纳超级精简版(带答案)

九年级数学上册第二十五章概率初步知识点归纳超级精简版(带答案)

九年级数学上册第二十五章概率初步知识点归纳超级精简版单选题1、从甲、乙、丙三名同学中随机抽取两名同学去参加义务劳动,则甲与乙恰好被选中的概率是( ) A .16B .14C .13D .12 答案:C分析:根据题意用列举法求概率即可. 解:随机抽取两名同学所能产生的所有结果, 它们是:甲与乙,甲与丙,乙与丙, 所有可能的结果共3种, 并且出现的可能性相等,∴甲与乙恰好被选中的概率:P =13. 故选:C .小提示:本题主要考查了用列举法求概率,能正确列举出所有等可能结果是做出本题的关键.2、一名运动员连续打靶100次,其中5次命中10环,5次命中9环,90次命中8环.根据这几次打靶记录,如果再让他打靶1次,那么下列说法正确的是( ) A .命中10环的可能性最大B .命中9环的可能性最大 C .命中8环的可能性最大D .以上3种可能性一样大 答案:D分析:根据随机事件发生的独立性,可得某次射击的结果与连续射靶100次的结果无关,所以针对某次射击,命中10环、9环、8环的可能性均等,据此解答即可.根据随机事件发生的独立性,可得某次射击的结果与连续射靶100次的结果无关,所以针对某次射击,命中10环、9环、8环的可能性均等.如果再让他打靶1次,都有可能. 故选:D .小提示:此题主要考查了随机事件发生的独立性问题的应用. 3、下列说法中,正确的是( )A.“任意画一个多边形,其内角和是360°”是必然事件B.“如果a2=b2,那么a=b”是必然事件C.可能性是50%的事件,是指在两次试验中一定有一次会发生D.“从一副扑克牌(含大小王)中抽一张,恰好是红桃”是随机事件答案:D分析:根据题意逐项分析,即可求解.解:A. “任意画一个多边形,其内角和是360°”是必然事件,只有四边形的内角和是360°,所以是随机事件,判断错误;B. “如果a2=b2,那么a=b”是必然事件,a与b也有可能互为相反数,所以是随机事件,判断错误;C. 可能性是50%的事件,是指在两次试验中一定有一次会发生,可能性是50%的事件,只表明一种可能性,并不表示两次试验中一定有一次会发生,所以判断错误;D. “从一副扑克牌(含大小王)中抽一张,恰好是红桃”是随机事件,判断正确,符合题意.故选:D小提示:本题考查了必然事件、随机事件、可能性大小、多边形内角和等知识,综合性较强,熟知相关概念,知识,理解可能性的意义是解题关键.4、某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如表的表格,则符合这一结果的实验最有可能的是()B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.抛一个质地均匀的正六面体骰子(六个面上分别标1,2,3,4,5,6),向上的面点数是5D.从一个装有2个白球和1个红球的袋子中任取一球,取到红球答案:D分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,再进行判断.A、抛一枚硬币,出现正面的概率是1,不符合题意;2B 、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是14,不符合题意;C 、抛一个质地均匀的正六面体骰子(六个面上分别标1,2,3,4,5,6),向上的面点数是5的概率是16,不符合题意;D 、从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率是13,符合题意,故选:D .小提示:此题考查频率估计概率,计算简单事件的概率,正确理解题意计算出各事件的概率是解题的关键. 5、在不透明的袋子中装有黑、白两种球共50个,这些球除颜色外都相同,随机从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则袋子中黑球的个数约为( ) A .20个B .30个C .40个D .50个 答案:A分析:根据黑球的频率稳定在0.4附近,黑,白两种球共50个,即可确定出黑球个数. 解:∵黑球的频率稳定在0.4附近,黑,白两种球共50个, ∴黑球的个数约为:0.4×50=20. 故选:A .小提示:根据概率的求法,找准两点:①全部情况的总数,②符合条件的情况数目,二者的比值就是其发生的概率.6、孟德尔被誉为现代遗传学之父,他通过豌豆杂交实验,发现了遗传学的基本规律.如图,纯种高茎豌豆和纯种矮茎豌豆杂交,子一代都是高茎豌豆,子一代种子种下去,自花传粉,获得的子二代豌豆由DD 、Dd 、dd 三种遗传因子控制.由此可知,子二代豌豆中含遗传因子D 的概率是( )A .14B .38C .12D .34 答案:D分析:画出遗传图解,即可得到答案.解:画图如下:共有4种情况,而出现高茎的有3种结果,∴子二代豌豆中含遗传因子D的概率是3,4故选:D小提示:本题主要考查了求概率,正确画出树状图是解答本题的关键..小张这期7、某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定答案:D,说明此事件为随机事件,即可能发生,也可能不发生.分析:由于中奖概率为13解:根据随机事件的定义判定,中奖次数不能确定.故选D.小提示:解答此题要明确概率和事件的关系:①P(A)=0,为不可能事件;②P(A)=1为必然事件;③0<P(A)<1为随机事件.8、从马鸣、杨豪、陆畅,江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( ) A .112B .18C .16D .12 答案:C分析:列表得出所有等可能的情况数,找出所选两人恰好是马鸣和杨豪的情况数,即可求出所求的概率. 解:列表得:所有等可能的情况有12种,其中恰好抽到马鸣和杨豪的情况有2种, 恰好抽到马鸣和杨豪的概率是212=16, 故选C.小提示:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.9、不透明的袋子中装有10个黑球和若干个白球,这些球除颜色外无其他差别.从袋子中随机摸出一球记下其颜色,再把它放回袋子中摇匀,重复上述过程,共试验400次,其中有300次摸到白球,由此估计袋子中的白球大约有( )A .6个B .10个C .15个D .30个 答案:D分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解. 解:设白球有x 个,根据题意得: x10+x=300400,解得:x =30,经检验x =30是分式方程的解,且符合题意, ∴估计袋子中的白球大约有30个. 故选:D .小提示:本题考查利用频率估计概率.大量反复试验下频率稳定值即概率,关键是根据白球的频率得到相应的等量关系.10、随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( ). A .14B .12C .34D .1 答案:A分析:首先利用列举法,列得所有等可能的结果,然后根据概率公式即可求得答案. 解:随机掷一枚均匀的硬币两次, 可能的结果有:正正,正反,反正,反反, ∴两次正面都朝上的概率是14.故选:A .小提示:此题考查了列举法求概率的知识.解题的关键是注意不重不漏的列举出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比. 填空题11、在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,摸到红球的频率是 _____,则估计盒子中大约有红球 _____个. 答案: 0.7 14分析:根据频率之和为1,以及在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,列出方程求解,即可.解:摸到黄球的频率是0.3,摸到红球的频率是0.7, 设有红球x 个,根据题意得:6=0.3,6+x解得:x=14,经检验,x=14是原方程的解.故答案是:0.7,14.小提示:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的频率得到相应的等量关系.12、一个不透明的袋中装有3个红球和2个白球,这些球除颜色外无其他差别.现随机从袋中摸出一个球,这个球是红球的概率是______.答案:35分析:先求出总的所有可能结果数及摸出的球是红球的所有可能数,再根据概率公式即可得出答案.解:根据题意可得:不透明的袋子里装有将5个球,其中3个红色的,.任意摸出1个,摸到红球的概率是35.所以答案是:35小提示:此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.=3的解是负数,且13、从−2,−1,0,1,2,3这6个数中任意选一个数作为m的值,则使关于x的方程2x−mx+1关于x的一次函数y=(m−1)x−4的图象不经过第一象限的概率为_______.答案:1.3分析:先求出分式方程的解,再根据解为负数求出此时m的取值范围,再根据一次函数图像不经过第一象限求出m的取值范围,最终确定m可以选取的数值,最后计算概率.=3得:x=−m−3解分式方程2x−mx+1∵方程的解为负数,∴−m−3<0且−m−3≠−1,解得:m>−3且m≠−2,∵一次函数y=(m−1)x−4图象不经过第一象限,∴m−1<0,∴m<1∴−3<m<1且m≠−2,在−2,−1,0,1,2,3这6个数中符合−3<m<1且m≠−2的有−1,0这2个数,∴使分式方程的解为负数且一次函数图象不经过第一象限的概率为26=13所以答案是:13.小提示:本题考查概率公式,分式方程的解,一次函数图象与系数的关系等知识点,综合性较强。

