参数估计的基本理论
第三讲 参数估计 (1)
L( x1 , x2 , x3;q ) =ˆ Pq { X1 = x1 , X 2 = x2 , X 3 = x3 }
= Pq { X1 = x1 }Pq { X 2 = x2 }Pq { X 3 = x3 }
= p( x1;q ) p( x2;q ) p( x3;q ) = q x1 (1 − q )1− x1q x2 (1 − q )1− x2 q x3 (1 − q )1− x3
其它
其中 −1
是未知参数,
X1,X2,…,Xn是取自X的样本,求参数 的矩估计.
解:
数学期望
是一阶
1
=
= E(X
( + 1)
)
1
1
= x( 0
x +1dx
+ =
1)
x dx +1
原点矩由矩估计法,
X
=
0
+1
+2
总体矩
样本矩
+2
从中解得 ˆ = 2 X − 1 , 即为 的矩估计.
Gauss
Fisher
最大似然法的基本思想
先看一个简单例子: 某位同学与一位猎人一起外 出打猎 . 一只野兔从前方窜过 . 只听一声枪响,野兔应声倒下 . 如果要你推测,是谁打中的呢? 你会如何想呢?
你就会想,只发一枪便打中, 猎人命中的概率 一般大于这位同学命中的概率 . 看来这一枪是猎人 射中的 .
最大似然估计法就是用使L(q )达到最大值的qˆ去估计q . 称qˆ为q 的最大似然估计(MLE).
怎样求最大似然估计呢? 因为lnx是x 的严格单增函数,lnL与L有相同的极大值点, 故一般只需求lnL的极大值点即可----令其一阶偏导为0,得到 似然方程(组),求解即可。
统计推断与参数估计的基本理论与方法
统计推断与参数估计的基本理论与方法统计推断是统计学中的一门重要的研究领域,它主要关注如何通过样本数据对总体特征进行推断。
参数估计则是统计推断的一个重要组成部分,它通过样本数据来估计总体参数。
本文将介绍统计推断和参数估计的基本理论和方法。
一、统计推断的基本理论统计推断的基本理论包括抽样理论、似然函数和假设检验等。
1. 抽样理论抽样理论是统计推断的基础,它研究的是如何从总体中抽取样本以便对总体进行推断。
通过合理的抽样方法,可以保证样本对总体的代表性。
2. 似然函数似然函数是参数估计的基本工具,它是样本观测值关于参数的函数。
通过最大似然估计可以得到参数的最优估计值。
3. 假设检验假设检验是统计推断的重要方法,用于检验某个关于总体参数的假设。
它包括构造检验统计量和确定拒绝域两个步骤,从而进行参数推断。
二、参数估计的基本方法参数估计是统计推断中的核心内容,它通过样本数据来估计总体参数。
参数估计的基本方法包括点估计和区间估计。
1. 点估计点估计是一种直接估计总体参数的方法,它通过样本数据来估计总体参数的具体值。
最常用的点估计方法是最大似然估计和矩估计。
2. 区间估计区间估计是一种间接估计总体参数的方法,它给出了参数的估计区间。
通过给出一个置信区间,可以对总体参数进行估计,并给出估计的精度。
三、常用的统计推断方法在实际应用中,统计学家们发展了许多常用的统计推断方法,包括假设检验、方差分析、回归分析等。
1. 假设检验假设检验是统计推断中最常用的方法之一,它用于检验某个关于总体参数的假设。
例如,检验某种药物对疾病的治疗效果是否显著。
2. 方差分析方差分析是一种用于比较多个总体均值的方法,它通过分析不同组之间的方差来判断各组均值是否有显著差异。
例如,在新产品开发中,可以通过方差分析评估不同市场的销售情况。
3. 回归分析回归分析是一种用于建立变量之间关系的方法,它可以推断自变量对因变量的影响程度。
通过回归分析可以得到回归方程,从而进行预测和解释。
各种参数的极大似然估计
各种参数的极大似然估计1.引言在统计学中,参数估计是一项关键任务。
其中,极大似然估计是一种常用且有效的方法。
通过极大化似然函数,我们可以估计出最有可能的参数值,从而进行推断、预测和优化等相关分析。
本文将介绍各种参数的极大似然估计方法及其应用。
2.独立同分布假设下的参数估计2.1参数估计的基本理论在独立同分布假设下,我们假设观测数据相互独立且具有相同的概率分布。
对于一个已知的概率分布,我们可以通过极大似然估计来估计其中的参数。
2.2二项分布参数的极大似然估计对于二项分布,其参数为概率$p$。
假设我们有$n$个独立的二项分布样本,其中成功的次数为$k$。
通过极大似然估计,我们可以得到参数$p$的估计值$\h at{p}$为:$$\h at{p}=\f ra c{k}{n}$$2.3正态分布参数的极大似然估计对于正态分布,其参数为均值$\mu$和标准差$\si gm a$。
假设我们有$n$个独立的正态分布样本,记为$x_1,x_2,...,x_n$。
通过极大似然估计,我们可以得到参数$\mu$和$\si gm a$的估计值$\h at{\m u}$和$\ha t{\s ig ma}$分别为:$$\h at{\mu}=\f rac{1}{n}\su m_{i=1}^nx_i$$$$\h at{\si gm a}=\s q rt{\fr ac{1}{n}\s um_{i=1}^n(x_i-\h at{\mu})^2}$$3.非独立同分布假设下的参数估计3.1参数估计的基本理论在非独立同分布假设下,我们允许观测数据的概率分布不完全相同。
此时,我们需要更加灵活的方法来估计参数。
3.2伯努利分布参数的极大似然估计伯努利分布是一种二点分布,其参数$p$表示某事件发生的概率。
假设我们有$n$组独立的伯努利分布样本,其中事件发生的次数为$k$。
通过极大似然估计,我们可以得到参数$p$的估计值$\h at{p}$为:$$\h at{p}=\f ra c{k}{n}$$3.3泊松分布参数的极大似然估计泊松分布是一种描述罕见事件发生次数的概率分布,其参数$\la mb da$表示单位时间(或单位面积)内平均发生的次数。
参数区间估计的基本原理
参数区间估计的基本原理
参数区间估计是一种统计学方法,用于根据样本数据推断总体参数的取值范围。
