导数02-导数中的参数问题(有答案)
导数中含参分类问题课件
对转化与化归思想运用不当
01
总结词:运用不当
02
详细描述:有些同学在处理 问题时,无法将问题转化为 更简单的形式或者无法从简 单形式中归纳出问题的答案 。
03
错误示例:在求解函数的单 调区间时,无法将函数的单 调性与导数的关系对应起来 ,或者在求解函数的极值时 ,无法利用单调性来求解。
04
正确理解:转化与化归思想 是一种将复杂问题转化为简 单问题的思考方式。在处理 导数问题时,需要将问题转 化为与导数相关的简单形式 ,并利用导数的性质来求解 。
讨论函数的最值
总结词
通过求函数在区间端点或一阶导数不连续点的函数值来判定原函数的最值。
详细描述
根据最值的定义,函数在某个区间内的最大值和最小值分别出现在区间端点或一阶导数不连续点上。 因此,在讨论函数的最值时,我们需要先求出函数的端点值和一阶导数不连续点的函数值,然后比较 这些值找出最大值和最小值。
数形结合思想在导数中的应用非常广泛,它可以 帮助我们直观地理解问题的本质,从而更好地解 决问题。
数形结合思想是解决导数中含参分类问题的有效 手段。
数形结合思想是数学中非常重要的思想方法之一 。
03
导数中含参分类问题的常见类型及解题方 法
讨论函数的单调性
总结词
通过研究导函数的正负性来判定原函数的单调性。
实际应用问题
经济问题
在经济学中,导数可以用来研究 经济变量的变化率,通过导数的 分析可以更好地理解经济的运行
情况。
物理问题
在物理学中,导数可以用来描述物 理量的变化率,如速度、加速度等 。通过导数的分析可以更好地理解 物理现象。
图像处理
在图像处理中,导数可以用来描述 图像的边缘信息,通过导数的分析 可以更好地进行图像分割和识别。
考前归纳总结导数中的有关方程根的问题
导数中的有关方程根的问题一、常见基本题型:(1) 判断根的个数问题,常常转化为函数图象的交点个数问题,通过构造函数来求解,例1.已知函数221()ln(1),().1f x x g x a x =+=+-求方程()()f x g x =的根的个数. 解: 令221()()()ln(1)1h x f x g x x a x =-=+--- '2222222211()21(1)1(1)x x h x x x x x x ⎡⎤=+=+⎢⎥+-+-⎣⎦当[0,1)(1,)x ∈⋃+∞时,'()0h x ≥当(,1)(1,0)x ∈-∞-⋃-时,'()0h x <因此,()h x 在(,1),(1,0)-∞--时,()h x 单调递减,在(0,1),(1,)+∞时,()h x 单调递增.又()h x 为偶函数,当(1,1)x ∈-时,()h x 极小值为(0)1h a =-当1x -→-时,()h x →-∞, 当1x +→-时,()h x →+∞当x →-∞时,()h x →+∞, 当x →+∞时,()h x →+∞故()()f x g x =的根的情况为:当10a ->时,即1a <时,原方程有2个根;当10a -=时,即1a =时,原方程有3个根;当10a -<时,即1a >时,原方程有4个根(2)已知方程在给定的区间上解的情况,去求参数的取值范围,另外有关方程零点的 个数问题其实质也是方程根的问题。
例1.已知32()(),(,f x ax bx b a x a b =++-是不同时为零的常数),其导函数为()f x ',(1)求证:函数()y f x '=在(1,0)-内至少存在一个零点;(2)若函数()f x 为奇函数,且在1x =处的切线垂直于直线230x y +-=,关于x的方程1()4f x t =-在[1,](1)t t ->-上有且只有一个实数根,求实数t 的取值 范围.解:(1)证明:因为2()32f x ax bx b a '=++-当0a =时,12x =-符合题意; 当0a ≠时,2321b b x x a a ++-,令b t a =,则2321x tx t ++- 令2()321h x x tx t =++-,11()024h -=-<, 当1t >时,(0)10h t =->, ()y h x ∴=在1(,0)2-内有零点;当1t ≤时,(1)210h t -=-≥>,()y h x ∴=在1(1,)2--内有零点.∴当0a ≠时,()y h x =在(1,0)-内至少有一个零点. 综上可知,函数()y f x '=在(1,0)-内至少有一个零点(2) 因为32()()f x ax bx b a x =++-为奇函数,所以0b =,所以3()f x ax ax =-,2()3f x ax a '=-. 又()f x 在1x =处的切线垂直于直线230x y +-=,所以1a =,即3()f x x x =-.()f x ∴在(,),()33-∞-+∞上是单调递增函数,在[上是单调递减函数,由()0f x =解得1x =±,0x =,由1()4f x x =-解之得0x x ==作()y f x =与14y x =-的图知交点横坐标为02x x =±=当383[(0,){}x ∈时,过14y x =-图象上任意一点向左作平行于 x 轴的直线与()y f x =都只有唯一交点,当x 取其它任何值时都有两个或没有交点。
导数中参数问题-含答案
【知识要点】导数中参数的问题是高考的重点和难点,也是学生感到比较棘手的问题.导数中参数问题的处理常用的有分离参数和分类讨论两种方法,并且先考虑分离参数,如果分离参数不行,可以再考虑分类讨论.因为分离参数解题效率相对高一点. 【方法讲评】【例1】已知函数()ln ()f x a x a R x=-∈. (1)若()()2h x f x x =-,当3a =-时,求()h x 的单调递减区间; (2)若函数()f x 有唯一的零点,求实数a 的取值范围.如图,作出函数()x ϕ的大致图象,则要使方程1ln x x a=的唯一的实根,【点评】1ln a x x=有唯一的实根,如果直接研究,左边函数含有参数a ,和右边的函数分析交点,不是很方便,但是分离参数后得1ln x x a=,左边函数没有参数,容易画出它的图像,右边是一个常数函数,交点分析起来比较方便.【反馈检测1】已知函数()()2x f x x e =-和()32g x kx x =--. (1)若函数()g x 在区间()1,2不单调,求实数k 的取值范围;(2)当[)1,x ∈+∞时,不等式()()2f x g x x ≥++恒成立,求实数k 的最大值.【反馈检测2】已知()2ln f x x x =,32()2g x x ax x =+-+. (1)如果函数()g x 的单调递减区间为1(,1)3-,求函数()g x 的解析式;(2)在(1)的条件下,求函数()y g x =的图象在点(1,(1))P g --处的切线方程;(3)已知不等式()'()f x g x ≤2+恒成立,若方程0aae m -=恰有两个不等实根,求m 的取值范围.【例2】已知函数,其中为常数.(1)讨论函数的单调性;(2)若存在两个极值点,求证:无论实数取什么值都有.【解析】(1)函数的定义域为.,记,判别式.①当即时,恒成立,,所以在区间上单调递增.②当或时,方程有两个不同的实数根,记,,显然综上,当时,在区间上单调递增;当时,在上单调递减,在上单调递增.(2)由(1)知当时,没有极值点,当时,有两个极值点,且.,∴又,.记,,则,所以在时单调递增,,所以,所以.【点评】(1)第1问,要研究导函数,必须研究二次函数的图像,但是二次函数的判别式无法确定正负,所以要分类讨论. (2)第2问,与第1问同,也要分类讨论.学科.网【反馈检测3】已知函数.(1)若函数在时取得极值,求实数的值;(2)若对任意恒成立,求实数的取值范围.【反馈检测4】已知函数.(1)讨论函数的单调性;(2)若对任意的,均有,求实数的范围.高中数学常见题型解法归纳及反馈检测第21讲:导数中参数问题的求解策略参考答案【反馈检测1答案】(1)11123k <<;(2)e -.(2)由已知得()32x x e k x -≤,令()()42x x e h x x -=,则()()2446xx x e h x x -+'=()()24460xxx e h x x-+'=>,所以()()32x x e h x x-=在[)1,x ∈+∞单调递增,∴()()min 1h x h e ==-,∴k e ≤-,即k 的最大值为e -【反馈检测2答案】(1)32()2g x x x x =--+;(2)450x y -+=;(3)212m e e-<≤-. 【反馈检测2详细解析】(1)2'()321g x x ax =+-,由题意23210x ax +-<的解集为1(,1)3-,即23210x ax +-=的两根分别是13-,1,代入得1a =-,∴32()2g x x x x =--+.(2)由(1)知,(1)1g -=,∴2'()321g x x x =--,'(1)4g -=,∴点(1,1)P -处的切线斜率'(1)4k g =-=,∴函数()y g x =的图象在点(1,1)P -处的切线方程为14(1)y x -=+, 即450x y -+=.【反馈检测3答案】(1)(2)【反馈检测3详细解析】 (1),依题意有,即,解得.检验:当时,.此时,函数在上单调递减,在上单调递增,满足在时取得极值.综上可知.【反馈检测4答案】(1)见解析; (2).学科.网【反馈检测4详细解析】(1),当时,,由得,所以函数的单调递增区间为;当时,.若,由得,所以函数的单调递增区间为;若,由,所以函数的不存在单调递增区间;若,由得,所以函数的单调递增区间为;若,由得或,所以函数的单调递增区间为,.当时,,①当时,恒成立,即恒大于零,则:单调递增,.单调递增,,满足条件.②当,则时,,即在单调递减,,在单调递减,,不符题意,故舍去.综上所述:时,恒成立.。
2018届高考数学(理)热点题型:函数与导数(有答案)