《概率》知识点总结+典型例题+练习(含答案)

《概率》知识点总结+典型例题+练习(含答案)

概率考纲要求1.了解随机现象和概率的统计定义,理解必然事件和不可能事件的意义.2.知道概率的性质,理解古典概率模型的含义,掌握求古典概型的方法,并会求古典概型的概率.3.知道互斥事件,会用概率加法公式求互斥事件的概率.4.认识n 次独立重复实验模型,并记住n 次独立重复实验中恰好发生k 次的概率公式,并会简单应用.5.了解随机变量、离散型随机变量及其概率分布;能写出简单的离散型随机变量的概率分布.6.了解二项分布,能写出简单的二项分布. 知识点一:随机事件的概率 1.随机事件的相关概念随机现象:在相同条件下具有多种可能结果,而事先又无法确定会出现哪种结果的现象称为随机现象.随机试验:研究随机现象所进行的观察和试验称为随机试验.随机事件:随机试验的结果称为随机事件,简称事件,常用大写字母A ,B ,C 等来表示. 必然事件:在一定条件下,必然发生的事件称为必然事件,用Ω来表示. 不可能事件:在一定条件下,不可能发生的事件称为不可能事件,用∅来表示. 基本事件:在随机试验中不能再分的最简单的随机事件称为基本事件. 复合事件:可以用基本事件来描述的随机事件称为复合事件. 2.频率与概率频数:设在n 次重复试验中,事件发A 生了m 次(0 ≤m ≤n ),m 称为事件A 的频数. 频率:事件A 的频数在试验的总次数中所占的比例mn,称为事件A 发生的频率. 事件A 发生的概率:当试验次数充分大时,如果事件发A 生的频率mn总稳定在某个常数附近,那么就把这个常数叫做事件A 发生的概率,记作)(A P . 事件A 发生的概率的性质:(1)对于必然事件Ω,()1=P Ω; (2)对于不可能事件∅,0)(=∅P ; (3)0≤P (A )≤1. 知识点2: 古典概型 1. 古典概型:(1)定义:如果一个随机试验的基本事件只有有限个,并且各个基本事件发生的可能性都相等,那么称这个随机试验属于古典概型.特征:试验的所有可能结果的个数是有限的;每个结果出现的机会均等.(2)在古典概型中,若试验共包含有n 个基本事件,并且每一个事件发生的可能性都相同,事件A 包含m 个基本事件,那么事件A 发生的概率()m P A n =2.互斥事件:(1)定义:在随机试验中,不可能同时发生的两个事件称为互斥事件或互不相容事件 (2)和事件:在随机试验中,若事件C 发生意味着事件A 与事件B 中至少有一个发生,则把事件C 称为事件A 与事件B 的和事件,记作C AB =(3)互斥事件的概率加法公式:互斥的事件A 和事件B 中至少有一个发生的概率()()()P A B P A P B =+知识点3:离散型随机变量及其分布 1.随机变量的概念如果随机试验的结果可以用一个变量的取值来表示,这个变量的取值带有随机性,并且取这些值的概率是确定的,那么这个变量叫做随机变量,通常用小写希腊字母ξ、η等表示,或用大写英文字母,,,X Y Z 等表示. 2.离散型随机变量的概念如果随机变量的所有可能取值可以一一列出,则这种随机变量称为离散型随机变量. 3.离散型随机变量的概率分布(1)离散型随机变量的概率分布的定义离散型随机变量ξ的所有可能取值1x ,2x ,3x …,i x …与其对应的概率(x )i i P p ξ==(i =1,2,3,…)所有组成的表叫做随机变量ξ的概率分布(分布列). 离散型随机变量概率分布的性质. ① 0(1,2,3,)i p i =≥;②1231i p p p p +++⋅⋅⋅++⋅⋅⋅=.(2)计算离散型随机变量的概率分布的主要步骤为 ①写出随机变量的所有取值;②计算出各个取值对应的随机事件的概率; ③列出表格.注意验证0(1,2,3,)i p i =≥以及121i p p p ++⋅⋅⋅++⋅⋅⋅=.知识点4:二项分布 1.n 次独立重复实验定义:在相同条件下,重复进行n 次试验,如果每次试验的结果与其他各次试验的结果无关,那么这n 次重复试验叫做n 次独立重复试验. 2.n 次伯努利实验定义:在n 次独立重复试验中,如果每次试验的可能结果只有两个,且它们相互对立,即只考虑两个事件A 和A ,并且在每次试验中事件A 发生的概率都相同,这样的n 次独立重复试验叫做n 次伯努利试验. 3.伯努利公式如果在每次试验中事件A 发生的概率()P A p =,事件A 不发生的概率()1P A p =-,那么在n 次伯努利试验中,事件A 恰好发生k 次的概率为k n k k n n p p k P --=)1(C )((其中0,1,2,,k n =⋅⋅⋅).4.二项分布如果在一次试验中某事件A 发生的概率的p ,随机变量ξ为n 次独立试验中事件发A 生的次数,那么随机变量ξ的概率分布为其中n k p ,,2,1,0,10 =<<我们将这种形式的随机变量ξ的概率分布叫做二项分布.称随机变量ξ服从参数为n 、p 的二项分布,记为(,)B n p ξ.二项分布是以伯努利试验为背景的重要分布. 题型一 基本概念例1 一口袋中有10个小球,其中有8个白球、2个黑球,从中任取3个小球,有以下事件:①3个都是白球. ②至少有一个是黑球. ③3个都是黑球. ④至少有一个白球.