它基于概率论和抽样分布理论,通过计算样本统计量(如样本均值、样本比例等)并结合置信水平,确定总体参数可能落在的一个区间范围内。
参数区间估计的基本原理可以概括如下:
1. 抽样分布:从总体中抽取一个样本,样本统计量的分布称为抽样分布。
例如,当从正态总体中抽取样本时,样本均值的分布也是正态分布。
2. 置信水平:置信水平表示我们对估计结果的置信程度,通常用百分数表示。
常见的置信水平包括 90%、95%和 99%等。
3. 计算区间:根据样本统计量和置信水平,可以计算出一个置信区间。
置信区间是一个包含总体参数的区间范围,它表示在给定的置信水平下,总体参数有多大的概率会落在这个区间内。
4. 推断结论:根据计算得到的置信区间,可以推断出总体参数的取值范围。
如果置信区间包含了零或其他特定的值,可以得出关于总体参数是否显著不同于零或其他特定值的结论。
参数区间估计的基本原理是基于样本数据和抽样分布,通过计算置信区间来推断总体参数的可能取值范围。
这种方法在统计学中被广泛应用,用于推断总体参数的值、检验假设、进行统计推断等。
概率第7章 参数估计
Gauss
Fisher
基本思想
甲.乙两人比较射击技术,分别射击目标一次,甲中而乙未中, 可以认为:甲射击技术优于乙射击技术. 事件A发生的概率为0.1或0.9,观察一次,事件A发生了, 可以认为:事件A发生的概率为0.9. 实际问题(医生看病、公安人员破案、技术人员进行质量 检验等)尽管千差万别,但他们具有一个共同的规律,即在 获得了观察资料之后,给参数选取一个数值,使得前面的观 察结果出现的可能性最大. 最大似然估计就是通过样本值 x1 , , x n 等数求得总体的 分布参数,使得 X1 ,, X n 取值为 x1 , , x n 的概率最大.
i
L( ) L( x1 , , x n ; ) f ( x i ; ),
i 1
n
的最大值,这里 ( )称为样本的似然函数 L .
ˆ 若 L( x 1 , , x n ; ) max L( x 1 , , x n ; )
ˆ 则称 ( x1 , , xn )为 的极大似然估计值 .
i
xi
在得到观测值 x1 , x 2 , , x n 的前提下,自然 应当选取使得 n
f ( x ; )dx
i i 1
i
达到最大的 值作为未知参数 的估计值.
因为当未知参数 等于这个值时,出现给 定的那个 样本观测值的可能性最 大.
但 dxi 不随 而变,故只需考虑:
3.期望和方差的点估计 在实际中,常常以样本均值作为总体均值的 点估计,以样本方差作为总体方差的点估计. 期望的点估计: (1)无偏性 1 n 选择估计量 X X i n i 1 (2)样本容量越大,估计值 越有效 方差的点估计:
第7章参数估计
x 1 0
f P 1-p
x
xf f
1 p 0 (1 p) p (1 p)
p
2 (x x)2 f (1 p)2 p (0 p)2 (1 p)
f
p (1 p)
似然函数常简记为L或 L 1,2, ,k
未知参数的函数。
38
若有 ˆi (x1, x2,..., xn ) i 1, 2, k 使得
L x1, x2,..., xn;ˆ1, ˆ 2,
, ˆ k
max L (1 ,2 , ,k )
x1, x2,..., xn; 1, 2,
, k
则 ˆi (X1, X2,..., Xn) 为参数θi的极大似然估计量。
中选出一个使样本观察值出现的概率为最大的 ˆ 作
为θ的估计量。
称 ˆ 为θ 的极大似然估计量。
37
2.似然函数的数学表达式
设X1,X2,…Xn是取自总体X的一个样本,样本的联合密度 (连续型)或联合分布律 (离散型)为 :
f (x; 1,2 , , k )
定义似然函数为:
n
L L x1,..., xn; 1, 2, , k f xi; 1, 2, , k i 1 x1, x2 ,..., xn 给定的样本观察值
§7.1.4抽样误差
1.误差:调查结果与实际值之间的差异 抽样调查中的误差
登记性误差(非抽样误差) 误差代表性误差随系机统误误差差((抽非样抽误样差误)差)
2.抽样误差—由于抽样的随机性而产生的 样本指标对总体指标的代表性误差。抽样误 差可以计算并加以控制,但不可以避免。
第7章估计理论
D X EX EX 2 12
2 2 2
1 1 2 1 X i X i Xi X n n n
2
2
样本方差
∴样本均值和样本方差是总体数学期望与总体方差的矩估计量。可以证明, 前面讲过的样本各种数字特征是总体同名数字特征的矩估计量。
X EX
标准化后的变量
也是随机变量,常数为离均系数,若X的数字特征为 EX , , Cs则的
Cs Cs 的最小值为: 均值为0 ,方差为1,
0
a EX 2 2 Cs Cs
当Cs 0,
,此时
为标准化正体分布∴结论是对的
从以上所推导出离均系数分布密度可知,该分布密度仅与 Cs 有关,那么只要给p 可通过积分求得p 即
解:设样本
x1 , x 2 , x n
x
1
为极大值 ∵ x1
* 即 取值范围[ x1 , ) 是抽自以上总体的。故 为使似然函数达最大
即
L 1 n 达最大 在 取值范围内 显然 x1时可使L达最大
对于P-III型分布中的τ分布(即a0=0的P-III分布),可以用两个似然方
P-Ⅲ型分布是我国水利水电工程水文计算规范中推荐采用的分 布,我国水文工作者对其参数估计的方法作了大量研究,现行广泛采用 的是适线法。 一、适线法 适线法不是给出估计量的计算公式,而是由实测样本直接推求 参数的估计值。包括目估和计算机优化适线法。 (一)、适线法的基本原理 设随机变量X的超过制分布函数 P( X x) G ( x; u10 ,, ul0 ) 的函 数类型已知,其中的参数 u10 ,, ul0未知,待估计,又设x1,…,xn为X 的一个容量为n的样本,利用这个样本通过适线法估计参数 u10 ,, ul0 的值。 将x1,x2,…,xn由大到小排队:x 计算经验频率 Pm P X xm ,将点 ( Pm , xm )(m=1~n)(称为经验点据)
参数估计基础
