高中数学向量专题复习(知识点+典型例题+大量习题附解析)精编材料值得拥有
高三数学向量专题复习(高考题型汇总及讲解)(1)
向量专题复习向量是高考的一个亮点,因为向量知识,向量观点在数学、物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视。
一、平面向量加、减、实数与向量积 (一)基本知识点提示1、重点要理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念。
2、了解平面向量基本定理和空间向量基本定理。
3、向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4、向量形式的三角形不等式:||a |-|b ||≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?);向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |25、实数与向量的乘法(即数乘的意义)实数λ与向量的积是一个向量,记λ,它的长度与方向规定如下:(1)|λa |=|λ|²|a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λ=,方向是任意的.6、共线向量定理的应用:若≠,则∥⇔存在唯一实数对λ使得=λ⇔x 1y 2-x 2y 1=0(其中=(x 1,y 1),=(x 2,y 2)) (二)典型例题例1、O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足).,0[||||+∞∈++=λλAC AB 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心+是在∠BAC 的平分线上,∴选B例2、对于任意非零向量与,求证:|||-|||≤|±|≤||+||证明:(1)两个非零向量与不共线时,+的方向与,的方向都不同,并且||-||<|±|<||+||(3)两个非零向量a 与b 共线时,①a 与b 同向,则a +b 的方向与a 、b 相同且|a +b |=|a |+|b |.②a 与b 异向时,则a +b 的方向与模较大的向量方向相同,设|a |>||,则|+|=||-||.同理可证另一种情况也成立。
高三向量专题复习(含知识点)有答案
状元堂测试试卷,则把向量AB 按向量a =(-1,3的向量叫零向量,记作:0,注意零向量的方向是任意的3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量)、b 叫做平行向量,记作:a ∥b 提醒:①相等向量一定是共线向量,但共线向量不一定相等;但两条直线平行不包含两条直线重合;(因为有0);AB AC 、共线; :长度相等方向相反的向量叫做相反向量。
)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
()若AB DC =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5,a b b c ==,则a c =。
(6)若//,//a b b c ,则//a c 。
其中正确的是日期: 2012- 时间:.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量(),a xi y j x y =+=,称的坐标表示。
如果向量的起点在原点是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1、2λ,使a =1λe 1+2λ(1,1),a b ==(1,1),(1,2)c -=-c =______1322a b -);)下列向量组中,能作为平面内所有向量基底的是12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-= 12(3,5),(6,10)e e == D. 1213(2,3),(,24e e =-=-(答:B );四.实数与向量的积:实数λ与向量a 的积是一个向量,记作如下:()()1,2a a λλ=当λ>0时,λa 的方向与的方向相反,当λ=0a λ=,注意:五.平面向量的数量积:两个向量的夹角:对于非零向量,b ,作,OA a OB b ==,AOB ∠称为向量a ,b 的夹角,当0时,a ,b 同向,当θ=π2.平面向量的数量积,b ,它们的夹角为,我们把数量||||cos a b θ叫做,记作:a •b ,即a cos a b θ。
必修四平面向量知识点整理+例题+练习+答案
平面向量知识点整理1、概念向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 相反向量:0a b b a a b =-⇔=-⇔+=向量表示:几何表示法AB ;字母a 表示;坐标表示:a =xi+yj =(x,y).向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a .( 222222||,||a x y a a x y =+==+。
) 零向量:长度为0的向量。
a =O ⇔|a |=O .【例题】1.下列命题:(1)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若AB DC =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5)若,a b b c ==,则a c =。
(6)若//,//a b b c ,则//a c 。
其中正确的是_______2.已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +=_____ 2、向量加法运算:⑴三角形法则的特点:首尾相接连端点. ⑵平行四边形法则的特点:起点相同连对角.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++; ③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 【例题】(1)①AB BC CD ++=___;②AB AD DC --=____; ③()()AB CD AC BD ---=_____(2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____ 4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.【例题】(1)若M (-3,-2),N (6,-1),且1MP MN 3--→--→=-,则点P 的坐标为_______baCBAa b C C -=A -AB =B5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,(0b ≠)22()(||||)a b a b ⇔⋅=。
高中数学必修四平面向量知识归纳典型题型(经典)
高中数学必修四平面向量知识归纳典型题型(经典)1.向量重要结论1) 向量的数量积定义为 $a\cdot b=|a||b|\cos\theta$,其中规定 $a\cdot a=a^2=|a|^2$。
2) 向量夹角公式:设向量 $a$ 与 $b$ 的夹角为 $\theta$,则 $\cos\theta=\dfrac{a\cdot b}{|a||b|}$。
3) 向量共线的充要条件:向量 $b$ 与非零向量 $a$ 共线$\Leftrightarrow$ 存在唯一的实数 $\lambda\in\mathbb{R}$,使得 $b=\lambda a$。
4) 两向量平行的充要条件:向量 $a=(x_1,y_1)$,$b=(x_2,y_2)$ 平行 $\Leftrightarrow x_1y_2-x_2y_1=0$。
5) 两向量垂直的充要条件:向量 $a\perpb$ $\Leftrightarrow a\cdot b=0$ $\Leftrightarrowx_1x_2+y_1y_2=0$。
6) 向量不等式:$|a|+|b|\geq |a+b|$,$|a||b|\geq |a\cdot b|$。
7) 向量的坐标运算:设向量 $a=(x_1,y_1)$,$b=(x_2,y_2)$,则 $a\cdot b=x_1x_2+y_1y_2$。
8) 向量的投影:设向量 $b$ 在向量 $a$ 方向上的投影为$|b|\cos\theta=\dfrac{a\cdot b}{|a|}$,投影的绝对值称为 $b$ 在$a$ 方向上的投影。
9) 向量:既有大小又有方向的量。
向量不能比较大小,但向量的模可以比较大小。
相等向量:长度相等且方向相同的向量。
10) 零向量:长度为 $0$ 的向量,记为 $\vec 0$,其方向是任意的,与任意向量平行。
规定平行于任何向量,故在有关向量平行(共线)$\Leftrightarrow |\vec a|=0$ 的问题中务必看清楚是否有“非零向量”这个条件。
平面向量知识点总结、经典例题及解析、高考题50道及答案
)))))))第五章 平面向量【考纲说明】1、理解平面向量的概念和几何表示,理解两个向量相等及共线的含义,掌握向量的加、减、数乘运算及其几何意义,会用坐标表示。
2、了解平面向量的基本定理,掌握平面向量的坐标运算。
3、掌握数量积的坐标表达式,会进行平面向量数量积的运算,会用向量方法解决简单的平面几何问题、力学问题与其他一些实际问题。
【知识梳理】一、 向量的基本概念与线性运算 1 向量的概念:(1)向量:既有大小又有方向的量,记作AB ;向量的大小即向量的模(长度),记作|AB | 向量不能比较大小,但向量的模可以比较大小.(2)零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行(3)单位向量:模为1个单位长度的向量常用e 表示.(4)平行向量(共线向量):方向相同或相反的非零向量,记作a ∥b平行向量也称为共线向量(5)相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a= 大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x(6)相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量若a 、b是互为相反向量,则a =b -,b =a -,a +b =2 向量的线性运算:(1)向量的加法:求两个向量和的运算叫做向量的加法 向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则” .(2)向量的减法 :求向量a 加上b 的相反向量的运算叫做a 与b的差.向量的减法有三角形法则,b a -可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)(3)向量的数乘运算:求实数λ与向量a 的积的运算,记作λa.①a a⋅=λλ;②当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反; 当0=λ时,0 =a λ,方向是任意的③数乘向量满足交换律、结合律与分配律3. 两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =λ向量b 与非零向量a共线⇔有两个均不是零的实数λ、μ,使得0a b λμ+=.二、平面向量的基本定理与坐标表示 1 平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底2. 平面向量的坐标表示:(1)在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底 由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a 的坐标,记作a =(x,y),其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标显然0=(0,0),(1,0)i =,(0,1)j =. (2)设OA xi y j =+.则向量OA 的坐标(x,y)就是终点A 的坐标,即若OA =(x,y),则A 点的坐标为(x,y),反之亦成立(O 是坐标原点). 3 平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±±. (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =--,1(AB x =(3)若a =(x,y),则λa =(λx,λy).(4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=. (5)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅. 三、平面向量的数量积 1 两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,a ·b 等于a 的长度与b 在a 方向上的投影的乘积叫做a 与b 的数量积(或内积),即a ·b =︱a ︱·︱b ︱cos θ,规定00a ⋅=2 向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影 投影的绝对值称为射影 3 向量的模与平方的关系:22||a a a a ⋅==4 乘法公式成立:()()2222a b a b a b a b +⋅-=-=-; ()2222a b a a b b±=±⋅+222a a b b =±⋅+.5 平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅.②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈.③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±; 特别注意:①结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅.②消去律不成立a b a c⋅=⋅不能得到b c =.③a b ⋅=0不能得到a =0或b =06 两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y + 7 向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b⋅<>=⋅=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题8 垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥ba ⊥b ⇔a ·b=O ⇔2121=+y y x x【经典例题】【例1】(2010全国Ⅱ,8)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB a =,ECBA CA b =,1,2a b ==,则CD = ( )(A )1233a b + (B )2133a b + (C )3455a b + (D )4355a b + 【答案】B .【解析】由角平分线的性质得2AD DB =,即有22()()33AD CB CA a b =-=-.从而221()333CD CA AD b a b a b =+=+-=+.故选B .【例2】(2009北京,2)已知向量a 、b 不共线,c k =a +b (k ∈R ),d =a -b ,如果c //d , 那么 ( ) A .1k =且c 与d 同向 B .1k =且c 与d 反向 C .1k =-且c 与d 同向 D .1k =-且c 与d 反向 【答案】D .【解析】取a ()1,0=,b ()0,1=,若1k =,则c =a +b ()1,1=,d =a -b ()1,1=-, 显然,a 与b 不平行,排除A 、B .若1k =-,则c =-a +b ()1,1=-,d =-a +b ()1,1=--, 即c //d 且c 与d 反向,排除C ,故选D .【例3】(2009湖南卷文)如图,D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ) A .0AD BE CF ++= B .0BD CF DF -+=C .0AD CE CF +-= D .0BD BE FC --= 【答案】A . 【解析】,,AD DB AD BE DB BE DE FC =∴+=+==得0AD BE CF ++=.或0AD BE CF AD DF CF AF CF ++=++=+=.【例4】(2009宁夏海南卷文)已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )A.17-B.17C.16-D.16【答案】A .【解析】向量a b λ+=(-3λ-1,2λ),2a b -=(-1,2),因为两个向量垂直,故有(-3λ-1,2λ)×(-1,2)=0,即3λ+1+4λ=0,解得:λ=17-,故选A . 【例5】(2009全国卷Ⅰ文)设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a , ( )A .150° B.120° C.60° D.30° 【答案】B .【解析】由向量加法的平行四边形法则,知a 、b 可构成菱形的两条相邻边,且a 、b 为起点处的对角线长等于菱形的边长,故选择B .【例6】(2009安徽卷文)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,或=+,其中,R ,则+= _________.【答案】43. 【解析】设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+=. 【例7】(2009辽宁卷文)在平面直角坐标系xoy 中,四边形ABCD 的边AB ∥DC,AD ∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为___________. 【答案】(0,-2).【解析】平行四边形ABCD 中,OB OD OA OC +=+ ∴OD OA OC OB =+-=(-2,0)+(8,6)-(6,8)=(0,-2) 即D 点坐标为(0,-2).【例8】(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为 BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是___.【答案】2.【解析】由2AB AF =,得cos 2ABAF FAB ∠=,由矩形的性质,得cos =AF FAB DF ∠.∵2AB =,∴22DF ⋅=,∴1DF =∴21CF =-.记AE BF 和之间的夹角为,AEB FBC θαβ∠=∠=,,则θαβ=+. 又∵2BC =,点E 为BC 的中点,∴1BE =. ∴()()=cos =cos =cos cos sin sin AE BF AEBF AEBF AE BF θαβαβαβ+-()=cos cos sin sin =122212AE BF AE BF BE BC AB CF αβαβ--=⨯--=.本题也可建立以, AB AD 为坐标轴的直角坐标系,求出各点坐标后求解.【例9】(2009湖南卷理)在ABC ∆,已知2233AB AC AB AC BC ⋅=⋅=,求角A ,B ,C 的大小. 【答案】2,,663A B C πππ===. 【解析】解:设,,BC a AC b AB c ===由23AB AC AB AC ⋅=⋅得2cos 3bc A bc =,所以3cos 2A = 又(0,),A π∈因此6A π=由233AB AC BC ⋅=得23bc a =,于是23sin sin 3sin 4C B A ⋅=-所以53sin sin()64C C π⋅-=,133sin (cos sin )224C C C ⋅+=,因此 22sin cos 23sin 3,sin 23cos 20C C C C C ⋅+=-=,既sin(2)03C π-=由A=6π知506C π<<,所以3π-,4233C ππ-<,从而20,3C π-=或2,3C ππ-=,既,6C π=或2,3C π=故2,,,636A B C πππ===或2,,663A B C πππ===. 【课堂练习】一、选择题1.(2012辽宁理)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a ∥bB .a ⊥bC .{0,1,3}D .a +b =a -b2. (2009年广东卷文)已知平面向量a =,1x (),b =2,x x (-),则向量+a b ( )A. 平行于x 轴B. 平行于第一、三象限的角平分线C. 平行于y 轴D. 平行于第二、四象限的角平分线3.(2012天津文)在ABC ∆中,90A ∠=︒,1AB =,AC=2,设点,P Q 满足,(1),AP AB AQ AC R λλλ==-∈.若2BQ CP ⋅=-,则λ=( )( )A .13 B .23C .43D .2 4.(2009浙江卷理)设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( )A .3 B.4 C .5D .65.(2012重庆理)设,x y ∈R,向量()()()4,2,,1,1,-===c y b x a ,且c b c a //,⊥,则a b += ()A B C .D .106. (2009浙江卷文)已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( )A .77(,)93B .77(,)39--C .77(,)39D .77(,)93--7.(2012浙江理)设a ,b 是两个非零向量.( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |8.(2009全国卷Ⅰ理)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最 小值为( )A.2- 2C.1-D.19.(2012天津理)已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ ( )A .12 B .12± C .12± D .32-±10.(2009全国卷Ⅱ理)已知向量()2,1,10,||a a b a b =⋅=+=||b =( )A.B. C. 5 D. 2511.(2012大纲理)ABC ∆中,AB 边上的高为CD ,若,,0,||1,||2CB a CA b a b a b ==⋅===,则AD =( )A .1133a b -B .2233a b - C .3355a b - D .4455a b - 12.(2008湖南)设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC( )A. 反向平行B. 同向平行C. 互相垂直D. 既不平行也不垂直13.(2008广东)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 14.(2007湖北)设(43)=,a ,a 在b 上的投影为522,b 在x 轴上的投影为2,且||14≤b ,则b 为( )A .(214),B .227⎛⎫- ⎪⎝⎭,C .227⎛⎫- ⎪⎝⎭,D .(28),15.(2012安徽理)在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34π后,得向量OQ 则点Q 的坐标是 ( ) A .(72,2)-- B .(72,2)- C .(46,2)-- D .(46,2)-二、填空题16.(2012浙江文)在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.17.(2009安徽卷理)给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o.如图所示,点C 在以O 为圆心的圆弧AB 上变动. 