其中随机事件是 ;必然事件是 ;不可能事件是 . 分析:本题考察定义的理解及“至少”的含义. 随机事件有①②; 必然事件有④; 不可能事件有③. 解答:①②,④,③ 题型二 古典概型例2 同时抛掷两颗骰子,则所得点数之和为7的概率为 .分析:本题考查古典概型,试验发生包含的事件是抛掷两颗骰子,共有6⨯6=36种结果,满足条件的事件是点数之和为7,可以列举出所有的事件:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共有6种结果,根据古典概型概率公式得到61=P . 解答:61. 题型三 互斥事件例3 某地区年降水量在50~100mm 范围内的概率为0.21,在100~150mm 范围内的概率为0.22,则年降水量在50~155mm ,范围内的概率为多少? 分析:应用互斥事件的概率加法公式 解答:0.43题型四 独立重复试验及概率例4 一枚硬币连续抛掷3次,恰好有两次正面向上的概率为( ).A.18B.38C.12 D.23分析:设事件A ={正面向上},则()P A =12,抛掷3次相当于做3次独立重复试验,恰好有两次正面向上的概率为2123113(2)228P C ξ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭. 解答:B .题型五 离散型随机变量的概率分布例5 从含有8个正品、2个次品的产品中,不放回地抽取3次,每次抽取一个,用ξ表示抽到次品的次数,求: (1) ξ的概率分布.(2) 至多有一次抽到次品的概率.解答:(1)随机变量ξ的所有可能取值为0,1,2,且383107(0)15C P C ξ===, 1228310715C C P C ξ=(=1)=, 21283101(2)15C C P C ξ===. 所以ξ的概率分布为(2)至多有一次抽到次品的概率为715+715=1415. 题型六 二项分布例6 在人寿保险中,设一个投保人能活到65岁的概率为0.6,求三个投保人中活到65岁的人数ξ的概率分布.解答:记A ={一个投保人能活到65岁},则A ={一个投保人活不到65岁}.于是()0.6,()10.60.4P A P A ==-=.且随机变量(3,0.6)B ξ.因此0333(0)0.6(10.6)0.064P C =⋅⋅-=, 11233(1)0.6(10.6)0.288P C =⋅⋅-=,22133(2)0.6(10.6)0.432P C =⋅⋅-=,33033(3)0.6(10.6)0.216P C =⋅⋅-=.所以,三个投保人中能活到65岁的人数ξ的概率分布为一、选择题1.在10张奖券中,有1张一等奖,2张二等奖,从中任意抽取1张,则中一等奖的概率为( ). A.310 B.15 C.110 D.132.甲乙两人进行一次射击,甲击中目标的概率为0.7,乙击中的概率为0.2,那么甲乙两人都没击中的概率为( ).A. 0.24 B .0.56 C. 0.06 D. 0.863.某人从一副不含大小王扑克牌中(52张)任意取一张出来,他抽到黑桃或是红桃的概率为( ).A. 0B.152 C. 1352 D. 124.书包里有中文书5本,英文书3本,从中任集抽取2本,则都抽到中文书的概率是( ). A.15 B.25 C.12 D.5145.一个口袋中有5个红球,7个白球,每次取出一个,有放回取三次,观察球的颜色属于( ).A.重复试验B.古典概型C. 3次独立重复试验概率模型D.以上都不是 6.同时抛掷三枚硬币,三枚出现相同一面的概率为( ).A12 B 14 C 16 D 187.某品牌种子的发芽率是0.8,在试验的5粒种子中恰有4粒发芽的概率是( ). A.410.8(10.8)- B.140.8(10.8)-C.41450.8(10.8)C -D.44150.8(10.8)C -8.下列变量中不是随机变量的是( ). A. 射手射击一次的环数 B. 在一个标准大气压下100时会沸腾 C. 城市夏季出现的暴雨次数 D. 某班期末考试数学及格人数9.若从标有3,4,5,6,7的5张卡片中任取3张,取得奇数的个数为ξ,则随机变量ξ的可能取值的个数是( ).A .0 B. 1 C. 2 D .3 10.已知离散型随机变量ξ的概率分布为则n 的值为( ).A .0.31 B. 0.25 C. 0.26 D. 0.2 二、判断题:1. 某人参加射击比赛,一次射击命中的环数为(奇数环)是随机事件( )2. 在重复进行同一试验时,随着试验总次数的增加,事件A 发生的频率一般会越来越接近概率. ( )3. 任一事件A ,其发生的概率为()P A ,则有0≤P (A )≤1 . ( )4. 必然事件的概率为0.( )5. 袋子里有3颗红球6颗白球,从中任取一颗是白球的概率是13.( ) 6. 盒内装有大小相同的3个白球1个黑球,从中摸出2个球,则两个球全是白球的概率是12. ( )7. 同时抛掷3枚硬币,三枚出现相同一面的概率是18. ( )8. 