p ~ B(n,π), 给定n=50, π =0.20. 共抽取100个样本,计算黑球的比例, p1,p2,…,p100.结果见表5-3。
表5-3 从B(n=50 =0.20)抽取的100 个样本频率的频数分布
黑球比例(%) 8.010.012.014.016.018.020.022.024.026.0-
试估计:该样本频率的抽样误差。 已知:p=41.5%,n=776,代入公式(5-4)得到标准误估 计值:
S pp 1 n p 0 .4 1 5 7 1 7 6 0 .4 1 5 0 .0 1 7 7 或 1 .7 7 %
标准误的估计值较小,说明用样本患病率 41.5%估计总体患病率的可靠性较好。
组段(cm) 152.6~
153.2~ 153.8~ 154.4~ 155.0~ 155.6~ 156.2~ 156.8~ 157.4~ 158.0~158.6
合计
频数 1
4 3 19 25 23 18 4 1 2 100
频率(%) 1.0
4.0 3.0 19.0 25.0 23.0 18.0 4.0 1.0 2.0 100.0
= 时,t分布就完全等于标准正态分布。 3、标准正态分布有两个固定常数(0,1),t分 布只有一个参数 。
❖ 练习:
❖ 1、ν=10,双侧尾部面积为0.05的t界值是?
❖ 2、ν=100,单侧尾部面积为0.05的t界值是?
❖ 3、ν=∞,双测尾部面积和单侧尾部面积分别 为0.05的界值是?
❖1、t 0.05/2,10=2.228
两侧越分散; ➢ 随着 逐渐增大,t分布逐渐逼近标准正态分布;
当 趋于 时,t分布就完全成为标准正态分布。
参数估计
参数估计
参数估计就是用样本统计量来推算总体参 数,有点估计和区间估计两种方法。 一、参数估计的理论基础 按正态分布理论对参数进行估计。 正态分布的主要特征有: 1.以总体平均数为中心两侧呈对称分布,即 1.以总体平均数为中心两侧呈对称分布,即 样本平均数大于或小于总体平均数的概率完全相 等,就是说样本平均数的正离差与负离差出现的 可能性完全相等。
2.样本平均数越接近总体平均数,其出现的 2.样本平均数越接近总体平均数,其出现的 可能性越大;反之样本平均数越远离总体平均数, 其出现的可能性越小。这种可能性数学上称为概 率F(t),也就是可靠性。与概率对应的数值称为 ),也就是可靠性。与概率对应的数值称为 概率度,即抽样误差扩大的倍数,用字母t表示。 概率F(t)与概率度t 的对应函数关系如图4-2所 的对应函数关系如图4 示。
30
f x
25 20
( )
15
10
5
0
-4 -3 -2 -1 0 1 2 3 4
x
-3t
x 3 x 2
-2t
x
-1t
0 68.27% 95.45% 99.73% F(t)
X
x + x + 2
1t
2t
x + 3
3t
图4 - 2
正态分布概率图
图4-2显示样本平均数与总体平均数的平均误差不超过1μ的 显示样本平均数与总体平均数的平均误差不超过1 概率为0.6827,不超过2 的概率为0.9545,不超过3 概率为0.6827,不超过2μ的概率为0.9545,不超过3μ的概率为 0.9973。即: 0.9973。即: 当t =1时,F(t) = 0.6827 =1时, 当t =2时,F(t) = 0.9545 =2时, 当t =3时,F(t) = 0.9973 =3时, 概率度t与概率F(t)的对应关系是:概率F(t)越大,则概率 度t值越大,估计的可靠性越高,样本统计量与总体参数之间正 负离差的变动范围也越大。对于t每取一个值,概率保证程度F(t) 有一个唯一确定的值与之对应。因此人们制定正态分布概率表 有一个唯一确定的值与之对应。因此人们制定正态分布概率表 (见书后附页)供大家查找。
07心理统计学-第七章 参数估计
犯错误的概率,常用α(或p)表示。则1-α为置信 度。(显著性水平越高表示的是α值越小,即犯错误的可
能性越低) α为预先设定的临界点,常用的如.05、.01、.001;p 为检验计算所得的实际(犯错误)概率。
第一节 点估计、区间估计与标准误
三、区间估计与标准误
3、区间估计的原理与标准误
转换成比率为
p
n
p, SE p
n
pq n
同理可得公式7-17。自习[例7-12、例7-13]
1、从某地区抽样调查400人,得到每月人均文化消费为 160元。已知该地区文化消费的总体标准差为40元。试 问该地区的每月人均文化消费额。(α=.05,总体呈正态
分布)
2、上题中总体方差未知,已知Sn-1=44元。 3、已知某中学一次数学考试成绩的分布为正态分布,总 体标准差为5。从总体中随机抽取16名学生,计算得平 均数为81、标准差为Sn=6。试问该次考试中全体考生成 绩平均数的95%置信区间。 4、上题中总体方差未知,样本容量改为17人。 5、假定智商服从正态分布。随机抽取10名我班学生测 得智商分别为98、102、105、105、109、111、117、 123、124、126(可计算得M=112,Sn≈9.4),试以95% 的置信区间估计我班全体的智商平均数。 返回
值表,求tα /2(df)。
5、计算置信区间CI。
σ2已知,区间为M-Zα /2 SE <μ< M+Zα /2 SE;
σ2未知,区间为M-tα /2(df)SE <μ< M+tα /2(df)SE。
6、对置信区间进行解释。
二、σ2已知,对μ的区间估计(Z分布,例7-1 & 2) 三、σ2未知,对μ的区间估计(t分布,例7-3 & 4)
第二章 参数估计
0
x 2de
x
2xe
x
dx
2
xde
x
0
x
0
0
2 e dx 2 2
0
9
例4:设X1, … , Xn为取自 N ( , 2 ) 总体的
样本,求参数 , 2 的矩估计。
: E( X ) D( X ) 2 E( X 2 ) [E( X )]2
极大似然法是由德国数学家G.F.Gauss在1821年提 出的.然而这个方法通常归于英国统计学家 R.A.Fisher,因为他在1912年里发现了这一方法,并 且首先研究了这种方法的性质.