若,OC xOA yOB =+其中,x y R ∈,则x y + 的最大值是________.18.(2012上海文)在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ .19.(2012课标文)已知向量a ,b 夹角为045,且|a |=1,|2-a b |=10,则|b |=_______. 20.(2012湖南文)如图4,在平行四边形ABCD 中 ,AP ⊥BD,垂足为P,3AP =且APAC = _____.A DBCP21.(2012湖北文)已知向量(1,0),(1,1)a b ==,则(Ⅰ)与2a b +同向的单位向量的坐标表示为____________; (Ⅱ)向量3b a -与向量a 夹角的余弦值为____________.22.(2012北京文)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________. 23.(2012安徽文)设向量(1,2),(1,1),(2,)a m b m c m ==+=,若()a c +⊥b ,则a =_____.24.(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为BC 的中点,点F 在边CD上,若2AB AF =,则AE BF 的值是___.25.(2012安徽理)若平面向量,a b 满足:23a b -≤;则a b 的最小值是_____三、解答题26. (2009年广东卷文)(已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值 27.(2009上海卷文)已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- .(1) 若m //n ,求证:ΔABC 为等腰三角形; (2) 若m ⊥p ,边长c = 2,角C =3π,求ΔABC 的面积 . 28. 已知A 、B 、C 分别为ABC △的三边a 、b 、c 所对的角,向量)sin ,(sin B A m =,)cos ,(cos A B n =,且C n m 2sin =⋅.(Ⅰ)求角C 的大小;(Ⅱ)若A sin ,C sin ,B sin 成等差数列,且18)(=-⋅AC AB CA ,求边c 的长.【课后作业】一、选择题1.(2009辽宁卷理)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b +=( )A.B. C. 4 D. 22.(2009宁夏海南卷理)已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA •=•=•,则点O ,N ,P 依次是ABC ∆的( )A. 重心 外心 垂心B. 重心 外心 内心C. 外心 重心 垂心D. 外心 重心 内心3.(2008安徽)在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则BD =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)4.(2008浙江)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是( )A. 1B. 2C.2 D.225.(2007海南、宁夏)已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b( ) A .(21)--, B .(21)-,C .(10)-,D .(12),6.(2007湖南)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( )A .⊥a bB .∥a bC .||||=a bD .||||≠a b7. (2007天津)设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中mλα,,为实数.若2=a b ,则mλ的取值范围是 ( ) A .[-6,1]B .[48],C .(-6,1]D .[-1,6]8. 在ABC BC AB ABC ∆︒︒=︒︒=∆则已知向量中),27cos 2,63cos 2(),72cos ,18(cos ,的面积等于( ) A .22 B .42 C .23 D .29. 已知平面向量(3,1),(,3),//,a b x a b x ==-则等于 ( )A .9B .1C .-1D .-910. 已知a 、b 是不共线的AB a b λ=+AC a b μ=+(,)R λμ∈,则A 、B 、C 三点共线的充要条件是:( )A .1λμ+=B .1λμ-=C .1λμ=-D .1λμ=二、填空题11. 设向量2,3,19,AB AC AB AC CAB ==+=∠=则_________.12. 若向量,2,2,()a b a b a b a ==-⊥ 满足,则向量b a 与的夹角等于 .13. 已知平面上的向量PA 、PB 满足224PA PB +=,2AB =,设向量2PC PA PB =+,则PC 的最小值是 .14.(2008江苏)a ,b 的夹角为120︒,1a =,3b = 则5a b -= . 15. (2007安徽)在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE = (用,,a b c 表示).16.(2007北京)已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 .17. 已知向量(cos15,sin15)a =,(sin15,cos15)b =--,则a b |+|的值为 .18.(2007广东)若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+= .三、解答题19.(2009湖南卷文)已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=(1)若//a b ,求tan θ的值;(2)若||||,0,a b θπ=<<求θ的值。
高一向量知识点加例题(含答案)
向量复习题知识点归纳一.向量的基本概念与基本运算 1、向量的概念:①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量2、向量加法:设,AB a BC b ==,则a+b =AB BC +=AC(1)a a a =+=+00;(2)向量加法满足交换律与结合律;AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b的差。
③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a⋅=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a 的方向相反;当0=λ时,0=a λ,方向是任意的5、两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ6、平面向量基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 j i ,分别为与x 轴,y 轴正方向相同的单位向量 1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+,记作a =(x,y)。
2平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3)若a =(x,y),则λa =(λx,λy) (4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=(4)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅ ,若a b ⊥,则02121=⋅+⋅y y x x三.平面向量的数量积1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积(或内积) 规定00a ⋅=2向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 3数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a ⋅==5乘法公式成立:()()2222a b a b ab a b +⋅-=-=-; ()2222a ba ab b ±=±⋅+222a a b b =±⋅+6平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅± 特别注意:(1)结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅;(2)消去律不成立a b a c⋅=⋅不能得到b c =⋅(3)a b ⋅=0不能得到a =0或b =07两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y + 8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b•<>=•=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b=O ⇔2121=+y y xx 平面向量数量积的性质11≤±≤- 注意取等条件(共线)一、选择题(本大题共12小题,每小题5分,共60分)1.已知两点()3,2M ,()5,5N --,12MP MN =,则P 点坐标是 ( ) A .()8,1- B .31,2⎛⎫--⎪⎝⎭ C .31,2⎛⎫ ⎪⎝⎭D .()8,1- 2.下列向量中,与向量(1,1)a =-平行的向量是 ( )A .(0,2)b =B .(2,0)c =C .(2,2)d =D .(2,2)f =-3.a (2,1)=,b ()3,4=,则向量a 在向量b 方向上的投影长度为 ( ) A .25 B .2 C .5 D .10 4.在三角形ABC 中,C=450, a=5 ,b=4, 则=⋅CA BC( )A .102B .202C .210-D .-2025.已知b a b a ,),5,2(),3,(-==λ的夹角为钝角,则λ的范围是 ( )A .215>λ B .215<λ C .56<λ D .56>λ 6.一只鹰正以水平方向向下300角飞行直扑猎物,太阳光从头上直射下来,鹰在地面上影子的速度为40m/s ,则鹰飞行的速度为 ( ) A .20m/s B .3380m/s C .20m/s D .80m/s 7.O 为平面中一定点,动点P 在A 、B 、C 三点确定的平面内且满足(OA OP -)·(AC AB -) =0,则点P 的轨迹一定过△ABC 的 ( ) A.外心B.内心C.重心D.垂心8.已知OA a,OB b ==,C 为AB 上距A 较近的一个三等分点,D 为CB 上据C 较近的一个三等分点,用a,b 表示OD 的表达式为 ( ) A.4a 5b 9+ B.9a 7b 16+ C.2a b 3+ D.3a b4+ 9.已知ABC ∆的三个顶点A 、B 、C 及平面内一点P ,且→→→→=++AB PC PB PA ,则点P 与ABC ∆ 的位置关系是( )A .P 在ABC ∆内部B .P 在ABC ∆外部C .P 在AB 边上或其延长线上D .P 在AC 边上或其延长线上10. 若i = (1,0), j =(0,1),则与2i +3j 垂直的向量是 ( )A .3i +2jB .-2i +3jC .-3i +2jD .2i -3j11.对于菱形ABCD ,给出下列各式:①AB BC = ;②||||AB BC =;③||||AB CD AD BC -=+;④22||||4||AC BD AB += 2其中正确的个数为 ( ) A .1个 B .2个 C .3个 D .4个12.在平面直角坐标系中,已知两点A (cos80o ,sin80o ),B(cos20o ,sin20o),则|AB |的值是( )A .12BC D .1二、填空题13.已知A(2,1),B(3,2),C(-1,5),则△ABC 的形状是 .14.已知实数x,y ,向量,a b 不共线,若(x+y-1)a +(x-y )b =0,则x= ,y= 15.若三点(1,2),(2,4),(,9)P A B x --共线,则x =16.在ABC ∆中,有命题:①AB AC BC -=;②AB BC CA ++=0;③若()()0AB AC AB AC +⋅-=,则ABC ∆为等腰三角形;④若0AC AB ⋅>,则ABC ∆为锐角三角形.其中正确的命题序号是 .(把你认为正确的命题序号都填上) 三、解答题17.(满分12分)设两个非零向量1e 和2e 不共线.(1)如果2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、B 、D 三点共线,求k 的值.(2) 若||1e =2,||2e =3,1e 与2e 的夹角为60,是否存在实数m ,使得m 1e 2e +与1e -2e 垂直?并说明理由. 18.(12分)已知向量)1,0(),0,1(,4,23212121==+=-=→→→→→→→→e e e e b e e a 其中;求(1)→→→→+⋅b a b a ;的值;(2)→a 与→b 的夹角的正弦值.19.(本小题满分12分)在,中ABC ∆设,,AB a BC b AC c ===, 060,3,4=∠==ABC BC AB , 求:(1)2a b -; (2)()()2a b a b -⋅+ ; (3)cos >+<b a a ,; 20. (本小题满分12分)已知a 、b 、c 是同一平面内的三个向量,其中a ()1,2=.(1) 若=c c //a ,求c 的坐标;(2) 若b ()1,m =()0m <且a +2b 与a -2b 垂直,求a 与b 的夹角θ.21.(本小题满分12分) 已知向量(2,1),(1,7),(5,1),OP OA OB X OP ===设是直线上的一点(O 为坐标原点),求XA XB ⋅的最小值.22.(本小题满分14分)已知点A 、B 、C 的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(2π,23π). (I )若|AC |=|BC |,求角α的值;(II )若AC ·BC =-1,求αααtan 12sin sin 22++的值.BDBCA BDA DC CD 4.C=⋅CABC =⨯⨯>=<⋅0135cos 45,cos CA BC 210-5.A><b a ,为钝角,0<⋅⇔b a 且b a ,不反向.6.B设鹰飞行的速度为v ,其在地面上的影子的速度为1v4030cos 0==⋅3380=. 二.填空13.锐角三角形 14. 0.5,0.5 15.17616.③三.解答 17. 证明:(1)AD =AB +BC +CD =(1e +2e )+(128e +2e )+(133e -2e ) =6(1e +2e )=6AB (2分)∴ //AD AB 且AD 与AB 有共同起点 (3分)∴ A 、B 、D 三点共线 (4分) (2)假设存在实数m ,使得m 1e 2e +与1e -2e 垂直,则(m 1e 2e +)⋅(1e -2e )=0∴221122(1)0me m e e e +-⋅-= (6分)||1e =2,||2e =3,1e 与2e 的夹角为60∴ 22114e e ==,22229e e ==,1212cos 23cos603e e e e θ⋅==⨯⨯= ∴ 43(1)90m m +--= ∴ 6m =故存在实数6m =,使得m 1e 2e +与1e -2e 垂直.18.解:显然→a =3(1,0)—2(0,1)=(3,—2),→b =4(1,0)+(0,1)=(4,1);易得:①→→⋅b a =3×4+(—2)×1=10;→→+b a =(3,—2)+(4,1)=(7,—1),→→+b a =22)1(7-+=25。
高中平面向量知识点详细归纳总结(附带练习)
向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。
高中向量题集(含答案)【强烈推荐】
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高中向量题集(含答案)【强烈推荐】地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容平面向量测试题一、选择题(本题有10个小题,每小题5分,共50分)1.“两个非零向量共线”是这“两个非零向量方向相同”的()A.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分也不必要条件2.如果向量与共线 ,且方向相反,则的值为(). . . .3.已知向量、的夹角为,,,若,则的值为(). . . .4.已知a=(1,-2),b=(1,x),若a⊥b,则x等于()A. B. C. 2 D. -25.下列各组向量中,可以作为基底的是()ABC.6.已知向量a,b的夹角为,且|a|=2,|b|=5,则(2a-b)·a= ()A.3 B. 9 C . 12 D. 137.已知点O为三角形ABC所在平面内一点,若,则点O是三角形ABC的( )A.重心 B. 内心 C. 垂心 D. 外心8.设a=(2,-3),b=(x,2x),且3a·b=4,则x等于()A.-3 B. 3 C. D.9.已知∥,则x+2y的值为()A.0 B. 2 C. D. -210.已知向量a+3b,a-4b分别与7a-5b,7a-2b垂直,且|a|≠0,|b|≠0,则a与b的夹角为()A. B. C. D.二、填空题(共4个小题,每题5分,共20分)11.在三角形ABC中,点D是AB的中点,且满足,则12.设是两个不共线的向量,则向量b=与向量a=共线的充要条件是_______________13.圆心为O,半径为4的圆上两弦AB与CD垂直相交于点P,若以PO为方向的单位向量为b,且|PO|=2,则=_______________14.已知O为原点,有点A(d,0)、B(0,d),其中d>0,点P在线段AB上,且(0≤t≤1),则的最大值为______________三、解答题15.(12分)设a,b是不共线的两个向量,已知若A、B、C三点共线,求k的值.16.(12分)设向量a,b满足|a|=|b|=1及|3a-2b|=3,求|3a+b|的值17.(14分)已知|a|=,|b|=3,a与b夹角为,求使向量a+b 与a+b的夹角是锐角时,的取值范围20.已知向量、、、及实数、满足,,若,且.⑴求关于的函数关系式及其定义域;⑵若时,不等式恒成立,求实数的取值范围.附加题(可不做)1.已知点P分所成的比为-3,那么点分所成比为()A. B. C. D.2.点(2,-1)按向量a平移后得(-2,1),它把点(-2,1)平移到()A.(2,-1) B. (-2,1) C. (6,-3) D. (-6,3))高中数学高考总复习平面向量的数量积及向量的应用习题及详解一、选择题1.(文)(2010·东北师大附中)已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是( ) A.-4 B.4C.-2 D.2[解析] a在b方向上的投影为eq \f(a·b,|b|) = eq \f(-12,3) =-4.(理)(2010·浙江绍兴调研)设a·b=4,若a在b方向上的投影为2,且b在a方向上的投影为1,则a与b的夹角等于( )A. eq \f(π,6)B. eq \f(π,3)C. eq \f(2π,3)D. eq \f(π,3) 或 eq \f(2π,3)[答案] B[解析] 由条件知, eq \f(a·b,|b|) =2, eq \f(a·b,|a|) =1,a·b=4,∴|a|=4,|b|=2,∴cos〈a,b〉= eq \f(a·b,|a|·|b|) = eq \f(4,4×2) = eq \f(1,2) ,∴〈a,b〉= eq \f(π,3) .2.(文)(2010·云南省统考)设e1,e2是相互垂直的单位向量,并且向量a=3e1+2e2,b=xe1+3e2,如果a⊥b,那么实数x等于( )A.- eq \f(9,2) B. eq \f(9,2)C.-2 D.2[解析] 由条件知|e1|=|e2|=1,e1·e2=0,∴a·b=3x+6=0,∴x=-2.(理)(2010·四川广元市质检)已知向量a=(2,1),b=(-1,2),且m=ta+b,n=a-kb(t、k∈R),则m⊥n的充要条件是( )A.t+k=1 B.t-k=1C.t·k=1 D.t-k=0[答案] D[解析] m=ta+b=(2t-1,t+2),n=a-kb=(2+k,1-2k),∵m⊥n,∴m·n=(2t-1)(2+k)+(t+2)(1-2k)=5t -5k=0,∴t-k=0.3.(文)(2010·湖南理)在Rt△ABC中,∠C=90°,AC=4,则 eq \o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) 等于( )A.-16 B.-8C.8 D.16[答案] D[解析] 因为∠C=90°,所以 eq \o(AC,\s\up6(→)) · eq \o(CB,\s\up6(→)) =0,所以 eq\o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) =( eq \o(AC,\s\up6(→)) + eq \o(CB,\s\up6(→)) )· eq\o(AC,\s\up6(→)) =| eq \o(AC,\s\up6(→)) |2+ eq \o(AC,\s\up6(→)) · eq \o(CB,\s\up6(→)) =AC2=16.(理)(2010·天津文)如图,在△ABC中,AD⊥AB, eq \o(BC,\s\up6(→)) = eq \r(3) eq \o(BD,\s\up6(→)) ,| eq \o(AD,\s\up6(→)) |=1,则 eq \o(AC,\s\up6(→)) · eq \o(AD,\s\up6(→)) =( ) A.2 eq \r(3) B. eq \f(\r(3),2)C. eq \f(\r(3),3)D. eq \r(3)[答案] D[解析] ∵ eq \o(AC,\s\up6(→)) = eq \o(AB,\s\up6(→)) + eq \o(BC,\s\up6(→)) = eq\o(AB,\s\up6(→)) + eq \r(3) eq \o(BD,\s\up6(→)) ,∴ eq \o(AC,\s\up6(→)) · eq \o(AD,\s\up6(→)) =( eq \o(AB,\s\up6(→)) + eq \r(3) eq\o(BD,\s\up6(→)) )· eq \o(AD,\s\up6(→)) = eq \o(AB,\s\up6(→)) · eq \o(AD,\s\up6(→)) + eq\r(3) eq \o(BD,\s\up6(→)) · eq \o(AD,\s\up6(→)) ,又∵AB⊥AD,∴ eq \o(AB,\s\up6(→)) · eq \o(AD,\s\up6(→)) =0,∴ eq \o(AC,\s\up6(→)) · e q \o(AD,\s\up6(→)) = eq \r(3) eq \o(BD,\s\up6(→)) · eq\o(AD,\s\up6(→)) = eq \r(3) | eq \o(BD,\s\up6(→)) |·| eq \o(AD,\s\up6(→)) |·cos∠ADB = eq \r(3) | eq \o(BD,\s\up6(→)) |·cos∠ADB= eq \r(3) ·| eq \o(AD,\s\up6(→)) |= eq \r(3) .4.(2010·湖南省湘潭市)设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则〈a,b〉=( )A.150° B.120°C.60° D.30°[答案] B[解析] ∵a+b=c,|a|=|b|=|c|≠0,∴|a+b|2=|c|2=|a|2,∴|b|2+2a·b=0,∴|b|2+2|a|·|b|·cos〈a,b〉=0,∴cos〈a,b〉=- eq \f(1,2) ,∵〈a,b〉∈[0°,180°],∴〈a,b〉=120°.5.