同宿舍8人抓阄决定谁负责周一值日是随机试验.( )9. 运动员进行射击训练,考察一次射击命中的环数,命中2环的概率是110. ()10. 甲、乙两台机床,它们因故障停机的概率分别为0.01和0.02,则这两台机床同时因故障停机的概率为0.03. ( )三、填空题1.在10件产品中有3件次品,若从中任取2件,被抽到的次品数用ξ表示,则2ξ=表示的随机事件为.2.盒中有3个白色的球和5个红色的球,任取出一个球,取出的是红色的概率为.3.10件产品中有2件次品,任取3件,设取出的3件产品中所含正品数为随机变量ξ,则ξ的可能取值为.4.从甲、乙、丙3人中,任选2人参加社会实践,甲被选中的概率为.5.某气象站天气预报的准确率为0.8,一周中播报准确的次数为ξ,则2ξ=的概率为.(用式子表示)四、解答1.口袋里装有3个黑球与2个白球,任取3个球,求取到的白球的个数ξ的概率分布.2.口袋里装有4个黑球与1个白球,每次任取1个球,有放回地取3次,求所取过的3个球中恰有两个黑球的概率.高考链接1.(2014年) 已知离散型随机变量ξ的概率分布为则(1)Pξ==( ).A .0.24 B. 0.28 C.0.48 D.0.522.(2019年) 一口袋里装有4个白球和4个红球现在从中任取3个球,则取到既有白球又有红球的概率 .3.(2018年) 若将一枚硬币抛3次,则至少出现一次正面的概率为 .4.(2016年) 从1,2,3,4,5中任选3个数字组成一个无重复数字的三位数,则这个三位数是偶数的概率为 .5.(2017年) 取一个正方形及其外接圆,在圆内随机取一点,该点取自正方形内的概率为.积石成山1.某单选题要求从A 、B 、C 、D 四个选项中,选择一个正确答案,假设考生不会,随机地选择了一个答案,则他答对此题的概率是().A.1B.12C.13D.142. 某乐队有11名乐师,其中男乐师7人,现该乐队要选出一名指挥,则选出的指挥为女乐师的概率为().A.711B14C.47D.4113. 已知A 、B 是互斥事件,若1()5P A=,1()2P A B+=,则()P B的值是().A .45B.710C.310D.1104. 袋中装有3个黑球和2个白球一次取出两个球,恰好是黑白球各一个的概率().A. 15B.310C.25D.355. 5人站成一排照相,其中甲乙二人相邻的概率为().A. 25B.35C.15D.146. 一个箱子中有6个除了颜色之外完全一样的球,其中2个是红色的,4个是黑色的,那么在里面随机拿出一个是红色的概率是多少?().A. 12B.13C.14D.167. 掷一枚质地均匀且六面上分别有1,2,3,4,5,6点的骰子,则向上一面点数大于4的概率为().A. 12B.13C.23D.148. 抛掷一枚质地均匀的骰子,则向上一面出现偶数点概率是().A.12B.13C.16D.19.把一枚均匀的硬币连抛5次,得到5次国徽向上的概率为().A. 132B.532C.316D.313210.一副扑克牌去掉大小王,任意抽出一张不是黑桃的概率为().A. 14B .13C.12D.34概率答案一、选择题二、判断题三、填空题1.{任抽2件,有2件次品}.2. 58解析:151858CpC==.3. 1,2,3.4. 23解析:枚举法:选派方法有(甲,乙),(甲,丙),(乙,丙)共3种,其中甲被选中有2种,故所求概率为 23P =.5. 22570.8(10.8)C ⨯⨯-解析:设A ={播报一次,准确},则()0.8P A =,所以2257(2)0.8(10.8)P C ξ==⨯⨯-四、解答题1. 分析:任取3球属于古典概型,服从的分布为离散型随机变量的概率分布. 解:随机变量ξ的所有可能取值为0,1,2,则3032351(0)10C C P C ξ===, 2132353(1)5C C P C ξ===, 1232353(2)10C C P C ξ===. 所以概率分布为2. 分析:本题为有放回的抽取,是伯努利试验,服从二项分布. 解:设所取过的3个球中含有黑球的个数为随机变量ξ,则43,5B ξ⎛⎫⎪⎝⎭,于是 21234148(2)55125P C ξ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭ .高考链接1.B2.67解析:古典概率模型,则从中任意取3个球,取到既有白球又有红球的概率为122144443867C C C C C +=.3.78解析:试验发生包含的事件是将一枚硬币抛掷三次,共有328=(种)结果,满足条件的事件的对立事件是三枚硬币都是反面,有1种结果,则至少一次正面向上的概率是17188-=.4.25解析:从1,2,3,4,5这5个数字中任取3个数字组成没有重复的三位数,基本事件总数3560n P ==,这个三位数是偶数包含的基本事件个数122424m C P ==,∴这个三位数是偶数的概率为242605mPn===.5. 2π解析:设正方形的边长为11S=正方形,∴222Sππ⎛=⨯=⎝⎭外接圆∴该点取自正方形内部的概率为122Pππ==.积石成山。