函数与导数热点一 利用导数研究函数的性质利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围.【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0.于是,当0<a <1时,g (a )<0;当a>1时,g(a)>0.因此,实数a的取值范围是(0,1).【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.(2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a+a-1<0,则需要构造函数来解.【对点训练】已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(-1,1)上单调递增,求实数a的取值范围.解(1)当a=2时,f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x< 2.所以函数f(x)的单调递增区间是(-2,2).(2)因为函数f(x)在(-1,1)上单调递增,所以f′(x)≥0对x∈(-1,1)都成立,因为f′(x)=(-2x+a)e x+(-x2+ax)e x=[-x2+(a-2)x+a]e x,所以[-x2+(a-2)x+a]e x≥0对x∈(-1,1)都成立.因为e x>0,所以-x2+(a-2)x+a≥0对x∈(-1,1)都成立,即a≥x2+2xx+1=(x+1)2-1x+1=(x+1)-1x+1对x∈(-1,1)都成立.令y =(x +1)-1x +1,则y ′=1+1(x +1)2>0. 所以y =(x +1)-1x +1在(-1,1)上单调递增, 所以y <(1+1)-11+1=32.即a ≥32. 因此实数a 的取值范围为a ≥32.热点二 利用导数研究函数零点或曲线交点问题函数的零点、方程的根、曲线的交点,这三个问题本质上同属一个问题,它们之间可相互转化,这类问题的考查通常有两类:(1)讨论函数零点或方程根的个数;(2)由函数零点或方程的根求参数的取值范围. 【例2】设函数f(x)=ln x +mx ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数. 解 (1)由题设,当m =e 时,f (x )=ln x +ex ,定义域为(0,+∞),则f ′(x )=x -ex 2,由f ′(x )=0,得x =e. ∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2, ∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0), 令g (x )=0,得m =-13x 3+x (x >0). 设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点; ②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点; ④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点; 当m =23或m ≤0时,函数g (x )有且只有一个零点; 当0<m <23时,函数g (x )有两个零点.【类题通法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.【对点训练】函数f (x )=(ax 2+x )e x,其中e 是自然对数的底数,a ∈R . (1)当a >0时,解不等式f (x )≤0;(2)当a =0时,求整数t 的所有值,使方程f (x )=x +2在[t ,t +1]上有解. 解 (1)因为e x >0,(ax 2+x )e x ≤0. ∴ax 2+x ≤0.又因为a >0, 所以不等式化为x ⎝ ⎛⎭⎪⎫x +1a ≤0.所以不等式f (x )≤0的解集为⎣⎢⎡⎦⎥⎤-1a ,0.(2)当a =0时,方程即为x e x =x +2, 由于e x >0,所以x =0不是方程的解, 所以原方程等价于e x -2x -1=0. 令h (x )=e x -2x -1,因为h ′(x )=e x +2x 2>0对于x ∈(-∞,0)∪(0,+∞)恒成立, 所以h (x )在(-∞,0)和(0,+∞)内是单调递增函数, 又h (1)=e -3<0,h (2)=e 2-2>0,h (-3)=e -3-13<0, h (-2)=e -2>0,所以方程f (x )=x +2有且只有两个实数根且分别在区间[1,2]和[-3,-2]上,所以整数t 的所有值为{-3,1}. 热点三 利用导数研究不等式问题导数在不等式中的应用是高考的热点,常以解答题的形式考查,以中高档题为主,突出转化思想、函数思想的考查,常见的命题角度:(1)证明简单的不等式;(2)由不等式恒成立求参数范围问题;(3)不等式恒成立、能成立问题. 【例3】设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a>0时,f(x)≥2a+a ln 2 a.(1)解f(x)的定义域为(0,+∞),f′(x)=2e2x-ax(x>0).当a≤0时,f′(x)>0,f′(x)没有零点.当a>0时,设u(x)=e2x,v(x)=-a x,因为u(x)=e2x在(0,+∞)上单调递增,v(x)=-ax在(0,+∞)上单调递增,所以f′(x)在(0,+∞)上单调递增.又f′(a)>0,当b满足0<b<a4且b<14时,f′(b)<0(讨论a≥1或a<1来检验),故当a>0时,f′(x)存在唯一零点.(2)证明由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0)由于2e2x0-ax0=0,所以f(x0)=a2x0+2ax0+a ln 2a≥2a+a ln2a.故当a>0时,f(x)≥2a+a ln 2 a.【类题通法】1.讨论零点个数的答题模板第一步:求函数的定义域;第二步:分类讨论函数的单调性、极值;第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.2.证明不等式的答题模板第一步:根据不等式合理构造函数;第二步:求函数的最值;第三步:根据最值证明不等式.【对点训练】 已知函数f (x )=ax +ln x (a ∈R ). (1)若a =2,求曲线y =f (x )在x =1处的切线方程; (2)求f (x )的单调区间;(3)设g (x )=x 2-2x +2,若对任意x 1∈(0,+∞),均存在x 2∈[0,1]使得f (x 1)<g (x 2),求a 的取值范围.解 (1)由已知得f ′(x )=2+1x (x >0),所以f ′(1)=2+1=3,所以斜率k =3.又切点为(1,2),所以切线方程为y -2=3(x -1),即3x -y -1=0, 故曲线y =f (x )在x =1处的切线方程为3x -y -1=0. (2)f ′(x )=a +1x =ax +1x (x >0),①当a ≥0时,由于x >0,故ax +1>0,f ′(x )>0,所以f (x )的单调增区间为(0,+∞). ②当a <0时,由f ′(x )=0,得x =-1a .在区间⎝ ⎛⎭⎪⎫0,-1a 上,f ′(x )>0,在区间⎝ ⎛⎭⎪⎫-1a ,+∞上,f ′(x )<0,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,单调递减区间为⎝ ⎛⎭⎪⎫-1a ,+∞.(3)由已知得所求可转化为f (x )max <g (x )max , g (x )=(x -1)2+1,x ∈[0,1], 所以g (x )max =2,由(2)知,当a ≥0时,f (x )在(0,+∞)上单调递增, 值域为R ,故不符合题意.当a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1a 上单调递增,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减,故f (x )的极大值即为最大值,是f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-1-ln(-a ),所以2>-1-ln(-a ),解得a <-1e 3.。
专题8 导数中已知单调性求参数的范围经典例题与练习(解析版)-2021年高考数学导数中必考知识专练
专题8:导数中已知单调性求参数的范围经典例题与练习(解析版)已知函数在某个区间上的单调性求参数的范围解法1:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立, 回归基础题型 解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别:前者是后者的子集例1:已知R a ∈,函数x a x a x x f )14(21121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值范围.解:)14()1(41)(2++++='a x a x x f . (Ⅰ)∵()f x '是偶函数,∴ 1-=a . 此时x x x f 3121)(3-=,341)(2-='x x f , 令0)(='x f ,解得:32±=x .列表如下:可知:()f x 的极大值为34)32(=-f , ()f x 的极小值为34)32(-=f .(Ⅱ)∵函数)(x f 是),(∞+-∞上的单调函数,∴21()(1)(41)04f x x a x a '=++++≥,在给定区间R 上恒成立判别式法 则221(1)4(41)204a a a a ∆=+-⋅⋅+=-≤, 解得:02a ≤≤.综上,a 的取值范围是}20{≤≤a a .例2、已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥ (I )求()f x 的单调区间;(II )若()f x 在[0,1]上单调递增,求a 的取值范围。
子集思想(I )2()(2)1(1)(1).f x x a x a x x a '=+-+-=++-1、20,()(1)0,a f x x '==+≥当时恒成立当且仅当1x =-时取“=”号,()(,)f x -∞+∞在单调递增。
压轴题型02 构造法在函数中的应用(解析版)-2023年高考数学压轴题专项训练