(2010·四川双流县质检)已知点P在直线AB上,点O不在直线AB上,且存在实数t满足 eq \o(OP,\s\up6(→)) =2t eq \o(PA,\s\up6(→)) +t eq \o(OB,\s\up6(→)) ,则 eq \f(|\o(PA,\s\up6(→))|,|\o(PB,\s\up6(→))|) =( )A. eq \f(1,3)B. eq \f(1,2)C.2 D.3[答案] B[解析] ∵ eq \o(OP,\s\up6(→)) =2t( eq \o(OA,\s\up6(→)) - eq \o(OP,\s\up6(→)) )+t eq\o(OB,\s\up6(→)) ,∴ eq \o(OP,\s\up6(→)) = eq \f(2t,2t+1) eq \o(OA,\s\up6(→)) + eq \f(t,2t+1) eq\o(OB,\s\up6(→)) ,∵P在直线AB上,∴ eq \f(2t,2t+1) + eq \f(t,2t+1) =1,∴t=1,∴ eq \o(OP,\s\up6(→)) = eq \f(2,3) eq \o(OA,\s\up6(→)) + eq \f(1,3) eq \o(OB,\s\up6(→)) ,∴ eq \o(PA,\s\up6(→)) = eq \o(OA,\s\up6(→)) - eq \o(OP,\s\up6(→)) = eq \f(1,3) eq\o(OA,\s\up6(→)) - eq \f(1,3) eq \o(OB,\s\up6(→)) ,eq \o(PB,\s\up6(→)) = eq \o(OB,\s\up6(→)) - eq \o(OP,\s\up6(→)) = eq \f(2,3) eq\o(OB,\s\up6(→)) - eq \f(2,3) eq \o(OA,\s\up6(→)) =-2 eq \o(PA,\s\up6(→)) ,∴ eq \f(|\o(PA,\s\up6(→))|,|\o(PB,\s\up6(→))|) = eq \f(1,2) .6.(文)平面上的向量 eq \o(MA,\s\up6(→)) 、 eq \o(MB,\s\up6(→)) 满足| eq \o(MA,\s\up6(→)) |2+| eq \o(MB,\s\up6(→)) |2=4,且 eq \o(MA,\s\up6(→)) · eq \o(MB,\s\up6(→)) =0,若向量 eq \o(MC,\s\up6(→)) = eq \f(1,3) eq \o(MA,\s\up6(→)) + eq \f(2,3) eq \o(MB,\s\up6(→)) ,则| eq \o(MC,\s\up6(→)) |的最大值是( )A. eq \f(1,2) B.1C.2 D. eq \f(4,3)[答案] D[解析] ∵ eq \o(MA,\s\up6(→)) · eq \o(MB,\s\up6(→)) =0,∴ eq \o(MA,\s\up6(→)) ⊥ eq\o(MB,\s\up6(→)) ,又∵| eq \o(MA,\s\up6(→)) |2+| eq \o(MB,\s\up6(→)) |2=4,∴|AB|=2,且M在以AB为直径的圆上,如图建立平面直角坐标系,则点A(-1,0),点B(1,0),设点M(x,y),则x2+y2=1,eq \o(MA,\s\up6(→)) =(-1-x,-y), eq \o(MB,\s\up6(→)) =(1-x,-y),∵ eq \o(MC,\s\up6(→)) = eq \f(1,3) eq \o(MA,\s\up6(→)) + eq \f(2,3) eq \o(MB,\s\up6(→)) = eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)-x,-y)) ,∴| eq \o(MC,\s\up6(→)) |2= eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)-x)) 2+y2= eq \f(10,9) - eq\f(2,3) x,∵-1≤x≤1,∴x=-1时,| eq \o(MC,\s\up6(→)) |2取得最大值为 eq \f(16,9) ,∴| eq \o(MC,\s\up6(→)) |的最大值是 eq \f(4,3) .(理)(2010·山东日照)点M是边长为2的正方形ABCD内或边界上一动点,N是边BC的中点,则 eq\o(AN,\s\up6(→)) · eq \o(AM,\s\up6(→)) 的最大值为( )A.8 B.6C.5 D.4[答案] B[解析] 建立直角坐标系如图,∵正方形ABCD边长为2,∴A(0,0),N(2,-1), eq \o(AN,\s\up6(→)) =(2,-1),设M坐标为(x,y), eq \o(AM,\s\up6(→)) =(x,y)由坐标系可知eq \b\lc\{\rc\ (\a\vs4\al\co1(0≤x≤2①,-2≤y≤0 ②))∵ eq \o(AN,\s\up6(→)) · eq \o(AM,\s\up6(→)) =2x-y,设2x-y=z,易知,当x=2,y=-2时,z取最大值6,∴ eq \o(AN,\s\up6(→)) · eq \o(AM,\s\up6(→)) 的最大值为6,故选B.7.如图,△ABC的外接圆的圆心为O,AB=2,AC=3,BC= eq \r(7) ,则 eq \o(AO,\s\up6(→)) · eq\o(BC,\s\up6(→)) 等于( )A. eq \f(3,2)B. eq \f(5,2)C.2 D.3[答案] B[解析] eq \o(AO,\s\up6(→)) · eq \o(BC,\s\up6(→)) = eq \o(AO,\s\up6(→)) ·( eq\o(AC,\s\up6(→)) - eq \o(AB,\s\up6(→)) )= eq \o(AO,\s\up6(→)) · eq \o(AC,\s\up6(→)) - eq\o(AO,\s\up6(→)) · eq \o(AB,\s\up6(→)) ,因为OA=OB.所以 eq \o(AO,\s\up6(→)) 在 eq \o(AB,\s\up6(→)) 上的投影为 eq \f(1,2) | eq \o(AB,\s\up6(→)) |,所以 eq \o(AO,\s\up6(→)) · eq \o(AB,\s\up6(→)) = eq \f(1,2) | eq \o(AB,\s\up6(→)) |·| eq \o(AB,\s\up6(→)) |=2,同理 eq \o(AO,\s\up6(→)) · eq\o(AC,\s\up6(→)) = eq \f(1,2) | eq \o(AC,\s\up6(→)) |·| eq \o(AC,\s\up6(→)) |= eq \f(9,2) ,故 eq \o(AO,\s\up6(→)) · eq \o(BC,\s\up6(→)) = eq \f(9,2) -2= eq \f(5,2) .8.(文)已知向量a、b满足|a|=2,|b|=3,a·(b-a)=-1,则向量a与向量b的夹角为( )A. eq \f(π,6)B. eq \f(π,4)C. eq \f(π,3)D. eq \f(π,2)[答案] C[解析] 根据向量夹角公式“cos〈a,b〉= eq \f(a·b,|a||b|) 求解”.由条件得a·b-a2=-1,即a·b=-3,设向量a,b的夹角为α,则cosα= eq \f(a·b,|a||b|) = eq\f(3,2×3) = eq \f(1,2) ,所以α= eq \f(π,3) .9.(理)(2010·黑龙江哈三中)在△ABC中, eq \o(AB,\s\up6(→)) · eq \o(BC,\s\up6(→)) ∈ eq\b\lc\[\rc\](\a\vs4\al\co1(\f(3,8),\f(3\r(3),8))) ,其面积S= eq \f(3,16) ,则 eq \o(AB,\s\up6(→)) 与 eq \o(BC,\s\up6(→)) 夹角的取值范围是( )A. eq \b\lc\[\rc\](\a\vs4\al\co1(\f(π,6),\f(π,4)))B. eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,6),\f(π,3)))C. eq \b\lc\[\rc\](\a\vs4\al\co1(\f(π,4),\f(π,3)))D. eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,6),\f(3π,4)))[答案] A[解析] 设〈 eq \o(AB,\s\up6(→)) , eq \o(BC,\s\up6(→)) 〉=α,∵ eq \o(AB,\s\up6(→)) · eq\o(BC,\s\up6(→)) =| eq \o(AB,\s\up6(→)) |·| eq \o(BC,\s\up6(→)) |cosα,S= eq \f(1,2) | eq\o(AB,\s\up6(→)) |·| eq \o(BC,\s\up6(→)) |·sin(π-α)= eq \f(1,2) | eq \o(AB,\s\up6(→)) |·| eq\o(BC,\s\up6(→)) |·sinα= eq \f(3,16) ,∴| eq \o(AB,\s\up6(→)) |·| eq \o(BC,\s\up6(→)) |= eq\f(3,8sinα) ,∴ eq \o(AB,\s\up6(→)) · eq \o(BC,\s\up6(→))= eq \f(3cosα,8sinα) = eq \f(3,8) cotα,由条件知 eq \f(3,8) ≤ eq \f(3,8) cotα≤ eq \f(3\r(3),8) ,∴1≤cotα≤ eq \r(3) ,∵ eq \o(AB,\s\up6(→)) · eq \o(BC,\s\up6(→)) >0,∴α为锐角,∴ eq \f(π,6) ≤α≤ eq \f(π,4) .10.(理)(2010·南昌市模考)如图,BC是单位圆A的一条直径,F是线段AB上的点,且 eq \o(BF,\s\up6(→)) =2 eq \o(FA,\s\up6(→)) ,若DE是圆A中绕圆心A运动的一条直径,则 eq \o(FD,\s\up6(→)) · eq \o(FE,\s\up6(→)) 的值是( )A.- eq \f(3,4) B.- eq \f(8,9)C.- eq \f(1,4) D.不确定[答案] B[解析] ∵ eq \o(BF,\s\up6(→)) =2 eq \o(FA,\s\up6(→)) ,∴ eq \o(FA,\s\up6(→)) = eq \f(1,3) eq \o(BA,\s\up6(→)) ,∴| eq \o(FA,\s\up6(→)) |= eq \f(1,3) | eq \o(BA,\s\up6(→)) |= eq \f(1,3) ,eq \o(FD,\s\up6(→)) · eq \o(FE,\s\up6(→)) =( eq \o(FA,\s\up6(→)) + eq \o(AD,\s\up6(→)) )·( eq \o(FA,\s\up6(→)) + eq \o(AE,\s\up6(→)) )=( eq \o(FA,\s\up6(→)) + eq \o(AD,\s\up6(→)) )·( eq \o(FA,\s\up6(→)) - eq \o(AD,\s\up6(→)) )=| eq \o(FA,\s\up6(→)) |2-| eq \o(AD,\s\up6(→)) |2= eq \f(1,9) -1=- eq \f(8,9) .二、填空题11.(2010·苏北四市)如图,在平面四边形ABCD中,若AC=3,BD=2,则( eq \o(AB,\s\up6(→)) + eq\o(DC,\s\up6(→)) )·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=______.[答案] 5[解析] 设AC与BD相交于点O,则( eq \o(AB,\s\up6(→)) + eq \o(DC,\s\up6(→)) )·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=[( eq \o(OB,\s\up6(→)) - eq \o(OA,\s\up6(→)) )+( eq \o(OC,\s\up6(→)) - eq\o(OD,\s\up6(→)) )]·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=[( eq \o(OB,\s\up6(→)) - eq \o(OD,\s\up6(→)) )+( eq \o(OC,\s\up6(→)) - eq\o(OA,\s\up6(→)) )]·( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=( eq \o(DB,\s\up6(→)) + eq \o(AC,\s\up6(→)) )( eq \o(AC,\s\up6(→)) + eq \o(BD,\s\up6(→)) )=| eq \o(AC,\s\up6(→)) |2-| eq \o(BD,\s\up6(→)) |2=5.12.(文)(2010·江苏洪泽中学月考)已知O、A、B是平面上不共线三点,设P为线段AB垂直平分线上任意一点,若| eq \o(OA,\s\up6(→)) |=7,| eq \o(OB,\s\up6(→)) |=5,则 eq \o(OP,\s\up6(→)) ·( eq \o(OA,\s\up6(→)) -eq \o(OB,\s\up6(→)) )的值为________.[答案] 12[解析] eq \o(PA,\s\up6(→)) = eq \o(PO,\s\up6(→)) + eq \o(OA,\s\up6(→)) , eq \o(PB,\s\up6(→)) = eq \o(PO,\s\up6(→)) + eq \o(OB,\s\up6(→)) ,由条件知,| eq \o(OA,\s\up6(→)) |2=49,| eq \o(OB,\s\up6(→)) |2=25,| eq \o(PA,\s\up6(→)) |=| eq \o(PB,\s\up6(→)) |,∴| eq \o(PO,\s\up6(→)) + eq \o(OA,\s\up6(→)) |2=| eq \o(PO,\s\up6(→)) + eq\o(OB,\s\up6(→)) |2,即| eq \o(PO,\s\up6(→)) |2+| eq \o(OA,\s\up6(→)) |2+2 eq \o(PO,\s\up6(→)) · eq\o(OA,\s\up6(→)) =| eq \o(PO,\s\up6(→)) |2+| eq \o(OB,\s\up6(→)) |2+2 eq \o(PO,\s\up6(→)) · eq\o(OB,\s\up6(→)) ,∴ eq \o(PO,\s\up6(→)) ·( eq \o(OA,\s\up6(→)) - eq \o(OB,\s\up6(→)) )=-12,∴ eq \o(OP,\s\up6(→)) ·( eq \o(OA,\s\up6(→)) - eq \o(OB,\s\up6(→)) )=12.13.(理)(2010·广东茂名市)O是平面α上一点,A、B、C是平面α上不共线的三点,平面α内的动点P满足 eq\o(OP,\s\up6(→)) = eq \o(OA,\s\up6(→)) +λ( eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) ),则λ= eq \f(1,2) 时, eq \o(PA,\s\up6(→)) ·( eq \o(PB,\s\up6(→)) + eq \o(PC,\s\up6(→)) )的值为______.[答案] 0[解析] 由已知得 eq \o(OP,\s\up6(→)) - eq \o(OA,\s\up6(→)) =λ( eq \o(AB,\s\up6(→)) + eq\o(AC,\s\up6(→)) ),即 eq \o(AP,\s\up6(→)) =λ( eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) ),当λ= eq \f(1,2) 时,得 eq \o(AP,\s\up6(→)) = eq \f(1,2) ( eq \o(AB,\s\up6(→)) + eq\o(AC,\s\up6(→)) ),∴2 eq \o(AP,\s\up6(→)) = eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) ,即 eq \o(AP,\s\up6(→)) - eq \o(AB,\s\up6(→)) = eq \o(AC,\s\up6(→)) - eq \o(AP,\s\up6(→)) ,∴ eq \o(BP,\s\up6(→)) = eq \o(PC,\s\up6(→)) ,∴ eq \o(PB,\s\up6(→)) + eq \o(PC,\s\up6(→)) =eq \o(PB,\s\up6(→)) + eq \o(BP,\s\up6(→)) =0,∴ eq \o(PA,\s\up6(→)) ·( eq \o(PB,\s\up6(→)) + eq \o(PC,\s\up6(→)) )= eq \o(PA,\s\up6(→)) ·0=0,故填0.三、解答题16.(文)(延边州质检)如图,在四边形ABCD中,AD=8,CD=6,AB=13,∠ADC=90°且 eq \o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) =50.(1)求sin∠BAD的值;(2)设△ABD的面积为S△ABD,△BCD的面积为S△BCD,求 eq \f(S△ABD,S△BCD) 的值.[解析] (1)在Rt△ADC中,AD=8,CD=6,则AC=10,cos∠CAD= eq \f(4,5) ,sin∠CAD= eq \f(3,5) ,又∵ eq \o(AB,\s\up6(→)) · eq \o(AC,\s\up6(→)) =50,AB=13,∴cos∠BAC= eq \f(\o(AB,\s\up6(→))·\o(AC,\s\up6(→)),|\o(AB,\s\up6(→))|·|\o(AC,\s\up6(→))|) = eq \f(5,13) ,∵0<∠BAC∠180°,∴sin∠BAC= eq \f(12,13) ,∴sin∠BAD=sin(∠BAC+∠CAD)= eq \f(63,65) .(2)S△BAD= eq \f(1,2) AB·ADsin∠BAD= eq \f(252,5) ,S△BAC= eq \f(1,2) AB·ACsin∠BAC=60,S△ACD=24,则S△BCD=S△ABC+S△ACD-S△BAD= eq \f(168,5) ,∴ eq \f(S△ABD,S△BCD) = eq \f(3,2) .(理)点D是三角形ABC内一点,并且满足AB2+CD2=AC2+BD2,求证:AD⊥BC.[分析] 要证明AD⊥BC,则只需要证明 eq \o(AD,\s\up6(→)) · eq \o(BC,\s\up6(→)) =0,可设 eq\o(AD,\s\up6(→)) =m, eq \o(AB,\s\up6(→)) =c, eq \o(AC,\s\up6(→)) =b,将 eq \o(BC,\s\up6(→)) 用m,b,c线性表示,然后通过向量的运算解决.证明:设 eq \o(AB,\s\up6(→)) =c, eq \o(AC,\s\up6(→)) =b, eq \o(AD,\s\up6(→)) =m,则 eq \o(BD,\s\up6(→)) = eq \o(AD,\s\up6(→)) - eq \o(AB,\s\up6(→)) =m-c, eq \o(CD,\s\up6(→)) = eq \o(AD,\s\up6(→)) - eq \o(AC,\s\up6(→)) =m-b.∵AB2+CD2=AC2+BD2,∴c2+(m-b)2=b2+(m-c)2,即c2+m2-2m·b+b2=b2+m2-2m·c+c2,∴m·(c-b)=0,即 eq \o(AD,\s\up6(→)) ·( eq \o(AB,\s\up6(→)) - eq \o(AC,\s\up6(→)) )=0,∴ eq \o(AD,\s\u p6(→)) · eq \o(CB,\s\up6(→)) =0,∴AD⊥BC.17.(文)(2010·江苏)在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;(2)设实数t满足( eq \o(AB,\s\up6(→)) -t eq \o(OC,\s\up6(→)) )· eq \o(OC,\s\up6(→)) =0,求t的值.[解析] (1)由题设知 eq \o(AB,\s\up6(→)) =(3,5), eq \o(AC,\s\up6(→)) =(-1,1),则 eq\o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) =(2,6), eq \o(AB,\s\up6(→)) - eq \o(AC,\s\up6(→)) =(4,4).所以| eq \o(AB,\s\up6(→)) + eq \o(AC,\s\up6(→)) |=2 eq \r(10) ,| eq \o(AB,\s\up6(→)) - eq\o(AC,\s\up6(→)) |=4 eq \r(2) .故所求的两条对角线长分别为4 eq \r(2) ,2 eq \r(10) .(2)由题设知 eq \o(OC,\s\up6(→)) =(-2,-1), eq \o(AB,\s\up6(→)) -t eq \o(OC,\s\up6(→)) =(3+2t,5+t).由( eq \o(AB,\s\up6(→)) -t eq \o(OC,\s\up6(→)) )· eq \o(OC,\s\up6(→)) =0得,(3+2t,5+t)·(-2,-1)=0,所以t=- eq \f(11,5) .(理)(安徽巢湖质检)已知A(- eq \r(3) ,0),B( eq \r(3) ,0),动点P满足| eq \o(PA,\s\up6(→)) |+| eq \o(PB,\s\up6(→)) |=4.(1)求动点P的轨迹C的方程;(2)过点(1,0)作直线l与曲线C交于M、N两点,求 eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 的取值范围.[解析] (1)动点P的轨迹C的方程为 eq \f(x2,4) +y2=1;(2)解法一:①当直线l的斜率不存在时,M(1, eq \f(\r(3),2) ),N(1,- eq \f(\r(3),2) ), eq\o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) = eq \f(1,4) ;②当直线l的斜率存在时,设过(1,0)的直线l:y=k(x-1),代入曲线C的方程得(1+4k2)x2-8k2x+4(k2-1)=0.设M(x1,y1)、N(x2,y2),则x1+x2= eq \f(8k2,1+4k2) ,x1x2= eq \f(4k2-1,1+4k2) .eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) =x1x2+y1y2=x1x2+k2(x1-1)(x2-1)=(1+k2)x1x2-k2(x1+x2)+k2= eq \f(k2-4,1+4k2) = eq \f(1,4) - eq \f(\f(17,4),1+4k2) < eq \f(1,4) .又当k=0时, eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 取最小值-4,∴-4≤ eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) < eq \f(1,4) .根据①、②得 eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 的取值范围为[-4, eq \f(1,4) ].解法二:当直线l为x轴时,M(-2,0),N(2,0), eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) =-4. 当直线l不为x轴时,设过(1,0)的直线l:x=λy+1,代入曲线C的方程得(4+λ2)y2+2λy-3=0.设M(x1,y1)、N(x2,y2),则y1+y2= eq \f(-2λ,4+λ2) ,y1y2= eq \f(-3,4+λ2) .eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) =x1x2+y1y2=(λ2+1)y1y2+λ(y1+y2)+1= eq \f(-4λ2+1,4+λ2) =-4+ eq \f(17,4+λ2) ∈(-4, eq \f(1,4) ].∴-4≤ eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) ≤ eq \f(1,4) .∴ eq \o(OM,\s\up6(→)) · eq \o(ON,\s\up6(→)) 的取值范围为[-4, eq \f(1,4) ].高中数学平面向量章末复习题(二)【提高篇】一、选择题1、下面给出的关系式中正确的个数是( C )① ②③④⑤(A) 0 (B) 1 (C) 2 (D) 32. 已知ABCD为矩形,E是DC的中点,且=,=,则=( B )(A) + (B)-(C)+(D)-3.已知ABCDEF是正六边形,且=,=,则=( D )(A)(B)(C)+(D)4. 设a,b为不共线向量,=a+2b,=-4 a-b,=-5 a-3 b,则下列关系式中正确的是(B )(A)=(B)=2 (C)=-(D)=-25. 设与是不共线的非零向量,且k+与+k共线,则k的值是( C )(A) 1 (B)-1 (C)(D)任意不为零的实数6. 在中,M是BC的中点,AM=1,点P在AM上且满足-,则等于 ( A )A. B. C. D.7.已知a、b均为单位向量,它们的夹角为60°,那么丨a+3b丨=( C )A.B.C. D.48.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于( D )。