九年级数学上册第二十五章概率初步考点大全笔记(带答案)

九年级数学上册第二十五章概率初步考点大全笔记(带答案)

九年级数学上册第二十五章概率初步考点大全笔记单选题1、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是()A.②B.①③C.②③D.①②③答案:C分析:根据概率公式和图表给出的数据对各项进行判断,即可得出答案.解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;故选:C.小提示:本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.2、有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24答案:B分析:先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选B .小提示:本题考查了利用频率求频数的知识,具体数目应等于总数乘部分所占总体的比值.3、不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( )A .b a+bB .b aC .a a+bD .a b答案:A分析:根据概率公式直接求解即可.∵共有(a +b)个球,其中红球b 个∴从中任意摸出一球,摸出红球的概率是b a+b .故选A .小提示:本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.4、如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .38B .12C .58D .1答案:A分析:根据阴影部分的面积所占比例得出概率即可.解:由图知,阴影部分的面积占图案面积的38,即这个点取在阴影部分的概率是38,故选:A .小提示:本题主要考查几何概率的知识,熟练根据几何图形的面积得出概率是解题的关键.5、某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是( )A .抛一枚硬币,出现正面朝上B .从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C .从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的点数之和是7答案:C分析:分别算出每个选项的概率,再与图中结果对比即可得到答案.解:A 中的概率为0.5,不符合这一结果,故此选项错误;B 中的概率为0.5,不符合这一结果,故此选项错误;C 中的概率为13,符合这一结果,故此选项正确;D 中的概率为16,不符合这一结果,故此选项错误.故选C .小提示:本题考查频率与概率的综合应用,熟练掌握概率与频率的关系、概率的求解是解题关键.6、小丽准备通过爱心热线捐款,她只记得号码的前 5 位,后三位由 5,2,0 这三个数字组成,但具体顺序忘记了,她第一次就拨对电话的概率是( )A .12B .13C .14D .16答案:D分析:首先根据题意可得:可能的结果有:502,520,052,025,250,205;然后利用概率公式求解即可求得答案.解:∵她只记得号码的前5位,后三位由5,0,2,这三个数字组成,∴可能的结果有:502,520,052,025,250,205;∴他第一次就拨通电话的概率是:16.故选:D .小提示:此题考查了列举法求概率的知识.注意概率=所求情况数与总情况数之比.7、掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时6点朝上的概率是( )A .1B .56C .23D .16 答案:D分析:根据概率的意义进行解答即可.解:掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时,不会受前3次的影响,掷第4次时仍有6种等可能出现的结果,其中6点朝上的有1种,所以掷第4次时6点朝上的概率是16,故选:D .小提示:本题考查简单随机事件的概率,理解概率的意义是正确解答的前提,列举出所有等可能出现的结果情况是解决问题的关键.8、下列说法正确的是( )A .口袋中有3个白球,2个黑球,1个红球,它们除颜色外都相同,因为袋中共有3种颜色的球,所以摸到红球的概率是13B .掷一枚硬币两次,可能的结果为两次都是正面,一次正面一次反面,两次都是反面,所以掷出两次都是反面的概率为13C .天气预报“明天降水概率为10%”,是指“明天有10%的时间会下雨”D .随意掷一枚均匀的骰子,偶数点朝上的概率是12 答案:D分析:根据概率公式可对A 、D 进行判断;利用画树状图法求概率可对B 进行判断,根据概率的意义可对C 进行判断.解:A 、摸到红球的概率=13+2+1=16,所以A 选项错误;B 、画树状图为:共有4种等可能的结果数,其中掷出两次都是反面的结果数为1,所以掷出两次都是反面的概率=14,故B 选项错误;C 、天气预报“明天降水概率为10%”,是指有10%的可能性下雨,所以C 选项错误;D 、随意掷一枚均匀的骰子,偶数点朝上的结果数为2、4、6,所以偶数点朝上的概率=12,故D 选项正确. 故选:D .小提示:本题考查了概率的意义,概率公式,列表法与树状图法求概率:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.9、为做好疫情防控工作,某学校门口设置了A ,B 两条体温快速检测通道,该校同学王明和李强均从A 通道入校的概率是( )A .14B .13C .12D .34答案:A分析:先列表得到所有的等可能的结果数,以及符合条件的结果数,再利用概率公式计算即即可. 解:列表如下:所以该校同学王明和李强均从A 通道入校的概率是14.故选A小提示:本题考查的是利用列表的方法或画树状图的方法求解简单随机事件的概率,掌握“列表的方法求概率”是解本题的关键.10、把分别画有“冰墩墩”、“雪融融”的两张形状、大小相同的图片,全部从中间剪成相同的两段,再把这四张形状相同的小图片混合在一起,从这四张图片中随机抽出两张,则这两张小图片恰好能组成一张完整的“冰墩墩”或“雪融融”图片的概率为( )A .13B .14C .16D .112答案:A分析:用A 、a 表示“冰墩墩”图片被剪成的两半,用B 、b 表示“雪融融”图片被剪成的两半,然后利用树状图展示所有可能的结果数;找出2张图片恰好组成一张完整的“冰墩墩”或“雪融融”图片的结果数,然后根据概率公式求解.解:用A 、a 表示“冰墩墩”图片被剪成的两半,用B 、b 表示“雪融融”图片被剪成的两半,列树状图为:故有12种等可能结果,符合恰好能组成一张完整的“冰墩墩”或“雪融融”图片有4种,∴P =412=13. 故选:A .小提示:本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.填空题11、小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方_____.(填“公平”或“不公平”).答案:公平分析:根据题意画出符合要求的树状图,列出所有等可能的结果,并由此计算出两人各自获胜的概率进行比较,即可得到结论.详解:根据题意画出树状图如下:由图可知:共有四种等可能结果出现,其中小明获胜的有两种,小亮获胜的也有两种,∴P(小明获胜)=24=12,P(小亮获胜)=24=12,∴P(小明获胜)=P(小亮获胜),∴该游戏是“公平”的.故答案为公平.点睛:本题的解题要点有两点:(1)能够画出符合题意的树状图;(2)在一个游戏中,当游戏双方获胜的概率相等时,游戏是公平的;当游戏双方获胜的概率不等是,游戏是不公平的.12、如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为__cm2.答案:2.8分析:求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形二维码面积的70%,计算即可.