压轴题型02构造法在函数中的应用近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.○热○点○题○型1构造法解决高考函数对称与周期性问题○热○点○题○型2主元构造法○热○点○题○型3分离参数构造法○热○点○题○型4局部构造法○热○点○题○型5换元构造法○热○点○题○型6特征构造法○热○点○题○型7放缩构造法一、单选题1.若正数x满足532-+=,则x的取值范围是().x x xA x<B x<<C .x <D .x >2.设函数()f x =若曲线sin 22y x =+上存在点0(x ,0)y 使得00(())f f y y =成立,则实数a 的取值范围为()A .[0,21]e e -+B .[0,21]e e +-C .[0,21]e e --D .[0,21]e e ++3.“米”是象形字.数学探究课上,某同学用拋物线1和2构造了一个类似“米”字型的图案,如图所示,若抛物线1C ,2C 的焦点分别为1F ,2F ,点P 在拋物线1C 上,过点P 作x 轴的平行线交抛物线2C 于点Q ,若124==PF PQ ,则p =()A .2B .3C .4D .6树纹玉琮,为今人研究古蜀社会中神树的意义提供了重要依据.玉琮是古人用于祭祀的礼器,有学者认为其外方内圆的构造,契合了古代“天圆地方”观念,是天地合一的体现,如图,假定某玉琮形状对称,由一个空心圆柱及正方体构成,且圆柱的外侧面内切于正方体的侧面,圆柱的高为12cm ,圆柱底面外圆周和正方体的各个顶点均在球O 上,则球O 的表面积为()A .272πcmB .2162πcmC .2216πcmD .2288πcm 【答案】C【分析】根据题意可知正方体的体对角线即是外接球的直径,又因圆柱的外侧面内切于正方体的侧面,可利用勾股定理得出正方体边长,继而求出球的表面积.【详解】不妨设正方体的边长为2a ,球О的半径为R ,则圆柱的底面半径为a ,因为正方体的体对角线即为球О直径,故223R a =,利用勾股定理得:222263a R a +==,解得18a =,球的表面积为2ππ44318216πS R ==⨯⨯=,故选:C.5.若函数()()有两个零点,则实数的取值范围是()A .()1,2B .()0,2C .()1,+∞D .(),2-∞【答案】A【分析】将函数()()ln 2f x x a x a =+-+有两个零点的问题转化为函数ln ,(2)y x y a x a ==--的图象交点个数问题,结合导数的几何意义,数形结合,即可求解.【详解】由()()ln 2f x x a x a =+-+有两个零点,即()ln 20x a x a +-+=有两个正根,即函数ln ,(2)y x y a x a ==--的图象有2个交点,直线(2)y a x a =--可变为(1)20a x x y -++-=,令=1x -,则=2y -,即直线(2)y a x a =--过定点(1,2)P --,当该直线与ln y x =相切时,设切点为00(,)x y ,则1y x'=,则000ln 211x x x +=+,即001ln 10x x -+=,令1g()ln 1,(0)x x x x=-+>,则()g x 在(0,)+∞上单调递增,又(1)0g =,故1g()ln 1,(0)x x x x=-+>有唯一零点1x =,故01x =,即(2)y a x a =--与曲线ln y x =相切时,切点为(1,0),则切线斜率为1,要使函数ln ,(2)y x y a x a ==--的图象有2个交点,需满足021a <-<,即(1,2)a ∈,故选:A【点睛】方法点睛:根据函数的零点个数求解参数范围,一般方法:(1)转化为函数最值问题,利用导数解决;(2)转化为函数图像的交点问题,数形结合解决问题;(3)参变分离法,结合函数最值或范围解决.6.已知()f x 是定义域为R 的函数,()220f x +为奇函数,()221f x +为偶函数,当10x -≤<时,()f x =()()()60y f x a x a =-+>有5个零点,则实数a 的取值范围为()A .11,73⎛⎫ ⎪⎝⎭B .,124⎛ ⎝⎭C .⎝⎭D .11,62⎛⎫ ⎪⎝⎭当直线()2y a x =-与圆()()22910x y y -+=≥相切时,271aa +()2y a x =-与圆()()22510x y y -+=≥相切时,2311a a =+,解得32124a <<.故选:B .【点睛】通过函数的奇偶性挖掘周期性与函数图像的对称性,从而能作出整个函数的大致图像,将函数零点转化为方程的根,再转化为两个函数图像交点的横坐标.交点的个数时注意数形结合思想的应用,动中蕴静,变化中抓住不变,抓住临界状态,利用直线与圆相切,借助点到直线的距离公式得到参数的临界值,从而求出参数的取值范围,考生综合分析问题和解决问题的能力要求比较高.二、填空题7.已知函数21()(1)1x f x x x -⎛⎫=> ⎪+⎝⎭,如果不等式1(1)()(x f x m m -->-对11,164x ⎡⎤∈⎢⎥⎣⎦恒成立,则实数m 的取值范围_______________.5⎛⎫①ln52<;②lnπ>③11<;④3ln2e>其中真命题序号为__________.9.设函数4()log ,0f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的函数()()()()2g 23x fx a f x =-++恰好有四个零点,则实数a 的取值范围是____________.令()f x t =,函数()()()()2g 23x fx a fx =-++恰好有四个零点.则方程()()()2230f x a f x -++=化为()2230t a t -++=,设()2230t a t -++=的两根为12,t t ,因为123t t =,所以两根均大于0,且方程的一根在区间(]0,1内,另一根在区间()2+∞,内.令()()223g t t a t =-++所以()()()()2Δ2120001020a g g g ⎧=+->⎪>⎪⎨≤⎪⎪<⎩,解得:2a ≥,综上:实数a 的取值范围为[)2,.∞+故答案为:[)2,.∞+【点睛】复合函数零点个数问题,要先画出函数图象,然后适当运用换元法,将零点个数问题转化为二次函数或其他函数根的分布情况,从而求出参数的取值范围或判断出零点个数.三、解答题10.已知正数a b 、满足1a b +=,求M =的最小值.11.已知函数在处的切线方程为(1).求()f x 的解析式;(2).若对任意的0x >,均有()10f x kx -+≥求实数k 的范围;(3).设12x x ,为两个正数,求证:()()()121212f x f x x x f x x +++>+。
导数中的参数问题(解析版)
【方法综述】导数中的参数问题主要指的是形如“已知不等式恒成立、存在性、方程的根、零点等条件,求解参数的取值或取值范围”.这类问题在近几年的高考中,或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型。
而要解决这类型的题目的关键,突破口在于如何处理参数,本专题主要介绍分离参数法、分类讨论法及变换主元法等,从而解决常见的导数中的参数问题。
【解答策略】一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是 A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞【来源】广东省茂名市五校2020-2021学年高三上学期第一次(10月)联考数学(理)试题 【答案】A【解析】32()2ln 0f x x ex ax x '=-+-≥在(0,)+∞上恒成立2ln 2xa ex x x⇔≥+-, 设2ln ()2x p x ex x x =+-,221ln 2()()x e x x p x x-+-'=, 当0x e <<时,()0p x '>;当x e >时,()0p x '<;()p x ∴在(0,)e 单调递增,在(,)e +∞单调递减,21()()p x p e e e∴≤=+,21a e e ∴≥+.故选:A .专题6.2 导数中的参数问题【举一反三】1.(2020·宣威市第五中学高三(理))若函数()f x 与()g x 满足:存在实数t ,使得()()f t g t '=,则称函数()g x 为()f x 的“友导”函数.已知函数21()32g x kx x =-+为函数()2ln f x x x x =+的“友导”函数,则k 的最小值为( ) A .12B .1C .2D .52【答案】C【解析】()1g x kx '=-,由题意,()g x 为函数()f x 的“友导”函数,即方程2ln 1x x x kx +=-有解,故1ln 1k x x x=++, 记1()ln 1p x x x x =++,则22211()1ln ln x p x x x x x-'=+-=+, 当1x >时,2210x x ->,ln 0x >,故()0p x '>,故()p x 递增; 当01x <<时,2210x x-<,ln 0x <,故()0p x '<,故()p x 递减, 故()(1)2p x p ≥=,故由方程1ln 1k x x x=++有解,得2k ≥,所以k 的最小值为2.故选:C. 2.(2020·广东中山纪念中学高三月考)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为( )A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B【解析】由12f a -=-+() ,可得222alnx x a --≤-+ 在0x > 恒成立, 即为a (1-lnx )≥-x 2,当x e = 时,0e -> 2显然成立;当0x e << 时,有10lnx -> ,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==-- 由0x e << 时,223lnx << ,则0g x g x ()<,()'在0e (,)递减,且0g x ()< , 可得0a ≥ ;当x e > 时,有10lnx -< ,可得21x a lnx ≤- , 设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(), 由32 e x e << 时,0g x g x ()<,()' 在32 e e (,)递减, 由32x e >时,0g x g x '()>,() 在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增, 即有)g x ( 在32x e = 处取得极小值,且为最小值32e , 可得32a e ≤ ,综上可得302a e ≤≤ .