设总体的密度函数为f(x,θ), θ为待估参数,θ∈Θ,Θ
为参数空间.当给定样本观察值 x (x1, x2 , xn )后,f(x,
以随便给的,所以根据统计思想建立各种点估计方法
和评价点估计的好坏标准便是估计问题的研究中心.
这里先介绍三个常用的标准:无偏性、有效性和一致
性.
1
有效性
^
^
设 i i ( X1,, X n ), i 1, 2分别是参数 的两个无偏估计,
^
^
^
^
若D 1 D 2 至少有一个n使 成立 , 则称 1比 2 有效.
总体k阶矩 样本k阶矩
k E(Xk )
Ak
1 n
n i 1
X
k i
的矩估计量是
约定:若
是未知参数的矩估计,则u()的矩
估计为u(
),
6
例2、:设X1, … , Xn为取自参数为的指数分布 总体的样本,求的矩估计。
第5章 参数估计
猎物射击,结果该猎物身中一弹,你认为谁打中的可能
性最大? 根据经验而断:老猎人打中猎物的可能性最大. 极大似然估计法的思想就是对固定的样本值,选
择待估参数的估计值使“样本取样本值”[离散型]或 “样
本取值落在样本值附近”[连续型] 的概率最大。
(2、极大似然估计的求法
单参数情形
根据总体分 布律写出似 然函数:换x 为xi
来得到待估参数θ 的极大似然估计值(驻点);
③ 、必要时,参照极大似然估计值写出极大似然
估计量.
【例6】求服从二项分布B(m,p)的总体X未知参数 p的极大似然估计量。 〖解〗单参数,离散型。 因为总体 X
~ B(m, p),
x m x
其分布律为
m x
f ( x; p) C p (1 p)
下面分离散型与连续型总体来讨论. 设离散型总体X的分布律
P{X x} p( x; )
( )
形式已知,θ 为待估参数. X 1 , X 2 ,..., X n 为来自总体X的
样本, x1 , x2 ,..., xn 为其样本值,则 X 1 , X 2 ,..., X n 的联合分
布律为:
用其观察值
ˆ( X , X ,..., X ), 1 2 n
——θ 的估计量
ˆ( x , x ,..., x ) 1 2 n
——θ 的估计值
来估计未知参数θ .
今后,不再区分估计量和估计值而统称为θ 的估计,
ˆ . 均记为
二、构造估计量的两种方法
1、矩估计法 理论根据:样本矩(的连续函数)依概率收敛于总
因为X~N(μ ,σ 2),所以X总体的概率密度为
2 1 (x ) 2 f ( x; , ) exp ( R, 0) 2 2 2
参数估计的基本理论
第3章 参数估计的基本理论信号检测:通过准则来判断信号有无;参数估计:由观测量来估计出信号的参数;解决1)用什么方法求取参数,2)如何评价估计质量或者效果严格来讲,这一章研究的是参数的统计估计方法,它是数理统计的一个分支。
推荐两本参考书高等教育出版社《数理统计导论》,《Nonlinear Parameter Estimation 》。
我们首先从一个估计问题入手,来了解参数估计的基本概念。
3.1 估计的基本概念3.1.1 估计问题对于观察值x 是信号s 和噪声n 叠加的情况:()x s n θ=+其中θ是信号s 的参数,或θ就是信号本身。
若能找到一个函数()f x ,利用()12,,N f x x x 可以得到参数θ的估计值 θ,相对估计值 θ,θ称为参数的真值。
则称()12,,N f x x x 为参数θ的一个估计量。
记作 ()12,,Nf x x x θ= 。
在上面的方程中,去掉n 实际上是一个多元方程求解问题。
这时,如果把n 看作是一种干扰或摄动,那么就可以用解确定性方程的方法来得出()f x 。
但是我们要研究的是参数的统计估计方法,所以上面的描述并不适合我们的讨论。
下面给出估计的统计问题描述。
(点估计)设随机变量x 具有某一已知函数形式的概率密度函数,但是该函数依赖于未知参数θ,Ω∈θ ,Ω称为参数空间。
因此可以把x 的概率密度函数表示为一个函数族);(θx p 。
N x x x ,,,21 表示随机样本,其分布取自函数族);(θx p 的某一成员,问题是求统计量 ()12,,Nf x x x θ= ,作为参数θ的一个估计量。
以上就是用统计的语言给出的参数估计问题的描述。
数。
统计量的两个特征:1,随机变量的函数,因此也是随机变量;2,不依赖于未知参数,因此当我们得到随机变量的一组抽样,就可以计算得到统计量的值。
例3-1:考虑由(1,2,,)i ix s n i N =+= ,给定的观测样本。
数理统计 第七章-参数估计
休息
结束
2. 最大似然法
是在总体类型已知条件下使用的一 种参数估计方法 。 它首先是由德国数学家高斯在1821 年提出的 ,费歇在1922年重新发现了这 一方法,并首先研究了这 种方法的一些 性质 。
休息 结束
最大似然法的基本思想:
已发生的事件具有最大概率。
休息
结束
先看一个简单例子: 在军训时,某位同学与一位教官同 时射击,而在靶纸上只留下一个弹孔。 如果要你推测,是谁打中的呢? 你会如何想呢?