高考数学-平面向量(知识点归纳+习题)
高中数学向量专题【基础知识精讲】1.向量的定义既有方向,又有大小的量叫做向量.它一般用有向线段表示. AB表示从点A到B的向量(即A为起点,B为终点的向量),也可以用字母a、b、c…等表示.(印刷用黑体a、b、c,书写用a、b、c注意:长度、面积、体积、质量等为数量,位移、速度、力等为向量).2.向量的模所谓向量AB的大小,就是向量AB的长度(或称模),记作|AB|或者|a|.向量不能比较大小,但向量的模可以比较大小.3.零向量与单位向量:长度为0的向量称为零向量,用0表示. 0向量的方向是不定的,或者说任何方向都是0向量的方向,因此0向量有两个特征:一长度为0;二是方向不定.长度为1的向量称为单位向量.4.平行向量、共线向量方向相同或相反的非零向量称为平行向量.特别规定零向量与任一向量都平行.因此,零向量与零向量也可以平行.根据平行向量的定义可知:共线的两向量也可以称为平行向量.例如AB与BA也是一对平行向量.由于任何一组平行向量都可移到同一直线上,故平行向量也叫做共线向量.例如,若四边形ABCD是平行四边形,则向量AB与CD是一组共线向量;向量AD与BC也是一组共线向量.5.相等向量长度相等且方向相同的向量叫做相等向量,若向量a与向量b相等,记作a=b.零向量与零向量相等,任意两个相等的非零向量都可以用一条有向线段来表示,并且与有向线段的起点无关.【重点难点解析】通过本节学习,应该掌握:(1)理解向量、零向量、单位向量、相等向量的概念;(2)掌握向量的几何表示,会用字母表示向量;(3)了解平行向量的概念及表示法,了解共线向量的概念.例1判断下列各命题是否正确(1)若|a|=|b|,则a=b(2)若A、B、C、D是不共线的四点,则AB=DC是四边形ABCD是平行四边形的充要条件.(3)若a=b,b=c,则a=c(4)两向量a、b相等的充要条件是(5)||=||是向量=的必要不充分条件.(6) AB =CD 的充要条件是A 与C 重合,B 与D 重合.解:(1)不正确,两个向量的长度相等,但它们的方向不一定相同. (2)正确.∵AB =DC ,∴|AB |=|DC |且AB ∥DC . 又A 、B 、C 、D 是不共线的四点.∴四边形ABCD 是平行四边形,反之,若四边形ABCD 是平行四边形则AB ∥DC ,且AB 与DC 方向相同,因此AB =DC .(3)正确.∵a =b∴a ,b 的长度相等且方向相同; 又∵b =c∴b ,c 的长度相等且方向相同.∴a ,c 的长度相等且方向相同,故a =c(4)不正确.当a ∥b ,但方向相反,即使|a |=|b |,也不能得到a =b ,故不是a =b 的充要条件. (5)正确.这是因为|b || a |=a =b ,但a =b ⇒|a |=|b |,所以|a |=|b |是a =b 的必要不充分条件.(6)不正确.这是因为AB =CD 时,应有:|AB |=|CD |及由A 到B 与由C 到D 的方向相同,但不一定要有A 与C 重合、B 与D 重合.说明:①针对上述结论(1)、(4)、(5),我们应该清醒的认识到,两非零向a 、b 相等的充要条件应是a 、b 的方向相同且模相等.②针对结论(3),我们应该理解向量相等是可传递的.③结论(6)不正确,告诉我们平面向量a 与b 相等,并不要求它们有相同的起点与终点.当然如果我们将相等的两向量的起点平移到同一点.则这时它们的终点必重合.例2 如图所示,△ABC 中,三边长|AB |、|BC |、|AC |均不相等,E 、F 、D 是AC ,AB ,BC 的中点.(1)写出与EF 共线的向量. (2)写出与EF 的模大小相等的向量. (3)写出与EF 相等的向量.解:(1)∵E 、F 分别是AC ,AB 的中点 ∴EF ∥BC从而,与EF 共线的向量,包括:FE ,BD ,DB ,DC ,CD ,BC ,CB .(2)∵E 、F 、D 分别是AC 、AB 、BC 的中点 ∴EF=21BC,BD=DC=21BC. 又∵AB 、BC 、AC 均不相等从而,与EF 的模大小相等的向量是:FE 、BD 、DB 、DC 、CD (3)与EF 相等的向量,包括:DB 、CD .例3 判断下列命题真假 (1)平行向量一定方向相同. (2)共线向量一定相等.(3)起点不同,但方向相同且模相等的几个向量是相等的向量. (4)不相等的向量,则一定不平行. (5)非零向量的单位向量是±aa .解:(1)假命题,还可以方向相反;(2)假命题,共线向量仅方向相同或相反;大小不一定相等; (3)真命题,因为向量与起点位置无关;(4)假命题,因为若a ,b 方向相同,但只要|a |≠|b |,则a ≠b . (5)真命题,任一非零向量:a 的单位向量为±aa .例4 如图,已知:四边形ABCD 中,N 、M 分别是AD 、BC 的中点,又AB =DC .求证:=MA , 证明:∵=∴|AB |=|DC |,且AB ∥DC.从而,四边形ABCD 是平行四边形. ∴AD ∥BC ,AD=BC∵N 、M 分别是AD 、BC 的中点. ∴AN=21AD,MC=21BC. ∴AN=MC. 又AN ∥MC ,∴四边形AMCN 是平行四边形.于是得:AM ∥NC ,|AM |=|NC |. 又由图可知:CN 与MA 的方向一致. ∴CN =MA【难题巧解点拔】例1 如图,已知四边形ABCD 是矩形,O 是两对角线AC 与BD 的交点,设点集M={A,B,C,D,O}、向量的集合T={PQ |任P ,Q ∈M ,且P 、Q 不重合},试求集合T 的子集个数.分析:要确定向量为元素的集合T 有多少个子集,就需搞清楚集合T 中有多少个相异的向量.解:以矩形ABCD 的四顶点及它的对角线交点O ,五点中的任一点为起点,其余四点中的一点为终点的向量共有20个,但是这20个向量不是各不相等的,我们下面将这20个向量一一列举出来:AO =OC 、OA =CO ;DO =OB 、BO =OD ;AC 、CA ;BD 、DB ;AD =BC 、DA =CB ;AB =DC 、BA =CD .它们中有12个向量是各不相等的.故T 是一个12元集.所以T 有212个子集.说明:在上述解题过程中,我们一定要根据集合元素的互异性.算出T 中的元素个数为12.而不是20.这样才能得到正确的结果.例2 已知;如图,点D 在△ABC 的边BC 上,且与B 、C 不重合,E 、F 分别在AB 、AC 上,DF =EA .(1)求证:△BDE ∽△DCF.(2)求当D 在什么位置时,四边形AEDF 的面积可以取到最大值?证明:(1)∵=∴DF ∥AE ,|DF |=|EA |.从而,得:四边形AEDF 是平行四边形 ∴DE ∥AF ,|DE |=|AF | 由DE ∥AF 可得:∠BDE=∠C 由DF ∥AE 可得:∠B=∠FDC ∴△BDE ∽△DCF(2)设|BC |=a,|AC |=b,|AB |=c,|BD |=x,则|DC |=a-x. ∵△BDE ∽△DCF. ∴CDBD =DFBE =FCED从而,xBE =xa DF -,设比为k 1.xED =xa FC -,设比为k 2.由|BE |+|DF |=c,|ED |+|FC |=b. 可得:xk 1+(a-x)k 1=c,∴k 1=ac . xk 2+(a-x)k 2=b,∴k 2=ab . ∴|DF |=ac(a-x) |DE |=ab x 由点F 作FT ⊥AB ,垂足为T由锐角三角函数,|FT |=|AF |sinA=abx ·sinA ∴S □AEDF =|DF |·|FT |=a c (a-x)·abx ·sinA =2abc (ax-x 2)sinA =2abc [42a -(x-2a )2]sinA ≤4bc sinA当且仅当x=2a时,等号成立. 答:D 是BC 边的中点时,S □AEDF 取到最大值.例3 如图A 1,A 2,…A 8是⊙O 上的八个等分点,则在以A 1,A 2…A 8及圆心O 九个点中任意两点为起点与终点的向量中,模等于半径的向量有多少个?模等于半径2倍的向量有多少个?分析:(1)由于A 1、A 2…A 8是⊙O 上的八个等分点,所以八边形A 1A 2…A 8是正八边形,正八边形的边及对角线长均与⊙O 的半径不相等.所以模等于半径的向量只可能是i OA 与O A i (i=1,2,…,8)两类.(2)⊙O 内接正方形的边长是半径的2倍,所以我们应考虑与圆心O 形成90°圆心角的两点为端点的向量个数. 解:(1)模等于半径的向量只有两类,一类是i OA (i=1,2,…,8)共8个;另一类是O A i (i=1,2,…,8)也有8个,两类合计16个.(2)以A 1,A 2,…,A 8为顶点的⊙O 的内接正方形有两个,一是正方形A 1A 3A 5A 7;另一个是正方形A 2A 4A 6A 8.在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的长度为半径的2倍.所以模为半径2倍的向量共有4×2×2=16个.说明:(1)在模等于半径的向量个数的计算中,要计算i OA 与O A i (i=1,2,…,8)两类,一般我们易想到i OA (i=1,2,…,8)这8个,而易遗漏O A i (i=1,2,…,8)这8个.(2)圆内接正方形的一边对应了长为2的两个向量.例如边A 1A 3对应向量31A A 与42A A .因此与(1)一样,在解题过程中主要要防止漏算.认为满足条件的向量个数为8是错误的.【命题趋势分析】本节着重考查对向量的概念的理解,高考中将会以选择题、填空题形式命题.【典型热点考题】例1 给出下列3个命题:(1)单位向量都相等;(2)单位向量都共线;(3)共线的单位向量必相等.其中真命题的个数是( )A.0B.1C.2D.3分析:本题考查单位向量和共线向量的概念及它们之间的联系等基础知识,增加了考点,加大了难度.因为不同的单位向量有不同的方向,所以(1)和(2)较易判断是假命题.因为共线的单位向量有可能方向相反,它们不一定相等,所以(3)也是假命题.∴选A.例2 如图,四边形ABCD 和ABDE 都是平行四边形.(1)与向量相等的向量有;(2)若||=3,则向量的模等于 .分析:本题考查用向量的观点对平面图形进行初步判断的能力,是容易题,由条件,可得ED=AB且DC=AB,所以ED=.于是E、D、C三点共线,故||=|ED|+||=2|AB|=6.答:(1) ,;(2)6例3下列命题中,正确的是( )A.||=||⇒=B.||>||⇒>C. =⇒||∥||D.||=0⇒=0解:由向量的定义知:向量既有大小,也有方向,由向量具有方向性可排除A、B,零向量、数字0是两个不同的概念,零向量是不等于数字0的.∴应排除D,∴应选C.例4下列四个命题:①若||=0,则=0;②若||=||,则=或=-;③若与是平行向量,则||=||;④若=,则-=正确命题个数是( )A.1B.2C.3D.4分析:①是忽略了0与不同,由于||=0⇒=,但不能写成0;②是对两个向量的模相等与两个实数相等混淆了,两个向量的模相等,只能说明它们的长度相同,并不意味它们的方向相同或相反;③是对两个向量平行的意义理解不透,两个向量平行,只是这两个向量的方向相同或相反,而它们的模不一定相等;④正确,故选A.强化练习:【同步达纲练习】一、选择题1.下列命题中的假命题是( )A.向量AB与BA的长度相等B.两个相等向量若起点相同,则终点必相同C.只有零向量的模等于0D.共线的单位向量都相等2.如图,在圆O中,向量,,是( )A.有相同起点的向量B.单位向量C.相等的向量D.模相等的向量3.如图,△ABC中,DE∥BC,则其中共线向量有( )A.一组B.二组C.三组D.四组4.若是任一非零向量,是单位向量,下列各式①||>||;②∥;③||>0;④||=±1;b,其中正确的有( )aA.①④⑤B.③C.①②③⑤D.②③⑤5.四边形ABCD中,若向量AB与CD是共线向量,则四边形ABCD( )A.是平行四边形B.是梯形C.是平行四边形或梯形D.不是平行四边形,也不是梯形6.把平面上所有单位向量归结到共同的始点,那么这些向量的终点所构成的图形是( )A.一条线段B.一个圆面C.圆上的一群弧立点D.一个圆7.若,是两个不平行的非零向量,并且∥, ∥,则向量等于( )A. B. C. D. 不存在8.命题p:与是方向相同的非零向量,命题q: 与是两平行向量,则命题p是命题q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、判断题1.向量AB与BA是两平行向量.( )2.若是单位向量,也是单位向量,则=.( )3.长度为1且方向向东的向量是单位向量,长度为1而方向为北偏东30°的向量就不是单位向量.( )4.与任一向量都平行的向量为向量.( )5.若=,则A、B、C、D四点构成平行四边形.( )6.两向量相等的充要条件是它们的起点相同,终点也相同.( )7.设O是正三角形ABC的中心,则向量的长度是OA长度的3倍.( )8.已知四边形ABCD是菱形,则||=||是菱形ABCD为正方形的充要条件.( )9.在坐标平面上,以坐标原点O 为起点的单位向量的终点P 的轨迹是单位圆.( ) 10.凡模相等且平行的两向量均相等.( )三、填空题1.已知a ,b ,c 为非零向量,且a 与b 不共线,若c ∥a ,则c 与b 必定 .2.已知|OA |=4,|AB |=8,∠AOB=60°,则|AB |= .3.如图,已知O 是正六边形的中心,则在图中所标出的各向量中,模等于该正六边形边长的向量共有 个.4.如图所示,四边形ABCD 与ABDE 都是平行四边形,则 ①与向量AB 共线的向量有 ; ②若|AB |=1.5,则|CE |= .5.已知四边形ABCD 中,AB =21DC ,且|AD |=|BC |,则四边形ABCD 的形状是 .四、解答题1.如图,在△ABC 中,已知:向量AD =DB ,DF =BE ,求证:DE =AF .2.在直角坐标系中,将所有与y 轴共线的单位向量的起点移到x 轴上,其终点的集合构成什么图形?【素质优化训练】1.已知、是任意两个向量,下列条件:①=;②||=||;③与的方向相反;④=或=;⑤与都是单位向量.其中,哪些是向量与共线的充分不必要条件 .2.已知ABCD 是等腰梯形,AB ∥DC ,下列各式:①AB =DC ;②AD =BC ;③|AC |=|BD |;④|AB |≠||;⑤AB ∥CD .正确的式子的序号是 .3.不相等的向量a和b,有可能是平行向量吗?若不可能,请说明理由;若有可能,请把各种可能的情形一一列出.4.下列各组量是不是向量?如果是向量,说明这些向量之间有什么关系?(1)两个三角形的面积S1,S2;(2)桌面上两个物体各自受到的重力F1,F2;(3)某人向河对岸游泳的速度v1与水流的速度v2;(4)浮在水面上的物体受到的重力W和水的浮力F.【生活实际运用】某人从A点出发向西走了10米,到达B点,然后改变方向按西偏北60°走了15米到达C点,最后又向东走了10米到达D点.(1)作出向量AB、BC、CD (用1cm长的线段表示10m长);(2)求|DA|.解:(1)(2)显然DA=CB,故|DA|=|CB|=15cm【知识验证实验】已知某轮船从S岛沿北偏西30°的方向航行了45海里,请你用有向线段表示此轮船的位移.【知识探究学习】一小球在30m高处,以2m/s的速度水平抛出,请你用有向线段画出小球经过2S后的水平位移,竖直位移,并计算出实际位移的大小.(g=10m/s2)解:依题意:v0=2m/s,t=2s11 / 11 水平位移x=2×2=4m竖直位移h=21gt 2=20m 实际位移大小是:|OC |22204+=426m参考答案【同步达纲练习】一、1.D 2.D 3.C 4.B 5.C 6.D 7.A 8.A二、1.√ 2.× 3.× 4.√ 5.× 6.× 7.√ 8.√ 9.√ 10.×三、1.不共线 2.43 3.12 4.①,,,,,, ②3 5.等腰梯形 四、1.提示:证F 平分AC ,E 平分BC.2.平行于x 轴,且与x 轴的距离为1的两条直线【素质优化训练】1.①③④2.②④⑤3.有三种情况:(1)两个向量和中有一个是零向量,另一个是非零向量;(2)向量,为模不相等,方向相同的两个非零向量;(3)向量,为非零向量且方向相反4.(1)不是向量 (2)是向量,它们是方向相同的向量 (3)是向量,不共线 (4)模相等方向相反的向量。
高二数学复习典型题型与知识点专题讲解1---空间向量及其运算(解析版)
高二数学复习典型题型与知识点专题讲解 01空间向量及其运算+空间向量基本定理+空间向量及其运算的坐标表示一、典例精析拓思维(名师点拨)知识点1 回路法求模与夹角知识点2 共线与共面知识点3 空间向量基本定理知识点4 建系设点二、题型归类练专练一、典例精析拓思维(名师点拨)知识点1 回路法求模与夹角例1.(2021·湖北省直辖县级单位·高二阶段练习)如图,平行六面体ABCD A B C D ''''-,其中4AB =,3AD =,3AA '=,90BAD ∠=︒,60BAA '∠=︒,60DAA '∠=︒,则AC '的长为________【详解】根据题意,''AC AC CC AB BC AA =+='++'AC AB BC AA ∴=++'根据题中的数据可知,()()()()2'22'2'2222'2?··433243cos9033cos 6043cos 6055AB BC AA AB BC AA AB BC BC AA AB AA AC AB BC AA ++=+++++=+++⨯⨯︒+⨯⨯︒+⨯⨯︒=∴=++=名师点评:回路法求模,比如AD AB BC CD =++,则有22||()AD AB BC CD =++。
也如本例中:AC AB BC CC '=+'+,特别提醒:找向量夹角时,注意共起点才能找夹角,当两个向量不共起点时,需平移成共起点条件下找夹角.例2.(2021·重庆南开中学高二阶段练习)如图,平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长均为2,且它们彼此的夹角都是60︒,则AC 与1BD 所成角的余弦值___________.【详解】 因为111,AC AB AD BD AD AB AA AD AB =+=-=+-,所以()()()()111AC BD AB AD AA AD AB AB AD AA AD AB ⋅=+⋅+-=+⋅+-,2211AB AA AB AD AA AD =⋅-+⋅+, 2222cos60222cos6024=⨯⨯-+⨯⨯+=, ()22222AC AB AD AB AB AD AD =+=+⋅+, 222222cos60212=+⨯⨯⨯+=,所以23AC =()2211BD AA AD AB =+-,222111222AA AD AB AA AD AA AB AD AB =+++⋅-⋅-⋅,222222222cos60222cos60222cos60=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯, 8= 所以122BD =设AC 与1BD 所成的角为θ,所以111cos cos ,2AC BD AC BD AC BD θ⋅====⋅. 名师点评:利用向量求异面直线所成角时注意:①0,a b π≤<>≤,利用公式cos ,||||a b a b a b ⋅<>=,求出的cos ,a b <>可正可负可为零;②异面直线a ,b 所成角02πθ<≤,在利用向量求异面直线所成角时注意转化cos |cos ,|a b θ=<>. 知识点2 共线与共面例1.(2021·辽宁·大连市第一中学高三期中)在ABC ∆中,点D 是线段BC 上任意一点(不包含端点),若AD mAB nAC=+,则41m n+的最小值为______. 【答案】9【详解】 D 是线段BC 上一点,B ∴,C ,D 三点共线,AD mAB nAC =+,1m n ∴+=,且0m >,0n >,∴14()()52459441n m n m n m n m n m+=++=+++=, 当且仅当4m n n m=时取等号. ∴41m n+的最小值为9.故答案为:9.练习1-1.(2021·广东深圳·高三阶段练习)如图,在ABC ∆中,点P 满足2BP PC =,过点P 的直线与AB AC ,所在的直线分别交于点M N ,若AM AB λ=,,(0,0)AN AC μλμ=>>,则λμ+的最小值为__________.【答案】1 【详解】 BP BA AP =+,PC PA AC =+,又2BP PC =,∴()2AB AP AC AP -+=-, ∴12123333AP AB AC AM AN λμ=+=+, 又P 、M 、N 三点共线, ∴12133λμ+=,∴12122()11333333μλλμλμλμλμ⎛⎫⎛⎫⎛⎫+=+⋅+=+++≥+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当233μλλμ=,即1233λμ==时取等,∴λμ+的最小值为1故答案为:1练习1-2.(2021·全国·高二单元测试)已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使OA λ+mOB +nOC =0,那么m n λ++的值为________.【答案】0【详解】因A ,B ,C 三点共线,则存在唯一实数k 使AB k AC =,显然0k ≠且1k ≠,否则点A ,B 重合或点B ,C 重合,则()OB OA k OC OA -=-,整理得:(1)0k OA OB kOC -+-=,令λ=k -1,m =1,n =-k ,显然实数λ,m ,n 不为0,因此,存在三个不为0的实数λ,m ,n ,使λOA +m OB +n OC =0,此时λ+m +n = k -1+1+(-k )=0, 所以λ+m +n 的值为0.故答案为:0另解:由A ,B ,C 三点共线,且OA λ+mOB +nOC =0⇒mnOA OB OC λλ=--()10mn m n m n λλλλ⇒-+-=⇒+=-⇒++= 名师点评:①空间中三点,,P A B 共线⇔PA PB λ=;②空间中三点,,P A B 共线⇔对于空间中任意一点O ,(1)OP OA OB λμλμ=++=合理的利用好三点共线向量的充要条件,在解题时可以迅速得出结论。
高中数学平面向量专题复习(知识要点+六大考试题型详解)pdf版
②向量 a 与 b 平行,则 a 与 b 的方向相同或相反;
③两个有公共起点而且相等的向量,其终点必相同; 3
④两个公共终点的向量,一定是共线向量;
⑤向量 AB 与向量 CD 是共线向量,则点 A,B,C,D 必在同一条直线上.