故选B .3.(2020湖南省永州市高三)若存在,使得成立,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】原不等式等价于:令,则存在,使得成立又 当时,,则单调递增;当时,,则单调递减,,即当且仅当,即时取等号,即,本题正确选项:2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了.【例2】已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( )A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭ C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫ ⎪⎝⎭【答案】B【解析】由题意2ln 1()0x mx f x x+-==,得2ln 1x m x +=, 设2ln 1()(0)x h x x x +=>,求导4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x-+-+-+'=== 令()0h x '=,解得12x e -=当120x e -<<时,()0h x '>,()h x 单调递增;当12x e ->时,()0h x '<,()h x 单调递减; 故当12x e -=时,函数取得极大值,且12()2e h e -=又1=x e时,()0h x =;当x →+∞时,2ln 10,0x x +>>,故()0h x →; 作出函数大致图像,如图所示:又(1)1h =,ln 21ln 2(2)44eh +== 因为存在唯一的整数0(,)x a b ∈,使得y m =与2ln 1()x h x x+=的图象有两个交点, 由图可知:(2)(1)h m h ≤<,即ln 214em ≤< 故选:B.【方法点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【举一反三】1.(2020·重庆市第三十七中学校高三(理))已知函数32()32f x x x ax a =-+--,若刚好有两个正整数(1,2)i x i =使得()0i f x >,则实数a 的取值范围是( )A .20,3⎡⎫⎪⎢⎣⎭B .20,3⎛⎤ ⎥⎦⎝C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭【答案】A【解析】令32()3,()(2)()()()g x x x h x a x f x g x h x =-+=+∴=-,且2'()36g x x x =-+, 因为刚好有两个正整数(1,2)i x i =使得()0i f x >,即()()i i g x h x >, 作出(),()g x h x 的图象,如图所示,其中()h x 过定点(2,0)-,直线斜率为a ,由图可知,203a ≤≤时, 有且仅有两个点()()1,2,2,4满足条件, 即有且仅有121,2x x ==使得()0i f x >. 实数a 的取值范围是20,3⎛⎤ ⎥⎦⎝,故选:A2(2020济宁市高三模拟)已知当时,关于的方程有唯一实数解,则所在的区间是( ) A .(3,4) B .(4,5)C .(5,6)D .(6.7)【答案】C 【解析】由xlnx+(3﹣a )x+a =0,得,令f (x )(x >1),则f′(x ).令g (x )=x ﹣lnx ﹣4,则g′(x )=10,∴g(x )在(1,+∞)上为增函数, ∵g(5)=1﹣ln5<0,g (6)=2﹣ln6>0, ∴存在唯一x 0∈(5,6),使得g (x 0)=0,∴当x∈(1,x 0)时,f′(x )<0,当x∈(x 0,+∞)时,f′(x )>0. 则f (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C3.(2020蚌埠市高三)定义在上的函数满足,且,不等式有解,则正实数的取值范围是()A.B.C.D.【答案】C【解析】因为,故,因,所以即.不等式有解可化为即在有解.令,则,当时,,在上为增函数;当时,,在上为减函数;故,所以,故选C.二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.【例3】(2020·全国高三专题)函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D 【解析】【分析】利用导函数讨论函数单调性与极值情况,转化为讨论210t mt -+=的根的情况,结合根的分布求解.【详解】()()()()22331x xx x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e-=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根,且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内, 或者两个根都在()2,0e -内.因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.故选:D【举一反三】1.(2020·湖南衡阳市一中高三月考(理))已知函数()f x kx =,ln ()xg x x=,若关于x 的方程()()f x g x =在区间1[,]e e内有两个实数解,则实数k 的取值范围是( )A .211[,)2e eB .11(,]2e eC .21(0,)e D .1(,)e+∞【答案】A【解析】易知当k ≤0时,方程只有一个解,所以k >0.令2()ln h x kx x =-,2121(21)(21)()2kx k x k x h x kx x x x--+=-==', 令()0h x '=得12x k =,12x k=为函数的极小值点, 又关于x 的方程()f x =()g x 在区间1[,]e e内有两个实数解,所以()01()01()02112h e h e h k e ek ≥⎧⎪⎪≥⎪⎪⎨<⎪⎪⎪<<⎪⎩,解得211[,)2k e e ∈,故选A.2.(2020扬州中学高三模拟)已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______.【答案】【解析】∵,∴.∵函数有两个不同的极值点,,∴,是方程的两个实数根,且,∴,且,解得.由题意得.令,则,∴在上单调递增,∴.又不等式恒成立,∴,∴实数的取值范围是.故答案为.2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程, 可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论. 即可解决.【例4】(2020•泉州模拟)已知函数f (x )=ae x ﹣x ﹣ae ,若存在a ∈(﹣1,1),使得关于x 的不等式f (x ) ﹣k ≥0恒成立,则k 的取值范围为( ) A .(﹣∞,﹣1] B .(﹣∞,﹣1)C .(﹣∞,0]D .(﹣∞,0)【答案】A【解析】不等式f (x )﹣k ≥0恒成立,即k ≤f (x )恒成立; 则问题化为存在a ∈(﹣1,1),函数f (x )=ae x ﹣x ﹣ae 有最小值,又f ′(x )=ae x ﹣1,当a ∈(﹣1,0]时,f ′(x )≤0,f (x )是单调减函数,不存在最小值; 当a ∈(0,1)时,令f ′(x )=0,得e x =,解得x =﹣lna , 即x =﹣lna 时,f (x )有最小值为f (﹣lna )=1+lna ﹣ae ; 设g (a )=1+lna ﹣ae ,其中a ∈(0,1),则g ′(a )=﹣e ,令g ′(a )=0,解得a =,所以a ∈(0,)时,g ′(a )>0,g (a )单调递增;a ∈(,1)时,g ′(a )<0,g (a )单调递减;所以g (a )的最大值为g ()=1+ln ﹣•e =﹣1; 所以存在a ∈(0,1)时,使得关于x 的不等式f (x )﹣k ≥0恒成立,则k 的取值范围是(﹣∞,﹣1].故选:A . 【举一反三】1.函数()()211,12x f x x e kx k ⎛⎫⎛⎤=--∈⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =( ) A . ()32ln22ln2-- B . 1- C . ()22ln22ln2k -- D . ()31k k e k --【答案】D2.(2020·浙江省杭州第二中学高三期中)已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122x f x e ax x =--在区间[]0,1上存在一个“转折点”,则a 的取值范围是 A .[]0,e B .[]1,eC .[]1,+∞D .(],e -∞ 【答案】B【解析】由题可得()2xf x e ax =--',则在()00,x y 点处的切线的斜率()0002xk f x e ax ==--',0200122x y e ax x =--,所以函数()f x 的图象在点()00,x y 处的切线方程为:00200001(2)(2)()2x x y e ax x e ax x x ---=---,即切线()00200001:=(2)()+22x xl y g x e ax x x e ax x =-----,令()()()h x f x g x =-, 则002200011()2(2)()222x x xh x e ax x e ax x x e ax x =-------++,且0()0h x = 0000()2(2)=+x x x x h x e ax e ax e ax e ax =-------',且0()0h x '=,()x h x e a ='-',(1)当0a ≤时,()0xh x e a =-'>',则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(2)当01a <<时, ()0xh x e a =-'>'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=,所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(3)当1a =,()10x h x e =-'≥'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,取00x =,则()10x h x e x =-->',所以()h x 在区间(]0,1上单调递增,0()()0h x h x >=,当00x x ≠=时,0()()0h x x x ->恒成立,故00x =为函数()2122x f x e ax x =--在区间[]0,1上的一个“转折点”,满足题意。