∵正方形二维码的边长为2cm,∴正方形二维码的面积为4cm2,∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,∴黑色部分的面积占正方形二维码面积的70%,∴黑色部分的面积约为:4×70%=2.8,所以答案是:2.8.小提示:求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形二维码面积的70%,计算即可.13、经过人民路十字路口红绿灯处的两辆汽车,可能直行,也可能左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是________.答案:34分析:可以采用列表法或树状图求解.可以得到一共有4种情况,至少有一辆向左转有3种情况,根据概率公式计算可得.解:由题意画出“树状图”如下:∵这两辆汽车行驶方向共有4种可能的结果,其中至少有一辆向左转有3种情况,∴至少有一辆向左转的概率是3.4.所以答案是:34小提示:此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.14、从−1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是___________.答案:23分析:从﹣1,1,2三个数中任取一个,共有三种取法,其中函数y=−x+3是y随x增大而减小的,函数y=x+3和y=2x+3都是y随x增大而增大的,所以符合题意的概率为2.3解:当k>0时,一次函数y=kx+3的图象y随x的增大而增大,∴k=1或k=2∴所得一次函数中y随x的增大而增大的概率是2,3所以答案是:23. 小提示:本题考查概率=所求情况数与总情况数之比;一次函数未知数的比例系数大于0,y 随x 的增大而增大.15、科研人员对某玉米种子在相同条件下的发芽情况进行试验,统计结果如下表:0.01).答案:0.95分析:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,即可估计出这种油菜籽发芽的概率. 解:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率是0.95,所以答案是:0.95.小提示:本题考查利用频率估计概率,从表格中数据确定出这种油菜籽发芽的概率是解题的关键. 解答题16、从2021年起,江苏省高考采用“3+1+2”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是________;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2中选化学、生物的概率.答案:(1)13;(2)图表见解析,16 分析:(1)小丽在“2”中已经选择了地理,还需要从剩下三科中进行选择一科生物,根据概率公式计算即可.(2)小明在“1”中已经选择了物理,可直接根据画树状图判断在4科中选择化学,生物的可能情况有2种,再根据一共有12种情况,通过概率公式求出答案即可.(1)13;(2)列出树状图如图所示:由图可知,共有12种可能结果,其中选化学、生物的有2种,所以,P(选化学、生物)=212=16.答:小明同学选化学、生物的概率是16.小提示:本题考查了等可能概率事件,以及通过列表法或画树状图法判断可能情况概率,根据概率公式事件概率情况,解题关键在于要理解掌握等可能事件发生概率.17、为了解“停课不停学”期间,学生对线上学习方式的喜好情况,某校随机抽取40名学生进行问卷调查,其统计结果如表:(2)根据调查结果估计该校1000名学生中,最喜欢“线上答疑”的学生人数;(3)在最喜欢“资源包”的学生中,有2名男生,3名女生,现从这5名学生中随机抽取2名学生介绍学习经验,求恰好抽到1名男生和1名女生的概率.答案:(1)a=17;(2)喜欢“线上答疑”的学生人数为200人;(3)35分析:(1)根据四种学习方式的人数之和等于40可求出a的值;(2)用总人数乘以样本中最喜欢“线上答疑”的学生人数所占比例可得答案;(3)列表法展示所有20种等可能的结果数,再找出恰好抽到1名男生和1名女生的结果数,然后利用概率公式求解.(1)解:a=40−(10+5+8)=17;(2)解:最喜欢“线上答疑”的学生人数为1000×840=200(人);(3)解:设3个女生分别为女1,女2,女3,2个男生分别为男1,男2,所有可能出现的结果如下表:1名男生和1名女生的结果有12种,所以抽到1名男生和1名女生的概率为1220=35.小提示:本题考查统计图、列表法或树状图法:利用列表法或画树状图展示所有等可能的结果,再从中选出符合条件的事件数目,利用概率公式求概率.18、致敬,最美逆行者!病毒虽无情,人间有大爱,2020年,在湖北省抗击新冠病毒的战“疫”中,全国(除湖北省外)共有30个省(区、市)及军队的医务人员在党中央全面部署下,白衣执甲,前赴后继支援湖北省抗击疫情,据国家卫健委的统计数据,截至3月1日,这30个省(区、市)累计派出医务人员总数多达38478人,其中派往湖北省除武汉外的其他地区的医务人员总数为7381人.a.全国30个省(区、市)各派出支援武汉的医务人员频数分布直方图(数据分成6组:100≤x<500,500≤x<900,900≤x<1300,1300≤x<1700,1700≤x<2100,2100≤x<2500):b.全国30个省(区、市)各派出支援武汉的医务人员人数在900≤x<1300这一组的是:919,997,1045,1068,1101,1159,1179,1194,1195,1262.根据以上信息回答问题:(1)这次支援湖北省抗疫中,全国30个省(区、市)派往武汉的医务人员总数A.不到3万人,B.在3万人到3.5万人之间,C.超过3.5万人(2)全国30个省(区、市)各派出支援武汉的医务人员人数的中位数是,其中医务人员人数超过1000人的省(区、市)共有个.(3)据新华网报道,在支援湖北省的医务人员大军中,有“90后”也有“00后”,他们是青春的力量,时代的脊梁.习近平总书记回信勉励北京大学援鄂医疗队全体“90后”党员中指出:“在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,澎显了青春的蓬勃力量,交出了合格答卷.”小华在收集支援湖北省抗疫宣传资料时得到这样一组有关“90后”医务人员的数据:C市派出的1614名医护人员中有404人是“90后”;H市派出的338名医护人员中有103人是“90后”;B市某医院派出的148名医护人员中有83人是“90后”.小华还了解到除全国30个省(区、市)派出38478名医务人员外,军队派出了近四千名医务人员,合计约4.2万人.请你根据小华得到的这些数据估计在支援湖北省的全体医务人员(按4.2万人计)中,“90后”大约有多少万人?(写出计算过程,结果精确到0.1).答案:(1)B;(2)1021人,15;(3)90后”大约有1.2万人分析:(1)根据题意列式计算即可得到正确的选项;(2)根据频数(率)分布直方图中的信息和中位数的定义即可得到结论;(3)根据样本估计总体,可得到“90后”大约有1.2万人.解:(1)这次支援湖北省抗疫中,全国30个省(区、市)派往武汉的医务人员总数为38478﹣7381=31097(人),故选B;(2)全国30个省(区、市)各派出支援武汉的医务人员人数的中位数是997+1045=1021(人);其中医务2人员人数超过1000人的省(区、市)共有15(个);所以答案是:1021人,15;(3)42000×404+103+83≈11800(人),1614+338+148答:“90后”大约有1.2万人.小提示:本题考查了频数(率)分布直方图,样本估计总体,熟悉相关性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率知识点总结及题型汇总一、确定事件:包括必然事件和不可能事件1、在一定条件下必然要发生的事件,叫做必然事件。