max f ( xi , )
i 1
n
休息
结束
X 假设X 为连续型总体: f ( x; )
( X 1 , , X n ) 为子样
( x1 , , xn ) 为子样观察值。
已发生的事件为:
x x ,X {{X 11 1x, X 1 nx1 ,n } , xn x X n xn } x
休息
结束
ˆ
1 n ( X i X )2 n i 1
1 n ˆ X ( X i X )2 n i 1
休息
结束
矩法的优点是简单易行,并不需要 事先知道总体是什么分布 。 缺点是,当总体类型已知时,没有 充分利用分布提供的信息 . 一般场合下, 矩估计量不具有唯一性 。
( 1 )x , 0 x 1 f( x) 0, 其它
1
其中 1 是未知参数,
X1,X2,…,Xn是取自X的样本,求参数 的矩估计. 解:
1 E( X ) x( 1 )x dx
0
( 1 )
从 中解得
1
0
x
1
参数估计理论与应用(第三章 )
那么它仍然有可能是一个好的估计。
考虑实随机过程{xk}的相关函数的两种估计量:
Rˆ1( )
1
N
N
xk xk ,
k 1
Rˆ2 ( )
1 N
N k 1
xk
xk
假定数据{xk}是独立观测的,容易验证
E[
Rˆ1
(
)]
E[
N
1
N
xk xk ]
k 1
1
N
N
E[ xk xk ]
k 1
Fisher 信息 Fisher 信息用J(θ)表示,定义为
J ( )
E{[
ln
p(x
| ]2}
E[
2
2
ln
p(x
| )]
(3.1.1)
2020/4/9
第三章 参数估计理论与应用
当考虑 N 个观测样本 X={ x1,…,xN }, 此时,联合条件分 布密度函数可表示为
p(x | ) p(x1, , xN | )
0
lim P{|
N
1 N
N
xi2 x 2 (E[ x2 ] E2[x]) | }
i 1
lim
N
P{|
ˆ
2 N
2
|
}
0,
0
2020/4/9
第三章 参数估计理论与应用
于是
lim
N
P{ | ˆ1
1
|
}
3
lim
N
P{|ˆ N
|
}
0
lim
N
P{ | ˆ2
2
|
}
2
3
数理统计之参数估计
X )2 ,
S2
1 n1
n
(Xi
i 1
X )2,试
比较 E(Sn2 - σ2)2 与 E(S 2 - σ2)2.
解: 由于
(n 1)S 2
2
~
2 (n 1)
(n 1)S 2
2
2(n 1)
(n 1)2
4
D(S 2 ),D(S 2 )
2
n1
4
D(Sn2 )
D( n 1 S2 )
j
j
解出似然估计 ˆjL ˆjL( X1, , Xn ).
否则可通过单调性或放大缩小的方法直接推求.
极大似然估计的性质:
(1) 若(^θ1, …, ^θm)是(θ1, …, θm)的极大似然计, η = g(θ1, …, θm)存在单值反函数,则g(θ^1, …, ^θm)是g(θ1, …, θm)的极大似然估计.
设X1,…,Xn 是来自总体 X 的样本,则
μk = E(Xk )= ∑ xk p(x; θ1, θ2), X 为离散型
或
μk = E(Xk )= xk f (x; θ1, θ2)dx,
X 为连续型
Ak
1 n
n i 1
Xik
1 n
X
k 1
1 n
X
k 2
1 n
X
k n
矩法思想: 用样本矩Ak 作为总体同阶矩μk 的近似,
例 设某种设备的寿命X (小时)服从指数分布,概
率密度为
et , t 0
f ( x; )
0,
其他
其中 λ>0为未知参数. 现从这批设备中任取n台在t =0
时刻开始寿命试验,试验进行到预定时间T0 结束, 此时有 k(0< k < n)台失效,求
概率论与数理统计-参数估计
E(ˆ) 则称 ˆ为 的无偏估计 .
数理统计
无偏性是对估计量的一个常见而重要的要求 .
无偏性的实际意义是指没有系统性的偏差 .
例如,用样本均值作为总体均值的估计时, 虽无法说明一次估计所产生的偏差,但这种偏差随 机地在0的周围波动,对同一统计问题大量重复使 用不会产生系统偏差 .
都是参数 的无偏估计量,若对任意 θ ,
D(ˆ1 ) ≤D( ˆ)2
是“极大似然”这四个字在字面上的意思)的那个值,
因此,一个自然的想法就是用ˆ(x1, x2 ,, xn ) 作为 的
估计值.
数理统计
L( )看作参数 的函数,它可作为 将以多大可
能产生样本值 x1, x2,… ,xn 的一种度量 .
最大似然估计法就是用使 L( )达到最大值的 ˆ去估计 .
数理统计
最大似然估计原理:
当给定样本X1,X2,…Xn时,定义似然函数为:
L( ) P(; x1, , xn ) P(; X1 x1, X 2 x2, , X n xn P(X1 x1; )P(X2 x2; ) P(X n xn; )
L( ) f (; x1, , xn ) f (x1; ) f (x2; ) f (xn; )
续型时就是密度).