a (x1, y1) , b (x2 , y2 ) a b x1x2 y1 y2
3.其他概念 (1)平面向量基本定理:如果 e1 , e2 是同一平面内的两个不共线向 量,那么对于这一平面内的任意向量 a ,有且只有一对实数 1 , 2 ,
使 a 1e1 2 e2 ,我们把不共线的向量 e1 ,e2 叫做表示这一平面内所
其中正确的命题个数是( )
A.1 B.2
C.3
D.4
解析:① AB 和 BA 长度相等,方向相反,正确; ②当为零向量时,不满足条件,错误;
③起点相同,长度和方向也相同,终点一定相同,正确;
④终点相同,起点未必相同,不一定是共线向量,错误;
⑤共线向量即平行向量,它们的起点和终点不一定在同一直线上,错误;
零向量 长度为 0 的向量
记作 0 ,方向任意
单位向量 长度等于 1 个单位的向量
a 即为单位向量 |a|
平行向量
方向相同或相反的非零向量(也
叫共线向量)
记为 a∥b ,规定 0 与任意向量共线
相等向量 长度相等方向相同的向量
记为 a b ,相等一定平行,平行不 一定相等
相反向量 长度相等方向相反的向量
性质
字母表示
平行
a b
垂直
a b | a || b | cos 0
含解析高中数学《平面向量》专题训练30题(精)
含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。
(完整word)高中数学必修4平面向量知识点总结与典型例题归纳,推荐文档
平面向量【基本概念与公式】【任何时候写向量时都要带箭头】1. 向量:既有大小又有方向的量。
记作: AB 或 a 。
2. 向量的模:向量的大小(或长度),记作: | AB | 或| a | 。
3. 单位向量:长度为 1 的向量。
若 e 是单位向量,则| e |= 1。
4. 零向量:长度为 0 的向量。
记作: 0 。
【0 方向是任意的,且与任意向量平行】5. 平行向量(共线向量):方向相同或相反的向量。
6. 相等向量:长度和方向都相同的向量。
7. 相反向量:长度相等,方向相反的向量。
AB = -BA 。
8. 三角形法则:AB + BC = AC ; AB + BC + CD + DE = AE ; AB - AC = CB (指向被减数)9. 平行四边形法则:以 a , b 为临边的平行四边形的两条对角线分别为 a + b , a - b 。
10.共线定理: a = b ⇔ a / /b 。
当> 0 时, a 与b 同向;当< 0 时, a 与b 反向。
11. 基底:任意不共线的两个向量称为一组基底。
2 2 12. 向量的模:若 a = (x , y ) ,则| a |= , a =| a | , | a + b |=a ⋅b 13. 数量积与夹角公式: a ⋅ b =| a | ⋅ | b | cos ;cos = ⋅ | a | |b |14.平行与垂直: a / /b ⇔ a = b ⇔ x 1 y 2 = x 2 y 1 ; a ⊥ b ⇔ a ⋅ b = 0 ⇔ x 1 x 2 + y 1 y 2 = 0题型 1.基本概念判断正误: (1) 共线向量就是在同一条直线上的向量。
(2) 若两个向量不相等,则它们的终点不可能是同一点。
(3) 与已知向量共线的单位向量是唯一的。
(4)四边形 ABCD 是平行四边形的条件是AB = CD 。
(5) 若 AB = CD ,则 A 、B 、C 、D 四点构成平行四边形。
高中数学必修二第六章平面向量及其应用重点归纳笔记(带答案)
高中数学必修二第六章平面向量及其应用重点归纳笔记单选题1、下列命题:(1)零向量没有方向;(2)单位向量都相等;(3)向量就是有向线段;(4)两向量相等,若起点相同,终点也相同;(5)若四边形ABCD 为平行四边形,则AB⃑⃑⃑⃑⃑ =DC ⃑⃑⃑⃑⃑ , BC ⃑⃑⃑⃑⃑ =DA ⃑⃑⃑⃑⃑ .其中正确命题的个数是( )A .1B .2C .3D .4答案:A分析:零向量的方向是任意的可判断(1);单位向量方向不一定相同可判断(2);有向线段只是向量的一种表示形式可判断(3);根据向量的二要素可判断(4);由相等向量的定义可判断(5),进而可得正确答案.对于(1):零向量不是没有方向,而是方向是任意的,故(1)不正确.对于(2):单位向量只是模均为单位1,而方向不相同,所以单位向量不一定都相等,故(2)不正确. 对于(3):有向线段只是向量的一种表示形式,向量是可以自由移动,有向线段不可以自由移动,不能把两者等同起来,故(3)不正确,对于(4):两向量相等,若起点相同,终点也相同;故(4)正确;对于(5):如图:若四边形ABCD 为平行四边形,则AB =DC ,且方向相同,BC =DA 但方向相反,所以BC ⃑⃑⃑⃑⃑ 与DA ⃑⃑⃑⃑⃑ 不相等,故(5)不正确;所以正确的有一个,故选:A.2、若M 为△ABC 的边AB 上一点,且AB⃑⃑⃑⃑⃑ =3AM ⃑⃑⃑⃑⃑⃑ ,则CB ⃑⃑⃑⃑⃑ =( ) A .3CM⃑⃑⃑⃑⃑⃑ −2CA ⃑⃑⃑⃑⃑ B .3CA ⃑⃑⃑⃑⃑ −2CM ⃑⃑⃑⃑⃑⃑ C .3CM ⃑⃑⃑⃑⃑⃑ +2CA ⃑⃑⃑⃑⃑ D .3CA ⃑⃑⃑⃑⃑ +2CM ⃑⃑⃑⃑⃑⃑解析:先用向量CB →,CA →表示向量CM →,再转化为用CA →,CM →表示CB →即可得答案.解:根据题意做出图形,如图,所以CM →=CB →+BM →=CB →+23BA →=CB →+23(CA →−CB →)=13CB →+23CA →, 所以CB →= 3CM →−2CA →.故选:A.小提示:关键点睛:解题关键在于利用向量的线性运算进行求解,属于基础题3、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,C =30∘,c =10.如果△ABC 有两解,则a 的取值范围是( )A .[10,20]B .[10,10√3]C .(10,10√3)D .(10,20)答案:D分析:作出图形,根据题意可得出关于a 的不等式,由此可解得a 的取值范围.如下图所示:因为△ABC 有两解,所以asinC =12a <c =10<a ,解得10<a <20.故选:D.4、在△ABC 中,已知B =120°,AC =√19,AB =2,则BC =( )A .1B .√2C .√5D .3分析:利用余弦定理得到关于BC 长度的方程,解方程即可求得边长.设AB =c,AC =b,BC =a ,结合余弦定理:b 2=a 2+c 2−2accosB 可得:19=a 2+4−2×a ×c ×cos120∘,即:a 2+2a −15=0,解得:a =3(a =−5舍去),故BC =3.故选:D.小提示:利用余弦定理及其推论解三角形的类型:(1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角;(3)已知三角形的两边与其中一边的对角,解三角形.5、在平行四边形ABCD 中,AC ⃑⃑⃑⃑⃑ =(1,2),BD ⃑⃑⃑⃑⃑⃑ =(3,4),则AB ⃑⃑⃑⃑⃑ ·AD ⃑⃑⃑⃑⃑ =( )A .-5B .-4C .-3D .-2答案:A分析:根据向量的加法和减法的几何意义,结合向量的数量积运算,即可得到答案;∵ AC ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ ,BD ⃑⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ −AB⃑⃑⃑⃑⃑ , ∴ AC⃑⃑⃑⃑⃑ 2=AB ⃑⃑⃑⃑⃑ 2+2AB ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ 2,BD ⃑⃑⃑⃑⃑⃑ 2=AD ⃑⃑⃑⃑⃑ 2−2AB ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ 2, ∴ AC ⃑⃑⃑⃑⃑ 2−BD ⃑⃑⃑⃑⃑⃑ 2=4AB ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ =12+22−(32+42)=−20,∴AB ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ =−5,故选:A6、若|AB⃑⃑⃑⃑⃑ |=5,|AC ⃑⃑⃑⃑⃑ |=8,则|BC ⃑⃑⃑⃑⃑ |的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13)答案:C分析:利用向量模的三角不等式可求得|BC⃑⃑⃑⃑⃑ |的取值范围.因为|BC⃑⃑⃑⃑⃑ |=|AC ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ |,所以,||AC ⃑⃑⃑⃑⃑ |−|AB ⃑⃑⃑⃑⃑ ||≤|BC ⃑⃑⃑⃑⃑ |≤|AC ⃑⃑⃑⃑⃑ |+|AB ⃑⃑⃑⃑⃑ |,即3≤|BC ⃑⃑⃑⃑⃑ |≤13. 故选:C.7、向量a ,b ⃑ 满足a =(1,√3),|b ⃑ |=1,|a +b ⃑ |=√3,则b ⃑ 在a 方向上的投影为( )A .-1B .−12C .12D .1 答案:B解析:根据题条件,先求出a ⋅b⃑ ,再由向量数量积的几何意义,即可求出结果. 因为向量a ,b ⃑ 满足a =(1,√3),|b ⃑ |=1,|a +b⃑ |=√3, 所以|a |2+2a ⋅b ⃑ +|b ⃑ |2=3,即4+2a ⋅b ⃑ +1=3,则a ⋅b⃑ =−1, 所以b ⃑ 在a 方向上的投影为|b →|cos <a →,b →>=a →⋅b →|a →|=−12. 故选:B.8、在△ABC 中,内角A,B,C 的对边分别为a,b,c ,且a (sin A −sin B )+b sin B =c sin C,a +b =2c =2,则△ABC 的面积为( )A .3√38B .√34C .√32D .3√32 答案:B分析:由正弦定理化角为边结合余弦定理可求出C =π3,再由已知可求出ab =1,即可求出面积.因为a (sin A −sin B )+b sin B =c sin C ,由正弦定理得a (a −b )+b 2=c 2,即a 2+b 2−c 2=ab ,所以cos C =a 2+b 2−c 22ab =12, 又C ∈(0,π),所以C =π3.又a +b =2c =2,则c =1,a +b =2,由a 2+b 2−c 2=a 2+b 2−1= ab,(a +b)2−3ab =1,得ab =1.所以S △ABC =12ab sin C =12×1×1×sin π3=√34. 故选:B.多选题9、下列能使a //b⃑ 成立的是( )A.a=b⃑B.|a|=|b⃑|C.a与b⃑方向相反D.|a|=0或|b⃑|=0答案:ACD解析:根据向量共线的定义判断可得;解:对于A,若a=b⃑,则a与b⃑大小相等且方向相同,所以a//b⃑;对于B,若|a|=|b⃑|,则a与b⃑的大小相等,而方向不确定,因此不一定有a//b⃑;对于C,方向相同或相反的向量都是平行向量,因此若a与b⃑方向相反,则有a//b⃑;对于D,零向量与任意向量平行,所以若|a|=0或|b⃑|=0,则a//b⃑.故选:ACD小提示:本题考查平行向量共线的定义的理解,属于基础题.10、在△ABC中,内角A,B,C所对的边分别为a,b,c,则下列结论正确的有()A.若A>B,则sinA>sinBB.若sin2A=sin2B,则△ABC一定为等腰三角形C.若acosB−bcosA=c,则△ABC一定为直角三角形D.若B=π,AB=2,且该三角形有两解,则边AC的范围是(√3,+∞)3答案:AC分析:根据正弦定理和三角恒等变换的公式,以及三角性的内角和定理、三角形解得个数的判定方法,逐项判定,即可求解.对于A中,因为A>B,可得a>b,由正弦定理可得2RsinA>2RsinB,所以sinA>sinB,所以A正确;对于B中,由sin2A=sin2B,可得2A=2B或2A+2B=π,即A=B或A+B=π,所以三角形为等腰三角形或直角三角形,所以B不正确;2对于C中,若acosB−bcosA=c,由正弦定理可得sinAcosB−sinBcosA=sinC,即sin(A−B)=sinC,所以A−B=C,即A=B+C,,所以△ABC一定为直角三角形,所以C正确;又因为A+B+C=π,所以A=π2,AB=2,可得AB⋅sinB=√3,对于D中,若B=π3要使得该三角形有两解,可得√3<AC<2,即边AC的范围是(√3,2),所以D不正确.故选:AC.11、如图,在平行四边形ABCD 中,E,F 分别为线段AD,CD 的中点,AF ∩CE =G ,则( )A .AF ⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ B .EF ⃑⃑⃑⃑⃑ =12(AD ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ) C .AG ⃑⃑⃑⃑⃑ =23AD ⃑⃑⃑⃑⃑ −13AB ⃑⃑⃑⃑⃑ D .BG ⃑⃑⃑⃑⃑ =3GD ⃑⃑⃑⃑⃑ 答案:AB分析:由向量的线性运算,结合其几何应用求得AF ⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ 、EF ⃑⃑⃑⃑⃑ =12(AD ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ )、AG ⃑⃑⃑⃑⃑ =23AD ⃑⃑⃑⃑⃑ +13AB ⃑⃑⃑⃑⃑ 、BG⃑⃑⃑⃑⃑ =2GD ⃑⃑⃑⃑⃑ ,即可判断选项的正误 AF ⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ +DF ⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ +12DC ⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ ,即A 正确 EF ⃑⃑⃑⃑⃑ =ED ⃑⃑⃑⃑⃑ +DF ⃑⃑⃑⃑⃑ =12(AD ⃑⃑⃑⃑⃑ +DC ⃑⃑⃑⃑⃑ )=12(AD ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ),即B 正确 连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有|GF||AG|=|GE||CG|=12∴AG ⃑⃑⃑⃑⃑ =23AE ⃑⃑⃑⃑⃑ +13AC ⃑⃑⃑⃑⃑ =13AD ⃑⃑⃑⃑⃑ +13(AB ⃑⃑⃑⃑⃑ +BC ⃑⃑⃑⃑⃑ )=23AD ⃑⃑⃑⃑⃑ +13AB ⃑⃑⃑⃑⃑ ,即C 错误 同理BG ⃑⃑⃑⃑⃑ =23BF ⃑⃑⃑⃑⃑ +13BA ⃑⃑⃑⃑⃑ =23(BC ⃑⃑⃑⃑⃑ +CF ⃑⃑⃑⃑⃑ )+13BA ⃑⃑⃑⃑⃑ =23(AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ ) DG ⃑⃑⃑⃑⃑ =23DF ⃑⃑⃑⃑⃑ +13DA ⃑⃑⃑⃑⃑ =13(AB ⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ ),即GD ⃑⃑⃑⃑⃑ =13(AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ ) ∴BG⃑⃑⃑⃑⃑ =2GD ⃑⃑⃑⃑⃑ ,即D 错误 故选:AB小提示:本题考查了向量线性运算及其几何应用,其中结合了中线的性质:三角形中线的交点分中线为1:2,以及利用三点共线时,线外一点与三点的连线所得向量的线性关系填空题12、骑自行车是一种能有效改善心肺功能的耐力性有氧运动,深受大众喜爱,如图是某一自行车的平面结构示意图,已知图中的圆A (前轮),圆D (后轮)的半径均为√3,△ABE ,△BEC ,△ECD 均是边长为4的等边三角形,设点P 为后轮上的一点,则在骑动该自行车的过程中,AC⃑⃑⃑⃑⃑ ⋅BP ⃑⃑⃑⃑⃑ 的最大值为___________.答案:36分析:由题意以AD 所在的直线为x 轴,以点D 为坐标原点建立平面直角坐标系,将所涉及的点的坐标求出,其中P 点坐标借助于三角函数表示,则所求的结果即可转化为三角函数的最值问题求解.由题意圆D (后轮)的半径均为√3,△ABE ,△BEC ,△ECD 均是边长为4的等边三角形,点P 为后轮上的一点,如图以AD 所在的直线为x 轴,以点D 为坐标原点建立平面直角坐标系:则A (−8,0),B(−6,2√3),C(−2,2√3).圆D 的方程为x 2+y 2=3,设P(√3cosα,√3sinα),所以AC⃑⃑⃑⃑⃑ =(6,2√3),BP ⃑⃑⃑⃑⃑ =(√3cosα+6,√3sinα−2√3), 故AC ⃑⃑⃑⃑⃑ ⋅BP ⃑⃑⃑⃑⃑ =6sinα+6√3cosα+24=12sin (α+π3)+24≤12+24=36. 所以答案是:36.13、海伦公式是利用三角形的三条边的边长a ,b ,c 直接求三角形面积S 的公式,表达式为:S =√p(p −a)(p −b)(p −c),p =a+b+c 2;它的特点是形式漂亮,便于记忆.中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”,虽然它与海伦公式形式上有所不同,但它与海伦公式完全等价,因此海伦公式又译作海伦-秦九韶公式.现在有周长为10+2√7的△ABC 满足sinA:sinB:sinC =2:3:√7,则用以上给出的公式求得△ABC的面积为___________.答案:6√3分析:由正弦定理得三角形三边之比,由周长求出三边,代入公式即可.∵sinA:sinB:sinC=2:3:√7,∴a:b:c=2:3:√7,∴△ABC周长为10+2√7,即a+b+c=10+2√7,∴a=4,b=6,c=2√7,∴p=4+6+2√72=5+√7,∴△ABC的面积S=√(5+√7)(1+√7)(√7−1)(5−√7)=6√3.所以答案是:6√3.14、我国南宋著名数学家秦九韶在他的著作《数书九章》记述了“三斜求积术”,用现代式子表示即为:在△ABC中,角A,B,C所对的边分别为a,b,c,则△ABC的面积为S=√14[(ab)2−(a2+b2−c22)2].根据此公式,若bc=6,且b2+c2−a2=4,则这个三角形的面积为_________. 答案:2√2分析:依题意可得S=√14[(bc)2−(c2+b2−a22)2],则代入数据计算可得;解:依题意△ABC的面积为S=√14[(ab)2−(a2+b2−c22)2],同理可得S=√14[(bc)2−(c2+b2−a22)2],因为bc=6,且b2+c2−a2=4,所以S=√14[62−(42)2]=2√2所以答案是:2√2解答题15、已知向量a与b⃑的夹角为120∘,|a|=3,|b⃑|=2. (1)求(2a+b⃑)⋅(a−2b⃑)的值;(2)求|2a+b⃑|的值.答案:(1)19;(2)2√7.分析:(1)由向量数量积的定义计算即可求解;(2)先计算|2a+b⃑|2=(2a+b⃑)2的值,再开方即可求解.(1)因为|a|=3,|b⃑|=2,且a,b⃑的夹角为120∘,所以a⋅b⃑=|a|⋅|b⃑|⋅cos120∘=3×2×(−12)=−3,所以(2a+b⃑)⋅(a−2b⃑)=2a2−3a⋅b⃑−2b⃑2=2|a|2−3a⋅b⃑−2|b⃑|2=2×9−3×(−3)−2×4=19;(2)|2a+b⃑|2=(2a+b⃑)2=4|a|2+4a⋅b⃑+|b⃑|2=36−12+4=28,所以|2a+b⃑|=2√7.。
(word完整版)高中数学平面向量知识点总结及常见题型,推荐文档
平面向量一. 向量的根本看法与根本运算1向量的看法:①向量:既有大小又有方向的量向量一般用 a, b ,c 来表示,或用有向线段的起点与终uuur uuuryj ( x, y) 向点的大写字母表示,如: AB几何表示法AB ,a;坐标表示法 a xiuuur即向量的大小,记作| a |量的大小即向量的模〔长度〕,记作 | AB |向量不能够比较大小,但向量的模能够比较大小.②零向量:长度为0 的向量,记为0,其方向是任意的,0与任意向量平行零向量 a =0r r| a |=0由于 0的方向是任意的,且规定0 平行于任何向量,故在有关向量平行〔共线〕的问题中务必看清楚可否有“非零向量〞这个条件.〔注意与 0 的差异〕③单位向量:模为 1 个单位长度的向量向量a0为单位向量|a0|= 1④平行向量〔共线向量〕:方向相同或相反的非零向量任意一组平行向量都能够移到同素来线上方向相同或相反的向量,称为平行向量记作 a ∥ b 由于向量能够进行任意的平移( 即自由向量 ) ,平行向量总能够平移到同素来线上,故平行向量也称为共线向量⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总能够重合,记为a b 大小相等,方向相同 (x1 , y1 ) (x2 , y2 )x1x2 y1y22向量加法求两个向量和的运算叫做向量的加法uuur r uuur r r uuur uuur uuur设 AB a, BC b ,那么a+b=AB BC=AC〔1〕0 a a 0 a ;〔2〕向量加法满足交换律与结合律;向量加法有“三角形法那么〞与“平行四边形法那么〞:(1〕用平行四边形法那么时,两个向量是要共始点的,和向量是始点与向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2〕三角形法那么的特点是“首尾相接〞,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法那么;当两向量是首尾连接时,用三角形法那么.向量加法的三角形法那么可实行至多个向量相加:1uuur uuur uuurL uuur uuur uuurAB BC CD PQ QR AR ,但这时必定“首尾相连〞.3 向量的减法①相反向量:与 a 长度相等、方向相反的向量,叫做 a 的相反向量记作 a ,零向量的相反向量仍是零向量关于相反向量有:〔 i 〕( a) = a; (ii) a +( a )=( a )+ a = 0 ;(iii) 假设a、b是互为相反向量,那么a = b , b = a , a + b = 0②向量减法:向量 a 加上b的相反向量叫做 a 与b的差,记作: a b a ( b) 求两个向量差的运算,叫做向量的减法③作图法: a b 能够表示为从 b 的终点指向a的终点的向量〔 a 、b有共同起点〕4实数与向量的积:①实数λ与向量 a 的积是一个向量,记作λ a ,它的长度与方向规定以下:〔Ⅰ〕a a ;〔Ⅱ〕当0 时,λa的方向与a的方向相同;当0 时,λa的方向与a的方向相反;当0 时, a 0,方向是任意的②数乘向量满足交换律、结合律与分配律5两个向量共线定理:向量 b 与非零向量a共线有且只有一个实数,使得b= a6平面向量的根本定理:若是 e1 , e2是一个平面内的两个不共线向量,那么对这一平面内的任向来量 a ,有且只有一对实数1 , 2 使:a1e1 2 e2,其中不共线的向量e1 , e2叫做表示这一平面内所有向量的一组基底7特别注意 :(1〕向量的加法与减法是互逆运算(2〕相等向量与平行向量有差异,向量平行是向量相等的必要条件(3〕向量平行与直线平行有差异,直线平行不包括共线〔即重合〕,而向量平行那么包括共线〔重合〕的情况(4〕向量的坐标与表示该向量的有向线条的始点、终点的详尽地址没关,只与其相对地址有关2二. 平面向量的坐标表示1 平面向量的坐标表示:在直角坐标系中,分别取与r rx 轴、 y 轴方向相同的两个单位向量 i , j 作为基底 由平面向量的根本定理知,该平面内的任向来量r r r rr 是一一 a 可表示成 a xi yj ,由于 a 与数对 (x,y) r r r对应的,因此把 (x,y) 叫做向量 a 的坐标,记作 a =(x,y) ,其中 x 叫作 a 在 x 轴上的坐标, y叫做在 y 轴上的坐标(1) 相等的向量坐标相同,坐标相同的向量是相等的向量(2) 向量的坐标与表示该向量的有向线段的始点、终点的详尽地址没关,只与其相对位置有关2 平面向量的坐标运算:(1) r x 1, y 1 rx 2 , y 2 r rx 1 x 2 , y 1 y 2 假设 a,b ,那么a b 假设 A x 1 ,y 1, B x 2 , y 2 uuur (2) ,那么 AB x 2 x 1, y 2 y 1 (3) r =(x,y) ,那么 r x, y)假设aa =((4) rx 1, y 1 rx 2 , y 2 r rx 1 y 2 x 2 y 1 0假设 a,b,那么 a // b(5) rx 1, y 1 r x 2 , y 2 r rx 1 x 2y 1 y 2假设 a,b ,那么 a brry 1 y 2 0假设a b ,那么 x 1 x 23 向量的运算向量的加减法,数与向量的乘积,向量的数量〔内积〕及其各运算的坐标表示和性质运 算 几何方法坐标方法 运算性质种类向 1 平行四边形法那么 r ra b b a量2 三角形法那么a b (x 1 x 2, y 1 y 2)的 (a b) c a (b c)加法uuur uuur uuurAB BC AC向 三角形法那么rra b a ( b )量a b (x 1 x 2,y 1 y 2)的 uuur uuur 减AB BA法uuur uuur uuurOB OA AB 3向a 是一个向量 ,a( x, y)( a)()a 量 满足 :的>0 时 ,a 与 a 同()aaa 乘 向 ;法<0 时 ,a 与 a 异( ab )ab向 ;=0 时,a = 0a ∥b a b向 a ?b 是一个数rrx 1x 2 y 1 y 2 a ? bb ? a量 a?b的a0 或 b 0时 ,???数( a) b a ( b)(a b)量 a?b =0 (ab) ?c a?cb ?c积a0 且 b 0 时 ,a 2 | a |2 , | a | x 2 y 2a?b | || |cos ,| a ? b | | a || b |a b a b三.平面向量的数量积1 两个向量的数量积:两个非零向量 rrr rr rrra 与b ,它们的夹角为,那么 a · b =︱ a ︱·︱ b ︱cos叫做 a 与 b 的数量积〔或内积〕r r规定 0 arr rr r2=a b向量的投影: ︱ b ︱ cosr∈ R ,称为向量 b 在 a 方向上的投影投影的绝对值称| a |为射影3r r r r r数量积的几何意义: a · b 等于 a 的长度与 b 在 a 方向上的投影的乘积4 向量的模与平方的关系:r r r 2 r 2a a a | a |5 乘法公式成立:r r r r r 2 r 2r 2 r 2a b a b a b ab ;r r 2 r 2 r r r 2 r 2r r r 2ab a2a b ba 2a bb6 平面向量数量积的运算律:4①交换律成立: r rr r a bb a②对实数的结合律成立:r r r r r r Ra ba b a b③分配律成立:r r r r r r r rr r a b ca cb c ca b特别注意:〔 1〕结合律不成立:r r r r r r;a b ca b cr r r rr r〔2〕消去律不成立 a b a c 不能够获取b cr rr r r r 〔3〕 a b =0 不能够获取 a =0 或 b=07 两个向量的数量积的坐标运算:rrr ry 1 y 2两个向量 a( x 1 , y 1 ), b( x 2 , y 2 ) ,那么 a · b =x 1 x 28 向量的夹角:r r uuur r uuur r已 知 两 个 非 零 向 量 a 与 b , 作 OA = a , OB = b , 那么 ∠AOB=〔 0 01800〕叫做向量 r ra 与b 的夹角r rr r x 1x 2 y 1 y 2cos = cosa ?ba,b r r = 22x 2 22a ? bx 1 y 1 y 2当且仅当两个非零向量rr 0 r r 0ra 与b 同方向时, θ=0 ,当且仅当 a 与 b 反方向时θ =180 ,同时 0与其他任何非零向量之间不谈夹角这一问题rrr r r r9 垂直:若是 a 与 b 的夹角为 90 那么称 a 与b 垂直,记作 a ⊥ b10 两个非零向量垂直的充要条件 :a ⊥ba·b= Ox 1x 2y 1 y 2 0 平面向量数量积的性质题型 1. 