导数与函数零点问题解题方法归纳
导函数零点问题一.方法综述导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题.二.解题策略类型一 察“言”观“色”,“猜”出零点【例1】【2020·福建南平期末】已知函数()()21e x f x x ax =++. (1)讨论()f x 的单调性;(2)若函数()()21e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e xf x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()21e xg x m x =+'-,当0m 函数在定义域上单调递增,不满足条件;当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m ,01m <<三种情况讨论可得.【解析】(1)因为()()21x f x x ax e =++,所以()()221e xf x x a x a ⎡⎤=+++⎣⎦'+, 即()()()11e xf x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-.①当0a =时,()()21e 0x f x x =+',当且仅当1x =-时,等号成立.故()f x 在(),-∞+∞为增函数.②当0a >时,()11a -+<-,由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-;所以()f x 在()(),1a -∞-+,()1,-+∞为增函数,在()()1,1a -+-为减函数.③当0a <时,()11a -+>-,由()0f x >′得()1x a >-+或1x <-,由()0f x <′得()11x a -<<-+;所以()f x 在(),1-∞-,()()1,a -++∞为增函数,在()()1,1a --+为减函数.综上,当0a =时,()f x 在为(),-∞+∞增函数;当0a >时,()f x 在()(),1a -∞-+,()1,-+∞为增函数,在()()1,1a -+-为减函数;当0a <时,()f x 在(),1-∞-,()()1,a -++∞为增函数,在()()1,1a --+为减函数.(2)因为()()21e 1x g x x mx =+--,所以()()21e x g x m x =+'-, ①当0m 时,()0g x ',()g x 在[)1,-+∞为增函数,所以()g x 在[)1,-+∞至多一个零点.②当0m >时,由(1)得()g x '在[)1,-+∞为增函数.因为()01g m '=-,()00g =.(ⅰ)当1m =时,()00g '=,0x >时,()0g x '>,10x -<<时,()0g x '<;所以()g x 在[)1,0-为减函数,在[)0,+∞为增函数,()()min 00g x g ==.故()g x 在[)1,-+∞有且只有一个零点.(ⅱ)当1m 时,()00g '<,()()210m g m e m m '=+->,()00,x m ∃∈,使得()00g x '=, 且()g x 在[)01,x -为减函数,在()0,x +∞为增函数.所以()()000g x g <=,又()()()22221e 1110m g m m m m m =+-->+--=, 根据零点存在性定理,()g x 在()0,x m 有且只有一个零点.又()g x 在[)01,x -上有且只有一个零点0.故当1m 时,()g x 在[)1,-+∞有两个零点.(ⅲ)当01m <<时,()01g m -'=-<,()00g '>,()01,0x ∃∈-,使得()00g x '=,且()g x 在[)01,x -为减函数,在()0,x +∞为增函数.因为()g x 在()0,x +∞有且只有一个零点0,若()g x 在[)1,-+∞有两个零点,则()g x 在[)01,x -有且只有一个零点.又()()000g x g <=,所以()10g -即()2110e g m -=+-,所以21e m -, 即当211em -<时()g x 在[)1,-+∞有两个零点. 综上,m 的取值范围为211em -< 【指点迷津】1.由于导函数为超越函数,无法利用解方程的方法,可以在观察方程结构的基础上大胆猜测.一般地,当所求的导函数解析式中出现ln x 时,常猜x =1;当函数解析式中出现e x时,常猜x =0或x =ln x .2.例题解析中灵活应用了分离参数法、构造函数法【举一反三】 【2020·山西吕梁期末】已知函数221()ln ()x f x a x a R x-=-∈. (1)讨论()f x 的单调性;(2)设()sin x g x e x =-,若()()()()2h x g x f x x =-且()y h x =有两个零点,求a 的取值范围. 【解析】(1)()f x 的定义域为(0,)+∞,1()2ln f x x a x x =--, 21()2f x x '=+2221a x ax x x-+-=, 对于2210x ax -+=,28a ∆=-,当[a ∈-时,()0f x '≥,则()f x 在(0,)+∞上是增函数.当(,a ∈-∞-时,对于0x >,有()0f x '>,则()f x 在(0,)+∞上是增函数.当)a ∈+∞时,令()0f x '>,得04a x <<或4a x >,令()0f x '<,得44a a x <<,所以()f x 在,)+∞上是增函数,在(44a a 上是减函数.综上,当(,a ∈-∞时,()f x 在(0,)+∞上是增函数;当)a ∈+∞时,()f x 在(0,)4a -,()4a ++∞上是增函数,在(44a a 上是减函数. (2)由已知可得()cos x g x e x '=-, 因为0x >,所以e 1x >,而c o s 1x ≤,所以cos 0x e x ->,所以()0g x '>,所以()sin xg x e x =-在()0+∞,上单调递增. 所以()()00g x g >=.故()h x 有两个零点,等价于()2y f x x =-=1aInx x--在()0+∞,内有两个零点. 等价于1ln 0a x x--=有两根, 显然1x =不是方程的根, 因此原方程可化为()1ln 01x x x x a-=>≠且, 设()ln x x x φ=,()ln 1x x φ='+,由()0x φ'>解得11x e<<,或1x > 由()0x φ'<解得10x e <<, 故()ln x x x φ=在10e ⎛⎫ ⎪⎝⎭,上单调递减,在()1,1,1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.其图像如下所示:所以()min 11x e eφφ⎛⎫==- ⎪⎝⎭, 所以110e a-<-<, 所以a e >. 类型二 设而不求,巧“借”零点 【例2】【2015高考新课标1,文21】设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a ≥+. 【解析】(I )()f x 的定义域为0+,,2()=20x a f x e x x . 当0a时,()0f x ,()f x 没有零点; 当0a 时,因为2x e 单调递增,a x 单调递增,所以()f x 在0+,单调递增.又()0f a ,当b 满足04a b 且14b 时,(b)0f ,故当0a 时,()f x 存在唯一零点. (II )由(I ),可设()f x 在0+,的唯一零点为0x ,当00x x ,时,()0f x ;当0+x x ,时,()0f x .故()f x 在00x ,单调递减,在0+x ,单调递增,所以当0x x 时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x ,所以00022()=2ln 2ln 2a f x ax a a a x a a . 故当0a 时,2()2ln f x a a a. 【指点迷津】本例第(2)问的解题思路是求函数()f x 的最值.因此需要求()0f x '=的根.但是2()=20x af x e x 的根无法求解.故设出()0f x '=的根为0x ,通过证明f (x )在(0,0x )和(0x ,+∞)上的单调性知()min f x =()000222a f x ax aln x a=++,进而利用基本不等式证得结论,其解法类似解析几何中的“设而不求”.【举一反三】 【2020·江西赣州期末】已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+.(1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值. 