数理统计
现在,因为试验结果 (x1, x2 ,, xn ) 确实出现了,因此 依据上面提到的极大似然原理,导致该结果出现的原
因应该是使 L( ; x1, x2 ,, xn ) 达到最大值的 .于是当 固定样本观察值 (x1, x2 ,, xn ) 时,在 取值的可能范围 ○H 内,找一个使似然函数 L( ) L( ; x1, x2 ,, xn ) 达到 最大值的点ˆ(x1, x2 ,, xn ) ,则这个ˆ(x1, x2 ,, xn ) 是 取值的可能范围○H 内与 的真值“看起来最像”(这正
第六章估计基本理论—参数估计
Cramer-Rao下界定义:任何一个无偏估计子方差 的下界常叫做Cramer-Rao下界。
第六章估计基本理论—参数估计
8/58
第六章 估计的基本理论—参数估计 6.1估计子的性能
主讲:刘颖 2009年秋
定理1.1:令 X( x1,x2, ,xN)为 一 个 样 fX 本 /是 向 量
X的 条 件 密 ˆ是 度 的一个。 无偏若 估计子,且
即 ln fX|Kˆ
其K 中 ( )是 的某个 x的 不正 包整 含数。
主讲:刘颖 2009年秋
1.1估计子的性能 令x(t)是一个与未知参数θ有关的随机信号,
x1,x2,,xN 是采样值,
θ的估计子记为 ˆg(x1,x2, ,xN )
其g中 (x1,x2, ,xN)是用来 的估 一计 个样本函
1. 无偏性
无偏估计定义:若Eˆ,则 ˆ就是 的一个无
否则就是有偏估计子。
参数估计:利用样本数据来估计待定的参数。 参数估计方法: (1)点估计:需求一个估计子,它将给出待定参数的单个估 计值,这个估计值叫点估计值。 (2)区间估计:确定的是待定参数可能位于某个区间,这个 区间叫做置信区间估值。
第六章估计基本理论—参数估计
3/58
第六章 估计的基本理论—参数估计 6.1估计子的性能
主讲:刘颖 2009年秋
渐进无偏估计定义:
ˆ是 的一个有l偏 ib m 估 ˆ0 , 计则 ˆ子 是 称 ,若
N
的渐进无偏估计子。
例题6.2 线性平稳过程的自相关函数的估计子为
R ˆ(m)1Nmx(n)x(nm)
Nn1 若假设观测数据 x(m)是独立的。判断它是否为无偏估 计,若是有偏估计,再判断是否为渐进无偏估计。
统计学 第四章 参数估计
由样本数量特征得到关于总体的数量特征 统计推断(statistical 的过程就叫做统计推断 的过程就叫做统计推断 inference)。 统计推断主要包括两方面的内容一个是参 统计推断主要包括两方面的内容一个是参 数估计(parameter estimation),另一个 数估计 另一个 假设检验 。 是假设检验(hypothesis testing)。
ˆ P(θ )
无偏 有偏
A
B
θ
ˆ θ
估计量的无偏性直观意义
θ =µ
•
•
•
• •
• • • •
•
2、有效性(efficiency)
有效性:对同一总体参数的两个无偏点估计 有效性: 量,有更小标准差的估计量更有效 。
ˆ P(θ )
ˆ θ1 的抽样分布
B A
ˆ θ2 的抽样分布
θ
ˆ θ
பைடு நூலகம்
3、一致性(consistency)
置信区间与置信度
1. 用一个具体的样本 所构造的区间是一 个特定的区间, 个特定的区间,我 们无法知道这个样 本所产生的区间是 否包含总体参数的 真值 2. 我们只能是希望这 个区间是大量包含 总体参数真值的区 间中的一个, 间中的一个,但它 也可能是少数几个 不包含参数真值的 区间中的一个
均值的抽样分布
总体均值的区间估计(例题分析)
25, 95% 解 : 已 知 X ~N(µ , 102) , n=25, 1-α = 95% , zα/2=1.96。根据样本数据计算得: x =105.36 96。 总体均值µ在1-α置信水平下的置信区间为 σ 10 x ± zα 2 = 105.36 ±1.96× n 25 = 105.36 ± 3.92
参数估计PPT课件
目录
• 参数估计简介 • 最小二乘法 • 最大似然估计法 • 贝叶斯估计法 • 参数估计的评估与选择
01 参数估计简介
参数估计的基本概念
参数估计是一种统计学方法,用于估计未知参数的值。通过使用样本数据和适当的统计模型,我们可 以估计出未知参数的合理范围或具体值。
参数估计的基本概念包括总体参数、样本参数、点估计和区间估计等。总体参数描述了总体特征,而 样本参数则描述了样本特征。点估计是使用单一数值来表示未知参数的估计值,而区间估计则是给出 未知参数的可能范围。
到样本数据的可能性。
最大似然估计法的原理是寻找 使似然函数最大的参数值,该 值即为所求的参数估计值。
最大似然估计法的计算过程
确定似然函数的表达式
根据数据分布和模型假设,写出似然函数的表达式。
对似然函数求导
对似然函数关于参数求导,得到导数表达式。
解导数方程
求解导数方程,找到使似然函数最大的参数值。
确定参数估计值
04
似然函数描述了样本数据与参数之间的关系,即给定参数值下观察到 样本数据的概率。
贝叶斯估计法的计算过程
首先,根据先验信息确定参数的先验分布。 然后,利用样本信息和似然函数计算参数的后验分布。 最后,根据后验分布进行参数估计,常见的估计方法包括最大后验估计(MAP)和贝叶斯线性回归等。
贝叶斯估计法的优缺点
参数估计的常见方法
最小二乘法
最小二乘法是一种常用的线性回归分析方法,通过最小化误差的平方和来估计未知参数。这种方法适用于线性回归模 型,并能够给出参数的点估计和区间估计。