根本看法判断正误 :( 1〕共线向量就是在同一条直线上的向量.( 2〕假设两个向量不相等,那么它们的终点不能能是同一点.( 3〕与向量共线的单位向量是唯一的.〔4〕四边形 ABCD 是平行四边形的条件是uuur uuurAB CD .uuur uuur〔5〕假设 AB CD ,那么 A 、 B 、 C 、 D 四点构成平行四边形 .〔6 〕由于向量就是有向线段,因此数轴是向量.〔7 r rr r r r〕假设 a 与 b 共b 与 c 共线,那么 a 与 c 共线 .线,〔8r r r r〕假设 mamb ,那么a b .5rr n .〔9〕假设mana ,那么mr rr r〔10〕假设 a 与 b 不共线,那么a 与b 都不是零向量 . r r r r r r〔11〕假设 a b | a | | b | ,那么 a / /b .r r r r r r〔12〕假设 |a b | | a b | ,那么 a b .题型 2. 向量的加减运算1. rrr r.设 a 表示“向东走 8km 〞 ,b 表示“向北走 6km 〞 , 那么 |ab |2.uuur uuur uuur uuur uuuur. 化简 (AB MB ) (BO BC ) OMuuur uuur3 uuur3. |OA|5, |OB|, 那么 | AB |的最大值和最小值分别为、 .4.uuur uuur uuuruuur r uuurr uuuruuurAC 为 AB 与 AD 的和向量,且 AC a, BDb ,那么 AB, AD5.uuur3 uuur uuuruuuruuuruuur点 C 在线段 AB 上,且 ACAB ,那么ACBC , ABBC .5题型 3. 向量的数乘运算1.r r r rr r rrr 计算:〔 1〕 3(a b) 2( a b)〔 2〕 2(2 a 5b 3c)3( 2a3b2.rr3,8) ,那么 r1r.a (1, 4),b (3ab题型 4.2作图法球向量的和r rr 1 rr3r向量 a,b ,如以以下图,请做出向量3a2 b 和2ab .r2arb题型 5. 依照图形由向量求未知向量1. 在 ABC 中, D 是 BC 的中点,请用向量uuur uuur uuurAB ,AC 表示 AD . 2.uuur r uuurr uuur uuur 在平行四边形 ABCD 中, ACa, BD b ,求 AB 和 AD ..r2c )题型 6. 向量的坐标运算uuur (4,5) A(2,3) ,那么点 B 的坐标是1. AB, .uuur( 3, 5) , P(3,7) ,那么点 Q 的坐标是2. PQ.r r r4) , 那么合力的坐标为.3. 假设物体受三个力 F 1 (1,2) , F 2 ( 2,3),F 3 ( 1,6rr(5, 2) r r r r r r4. a( 3,4) , b,求 a b , a b , 3a 2b .ruuur5. A(1,2), B(3,2) , 向量2, x 3y 2) 与 AB 相等,求 x, y 的值 .a (x6. uuur uuur uuur (uuur . AB (2,3) , BC (m, n) , CD 1,4) ,那么DA7. O 是坐标原点, A(2,1),B( 4,8)uuur uuur r uuur,且 AB 3BC 0 ,求 OC 的坐标 .题型 7. 判断两个向量可否作为一组基底ur uur1. e 1 ,e 2 是平面内的一组基底,判断以下每组向量可否能构成一组基底:ur uur ur uur uruuruurururuuruururuur uur urA.e 1 e 2和e 1e 2B.3e 1 2e 2 和4e 2 6e 1 C.e 1 3e 2和e 23e 1 D.e 2和e 2e 12.r(3,4) ,能与 r〕aa 构成基底的是〔A. (3,4)B.(4,3) C.(3,4)D. (1,4)5 55 5553题型 8. 结合三角函数求向量坐标uuur1. O 是坐标原点,点uuur2 , xOAA 在第二象限, | OA | 150o ,求 OA 的坐标 . 2.uuur 4 3 xOA uuurO 是原点,点 A 在第一象限, | OA | , 60o ,求 OA 的坐标 .题型 9. 求数量积rr 4 r r 的夹角为 60 or rr r r 1. | a | 3,| b | ,且 a 与 b ,求〔 1〕 a b ,〔 2〕 a ( a b) ,r 1 r r r r r r〔3〕 ( a 2 b) b ,〔 4〕 (2 a b ) (a 3b ) .r(2, r ( 8,10) r r r rrr r2. a 6), b ,求〔 1〕 | a |,| b | ,〔2〕 a b ,〔 3〕 a (2 a b ) ,r r r r〔4〕 (2 a b ) (a 3b ) .题型 10. 求向量的夹角71. rrr r12 r r | a |8,| b | 3 , a b ,求 a 与 b 的夹角 .2. rr( 2 3, 2) r r a( 3,1), b ,求 a 与 b 的夹角 .3. A(1,0) , B(0,1) , C (2,5),求 cos BAC .题型 11. 求向量的模rrr r or r r r 1. | a |3,| b | 4 ,且 a 与 b 的夹角为 60 ,求〔 1〕 | a b | ,〔 2〕 | 2a 3b |.rr( 8,10) r r r r r 1 r2. a(2, 6), b,求〔 1〕 | a |,| b | ,〔5〕 | a b | ,〔 6〕 | a 2 b |.r r2 r r3 rr3. | a | 1,|b | , | 3a 2b |,求 | 3a b | .r r r 题型 12. 求单位向量a【与 a 平行的单位向量: e r】| a |1. r(12,5) 平行的单位向量是.与 a2. r1) 平行的单位向量是.与 m( 1,2题型 13. 向量的平行与垂直rr1. rrr r a(6,2) , b (3,m) ,当 m 为何值时,〔 1〕 a / /b ?〔 2〕 a b ?rrr r r r垂直?2. a (1,2) , b( 3,2) ,〔 1〕 k 为何值时,向量 ka b 与 a 3b 〔2〕 k 为何值时,向量 r r r rka b 与 a 3b 平行?rr r r r rr r rr3. a 是非零向量,a b a c ,且 bc ,求证: a (b c) .题型 14. 三点共线问题 1. A(0,2) , B(2, 2) , C (3, 4) ,求证: A, B,C 三点共线 .8uuur2r r uuur r r uuur r r2.设AB2(a5b), BC2a8b,CD3(a b) ,求证:A、B、D三点共线.3.uuur r r uuur r r uuur r r. AB a2b, BC5a6b, CD7a2b ,那么必然共线的三点是4. A(1,3), B(8,1) ,假设点 C (2a1,a2) 在直线 AB 上,求 a 的值.5.已知四个点的坐标 O(0,0) , A(3, 4) , B( 1,2) , C (1,1) ,是否存在常数 t ,使uuur uuur uuurOA tOB OC 成立?题型 15. 判断多边形的形状1.uuur r uuur r uuur uuur.假设AB3e, CD5e ,且| AD | | BC |,那么四边形的形状是2. A(1,0) , B(4,3), C(2,4) , D (0, 2) ,证明四边形ABCD 是梯形.3. A( 2,1),B(6,3) , C (0,5) ,求证:ABC 是直角三角形.4.在平面直角坐标系内,三角形 . uuur uuur uuur(1,3) ,求证:ABC 是等腰直角OA( 1,8), OB( 4,1),OC题型 16. 平面向量的综合应用1.r r r r r ra(1,0) , b(2,1) ,当k为何值时,向量ka b 与 a3b 平行?2.r( 3,r r r ra5) ,且a b ,| b | 2 ,求b的坐标.3.r r r r r ra与 b 同向, b(1,2) ,那么ab10,求 a 的坐标.3.r r(3,1)r(5,4)r r r a(1,2) , b, c,那么 c a b .9rr(3,4) r(5,0) ,请将用向量 rrr4. a(5,10) , b , ca, b 表示向量 c .rrrrm 的范围;5. a(m,3) , b(2, 1) ,〔 1〕假设 a 与 b 的夹角为钝角,求rr( 2〕假设 a 与 b 的夹角为锐角,求 m 的范围 .rr( 3,m) r r r r6. a(6,2) , b,当 m 为何值时,〔 1〕 a 与 b 的夹角为钝角?〔 2〕 a 与 b的夹角为锐角?7. 梯形ABCD 的极点坐标分别为 A( 1,2) , B(3, 4) , D (2,1) ,且 AB / / DC ,AB 2CD ,求点 C 的坐标 .8. 平行四边形ABCD 的三个极点的坐标分别为A(2,1) , B( 1,3) ,C (3, 4) ,求第四个极点 D 的坐标.9. 一航船以 5km/h 的速度向垂直于对岸方向行驶,航船实质航行方向与水流方向成 30o 角,求水流速度与船的实质速度 .10. ABC 三个极点的坐标分别为A(3, 4) , B(0,0) , C (c,0) ,uuur uuur〔1〕假设 AB AC 0 ,求 c 的值;〔 2〕假设 c5 ,求 sin A 的值 .【备用】1. rr r r r r r r | a |3,| b | 4,| a b | 5,求 | a b |和向量 a, b 的夹角 .2. rr r ur r r r rr r r urx a b , y 2a b ,且 | a | | b | 1, ab ,求 x, y 的夹角的余弦 .1. rr2,r r r r.a(1,3),b (1) ,那么 (3a 2b) (2a 5b)rr (2, r r r r4. 两向量 a(3, 4), b 1) ,求当 a xb 与 a b 垂直时的 x 的值 . 5.rr (2, r r的范围 .两向量 a(1,3), b ) , a 与b 的夹角 为锐角,求10rr r r的取值范围 .变式: 假设a( , 2), b ( 3,5) , a 与 b 的夹角 为钝角,求选择、填空题的特别方法:1. 代入考据法r r(1, r( 1, 2) r例:向量 a (1,1),b1),c ,那么c 〔〕A.1 r3 r1 r3 rC.3 r1rD.3 r1 rab B.a bab ab222222 222. 消除法uuur例: M 是 ABC 的重心,那么以下向量与AB 共线的是〔〕uuuur uuur uuur uuuur uuur uuur uuur uuur uuuur uuuur uuuur A. AM MB BC B. 3AM AC C. AB BC AC D. AM BM CM11。
高一数学平面向量知识点及典型例题解析
高一数学 第八章 平面向量第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念①向量:既有大小又有方向的量。
几何表示法AB ,a;坐标表示法),(y x j y i x a =+=。
向量的模(长度),记作|AB |.即向量的大小,记作|a|。
向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为,其方向是任意的,规定0平行于任何向量。
(与0的区别)③单位向量|a|=1。
④平行向量(共线向量)方向相同或相反的非零向量,记作a∥b⑤相等向量记为b a=。
大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任取一点A ,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=特殊情况:abab a+bba a+b(1)平行四边形法则三角形法则CBDCBA向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”。
②向量减法:同一个图中画出a b a b +-、要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积3.两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =aλ。
二.【典例解析】题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确(1)零向量没有方向 (2)若b a ==则(3)单位向量都相等 (4) 向量就是有向线段(5)两相等向量若共起点,则终点也相同 (6)若b a=,c b =,则c a =;(7)若b a //,c b //,则c a// (8) b a =的充要条件是||||b a =且b a//;(9) 若四边形ABCD 是平行四边形,则==,A练习. (四川省成都市一诊)在四边形ABCD 中,“AB →=2DC →”是“四边形ABCD 为梯形”的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件题型二: 考查加法、减法运算及相关运算律 例2 化简)()(BD AC CD AB ---=练习1.下列命题中正确的是 A .OA OB AB -= B .0AB BA +=C .00AB ⋅=D .AB BC CD AD ++=2.化简AC -BD +CD -AB 得 A .AB B . C . D .0 3.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则( )+BE →+CF →=0 -CF →+DF →=0+CE →-CF →=0 -BE →-FC →=0 题型三: 结合图型考查向量加、减法例3在ABC ∆所在的平面上有一点P ,满足PA PB PC AB ++=,则PBC ∆与ABC ∆的面积之比是( )A .13B .12C .23D .34例4重心、垂心、外心性质练习: 1.如图,在ΔABC 中,D 、E 为边AB 的两个三等分点,CA → =3a ,CB → =2b ,求CD → ,CE → . 2已知a b a b+-=求证a b ⊥3若O为ABC ∆的内心,且满足()(2)0OB OC OB OC OA -⋅+-=,则ABC ∆的形状为( )A.等腰三角形B.正三角形C.直角三角形D.钝角三角形4.已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →=( )A .2OA →-OB → B .-OA →+2OB → OA →-13OB →D .-13OA →+23OB →A B CD E5.已知平面上不共线的四点O ,A ,B ,C .若OA →-3OB →+2OC →=0,则|AB →||BC →|等于________.6.已知平面内有一点P 及一个△ABC ,若PA →+PB →+PC →=AB →,则( ) A .点P 在△ABC 外部 B .点P 在线段AB 上 C .点P 在线段BC 上 D .点P 在线段AC 上7.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( )C .-13D .-23题型四: 三点共线问题 例4 设21,e e 是不共线的向量,已知向量2121212,3,2e e CD e e CB e k e AB -=+=+=,若A,B,D 三点共线,求k 的值例5已知A 、B 、C 、P 为平面内四点, A 、B 、C 三点在一条直线上 PC → =mPA→ +nPB → ,求证: m+n=1. 练习:1.已知:2121212 ,B ),(3e e e +=-=+=,则下列关系一定成立的是( )A 、A ,B ,C 三点共线 B 、A ,B ,D 三点共线 C 、C ,A ,D 三点共线 D 、B ,C ,D 三点共线2.(原创题)设a ,b 是两个不共线的向量,若AB →=2a +k b ,CB →=a +b ,CD →=2a -b ,且A ,B ,D 三点共线,则实数k 的值等于________. 第2讲 平面向量的基本定理与坐标表示一.【要点精讲】1.平面向量的基本定理如果21,e e是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的_单位向量_ i 、j 作为基底任作一个向量a ,有且只有一对实数x 、y ,使得a xi yj =+…………○1,把),(y x 叫做向量a 的(直角)坐标,记作(,)a x y =…………○2其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示与a 相等的向量的坐标也为,(y x 特别地,(1,0)i =,(0,1)j =,0(0,0)=特别提醒:设yj xi +=,则向量的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量的坐标因此,在平面直角坐标系3.平面向量的坐标运算(1)若11(,)a x y =,22(,)b x y =,则a b +=1212(,)x x y y ++,a b -= 1212(,)x x y y -- (2) 若),(11y x A ,),(22y x B ,则AB = (3)若(,)a x y =和实数λ,则a λ=(,)x y λλBCAOM D4.向量平行的充要条件的坐标表示:设a=(x 1, y 1) ,b =(x 2, y 2) 其中b aa∥b (b )的充要条件是12210x y x y -=二.【典例解析】题型一. 利用一组基底表示平面内的任一向量[例1] 在△OAB 中,OBOD OA OC 21,41==,AD 与BC 交于点M ,设=a ,=b ,用a ,b 表示OM .练习:1.若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是 ( )A .1e 与—2eB .31e 与22eC .1e +2e 与1e —2eD .1e 与21e2.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ、μ∈R ,则λ+μ=________. 题型二: 向量加、减、数乘的坐标运算 例3 已知A (—2,4)、B (3,—1)、C (—3,—4)且3=,2=,求点M 、N 的坐标及向量的坐标.练习:1. (2008年高考辽宁卷)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( )A .(2,72)B .(2,-12) C .(3,2)D .(1,3)2.若M(3, -2) N(-5, -1) 且12MP =, 求P 点的坐标;3.若M(3, -2) N(-5, -1),点P 在MN 的延长线上,且 12MP MN =,求P 点的坐标;4.(2009年广东卷文)已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b( )A 平行于x 轴 B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线5.在三角形ABC 中,已知A (2,3),B (8,-4),点G (2,-1)在中线AD 上,且AG →=2GD →, 则点C 的坐标是( )A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2) 6.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a 、4b -2c 、2(a -c )、d 的有向线段首尾相接能构成四边形,则向量d 为( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6) 7.已知A (7,1)、B (1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a 等于( )A .2B .1 题型三: 平行、共线问题例4已知向量(1sin ,1)θ=-a ,1(,1sin )2θ=+b ,若a ∥b ,则锐角θ等于( )A .30︒B . 45︒C .60︒D .75︒例5.(2009北京卷文)已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-, 如果//c d 那么 ( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向练习:1.若向量a=(-1,x)与b =(-x, 2)共线且方向相同,求x2.已知点O(0,0),A(1,2),B(4,5)及t +=, 求(1)t 为何值时,P 在x 轴上P 在y 轴上P 在第二象限。
高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案
1.平面向量基本定理如果e 1、e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2) (a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么下列说法正确的是________(填序号). ①若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0;②空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数); ③对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内;④对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对. 答案 ①2.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________. 答案 0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0. 3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2 θ=0, ∴2sin θcos θ-cos 2 θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 答案 (1)45 (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为________.答案 (1)-23e 1+512e 2 (2)13解析 (1)如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.(2)易知AG →=13AB →+13AC →,MN →=-xAB →+yAC →,故MG →=⎝⎛⎭⎫13-x AB →+13AC →.由于MG →与MN →共线,所以⎝⎛⎭⎫13-x y =-13x , 即xy =13(x +y ),因此xy x +y =13.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =________. (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为__________. 答案 (1)⎝⎛⎭⎫-133,-43 (2)⎝⎛⎭⎫35,-45 解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝⎛⎭⎫-133,-43. (2)A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45. 思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为__________.(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.答案 (1)(5,14) (2)(-6,21)解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 答案 (1)(-4,-8) (2)(2,4)解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5, ∴a =-54.命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP→=34OB →=(3,3),所以点P 的坐标为(3,3). 方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (14分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思维点拨 可以建立平面直角坐标系,将向量坐标化,求出点A ,B 的坐标,用三角函数表示出点C 的坐标,最后转化为三角函数求最值. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[11分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[14分]温馨提醒 本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:40分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是________. 答案 ①③解析 ①中AD →,AB →不共线;③中CA →,DC →不共线.2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________.答案 (-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2). 3.已知a =(1,1),b =(1,-1),c =(-1,2),则c =________. 答案 12a -32b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=________. 答案 12解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12.5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.答案 3解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即mn=3. 6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.答案 (-2,-4)解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 答案 m ≠54解析 由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC →不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54. 9.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.B 组 专项能力提升(时间:15分钟)11.在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案 34解析 ∵CP →=23CA →+13CB →, ∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →.∴2AP →=PB →,因此P 为AB 的一个三等分点.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC → (0<x <1). ∵CB →=AB →-AC →,∴CM →=x 2AB →+⎝⎛⎭⎫x 2-1AC →. ∵CP →=CA →-P A →=-AC →+13AB →, 且CM →=tCP →(0<t <1),∴x 2AB →+⎝⎛⎭⎫x 2-1AC →=t ⎝⎛⎭⎫-AC →+13AB →. ∴x 2=t 3且x 2-1=-t ,解得t =34. 12.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为________.答案 -12解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12. 13.已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________.答案 16解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为OP +1=3+1=4,故(m -3)2+n 2的最大值为42=16.14.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.答案 3解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连结AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →. 又AD →=12(AB →+AC →), ∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.15.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。