【解析】(1)令2()x f x e ax x =--,则()21x f x e ax '=--,得:(1)e 1f a =--,(1)e 21f a '=--,由题得:(1)e 21e 31(1)e 1e 31f a a f a b b ⎧=--=-=⎧⇒⎨⎨=--=-+=⎩'⎩(2)根据题意,要证不等式4()5f x m >+对于任意恒成立,即证(0,)x ∈+∞时,4()5f x -的最小值大于m , 令244()()()2155x x g x f x e x x g x e x '=-=---⇒=--, 记()()21()2x xh x g x e x h x e ''==--⇒=-,当(0,ln 2)x ∈时,()0h x '<;当x (ln 2,)∈+∞时,()0h x '>,故()h x 即()g x '在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增, 又(0)0g '=,(ln 2)12ln 20g '=-<,且(1)30g e '=-<,323402g e ⎛⎫'=-> ⎪⎝⎭, 故存在唯一031,2x ⎛⎫∈ ⎪⎝⎭,使()00g x '=, 故当()00,x x ∈时,0g x ;当()0,x x ∈+∞时,()0g x '>;故()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()02min 0004()5x g x g x e x x ==--- 一方面:()014(1)5g x g e <=- 另一方面:由()00g x '=,即00210x e x --=,得()022*********x g x e x x x x =---=-++ 由031,2x ⎛⎫∈ ⎪⎝⎭得:()0111205g x -<<,进而()011140205g x e -<<-<, 所以1120m <- ,又因为m 是整数,所以1m -,即max 1m =-. 类型三 二次构造(求导),避免求根 【例3】【2020重庆巴蜀中学月考】已知函数()()21ln 12f x x a x =+-.(1)当1a =-时,求()f x 的单调增区间;(2)若4a >,且()f x 在()0,1上有唯一的零点0x ,求证:210e x e --<<.【分析】(1)求出()'f x ,令()'0f x ≥,解不等式可得单调递增区间;(2)通过求()f x 的导函数,可得()f x 在()0,1上有两个极值点,设为1x ,2x ,又由()f x 在()0,1上有唯一的零点0x 可得0110,2x x ⎛⎫=∈ ⎪⎝⎭,所以有()()()200020001ln 10210f x x a x g x ax ax ⎧=+-=⎪⎨⎪=-+=⎩,消去a ,可得0002ln 10x x x -+=,记()00002ln 1t x x x x =-+,010,2x ⎛⎫∈ ⎪⎝⎭,研究其单调性,利用零点存在性定理可得结果.【解析】(1)由已知()f x 的定义域为0x >,当1a =-时,()()21ln 12f x x x =--, 则()()2111'x x x xf x x -++=--=, 令()'0f x ≥且0x >,则102x +<≤, 故()f x在10,2⎛ ⎝⎦上单调递增;(2)由()()21ln 12f x x a x =+-, 有()()2111'ax f x ax a x x x-+=+-=,记()21g x ax ax =-+,由4a >,有()()001011110242110a g g a a g >⎧⎪=>⎪⎪⎪⎛⎫=-+<⎨ ⎪⎝⎭⎪⎪=>⎪⎪⎩, 即()f x 在()0,1上有两个极值点,设为1x ,2x ,不妨设12x x <,且1x ,2x 是210ax ax -+=的两个根, 则121012x x <<<<, 又()f x 在()0,1上有唯一的零点0x ,且当0x +→时,()f x →-∞,当1x =时,()10f =, 所以得0110,2x x ⎛⎫=∈ ⎪⎝⎭, 所以()()()200020001ln 10210f x x a x g x ax ax ⎧=+-=⎪⎨⎪=-+=⎩,两式结合消去a ,得0001ln 02x x x --=, 即0002ln 10x x x -+=,记()00002ln 1t x x x x =-+,010,2x ⎛⎫∈ ⎪⎝⎭, 有()00'2ln 1t x x =+,其在10,2⎛⎫ ⎪⎝⎭上单调递增,所以()001'2ln 12ln 11ln 402t x x =+<+=-< 则()00'2ln 10t x x =+<在10,2⎛⎫⎪⎝⎭上恒成立, 即()0t x 在10,2⎛⎫ ⎪⎝⎭上单调递减,又222212*********e t e e e e e t e e e ⎧-⎛⎫=--+=< ⎪⎪⎝⎭⎪⎨-⎛⎫⎪=-=> ⎪⎪⎝⎭⎩, 由零点存在定理,210ex e --<<. 【指点迷津】当导函数的零点不易求时,可以通过进一步构造函数,求其导数,即通过“二次求导”,避免解方程而使问题得解.如上面例题,从题目形式来看,是极其常规的一道导数考题,第(3)问要求参数b 的范围问题,实际上是求g (x )=x (ln x +x -x 2)极值问题,问题是g ′(x )=ln x +1+2x -3x 2=0这个方程求解不易,这时我们可以尝试对h (x )=g ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.这种方法适用于研究函数的单调性、确定极(最)值及其相关参数范围、证明不等式等.【举一反三】【2020·云南昆明一中期末】已知函数2()(1)x x f x eax e =-+⋅,且()0f x . (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【解析】(1)因为()()ee 10x xf x ax =--≥,且e 0x >,所以e 10x ax --≥, 构造函数()e 1x u x ax =--,则()'e xu x a =-,又()00u =, 若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >,则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e x xf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()0022200000011e 1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+< ⎪⎝⎭.三.强化训练1.【2020·安徽合肥二中月考】已知函数() 01ln 0x x e x f x xe x x x -⎧-≤=⎨--->⎩,,,则函数()()()()F x f f x ef x =-的零点个数为( )(e 是自然对数的底数) A .6 B .5C .4D .3【答案】B【解析】0x ≤时,()xf x e -=-是增函数,(0)1f =-,0x >时,()1ln x f x xe x x =---,11()(1)1(1)()xx f x x e x e x x'=+--=+-,显然10x +>, 由1xe x=,作出xy e =和1(0)y x x=>的图象,如图,x y e =是增函数,1y x =在0x >是减函数它们有一个交点,设交点横坐标为0x ,易得0011x e x =>,001x <<, 在00x x <<时,1xe x <,()0f x '<,0x x >时,1xe x>,()0f x '>, 所以()f x 在0(0,)x 上递减,在0(,)x +∞上递增,0()f x 是()f x 的极小值,也是在0x >时的最小值.001x e x =,001x x e =,0001ln ln x x x ==-,即00ln 0x x +=,00000()1ln 0x f x x e x x =---=, 0x →时,()f x →+∞,x →+∞时,()f x →+∞.作出()f x 的大致图象,作直线y ex =,如图,0x >时y ex =与()f x 的图象有两个交点,即()0f x ex -=有两个解12,t t ,120,0t t >>.0x <时,()x f x e -=-,()x f x e '-=,由11()xf x e e -'==得1x =-,而1x =-时,(1)y e e =⨯-=-,(1)f e -=-,所以直线y ex =与()x f x e -=-在(1,)e --处相切.即0x ≤时方程()0f x ex -=有一个解e -.()(())()0F x f f x ef x =-=,令()t f x =,则()()0F x f t et =-=,由上讨论知方程()0f t et -=有三个解:12,,e t t -(120,0t t >>)而()f x e =-有一个解,1()f x t =和2()f x t =都有两个解,所以()0F x =有5个解, 即函数()F x 有5个零点.故选B . 2.【2020江苏盐城期中】已知函数,若函数存在三个单调区间,则实数的取值范围是__________. 【答案】【解析】函数,若函数存在三个单调区间即0有两个不等实根,即有两个不等实根,转化为y=a 与y=的图像有两个不同的交点令,即x=,即y=在(0,)上单调递减,在(,+∞)上单调递增。
导数中的零点问题