极大似然法
极大似然法是一种基于概率模型的参数估计方法,通过最大化样本数据的似然函数来估计未知参数。这种方法适用于 各种概率模型,并能够给出参数的点估计和区间估计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 参数估计的基本理论信号检测:通过准则来判断信号有无;参数估计:由观测量来估计出信号的参数;解决1)用什么方法求取参数,2)如何评价估计质量或者效果严格来讲,这一章研究的是参数的统计估计方法,它是数理统计的一个分支。
推荐两本参考书高等教育出版社《数理统计导论》,《Nonlinear Parameter Estimation 》。
我们首先从一个估计问题入手,来了解参数估计的基本概念。
3.1 估计的基本概念3.1.1 估计问题对于观察值x 是信号s 和噪声n 叠加的情况:()x s n θ=+其中θ是信号s 的参数,或θ就是信号本身。
若能找到一个函数()f x ,利用()12,,N f x x x 可以得到参数θ的估计值 θ,相对估计值 θ,θ称为参数的真值。
则称()12,,N f x x x 为参数θ的一个估计量。
记作 ()12,,Nf x x x θ= 。
在上面的方程中,去掉n 实际上是一个多元方程求解问题。
这时,如果把n 看作是一种干扰或摄动,那么就可以用解确定性方程的方法来得出()f x 。
但是我们要研究的是参数的统计估计方法,所以上面的描述并不适合我们的讨论。
下面给出估计的统计问题描述。
(点估计)设随机变量x 具有某一已知函数形式的概率密度函数,但是该函数依赖于未知参数θ,Ω∈θ ,Ω称为参数空间。
因此可以把x 的概率密度函数表示为一个函数族);(θx p 。
N x x x ,,,21 表示随机样本,其分布取自函数族);(θx p 的某一成员,问题是求统计量 ()12,,Nf x x x θ= ,作为参数θ的一个估计量。
以上就是用统计的语言给出的参数估计问题的描述。
数。
统计量的两个特征:1,随机变量的函数,因此也是随机变量;2,不依赖于未知参数,因此当我们得到随机变量的一组抽样,就可以计算得到统计量的值。
例3-1:考虑由(1,2,,)i ix s n i N =+= ,给定的观测样本。
其中s 是未知参数,i n 为噪声,取自分布),0(2n n σ。
容易得到x 服从分布),(2n s n σ,s 的一个估计值是:12121ˆ(,,)()N N sf x x x x x x N==++ 如果2n σ未知,则它的一个估计量为:∑∑===-=N k k x N k x k nx N x N 11221,)(1ˆμμσ有时估计结果会以这样的形式给出:s 以95%的置信度位于区间()ˆˆˆˆ,n n st s t σσ-+中。
我们称其为区间估计。
区间估计量也可以直接计算得到,而不必先计算点估计量。
当我们以某种函数形式给出估计量以后,是不是任务就结束了呢?还有一个任务是:建立一些准则或者性能指标来评价估计的质量。
3.1.2 估计的偏差和无偏性若 θ是参数θ的估计值,则定义估计的偏差为: ()b E θθθ=- (3-1)即估计值的均值与真值的差。
若估计偏差0b θ=,即 ()E θθ=,则估计是无偏估计。
这里隐含假定ˆ()E θ是存在的。
无偏性定义:定义: θ是θ的一个无偏估计,若θ在所有可能的样本范围内的平均值等于θ的真值,即E θθ⎡⎤=⎣⎦(3-2)称为无偏估计,否则 E θθ⎡⎤≠⎣⎦为有偏估计。
在有偏估计中,如果随着样本数N 的不断增大,偏差 b θ趋向于0,即:l i m 0N b θ→∞= 则该估计称为渐进无偏估计让我们分析例3-1的无偏性,注意数学期望是一个线性算子。
()E s ()E x =()()11N E x E x N =++⎡⎤⎣⎦()()11N s E n s E n N =+++⎡⎤⎣⎦ ()()11N s E n E n N=+++⎡⎤⎣⎦ 如果噪声i n 是零均值的,即()()10N E n E n ++= ,或对所有i 有()0i E n =,则s是s 的一个无偏估计。
从数理统计这门课,我们知道样本方差∑∑===-=N k k x N k x k nx N x N 11221,)(1ˆμμσ对于方差2n σ是有偏的,因为无偏估计量是22,1111ˆ(),1N Nn ubiask x xkk k x xN Nσμμ===-=-∑∑。
但是样本方差是渐进无偏的。
直觉上,一个好的估计量应当具有无偏性,但是实际上完全的无偏性通常是达不到的,只能希望小的偏差。
而且估计的偏差也不是特别地的重要,因为估计误差不仅仅是偏差。
估计的偏差和估计误差不是一回事,偏差只代表估计量的系统误差。
1,x x μ都是s 的无偏估计量,系统误差都为零。
接下来,要研究估计误差的另一个性质——估计的方差,它反映了估计量的随机误差大小。
3.1.3 估计的方差和Cramer-Rao (克拉美-劳)不等式估计的方差: (){}22ˆE E θσθθ⎡⎤=-⎣⎦方差:估计值 θ相对于均值 ()E θ的分散程度。
即2ˆθσ越大就越发散,反之2ˆθσ越小就越集中。
任何无偏估计方差的下界叫做C-R 下界用它来衡量估值方差的最小值。
下面给出的定理是克拉美-劳定理的精简版。