高一数学平面向量知识点和典型例题解析
高一数学 第八章 平面向量第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念①向量:既有大小又有方向的量。
几何表示法AB .a ;坐标表示法),(y x j y i x a =+= 。
向量的模(长度).记作|AB |.即向量的大小.记作|a|。
向量不能比较大小.但向量的模可以比较大小.②零向量:长度为0的向量.记为0.其方向是任意的.规定0平行于任何向量。
(与0的区别)③单位向量|a|=1。
④平行向量(共线向量)方向相同或相反的非零向量.记作a ∥b⑤相等向量记为b a=。
大小相等.方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图.已知向量a .b .在平面内任取一点A .作AB =a .BC =b .则向量AC 叫做a 与b 的和.记作a+b .即 a+b AB BC AC =+=特殊情况:(1)BBabbba +ba +AABC C)2()3(向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=.但这时必须“首尾相连”。
②向量减法: 同一个图中画出a b a b +-、要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时.两个已知向量是要共始点的.和向量是始点与已知向量的始点重合的那条对角线.而差向量是另一条对角线.方向是从减向量指向被减向量。
(2) 三角形法则的特点是“首尾相接”.由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点. (3)实数与向量的积3.两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ.使得b =a λ。
二.【典例解析】题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确(1)零向量没有方向 (2)ba ==则 (3)单位向量都相等 (4) 向量就是有向线段(5)两相等向量若共起点,则终点也相同 (6)若b a =.c b =.则c a =;(7)若b a //.c b //.则c a// (8) b a =的充要条件是||||b a =且b a //;(9) 若四边形ABCD 是平行四边形,则DA BC CD B ==,A练习. (四川省成都市一诊)在四边形ABCD 中.“AB→=2DC →”是“四边形ABCD 为梯形”的 A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件题型二: 考查加法、减法运算及相关运算律 例2 化简)()(BD AC CD AB ---=练习1.下列命题中正确的是 A .OA OB AB -= B .0AB BA +=C .00AB ⋅=D .AB BC CD AD ++=2.化简AC -BD +CD -AB 得 A .AB B .DA C . D .03.如图.D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点.则( )A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0题型三: 结合图型考查向量加、减法例3在ABC ∆所在的平面上有一点P .满足PA PB PC AB ++=.则PBC ∆与ABC ∆的面积之比是( )A .13B .12C .23D .34例4重心、垂心、外心性质练习: 1.如图.在ΔABC 中.D 、E 为边AB 的两个三等分点.CA → =3a .CB →=2b .求CD → .CE →. 2已知a b a b+-=求证a b ⊥3若O 为ABC ∆的内心.且满足()(2)0OB OC OB OC OA -⋅+-=.则ABC ∆的形状为( )A.等腰三角形B.正三角形C.直角三角形D.钝角三角形4.已知O 、A 、B 是平面上的三个点.直线AB 上有一点C .满足2AC →+CB →=0.则OC →=( ) A .2OA →-OB → B .-OA →+2OB →C.23OA →-13OB → D .-13OA →+23OB →5.已知平面上不共线的四点O .A .B .C .若OA →-3OB →+2OC →=0.则|AB →||BC →|等于________.6.已知平面内有一点P 及一个△ABC .若PA →+PB →+PC →=AB →.则( )A .点P 在△ABC 外部B .点P 在线段AB 上C .点P 在线段BC 上D .点P 在线段AC 上ABCDE7.在△ABC 中.已知D 是AB 边上一点.若AD →=2DB →.CD →=13CA →+λCB →.则λ等于( )A.23B.13 C .-13 D .-23 题型四: 三点共线问题例 4 设21,e e 是不共线的向量,已知向量2121212,3,2e e e e e k e -=+=+=,若A,B,D 三点共线,求k 的值例5已知A 、B 、C 、P 为平面内四点. A 、B 、C 三点在一条直线上 PC → =mPA → +nPB → .求证: m+n=1.练习:1.已知:2121212CD ,B C),(3e e e e e e AB +=-=+=.则下列关系一定成立的是( )A 、A.B.C 三点共线B 、A.B.D 三点共线C 、C.A.D 三点共线 D 、B.C.D 三点共线2.(原创题)设a .b 是两个不共线的向量.若AB →=2a +k b .CB →=a +b .CD →=2a -b .且A .B .D 三点共线.则实数k 的值等于________.第2讲 平面向量的基本定理与坐标表示 一.【要点精讲】1.平面向量的基本定理如果21,e e 是一个平面内的两个不共线向量.那么对这一平面内的任一向量a .有且只有一对实数21,λλ使:2211e e a λλ+=其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示如图.在直角坐标系内.我们分别取与x 轴、y 轴方向相同的_单位向量_ i 、j作为基底任作一个向量a .有且只有一对实数x 、y .使得a xi yj =+…………○1.把),(y x 叫做向量a 的(直角)坐标.记作(,)a x y =…………○2其BCAOM D中x 叫做a 在x 轴上的坐标.y 叫做a 在y 轴上的坐标.○2式叫做向量的坐标表示与a 相等的向量的坐标也为,(y x 特别地.(1,0)i =.(0,1)j =.0(0,0)=特别提醒:设yj xi +=.则向量的坐标),(y x 就是点A 的坐标;反过来.点A 的坐标),(y x 也就是向量的坐标因此.在平面直角坐标系内.每一个平面向量都是可以用一对实数唯一表示3.平面向量的坐标运算(1)若11(,)a x y =.22(,)b x y =.则a b +=1212(,)x x y y ++.a b -= 1212(,)x x y y --(2) 若),(11y x A .),(22y x B .则AB = (3)若(,)a x y =和实数λ.则a λ=(,)x y λλ4.向量平行的充要条件的坐标表示:设a=(x 1, y 1) .b =(x 2, y 2) 其中b ≠aa ∥b (b≠)的充要条件是12210x y x y -=二.【典例解析】题型一. 利用一组基底表示平面内的任一向量[例1] 在△OAB 中.21,41==.AD 与BC 交于点M .设OA =a .OB =b .用a ,b 表示OM .练习:1.若已知1e 、2e 是平面上的一组基底.则下列各组向量中不能作为基底的一组是 ( ) A .1e 与—2e B .31e 与22e C .1e +2e 与1e —2e D .1e 与21e 2.在平行四边形ABCD 中.E 和F 分别是边CD 和BC 的中点.若AC →=λAE →+μAF →.其中λ、μ∈R .则λ+μ=________.题型二: 向量加、减、数乘的坐标运算 例 3 已知A (—2,4)、B (3,—1)、C (—3,—4)且3=,2=,求点M 、N 的坐标及向量的坐标.练习:1. (2008年高考辽宁卷)已知四边形ABCD 的三个顶点A (0,2).B (-1.-2).C (3,1).且BC →=2AD →.则顶点D 的坐标为( )A .(2.72)B .(2.-12) C .(3,2) D .(1,3)2.若M(3, -2) N(-5, -1) 且 12MP =, 求P 点的坐标;3.若M(3, -2) N(-5, -1).点P 在MN 的延长线上.且 12MP MN =,求P 点的坐标;4.(2009年广东卷文)已知平面向量a =,1x () .b =2,x x (-). 则向量+a b ( )A 平行于x 轴B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线5.在三角形ABC 中.已知A (2,3).B (8.-4).点G (2.-1)在中线AD 上.且AG →=2GD →.则点C 的坐标是( )A .(-4,2)B .(-4.-2)C .(4.-2)D .(4,2)6.设向量a =(1.-3).b =(-2,4).c =(-1.-2).若表示向量4a 、4b -2c 、2(a -c )、d 的有向线段首尾相接能构成四边形.则向量d 为( )A .(2,6)B .(-2,6)C .(2.-6)D .(-2.-6)7.已知A (7,1)、B (1,4).直线y =12ax 与线段AB 交于C .且AC →=2CB →.则实数a 等于( )A .2B .1 C.45 D.53题型三: 平行、共线问题例4已知向量(1sin ,1)θ=-a .1(,1sin )2θ=+b .若a ∥b .则锐角θ等于( )A .30︒B . 45︒C .60︒D .75︒例5.(2009北京卷文)已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-. 如果//c d 那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向练习:1.若向量a=(-1,x)与b =(-x, 2)共线且方向相同.求x2.已知点O(0.0).A(1.2).B(4.5)及t +=.求(1)t 为何值时.P 在x 轴上?P 在y 轴上?P 在第二象限。
高一平面向量知识点+例题+练习 含答案
1.向量的有关概念 名称 定义备注向量 既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量 长度为0的向量;其方向是任意的记作0单位向量 长度等于1个单位的向量 非零向量a 的单位向量为±a|a |平行向量 方向相同或相反的非零向量共线向量 方向相同或相反的非零向量又叫做共线向量0与任一向量平行或共线 相等向量 长度相等且方向相同的向量 两向量只有相等或不等,不能比较大小相反向量 长度相等且方向相反的向量0的相反向量为02.向量的线性运算 向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a +b =b +a(2)结合律:(a +b )+c =a +(b +c ).减法 求两个向量差的运算三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa=0(1)λ(μa )=(λμ)a ;(2)(λ+μ)a =λa +μa ; (3)λ(a +b )=λa +λb3.共线向量定理对空间任意两个向量a ,b (a ≠0),a 与b 共线的充要条件是存在实数λ,使得b =λa . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( × ) (2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)△ABC 中,D 是BC 中点,则AD →=12(AC →+AB →).( √ )1.给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等 .则所有正确命题的序号是________. 答案 ①解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误.2.如图所示,向量a -b =________(用e 1,e 2表示).答案 e 1-3e 2解析 由题图可得a -b =BA →=e 1-3e 2.3.(2015·课标全国Ⅰ改编)设D 为△ABC 所在平面内一点,BC →=3CD →,则AD →=______________(用AB →,AC →表示). 答案 -13AB →+43AC →解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.4.(教材改编)已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示). 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案 -13解析 由已知得a +λb =-k (b -3a ),∴⎩⎪⎨⎪⎧λ=-k ,3k =1.解得⎩⎨⎧λ=-13,k =13.题型一 平面向量的概念例1 下列命题中,正确的是________.(填序号) ①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反; ③向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; ④两个向量不能比较大小,但它们的模能比较大小.答案 ④解析 ①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量; ②不正确,若a 与b 中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;③不正确,共线向量所在的直线可以重合,也可以平行;④正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小. 思维升华 (1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是________. 答案 3解析 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.题型二 平面向量的线性运算命题点1 向量的线性运算例2 (1)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=________. (2)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=______________(用b ,c 表示).答案 (1)AD →(2)23b +13c解析 (1)EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →. (2)∵BD →=2DC →,∴AD →-AB →=BD →=2DC →=2(AC →-AD →), ∴3AD →=2AC →+AB →,∴AD →=23AC →+13AB →=23b +13c .命题点2 根据向量线性运算求参数例3 (1)在△ABC 中,已知D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=____________.(2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是______________. 答案 (1)23(2)⎝⎛⎭⎫-13,0 解析 (1)∵AD →=2DB →,即CD →-CA →=2(CB →-CD →), ∴CD →=13CA →+23CB →,∴λ=23.(2)设CO →=yBC →, ∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →) =-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝⎛⎭⎫0,13, ∵AO →=xAB →+(1-x )AC →, ∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 思维升华 平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较求参数的值.如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且交对角线AC 于K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为________. 答案 29解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知, AC →=AB →+AD →, ∴AK →=λAC →=λ(AB →+AD →) =λ⎝⎛⎭⎫52AE →+2AF → =52λAE →+2λAF →, 由E ,F ,K 三点共线,可得λ=29.题型三 共线定理的应用例4 设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →、BD →共线,又∵它们有公共点B , ∴A 、B 、D 三点共线. (2)解 ∵k a +b 和a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b . ∵a 、b 是两个不共线的非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.思维升华 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系.当两向量共线且有公共点时,才能得出三点共线.(2)向量a 、b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a 、b 不共线.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB→+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 答案 12解析 DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →) =-16AB →+23AC →,∵DE →=λ1AB →+λ2AC →,∴λ1=-16,λ2=23,故λ1+λ2=12.10.方程思想在平面向量线性运算中的应用典例 (14分)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.思维点拨 (1)用已知向量来表示另外一些向量是用向量解题的基本要领,要尽可能地转化到平行四边形或三角形中去求解.(2)既然OM →能用a 、b 表示,那我们不妨设出OM →=m a +n b . (3)利用向量共线建立方程,用方程的思想求解. 规范解答解 设OM →=m a +n b ,则AM →=OM →-OA →=m a +n b -a =(m -1)a +n b .AD →=OD →-OA →=12OB →-OA →=-a +12b .[3分]又∵A 、M 、D 三点共线,∴AM →与AD →共线. ∴存在实数t ,使得AM →=tAD →, 即(m -1)a +n b =t ⎝⎛⎭⎫-a +12b .[5分] ∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t 2,消去t 得,m -1=-2n , 即m +2n =1.① [8分]又∵CM →=OM →-OC →=m a +n b -14a =⎝⎛⎭⎫m -14a +n b , CB →=OB →-OC →=b -14a =-14a +b .又∵C 、M 、B 三点共线,∴CM →与CB →共线.[11分] ∴存在实数t 1,使得CM →=t 1CB →, ∴⎝⎛⎭⎫m -14a +n b =t 1⎝⎛⎭⎫-14a +b , ∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1. 消去t 1得,4m +n =1. ②由①②得m =17,n =37,∴OM →=17a +37b .[14分]温馨提醒 (1)本题考查了向量的线性运算,知识要点清楚,但解题过程复杂,有一定的难度.(2)易错点是找不到问题的切入口,想不到利用待定系数法求解.(3)数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.如本题易忽视A 、M 、D 三点共线和B 、M 、C 三点共线这个几何特征.(4)方程思想是解决本题的关键,要注意体会.[方法与技巧]1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.3.对于三点共线有以下结论:对于平面上的任一点O ,OA →,OB →不共线,满足OP →=xOA →+yOB →(x ,y ∈R ),则P ,A ,B 共线⇔x +y =1. [失误与防范]1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.A 组 专项基础训练 (时间:40分钟)1.给出下列四个命题,其中所有正确命题的序号是___________________.①a 与b 共线,b 与c 共线,则a 与c 也共线;②任意两个相等的非零向量的始点与终点是一个平行四边形的四顶点;③向量a 与b 不共线,则a 与b 都是非零向量;④有相同起点的两个非零向量不平行. 答案 ③解析 由于零向量与任一向量都共线,所以命题①中的b 可能为零向量,从而不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,更不可能是一个平行四边形的四个顶点,所以命题②不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以命题④不正确;对于命题③,其条件以否定形式给出,所以可从其逆否命题入手考虑,假若a 与b 不都是非零向量,即a 与b 至少有一个是零向量,而由零向量与任一向量都共线,可有a 与b 共线,其逆否命题正确,故命题③正确.综上所述,正确命题的序号是③.2.在△ABC 中,CA →=a ,CB →=b ,M 是CB 的中点,N 是AB 的中点,且CN 、AM 交于点P ,则AP →可用a 、b 表示为______________. 答案 -23a +13b解析 如图所示,AP →=AC →+CP →=-CA →+23CN →=-CA →+23×12(CA →+CB →)=-CA →+13CA →+13CB →=-23CA →+13CB →=-23a +13b . 3.如图,在四边形ABCD 中,AB ∥CD ,AB =3DC ,E 为BC 的中点,则AE →=________(用AB →,AD →表示). 答案 23AB →+12AD →解析 BC →=BA →+AD →+DC →=-23AB →+AD →,AE →=AB →+BE →=AB →+12BC →=AB →+12⎝⎛⎭⎫AD →-23AB → =23AB →+12AD →. 4.已知平面内一点P 及△ABC ,若P A →+PB →+PC →=AB →,则有关点P 与△ABC 的位置关系判断正确的是________(填序号).①点P 在线段AB 上; ②点P 在线段BC 上; ③点P 在线段AC 上; ④点P 在△ABC 外部. 答案 ③解析 由P A →+PB →+PC →=AB →得P A →+PC →=AB →-PB →=AP →,即PC →=AP →-P A →=2AP →,所以点P 在线段AC 上.5.已知点O 为△ABC 外接圆的圆心,且OA →+OB →+OC →=0,则△ABC 的内角A 等于________. 答案 60°解析 由OA →+OB →+OC →=0,知点O 为△ABC 的重心,又∵O 为△ABC 外接圆的圆心,∴△ABC 为等边三角形,A =60°.6.已知O 为四边形ABCD 所在平面内一点,且向量OA →,OB →,OC →,OD →满足等式OA →+OC →=OB →+OD →,则四边形ABCD 的形状为________. 答案 平行四边形解析 由OA →+OC →=OB →+OD →得OA →-OB →=OD →-OC →,所以BA →=CD →.所以四边形ABCD 为平行四边形.7.设点M 是线段BC 的中点,点A 在直线BC 外,BC →2=16,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.