导数中的零点问题1.已知函数 .(Ⅰ)若曲线在点处的切线与直线垂直,求实数的取值;(Ⅱ)求函数的单调区间;(Ⅲ)记 . 当时,函数在区间上有两个零点,求实数的取值范围.2.已知函数(Ⅰ)若的图像与直线相切,求(Ⅱ)若且函数的零点为,设函数试讨论函数的零点个数. (为自然常数)3.已知函数 .(1)若时,讨论函数的单调性;(2)若函数在区间上恰有 2 个零点,求实数的取值范围 .4.已知函数(为自然对数的底数,),在处的切线为.(1)求函数的解析式;(2)在轴上是否存在一点,使得过点可以作的三条切钱若存在,请求出横坐标为整数的点坐标;若不存在,请说明理由.5.已知函数f x x22lnx a R, a 0 . a( 1)讨论函数 f x 的单调性;( 2)若函数f x 有最小值,记为g a ,关于a的方程g a a21 m 有三9a个不同的实数根,求实数m 的取值范围.6.已知函数(Ⅰ)求函数f x x 2aa R , e 为自然对数的底数).x(ef x 的极值;(Ⅱ)当 a 1 时,若直线l : y kx 2 与曲线y f x 没有公共点,求k 的最大值.7.已知函数(为自然对数的底数).(1)求曲线在点处的切线方程;(2)当时 , 不等式恒成立 , 求实数的取值范围;(3)设,当函数有且只有一个零点时, 求实数的取值范围 .8.已知函数 .(1)若函数有两个零点,求实数的取值范围;(2)若函数有两个极值点,试判断函数的零点个数.9.已知函数 .(Ⅰ)讨论的单调性;(Ⅱ)是否存在实数,使得有三个相异零点若存在,求出的值;若不存在,说明理由.10.已知函数 .( 1)求函数的单调区间;( 2)记,当时,函数在区间上有两个零点,求实数的取值范围.11.已知函数 .(1)讨论的导函数零点的个数;(2)若函数的最小值为,求的取值范围.12..(1)证明:存在唯一实数,使得直线和曲线相切;(2)若不等式有且只有两个整数解,求的范围.13 .已知函数 f x ax3bx23x a,b R在点1, f 1处的切线方程为y 20 .( 1)求函数 f x 的解析式;( 2)若经过点M 2,m 可以作出曲线y f x 的三条切线,求实数m 的取值范围.14.已知函数f xx22aln x, a R .x( 1)若f x 在 x 2 处取极值,求 f x 在点1, f 1 处的切线方程;( 2)当a 0 时,若 f x 有唯一的零点x0,求x0.注 x 表示不超过x的最大整数,如0.6 0, 2.1 2, 1.52. 参考数据:ln2 0.693,ln3 1.099,ln5 1.609,ln7 1.946.15 .已知函数 f x e x m xln x m 1 x ;(1)若m 1 f x在0,上单调递增;,求证:(2)若g x =f ' x ,试讨论 g x 零点的个数.16.已知函数 f x e ax ?sinx 1 ,,其中 a 0 .(I) 当a 1时,求曲线y f x 在点0,f 0 处的切线方程;( Ⅱ) 证明: f x 在区间0,上恰有 2 个零点.参考答案1.(Ⅰ);(Ⅱ)当时 , 减区间为;当时,增区间为,减区间为; (Ⅲ).【解析】【分析】( 1)先求出函数f ( x )的定义域和导函数 f ′( x ),再由两直线垂直的条件可得 f ′( 1)=﹣ 3,求出 a 的值;( 2)求出 f ′( x ),对 a 讨论,由 f ′( x )> 0 和 f ′( x )< 0 进行求解,即判断出函数的单调区间;( 3)由( 1)和题意求出g ( )的解析式,求出′( x ),由 g ′( x )>0 和 g ′( x )< 0x g进行求解, 即判断出函数的单调区间, 再由条件和函数零点的几何意义列出不等式组,求出b 的范围.【详解】(Ⅰ)定义域, ,,∴.(Ⅱ)当,,单减区间为当时令,单增区间为;令,单减区间为当时,单减区间∴当时 , 减区间为;当时,增区间为,减区间为;(Ⅲ)令,,令,;令,∴是在上唯一的极小值点,也是唯一的最小值点∴∵在上有两个零点∴只须∴.【点睛】本题主要考查了利用导数研究函数的单调性以及几何意义、函数零点等基础知识,注意求出函数的定义域,考查计算能力和分析问题的能力.2.( 1)( 2)有两个不同的零点【解析】分析:(Ⅰ)设切点坐标为,故可以关于的方程组,从该方程组解得.(Ⅱ)因,故为减函数,结合可得的零点.又是分段函数,故分别讨论在上的单调性,结合利用零点存在定理得到有两个不同的零点.详解:(Ⅰ)设切点,所以,故,从而又切点在函数上,所以即,故,解得,.(Ⅱ)若且函数的零点为,因为,,为上的减函数,故.当时,,因为,当时,;当时,,则在上单调递增,上单调递减,则,所以在上单调递减.当时,,所以在区间上单调递增.又,且;又,所以函数在区间上存在一个零点,在区间上存在一个零点.综上,有两个不同的零点.点睛:处理切线问题的核心是设出切点坐标,因为它的横坐标沟通了切线的斜率和函数在该值处的导数.零点问题需要利用导数明确函数的单调性,再结合零点存在定理才能判断函数零点的个数.3.( 1)见解析;( 2)【解析】分析:( 1)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;( 2)分三种情况讨论的范围,分别利用导数研究函数的单调性,结合零点存在定理与函数图象,可筛选出函数在区间上恰有 2 个零点的实数的取值范围.详解:( 1)当时,,此时在单调递增;当时,①当时,,恒成立,,此时在单调递增;②当时,令在和上单调递增;在上单调递减;综上:当时,在单调递增;当时,在和上单调递增;在上单调递减;( 2)当时,由(1)知,在单调递增,,此时在区间上有一个零点,不符;当时,,在单调递增;,此时在区间上有一个零点,不符;当时,要使在内恰有两个零点,必须满足在区间上恰有两个零点时,点睛:导数及其应用通常围绕四个点进行命题.第一个点是围绕导数的几何意义展开,;第二个点是围绕利用导数研究函数的单调性、极值 ( 最值 ) 展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力.4.( 1)( 2)不存在横坐标为整数的点,过该点可以作的三条切线.【解析】分析:(1) 求出 f ( x)的导数,由切线方程可得切线斜率和切点坐标,可得a=2,即可得到 f ( x)的解析式;(2) 令,设图象上一点,,该处的切线, 又过点则过作 3 条详解:( 1),由题意可知,,即( 2),令,设图象上一点,,该处的切线又过点则①过作 3 条不同的切线,则方程①关于有令,图象与轴有 3 个不同交点3 个不同实根( 1)当,,是单调函数,不可能有 3 个零点(2)当,或时,当时,所以在单调递减,单调递增,单调递减曲线与轴有个交点,应该满足,,当,又,所以无解(3)当,或时,,当时,在单调递减,单调递增,单调递减,应满足,,当,又,无解,综上,不存在横坐标为整数的点,过该点可以作的三条切线.点睛:( 1)函数零点个数(方程根的个数)的判断方法:①结合零点存在性定理,利用函数的单调性、对称性确定函数零点个数;②利用函数图像交点个数判断方程根的个数或函数零点个数.( 2)本题将方程实根个数的问题转化为两函数图象交点的问题解决.5.( 1)当a 0 时, f x 在 0, 上递减,当 a 0 时, f x 在 0, a 上递减,在a , 上递增;(2)1 1ln3 .ln2 ln 3 m33【解析】试题分析:( 1)函数求导得 f ' x 2x 2,分 a 0 和 a 0 两种情况讨论即可;a x2( 2)结合( 1 )中的单调性可得最值g a 1 lna ,即m a ln a ( a 0) ,令2(a 9aF a a ln a 0) ,求导得单调性得值域即可.试题解析:( 1) f ' x2x 2, (x0) ,a x当 a 0 时, f ' x 0 ,知 f x 在 0,上是递减的;当 a时, f ' x 2 xa x ax 在 0, a 上是递减的, 在 a ,ax,知 f上递增的 .( 2)由( 1)知, a 0 , f xmin fa1 ln a ,即 g a1 lna ,方程 g a a2 1 m ,即 m a ln a29a( a 0) ,9a令 Faa lna 2(a0) ,则 F ' a1 1 23a 13a 2a9a 29a 2,9a知 Fa 在0, 1 和 2 ,是递增的,1 , 2是递减的,333 3F a 极大F 11 ln3 ,Fa极小F 21 ln2 ln 3,3 33 3依题意得1ln2ln 3 m1 ln3 .33点睛:已知函数有零点求参数常用的方法和思路:( 1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;( 2)分离参数法:先将参数分离,转化成函数的值域问题解决;( 3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解 .6.( 1)见解析( 2) k 的最大值为 1.【解析】试题分析: (1)先求导数,再根据 a 的正负讨论导函数符号变化规律,最后根据导函数符号确定极值, ( 2)先将无交点转化为方程1 在 R 上没有实数解,转化为k 1 x1e xxe x 在 R 上 没 有 实 数 解 , 再 利 用 导 数 研 究 g xxe x 的 取 值 范 围 , 即得k 11 , 1 ,即得 k 的取值范围是 1 e,1 ,从中确定 k 的最大值 . k 1ea①当 a 0 时, f x 0 , f x 为, 上的增函数,所以函数 f x 无极值 .②当 a 0 时,令 f x 0 ,得 e x a ,x lna .x ,ln a , f x 0 ; x lna , f x 0.所以 f x 在,ln a 上单调递减,在lna, 上单调递增,故 f x 在x lna 处取得极小值,且极小值为 f lna lna 1 ,无极大值.综上,当 a 0 时,函数 f x 无极小值;当 a 0 , f x 在 x lna 处取得极小值 lna ,无极大值.(Ⅱ)当 a 1 时, f x x 2 1 x. e直线 l : y kx 2 与曲线y f x 没有公共点,等价于关于 x 的方程 kx 2 x 2 1在 R 上没有实数解,即关于x 的方程:e xk 1 x 1x * 在 R 上没有实数解.e可化为1①当 k 1 时,方程* 0 ,在 R 上没有实数解.e x②当 k 1 时,方程* 化为 1 xe x.k 1令 g x xe x,则有 g x 1 x e x令 g x 0 ,得 x 1 ,当 x 变化时,g x 的变化情况如下表:x , 1 -1 1, g x - 0 +g x ↘ 1 ↗e当 x 1 时,g x min 1,同时当 x 趋于+ 时,g x 趋于 + ,e从而 g x 的取值范围为1. [ , )e所以当 11 , 1 时,方程 * 无实数解,k e解得 k 的取值范围是 1 e,1 .综上,得 k 的最大值为 1.7.( 1);(2);( 3)或【解析】分析:( 1)先求切点的坐标,再利用导数求切线的斜率,最后写出切线的方程.(2)先分离参数得到,再求函数的最小值,即得实数a 的取值范围 .(3) 先令,再转化为方程有且只有一个实根,再转化为有且只有一个交点,利用导数和函数的图像分析得到 a 的取值范围. 详解:( 1),所以切线的斜率.又因为,所以切线方程为,所以切线方程为.( 2)由得 .当 x=0 时,上述不等式显然成立,故只需考虑的情况.将变形得令,所以令,解得x> 1;令,解得x< 1.从而在( 0,1 )内单调递减,在(1, 2)内单调递增.所以 , 当 x=1 时,取得最小值e-1 ,从而所求实数的取值范围是.