定理:若 θ是参数θ的一个无偏估计,()|p X θ是观测值X (Nx x x ,,,21 )的联合条件概率密度,若()|p X θθ∂∂存在,则该估计的方差存在一个下界,即 ()()2ˆ22211ln |ln |p X E p X E θσθθθθ≥=-⎧⎫⎧⎫∂∂⎡⎤⎪⎪⎨⎬⎨⎬⎢⎥∂⎩⎭∂⎣⎦⎪⎪⎩⎭(3-3)这个不等式就被称为克拉美-劳不等式,此下界被称为是估计方差的 C-R 下界。
式中等式在下述条件下是成立的:()() ()ln |p X k θθθθθ∂=-∂ (3-4) 其中()k θ是与参数θ有关与观测值X 无关的正函数。
这里把参数θ当作随机变量。
如果其真值0θ是客观存在的未知常数,怎么去理解?我们将参数空间Ω,分成若干个子空间(或子集),认为0θ将以不同的概率落入不同的子空间当中。
()|p X θ如果实在理解不了,可以看做是();p X θ。
证明 :由于 θ是参数θ的一个无偏估计,有: E θθ⎡⎤=⎣⎦即 0E θθ⎡⎤-=⎣⎦ 而 E θθ⎡⎤-⎣⎦可以写成为: ()()E p X d x θθθθθ∞-∞⎡⎤-=-⎣⎦⎰,dx 表示12n dx dx dx 所以: ()()0p X dx θθθ∞-∞-=⎰对参数求偏导:[()()]()()0p X p X dx dx θθθθθθθθ∞∞-∞-∞∂-∂-==∂∂⎰⎰()()()0p X p X dx dx θθθθθ∞∞-∞-∞∂-+-=∂⎰⎰由于有关系式:()1p X dx θ∞-∞=⎰()ln ()()p X p X p X θθθθθ∂∂=∂∂ 则可以得:ln ()()()1p X p X dx θθθθθ∞-∞∂-=∂⎰根据:()p X θ=有: )]1dx θθ∞-∞-=⎰ 根据Schwarz 不等式得:22ln ()[]()()()1p X p X dx p X dx θθθθθθ∞∞-∞-∞∂-≥∂⎰⎰ 即: 221()()ln ()[]()p X dx p X p X dx θθθθθθ∞-∞∞-∞-≥∂∂⎰⎰由于 E θθ⎡⎤=⎣⎦则有: (){}2222ˆ()()()E E E p X dx θσθθθθθθθ∞-∞⎡⎤⎡⎤=-=-=-⎣⎦⎣⎦⎰ 而 22ln ()ln (){[]}[]()p X p X E p X dx θθθθθ∞-∞∂∂=∂∂⎰所以(3-3)的不等式成立同时,当且仅当()K θθθ=- 即:ln ()()()p X K θθθθθ∂=-∂ 其中()k θ是与参数θ有关而与观测值x 无关的系数时,(3-3)的等式成立。
定理给出了无偏估计最小方差的计算公式。
克拉美-劳下界与N 的关系。
定义随机变量()()1ln |ln |N i k p X p x z θθθθ=∂∂==∂∂∑()1i i p x dx θ∞-∞=⎰,()ln ()()i i i p x p x p x θθθθθ∂∂=∂∂, 所以有,()0i i p x dx θθ∞-∞∂=∂⎰,ln ()ln ()()()0i ii i p x p x E p x dx θθθθθ∞-∞∂∂==∂∂⎰。
从而z 为一组零均值且相互独立的随机变量的和,其方差()()()22221ln |ln |ln |N iz k p X p x p x E E N E θθθσθθθ=⎡⎤⎡⎤⎡⎤∂∂∂⎛⎫⎛⎫⎛⎫⎢⎥⎢⎥⎢⎥===⋅ ⎪ ⎪ ⎪∂∂∂⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦∑因此,克拉美-劳下界与1/N 成正比。
3.1.4 估计的有效性上面介绍了估计量的偏差和方差。
下面介绍估计的另一个性质——有效性。
我们在科研工作当中,经常会用到“精度”或者“精确性”这样的词汇。
那么怎样来评价估计量的精度呢?显然,合理的评价方法应该是综合考虑偏差和方差,下面给出均方误差 D θ的定义:均方误差: ()2D E θθθ⎡⎤=-⎢⎥⎣⎦注意它与方差的区别。
估计的均方误差和方差、偏差存在如下关系:22ˆD b θθθσ=+ (3-5) 证明: ()2D E θθθ⎡⎤=-⎢⎥⎣⎦() ()2E E E θθθθ⎧⎫⎡⎤=-+-⎨⎬⎣⎦⎩⎭{}() (){}22()2()()()E E E E E E E θθθθθθθθ⎡⎤⎡⎤⎡⎤=-+--+-⎣⎦⎣⎦⎣⎦上式中的第一项就是方差2ˆθσ,第三项则是 2b θ(数学期望就是自身)。
注意 ()E θ本身是θ的函数,与θ一样都可以是随机变量;第一项和第三项也不一定是相互独立的。
() () () ()()()()()0E E E E E E θθθθθθθθ⎡⎤--=--=⎣⎦,则中间等于0 所以式(3-5)成立。
证毕。
方差2ˆθσ越小,每次估计值 θ相对于 ()E θ就越集中。
偏差b θ越小则数学期望 ()E θ就越接近真值θ。
原版的克拉美-劳定理中不要求ˆθ是无偏估计,并且θ为矢量,方差2ˆθσ的克拉美-劳下限是1PR P -T ,官方的名字叫MVB(Minimum Variance Bound),其中ˆ()P E θθ=∂∂,()()()()ln |ln |R E p x p x θθθθT ⎡⎤=∂∂∂⎣⎦如果用一种方法得到的估计值的方差小于用其它任何方法得到的方差,则称这种估计为有效估计。
若又是无偏估计,则称为均方误差最小估计。
若122ˆ2ˆθθσσ小于1,就说 1θ比 2θ更有效。
2ˆθσMVB 称为估计的效率。
例3-2:一观测过程由()()x n A v n =+定义,其中A 是一未知的常量参数,而()v n 是高斯白噪声,均值为零,方差为2σ。
若参数估计值11()Nn A x n N==∑,求其估计方差的C-R 下界。