必然事件是指一定能发生的事件,或者说发生的可能性是100%;如:从一包红球中,随便取出一个球,一定是红球。

2、在一定条件下不可能发生的事件,叫做不可能事件。

不可能事件是指一定不能发生的事件,或者说发生的可能性是0,如:太阳从西边出来。

这是不可能事件。

3、必然事件的概率为1,不可能事件的概率为0二、随机事件在一定条件下可能发生也可能不发生的事件,叫做随机事件。

一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一个随机事件发生的可能性的大小用概率来表示。

三、例题:指出下列事件中,哪些是必然事件,哪些是随机事件,哪些是不可能事件,哪些是确定事件?①一个玻璃杯从一座高楼的第10层楼落到水泥地面上会摔破;②明天太阳从西方升起;③掷一枚硬币,正面朝上;④某人买彩票,连续两次中奖;⑤今天天气不好,飞机会晚些到达.解:必然事件是①;随机事件是③④⑤;不可能事件是②.确定事件是①②三、概率1、一般地,对于一个随机事件A ,把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A) .(1)一个事件在多次试验中发生的可能性,反映这个可能性大小的数值叫做这个事件发生的概率。

(2)概率指的是事件发生的可能性大小的的一个数值。

2、概率的求法:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m种结果,那么事件A 发生的概率为P(A) = mn.(1)一般地,所有情况的总概率之和为1。

(2)在一次实验中,可能出现的结果有限多个.(3)在一次实验中,各种结果发生的可能性相等.(4)概率从数量上刻画了一个随机事件发生的可能性的大小,事件发生的可能性越大,则它的概率越接近1;反之,事件发生的可能性越小,则它的概率越接近0。

(5)一个事件的概率取值:0≤P(A)≤1当这个事件为必然事件时,必然事件的概率为1,即P(必然事件)=1不可能事件的概率为0,即P(不可能事件)=0随机事件的概率:如果A为随机事件,则0<P(A)<1(6)可能性与概率的关系事件发生的可能性越大,它的概率越接近于1,事件发生的可能性越小,则它的概率越接近0.3、求概率的步骤:(1)列举出一次试验中的所有结果(n个);(2)找出其中事件A发生的结果(m个);(3)运用公式求事件A的概率:P(A) = mn.5、在求概率时,一定要是发生的可能性是相等的,即等可能性事件等可能性事件的两种特征:(1)出现的结果有限多个; (2)各结果发生的可能性相等;例1:图1指针在转动过程中,转到各区域的可能性相等,图3中的第一个图,指针在转动过程中,转到各区域的可能性不相等,由上图可知,在求概率时,一定是出现的可能性相等,反映到图上来说,一定是等分的。

例2、下列事件哪些是等可能性事件?哪些不是?(1)抛掷一枚图钉,钉尖朝上或钉帽朝上或横卧。

不是(2)某运动员射击一次中靶心或不中靶心。

不是(3)从分别写有1,3,5,7中的一个数的四张卡片中任抽一张结果是1,或3或5或7。

是6、求概率的通用方法:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.列举法包括枚举法、列表法、树状图法(1)枚举法(列举法):通常在一次事件中可能发生的结果比较少时,我们可以把所有可能产生的结果全部列举出来,并且各种结果出现的可能性相等时使用。

等可能性事件的概率可以用列举法而求得。

但是我们可以通过用列表法和树形图法来辅助枚举法。

(2)列表法:当一次实验要涉及两个因素(例如掷两个骰子),并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果时使用。

(3)列树形图法:当一个实验要涉及3个或更多的因素(例如从3个口袋中取球)时,列表就不方便了,为不重不漏地列出所有可能的结果时使用。

四、频率与概率1、频数:在多次试验中,某个事件出现的次数叫频数2、频率:某个事件出现的次数与试验总次数的比,叫做这个事件出现的频率3、一般地,在大量重复试验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么,这个常数p就叫作事件A的概率,记为P(A)=P。

五、概率公式中m、n之间的数量关系,P(A)的取值范围。

在概率公式P(A) = mn中m、n取何值,m、n之间的数量关系,P(A)的取值范围。

0 ≤m≤n, m、n为自然数∵0 ≤mn≤1, ∴0≤P(A) ≤1.当m=n时,A为必然事件,概率P(A)=1,当m=0时,A为不可能事件,概率P(A)=0.0≤P(A) ≤1六、几何概率1、如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。