答案 2解析 由|AB →+AC →|=|AB →-AC →|可知,AB →⊥AC →,则AM 为Rt △ABC 斜边BC 上的中线,因此,|AM →|=12|BC →|=2. 8.(2015·北京)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.答案 12 -16解析 如图,MN →=MC →+CN →=13AC →+12CB → =13AC →+12(AB →-AC →) =12AB →-16AC →,∴x =12,y =-16. 9.如图,在△ABC 中,D 、E 分别为BC 、AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →.解 AD →=12(AB →+AC →)=12a +12b . AG →=AB →+BG →=AB →+23BE →=AB →+13(BA →+BC →) =23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b . 10.设两个非零向量e 1和e 2不共线.(1)如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,求证:A 、C 、D 三点共线;(2)如果AB →=e 1+e 2,BC →=2e 1-3e 2,CD →=2e 1-k e 2,且A 、C 、D 三点共线,求k 的值.(1)证明 ∵AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,∴AC →=AB →+BC →=4e 1+e 2=-12(-8e 1-2e 2)=-12CD →,∴AC →与CD →共线. 又∵AC →与CD →有公共点C ,∴A 、C 、D 三点共线.(2)解 AC →=AB →+BC →=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴AC →与CD →共线,从而存在实数λ使得AC →=λCD →,即3e 1-2e 2=λ(2e 1-k e 2),得⎩⎪⎨⎪⎧3=2λ,-2=-λk ,解得λ=32,k =43. B 组 专项能力提升(时间:15分钟)11.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值是________.答案 -1解析 ∵BC →=a +b ,CD →=a -2b ,∴BD →=BC →+CD →=2a -b .又∵A ,B ,D 三点共线,∴AB →,BD →共线.设AB →=λBD →,∴2a +p b =λ(2a -b ),∴2=2λ,p =-λ,∴λ=1,p =-1.12.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=____________(用a ,b 表示).答案 12a +b 解析 连结CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a . 13.设G 为△ABC 的重心,且sin A ·GA →+sin B ·GB →+sin C ·GC →=0,则B 的大小为________.答案 60°解析 ∵G 是△ABC 的重心,∴GA →+GB →+GC →=0,GA →=-(GB →+GC →),将其代入sin A ·GA →+sin B ·GB →+sin C ·GC →=0,得(sin B -sin A )GB →+(sin C -sin A )GC →=0.又GB →,GC →不共线,∴sin B -sin A =0,sin C -sin A =0,则sin B =sin A =sin C .根据正弦定理知b =a =c , ∴△ABC 是等边三角形,则角B =60°.14.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=____________.(用a ,b 表示)答案 -14a +14b 解析 由AN →=3NC →得AN →=34AC →=34(a +b ), AM →=a +12b ,所以MN →=AN →-AM → =34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b . 15.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________. 答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即n b -m a =λ⎝⎛⎭⎫13-m a +13λb , 从而⎩⎨⎧ -m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.。
高一数学向量知识点以及典型例题
平面向量知识点回顾一、 向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法AB ;字母表示:a ;坐标表示法(,)x i y j x y α→→=⋅+⋅=. (3)向量的长度:即向量的大小,记作2a x y =+(4)特殊的向量:零向量a =O|a |=O . 单位向量a 为单位向量|a |=1.(5)相等的向量:大小相等,方向相同12112212(,)(,)x x x y x y y y =⎧=⇔⎨=⎩(6) 相反向量:0a b b a a b =−⇔=−⇔+=(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量.二、向量的运算法则(1)加法a b b a +=+()()a b c a b c ++=++AB BC AC +=注:向量的加法口诀:首尾相连,首连尾,方向指向末向量。
(2)减法()a b a b −=+− (减法可以变成加法来计算,因此加法的相关运算法则减法也适用)AB BA =− OB OA AB −=注:向量的减法口诀:首首相连,尾连尾,方向指向被减向量。
(3)数乘()()a a λμλμ=()a a a λμλμ+=+()a b a b λλλ+=+//a b a b λ⇔=注:1.a λ是一个向量,满足:a a λλ=;2.λ>0时, a λ与a 同向; λ<0时, a λ与a 异向; λ=0时,0a λ=.(4)数量积a b b a ⋅=⋅()()()a b a b a b λλλ⋅=⋅=⋅()a b c a c b c +⋅=⋅+⋅()22a a =a b a b ⋅≤注:1.a b ⋅是一个数;2.00a b ==或时,0a b ⋅=;3. 00a b ≠≠且时,()cos ,,a b a b a b θθ⋅=是之间的夹角三、向量的直角坐标系运算法则 ()11,a x y =,()22,b x y =(1) 加法()1212,a b x x y y +=++(2) 减法()1212,a b x x y y −=−−(3) 数乘()11,a x y λλλ=(4) 数量积1212a b x x y y ⋅=+21a x y =+四、重要的定理以及公式(应用)(1)平面向量基本定理1e ,2e 是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数12,λλ,使112a e e λλ=+.注:1.我们把不是共线的1e ,2e 叫做表示这一平面内所有向量的一组基底;2.基底不是唯一的,关键是不是共线;3.由定理可以将平面内任一a 在给出基底1e ,2e 的条件下进行分解;4.基底给定时,分解形式是唯一的,12,λλ是被a 、1e ,2e 唯一确定的数量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量平面向量平面向量的概念与线性运算向量概念及表示向量的线性运算平面向量基本定理及坐标表示平面向量基本定理正交分解及坐标表示坐标运算平面向量的数量积数量积的定义数量积的性质一、平面向量的概念与线性运算1.向量概念及表示定义:即有大小,又有方向的量叫做向量.表示:有向线段小字母上加箭头起点到终点,大字母加箭头向量的长度(模):a r 或AB 的模记作||a 或||AB . 几种特殊向量:2.向量的线性运算例如:AB BC CD AD +=u u u r u u u r u u u r u u u r +,0AB BC CA +=u u u r u u u r u u u r r +,BC BA AC -=u u u r u u u r u u u r ,DE DF FE -=u u ur u u u r u u u r .向量不等式:||||||||||||a b a b a b -≤±≤+r r r r r r (等号在向量a r ,b r共线时取得).例如:||3a =r ,||5b =r ,则||a b +r r 的最大值为8,当且仅当a r ,b r同向时取到;最小值为2,当且仅当a r ,b r反向时取到.3如图:正六边形ABCDEF 中,BA CD EF ++=u u u r u u u r u u u r( )A .0rB .BE u u u rC .AD u u u r D .CF u u u ru u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r4根如图所示,已知正六边形ABCDEF ,O 是它的中心,若BA u u u r =a r ,BC uuu r =b r ,试用a r ,b r 将向量OE uuu r ,BF u u u r ,BD u u u r,FD u u u r表示出来.u u u r u u u r r r u u u r u u u r u u u r u u u r u u u r r r 在ABCD Y 中,AB a =u u u r r ,AD b =u u u r r ,3AN NC =u u u r u u u r,M 为BC 的中点,则MN =u u u u r_____.u u u r u u u r r r u u u u r u u u r u u u u r u u u r u u u r r r向量共线定理:向量(0)a a ≠r r r与b r 共线,当且仅当有唯一一个实数λ,使b a λ=r r . 应用:解决三点共线问题. 重要结论:ABC V ABC V 中,12AM AC =u u u u r u u u r ,29AD mAB AC =+u u u r u u u r u u u r,则m =______.12u u u r u u u r u u u u r u u u r u u u r u u u r u u u r9设D ,E ,F 分别为ABC V 的三边BC ,CA ,AB ,的中点,则EB FC +=u u u r u u u r( )A .AD u u u rB .12AD u u u rC .BC u u u r D .12BC u u u r 11u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r解析:由0MA MB MC ++=u u u r u u u r u u u u r r可知M 为ABC V 的重心,则2211[()]()3323AM AD AB AC AB AC ==+=+u u u u r u u u r u u u r u u u r u u ur u u u r ,即3AB AC AM +=u u u r u u u r u u u u r,则3m =.答案:3练习题:A .0AD BE CF ++=u u u r u u u r u u u r rB .0BD CF DF -+=u u u r u u u r u u u r rC .0AD CE CF +-=u u u r u u u r u u u r r D .0BD BE FC --=u u u r u u u r u u u r r平行四边形ABCD 中,E 是AD 中点,BE AC F =I ,AF AC λ=,则λ=______.u u u r r u u u r r 111u u u r u u u r u u u r r r r r r答案:A20设1e u r ,2e u u r 是不共线向量,若向量1235a e e =+r u r u u r 与向量123b me e =-r u r u u r共线,则m 的值等于( )A .95-B .53-C .35-D .59- 解析,a r 与b r 共线,则满足b a λ=r r ,即12123(35)me e e e λ-=+u r u u r u r u u r ,则335m λλ=⎧⎨-=⎩,解得95m =-.答案:A21设a r 与b r 是两个不共线的向量,且向量a b λ+r r 与(2)b a --r r共线,则λ=( )A .0B .-1C .-2D .-0.5 解析:a b λ+r r 与(2)b a --r r共线,则存在μ满足((2))a b b a λμ+=--r r r r,即2a b a b λμμ+=-r r r r ,12μλμ=⎧⎨=-⎩,解得12λ=-.答案:D二、平面向量的基本定理及坐标表示1.平面向量基本定理如果1e u r ,2e u u r是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a r,有且只有一对实数1λ,2λ,使1122a e e λλ=+r u r u u r ,我们把不共线的向量1e u r ,2e u u r叫做表示这一平面内所有向量的一组基底.例1如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM c =u u u u r r ,AN d =u u u r u r ,试用c r,d u r表示AB u u u r ,AD u u u r .解析:设AB a =u u u r r ,AD b =u u u r r ,则1212c AM AD DM b a d AN AB BN a b ⎧==+=+⎪⎪⎨⎪==+=+⎪⎩r u u u ur u u u r u u u u r r r u r u u u r u u u r u u u r r r ,解得2(2)32(2)3a d c b c d ⎧=-⎪⎪⎨⎪=-⎪⎩r ur r r r u r ,所以4233AB d c =-u u u r u r r ,4233AD c d =-u u u r r u r . 答案:4233AB d c =-u u u r u r r ,4233AD c d =-u u u r r u r例2在梯形ABCD 中,AB CD ∥,2AB CD =,M ,N 分别为CD ,BC 的中点,若AB AM AN λμ=+u u u r u u u u r u u u r ,则λμ+=______. 解析:2AB AN NB AN CN AN CA AN AN CM MA =+=+=++=++=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u u r u u u r124AN AB AM --u u u r u u u r ,所以8455AB AN AM =-u u u r u u u r u u u u r ,即45λ=-,85μ=,故45λμ+=.答案:452.正交分解及坐标表示正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.坐标表示:在平面直角坐标系中,分别取与x 轴,y 轴正方向相同的两个单位向量i r ,j r 作为基底,对于平面内的一个向量a r,有且只有一对实数x ,y ,使得a xi y j =+r r r,则有序实数对(,)x y 叫做向量a r的坐标,记作(,)a x y =r . 显然:(1,0)i =r ,(0,1)j =r ,0(0,0)=r坐标求法:图形表示文字表示起点在原点,向量坐标就是终点坐标 起点不在原点,向量坐标为终点坐标减去起点坐标坐标表示 (,)OA x y =u u u r2121(,)AB x x y y =--u u u r注意:向量没有位置的概念,表示相等向量的有向线段可以在平面上不同的位置,但向量的坐标是相同的.例如:如图所示,AB CD =u u u r u u u r ,位置不同,但(21,42)(1,2)AB =--=u u u r 和(32,31)(1,2)CD =--=u u u r坐标相同.坐标 设11(,)a x y =r ,22(,)b x y =r加法 1212(,)a b x x y y +=++r r减法1212(,)a b x x y y -=--r r数乘12(,)a x x λλλ=rr r ∥a b1221x y x y =例如:(1,2)a =r ,(3,4)b =r,则: (13,24)(4,6)a b +=++=r r, (13,24)(2,2)a b -=--=--r r, 2(21,22)(2,4)a =⨯⨯=r,若(1,2)a =r 与(,4)b m =r平行,则满足142m ⨯=,得2m =.例3已知向量(2,4)a =r ,(1,1)b =-r ,则2a b -=r r( )A .(5,7)B .(5,9)C .(3,7)D .(3,9) 解析:2(4,8)(1,1)(5,7)a b -=--=r r.答案:A例4已知(1,0)a =r ,(2,1)b =r ,(1)当k 为何值时,ka b -r r 与2a b +r r 共线;(2)若23AB a b =+u u u r r r ,BC a mb =+u u u r r r,且A ,B ,C 三点共线,求m 的值.解析:(1)(,0)(2,1)(2,1)ka b k k -=-=--r r ,2(1,0)(4,2)(5,2)a b +=+=r r,两者共线,则2(2)(1)5k -=-⨯,解得12k =-.练习题:解析:设AB a =u u u r r ,AD b =u u u r r ,则12AE a b =+u u u rr r,12AF a b =+u u u r r r ,则2()3AC a b AE AF =+=+u u u r r r u u u r u u u r ,则43λμ+=.答案:43如图所示,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM c =u u u u r r ,AN b =u u u r r ,则ABu u u r在平行四边形ABCD 中,AC 与DB 相交于点O ,E 是线段OD 的中点,AE 延长线与CD 交于F ,若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r( )A .1142a b +r rB .2133a b +r rC .1124a b +r rD .1233a b +r ru u u r u u u r r如图,平面内有三个向量OA u u u r ,OB u u u r ,OC u u u r ,OA u u u r 与OB u u u r 夹角为120︒,OA u u u r 与OC u u u r夹角为30︒,且||||1OA OB ==u u u r u u u r ,||23OC =u u u r,若OC OA OB λμ=+u u u r u u u r u u u r,则λμ+的值为_____.解析:作平行四边形ODCE ,则OC OD OE OA OB λμ=+=+u u u r u u u r u u u r u u u r u u u r ,4cos30OCOD ==︒,2tan30OCOE ==︒,即4λ=,2μ=,6λμ+=.答案:6r r r r r r r r r如图,在ABC V 中,点O 是B C 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB mAM =u u u r u u u u r,AC nAN =u u u r u u u r,则m n +的值为______.1m n u u u ru u ur u u u ru u u u r u u u r m n4233解析:2PA PC AB PB +=-u u u r u u u r u u u r u u u r 化简可得3PC AP =u u u r u u u r,即P在AC 上,两个三角形高相等,则34S PBC PC S ABC AC ==V V .答案:A如图,设P ,Q 为ABC V 内的两点,且2155AP AB AC =+u u u r u u u r u u u r,2134AQ AB AC =+u u u r u u u r u u u r,则ABP V 与ABQ V 的面积之比为______. 解析:如图作辅助线,EF ,GH 分别为两个三角形的高,15AE AC =u u u r u u u r ,14AG AC =u u u r u u u r ,则45S ABP EF AE S ABQ GH AG ===V V . 答案:45u u u r u u u r u u u r r233解析:画图,把向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比,则OAC V 与OAB V 的面积比为2:3. 答案:Bu u u r u u u r u u u r r解析:画图,把向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比,则面积比为4:3:2. 答案:Ar rr r如图:向量a b -=r r( )A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -u r u u rD .123e e -+u r u u r解析:由图可知12()3a b a b e e -=+-=-+r r r r u r u u r .答案:D如图:向量a b -=r r( )A .213e e -u u r u rB .1224e e --u r u u rC .123e e -u r u u rD .123e e -u r u u r解析:由图可知123a b e e -=-r r u r u u r.答案:C向量a b c ++r r r可表示为( )A .1232e e -u r u u rB .1233e e --u r u u rC .1232e e +u r u u rD .1223e e +u r u u r解析:a b c ++r r r 在图上画出来,可知1232a b c e e ++=+r r r u r u u r.答案:C向量a r ,b r ,c r在正方形网格中的位置如图所示,若c a b λμ=+r r r ,则λμ=______.解析:如图所示建立平面直角坐标系,可得(1,1)a =--r ,(6,2)b =r ,(1,3)c =--r,则(,)(6,2)c a b λμλλμμ=+=-+=r r r(6,2)(1,3)μλλμ-+=--,解得2λ=-,12μ=-,则4λμ=. 答案:4三、平面向量的数量积1.数量积的定义向量夹角:已知两个非零向量a r 和b r ,作OA a =u u u r r ,OB b =u u u r r,则(0180)AOB θθ∠=︒≤≤︒叫做向量a r 与b r的夹角.0θ=︒时,a r 与b r 同向;180θ=︒时,a r 与b r 反向;90θ=︒时,ar与b r 垂直,记作a b ⊥r r .数量积:已知两个非零向量a r 与b r ,我们把||||cos a b θr r叫做a r 与b r 的数量积(或内积),记作a b ⋅r r ,即||||cos a b a b θ⋅=r r r r,其中θ是a r 与b r 的夹角.规定:零向量与任一向量的数量积为0.注意:点乘符号“⋅”不能省略,两个向量的数量积结果为实数,不再是向量.090θ︒≤<︒时,0a b ⋅>r r ;90θ=︒时,0a b ⋅=r r ;90180θ︒<≤︒时,0a b ⋅<r r.例1ABC V 中,||5BC =u u u r ,||8CA =u u u r,60C ∠=︒,求BC CA ⋅u u u r u u u r .解析:设BC u u u r 和CA u u u r 的夹角为θ,则180120C θ=︒-∠=︒,因为||5BC =u u u r ,||8CA =u u u r,则||||cos 58cos12020BC CA BC CA θ⋅==⨯⨯︒=-u u u r u u u r u u u r u u u r.答案:20-投影:||cos (||cos )a b θθr r叫做向量a r 在b r 方向上(b r 在a r 方向上)的投影.常用投影计算公式:||cos ||||||a ba a ab θ⋅==r rr r r r ||a b b ⋅r r r . a b ⋅r r 的几何意义:数量积a b ⋅r r 等于a r 的长度||a r与b r 在a r 方向上的投影||cos b θr 的乘积.类比于物理中的做功||||cos W F s θ=u r r.例2如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P ,且3AP =,则AP AC ⋅=u u u r u u u r_____.2.数量积的性质 a r 与b r 同向时,||||a b a b ⋅=r r r r ;a r 与b r 反向时,||||a b a b ⋅=-r r r r.a cbc ⋅=⋅r r r r ,不能得到a b =r r,即数量积不满足消去律. ()()a b c a b c ⋅⋅≠⋅⋅r r r r r r,即数量积不满足结合律.设向量a r 与b r 夹角为θ,11(,)a x y =r ,22(,)b x y =r.练习题:如图,非零向量OA a =u u u r r ,OB b =u u u r r ,且BC OA ⊥u u u r u u u r ,C 为垂足,若OC a λ=u u u r r,则λ=( )A .||||a b a b⋅r rr r B .||||a b a b ⋅r r r rC .2||a b b ⋅r r rD .2||a b a ⋅r rrr r解析:如图,建立坐标系,设AEu u u r与AFu u u r夹角为θ,则||||cosAE AF AE AFθ⋅==u u u r u u u r u u u r u u u r 2212()||cos2AFθ+u u u r,||cosAFθu u u r为AFu u u r在AEu u u r方向上的投影,由投影定义可知,只有点F取点C时,投影有最大值,此时19(2,)(2,1)22AE AF⋅=⋅=u u u r u u u r.答案:C58如图,在等腰直角三角形ABC中,90A∠=︒,22BC=,G是ABCV的重心,P是ABCV内的任意一点(含边界),则BG BP⋅u u u r u u u r的最大值为_____.解析:如图所示,2222225||413333BG BD AB AD==+=+=u u u r,25||||cos||cos3BG BP BG BP BPθθ⋅==u u u r u u u r u u u r u u u r u u u r,则BG BP⋅u u u r u u u r的最大值即||cosBPθu u u r最大,由投影定义可知,当P与C重合时,有最大值,由余弦定理得222581310cos2102522BD BC CDBD BCθ+-+-===⋅⨯,则最大值25310||||cos224310BG BP BG BCθ⋅==⨯⨯=u u u r u u u r u u u r u u u r.数学浪子整理制作,侵权必究。