(1)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个. 2)每个基本事件出现的可能性相等.(2)在几何概型中,事件A 的概率的计算公式如下:七、例题汇总(一)确定三事件例1 下列事件中,哪些是不可能事件?哪些是必然事件?哪些是不确定事件?哪些是确定事件?,分析其发生概率的大小(1)抛掷一枚均匀的骰子,6点朝上; (2)367人中有2人的出生日期相同; (3)1+3>2; (4)太阳从西边升起.解析:根据事件发生的可能性大小判断相应事件的类型即可.(1)抛掷一枚均匀的骰子,1,2,3,4,5,6点都有可能朝上,故6点不一定朝上;(2)一年有365(或366)天,故367人中必然有2人的出生日期相同;(3)1+3肯定大于2;(4)太阳不可能从西边升起.由以上分析知:(1)是不确定事件, (2)(3)是必然事件, (4)是不可能事件. (2)(3)(4)是确定事件发生概率的大小判断,首先需要理解必然事件、不可能事件、不确定事件的意义.必然事件是指一定会发生的事件,发生的概率是1;不可能事件是指不可能发生的事件,发生的概率是0;不确定事件是指可能发生也可能不发生的事件,发生的概率介于0和1之间. 例2、下列事件属于必然事件的是( ) A.打开电视,正在播放新闻 B.我们班的同学将会有人成为航天员 C.实数a <0,则2a <0D.新疆的冬天不下雪解析:A 是随机事件,因为可能是播新闻也可能是其它电视节目;B 为随机事件,一个班有几十个学生当然有可能成为航天员;D 是不可能事件,因为新疆气温低,每年都会下雪.故选C例3、(福建龙岩)下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为3、5、9厘米的三条线段能围成一个三角形.其中确定事件的个数是( ). A .1 B .2 C .3 D .4 B 解析:③④是确定事件 (二)概率意义的理解例1、 某商场举办购物有奖活动,在商场购满价值50元的商品可抽奖一次,丽丽在商场购物共花费120元,按规定抽了两张奖券,结果其中一张中了奖,能不能说商场的抽奖活动中奖率为50%?为什么?解析:因为中奖是不确定事件,而计算中奖率应该是以中奖的奖券数除以奖券的总数,但(面积或体积)面积或体积的区域长度试验的全部结果所构成)(构成事件A的区域长度P(A)这些数据在本题中没有给出,所以不能计算出这次抽奖活动的中奖率,所以不能说商场的抽奖活动中奖率为50%.点评:概率是在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定常数的附近摆动,显示一定的稳定性,它是大量试验的结论.随机事件每次发生的结果是不可以预见的,但每次发生的概率是不变的.例2、下列说法正确的是 ( )A.某市“明天降雨的概率是75%”,表示明天有75%的时间会降雨B.随机抛掷一枚均匀的硬币,落地后正面一定朝上C.在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖D.在平面内,平行四边形的两条对角线一定相交解析:明天降雨的概率是75%是说明明天有75%的可能性会降雨,而不是说明天有75%的时间在下雨;抛一枚硬币正面朝上的概率是0.5,说的是在做大量的抛一枚硬币的试验中,有一半的可能性出现正面朝上,而随机抛一格硬币落地后正面不一定朝上;抽奖活动中,中奖的概率为1100,指的是每抽奖一次都有1100的可能性中奖;故A 、B 、C 都错,因而选D. (三) 利用简单枚举法求概率例1 某小商店开展购物摸奖活动,声明:购物时每消费2元可获得一次摸奖机会,每次摸奖时,购物者从标有数字1,2,3,4,5的5个小球(小球之间只有号码不同,其他均相同)中摸出一球,若号码是2就中奖,奖品为一张精美图片.(1)摸奖一次得到一张精美图片的概率是多少?(2)一次,小聪购买了10元钱的物品,前4次摸奖都没有摸中,他想:“第5次摸奖我一定能摸中”,你同意他的想法吗?说说你的想法.解析:(1)每次摸奖时,有5种情况,只有摸到号码是2的球才中奖,于是得到一张精美图片的概率是P=15;(2)不同意,因为小聪第5次得到一张精美图片的概率仍是15,所以他第5次不一定中奖. 点评:此题考查概率的求法:如果一个试验有n 种等可能的结果,事件A 包含其中的m 种结果,那么事件A 的概率P (A )= mn ,解题时注意对概率意义的理解.例2、随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全一样),那么这粒豆子停在黑色方格中的概率是 .解析:1、这粒豆子落在每一个方格中的可能性是一样的,因此这粒豆子停在方格中的可能性共有12种,黑色方格的可能性有四种,所以黑色方格中的概率等于31124= 2、黑色方格中的概率等于黑色方格的面积与所有方格的面积比.设每个方格的面积是1,则P (这粒豆子停在黑色方格)=31124=. 点评:概率的大小与面积大小有关.事件发生的概率等于此事件所有可能结果所组成的图形面积除以所有可能结果组成的图形面积.例3 、掷两枚硬币,求下列事件的概率(1)两枚硬币正面全部朝上;(2)两枚硬币反面全部朝上 (3)一枚硬币正面朝上,一枚硬币反面朝上。

解:用枚举法(列举法)列出可能的结果是:正正、正反、反正、反反。

所有结果共有4种。

并且这四个结果出现的可能性相等。

用列表法:解:其中一枚硬币为A,另一枚硬币为B,则所有可能结果如表所示:正反正 (正,正) (正,反) 反(反,正)(反,反)(1)所有的结果中,满足两枚硬币全部正面朝上(记为事件A )的结果只有一个,即“正正”所以P (A )=1/4(2)所有的结果中,满足两枚硬币全部反面朝上(记为事件B )的结果只有一个,即“反反”所以P (B )=1/4(3)所有的结果中,满足一枚硬币正面朝上,一枚硬币反面朝上(记为事件C )的结果共有2个,即“正反”“反正”所以P (C )=2/4=1/2例4、一口袋中装有四根长度分别为1cm ,3cm ,4cm 和5cm 的细木棒,小明手中有一根长度为3cm 的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题:(1)求这三根细木棒能构成三角形的概率; (2)求这三根细木棒能构成直角三角形的概率; (3)求这三根细木棒能构成等腰三角形的概率.解析:从四根木棒中任选两根,共有以下六种情况:(1,3)、(1,4)、(1,5)、(3,4)、(3,5)、(4,5),其中与3cm 长的线段构成三角形的有(1,3,3)、(3,3,4)、(3,3,5)、(3,4,5)四种;构成直角三角形的有(3,4,5)一种;构成等腰三角形的有(1,3,3)、(3,3,4)、(3,3,5)三种,所以有:(1)P (构成三角形)=4263=; (2)P (构成直角三角形)=16; (3)P (构成等腰三角形)=36=12. (四) 列表法求概率当试验涉及两个因素(例如两个转盘)并且可能出现的结果数目较多时,为不重不漏地列出所有的结果,通常采用“列表法”。

相关文档
最新文档