(3)令当时,,函数无零点;当时,,即令,令,则由题可知,当,或时,函数有一个函数零点点睛:第( 3)问的转化是一个关键,由于直接研究函数有且只有一个零点比较困难,所以本题把函数的零点转化为方程有且只有一个实根,再转化为有且只有一个交点,这样问题经过一次又一次的转化,大大提高了解题效率,优化了解题. 所以在解答数学难题时,注意数学转化思想的灵活运用.8.( 1)( 2) 3【解析】试题分析:( 1)第( 1)问,先把问题转化成的图象与的图象有两个交点,再利用导数求出的单调性,通过图像分析得到 a 的取值范围 .(2)第(2)问,先通过函数有两个极值点分析出函数g(x) 的单调性,再通过图像研究得到它的零点个数.试题解析:( 1)令,由题意知的图象与的图象有两个交点..当时,,∴在上单调递增;当时,,∴在上单调递减.∴.又∵时,,∴时, .又∵时, .综上可知,当且仅当时,与的图象有两个交点,即函数有两个零点.( 2)因为函数有两个极值点,由,得有两个不同的根,(设).由( 1)知,,,且,且函数在,上单调递减,在上单调递增,则 .令,则,所以函数在上单调递增,故, . 又,;,,所以函数恰有三个零点.点睛:对于零点问题的处理,一般利用图像法分析解答. 先求出函数的单调性、奇偶性、周期性、端点的取值等情况,再画出函数的图像分析函数的零点的个数. 本题第( 2)问,就是利用这种方法处理的.9.(Ⅰ)见解析 . (Ⅱ)见解析 .【解析】试题分析:( I )求出,分三种情况讨论的范围,分别令求得的范围,可得函数增区一定有且的极大值大于0,极小值小于0,则取得极大值和极小值时或,注意到此时恒有,则必有为极小值,此时极值点满足,即,还需满足,换元后只需证明即可.试题解析:(Ⅰ)由题可知.当,即时,令得,易知在上单调递减,在上单调递增.当时,令得或.当,即时,在,上单调递增,在上单调递减;当时,,在上单调递增;当时,在,上单调递增,在上单调递减.(Ⅱ)不存在.理由如下:假设有三个相异零点.由(Ⅰ)的讨论,一定有且的极大值大于0,极小值小于已知取得极大值和极小值时或,注意到此时恒有,则必有为极小值,此时极值点满足,即,还需满足,又,,故存在使得,即存在使得.令,即存在满足.令,,从而在上单调递增,所以,故不存在满足,与假设矛盾,从而不存在使得有三个相异零点10. (1) 见解析 ;(2) . 0..【解析】试题分析:(1)先求出函数 f (x)的定义域和导函数 f ′( x),对字母 a 分类讨论,由 f ′(x)>0 和 f ′(x)<0 进行求解,即判断出函数的单调区间;(2)由(1)和题意求出 g(x)的解析式,求出 g′(x),由 g′(x)>0 和 g′(x)< 0 进行求解,即判断出函数的单调区间,再由条件和函数零点的几何意义列出不等式组,求出 b 的范围.试题解析:(1)定义域为,,当时,,当时,由得,∴当时,的单调增区间为,无减区间,当时,的减区间为,增区间为.( 2)当时,,.令,得,,在区间上,令,得递增区间为,令,得递减区间为,所以是在上唯一的极小值点,也是最小值点,所以,又因为在上有两个零点,所以只需,,所以,即 .11. (1) 见解析 ;(2) .【解析】试题分析:( 1)先求出,则至少存在一个零点,讨论的范围,利用导数研究函数的单调性,结合单调性与函数图象可得结果;( 2)求出,分五种情况讨论的范围,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,利用函数的单调性,结合函数图象可排除不合题意的的范围,筛选出符合题意的的范围.试题解析:( 1),令,故在上单调递增,则,因此,当或时,只有一个零点;当或时,有两个零点;(2)当时,,则函数在处取得最小值,当时,则函数在上单调递增,则必存在正数,使得,若,则,函数在与上单调递增,在上单调递减,又,故不符合题意.若,则,函数在上单调递增,又,故不符合题意.若,则,设正数,则,与函数的最小值为矛盾,12.( 1)详见解析;( 2) .【解析】试题分析:(1) 先设切点坐标,根据导数几何意义得切线斜率,根据切点既在切线上也在曲线上,联立方程组可得.再利用导数研究单调性,并根据零点存在定理确定零点唯一性,即得证结论,(2) 先化简不等式为,再分析函数单调性及其值域,结合图形确定讨论 a 的取法,根据整数解个数确定 a 满足条件,解得的范围.试题解析:(1)设切点为,则①,和相切,则②,所以,即.令,所以单增.又因为,所以,存在唯一实数,使得,且.所以只存在唯一实数,使①②成立,即存在唯一实数使得和相切.(2)令,即,所以,令,则,由( 1)可知,在上单减,在单增,且,故当时,,当时,,当时,因为要求整数解,所以在时,,所以有无穷多整数解,舍去;当时,,又,所以两个整数解为 0, 1,即,所以,即,当时,,因为在内大于或等于1,所以无整数解,舍去,综上,.13.( 1)f x x33x ;(2) 6 m 2【解析】试题分析:( 1)求出函数的导函数,然后根据导数的几何意义得到关于a,b 的方程组,解方程组求得a, b 后可得函数的解析式.(2)设出切点x0 , y0 ,求导数后可得 f x0 3x02 3 ,即为切线的斜率,然后根据斜率公式可得 3x02 3 x03 3x0 m,即2x03 6x02 6 m 0.若x0 2函数有三条切线,则函数g x 2x3 6 x2 6 m有三个不同的零点,根据函数的极值可得所求范围.试题解析;( 1)∵f xax3 bx2 3x ,∴ fx 3ax 22bx 3 ,根据题意得 {f 1 a b 3 2a 1f 13a2b 3 ,解得 {b 0,∴函数的解析式为fx x 3 3x .( 2)由( 1)得 f x3x 2 3 .设切点为x 0 , y 0 ,则 y 0 x 03 3x 0 , f x 03x 02 3 ,故切线的斜率为 3x 02 3 ,由题意得 3x 023 x 03 3x 0 m ,x 0 2即 2x 03 6x 02 6 m 0 ,∵过点M2,m m 2 可作曲线 yf x 的三条切线∴方程 2 x 03 6 x 026m 0 有三个不同的实数解,∴函数 g x 2x 3 6x 2 6 m 有三个不同的零点.由于 g x 6x 2 12x 6x x2 ,∴当 x 0 时, g x 0, g x 单调递增,当 0 x 2时, g x 0, g x 单调递减,当 x2 时, g x0, g x 单调递增 .∴当 x 0 时, g x 有极大值,且极大值为 g 0 m 6 ;当 x 2 时, g x 有极小值,且极小值为 g 2 m 2 .∵函数 g x 有 3 个零点,6 m 0 ∴ {m,2 0解得 6m 2 .∴实数 m 的取值范围是6,2 .点睛:利用导数研究方程根的方法( 1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求, 画出函数图象的大体形状, 标明函数极 ( 最 ) 值的位置, 通过数形结合的思想去分析问题,使问题的求解有直观的整体展现.( 2)研究方程根的情况,也可通过分离参数的方法,转化为两函数图象公共点个数的问题处理,解题时仍要利用数形结合求解.14.( 1) 7x y 10 0 ;( 2) 2【解析】试题分析: ( 1)求导,利用对应导函数为 0 求出 a 值,再利用导数的几何意义进行求解;( 2)求导,讨论导函数的符号变化确定函数的单调性和极值,通过极值的符号确定零点的位置,再利用零点存在定理进行求解.试题解析:(1)因为 fx2x 3 ax 2216 2a 2 a 7 ,则x 2,所以 f4 0 ,解得f 1 7 ,即 fx 在点 1, f 1 处的切线方程为 y 37 x 1 ,即 7 x y10 0 ;( 2) f x x22 aln x ,f x2x 3 ax2x 0xx2令g x2x 3 ax 2 ,则 g x 6x 2 a由 a0, gx 0 ,可得 xa6g x 在 0, a上单调递减,在a , 上单调递增66由于 g 02 0 ,故 x0,a时, g x 06又 g 1a 0 ,故 g x 在 1,上有唯一零点,设为x 1 ,从而可知 f x在0, x 1 上单调递减,在 x 1,上单调递增由于 fx 有唯一零点 x 0 ,故 x 1 x 0 , 且 x 0 1又 2lnx 031 0 ......*x 0 3 1令h x 2ln x 031 ,可知h x 在 1, 上单调递增x 0 3 1由于 h 22ln2 10 2 0.7 10 0 , h 32ln3290 ,7 726故方程* 的唯一零点 x 02,3 ,故 x 0215.( 1)见解析( 2)当 m 1时, g x 没有零点; m 1时, g x 有一个零点; m1时, gx 有两个零点 .【解析】试题分析:( 1)m 1时, f x e x 1 xlnx , f ' xe x 1lnx 1 ,要证 f x在 0,+ 上单调递增,只要证:f ' x0 对 x 0 恒成立,只需证明e x 1x (当且仅当 x1 时取等号) . x lnx 1 (当且仅当 x 1时取等号),即可证明 f ' x0 ;( 2)求函数的导数,根据函数极值和导数的关系,分 m 1 m >1, m1讨论,即可判断函数 g x 零点的个数.试题解析:( 1) m 1时, f xe x 1xlnx , f ' x e x 1 lnx 1 ,要证 f x 在 0,+上单调递增,只要证:f ' x0 对 x 0 恒成立,令i x e x 1 x ,则 i ' x e x 1 1 ,当 x 1 时, i ' x 0 ,当 x 1 i ' x 0 ,故 i x 在 ,1 上单调递减,在 1,+上单调递增,时,所以 i x i 10 ,即 e x 1x (当且仅当 x 1 时等号成立),令 j xx 1 lnx x 0 ,则 j ' xx 1x ,当 0x 1时, j ' x 0 ,当 x 1时,j ' x 0 ,故 j x 在( 0, 1)上单调递减,在 1,+上单调递增,所以j xj 1 0 ,即 x lnx 1(当且仅当 x 1 时取等号), f xe x 1lnx 1 x lnx 10 (当且仅当 x 1 时等号成立)f x 在 0,+ 上单调递增 .( 2)由 g xe xmlnx m 有 g ' xe x m1 x0 ,显然 g ' x 是增函数,x令g ' x 00 ,得 e x 0 m1 , e m x 0 e x 0 , mx 0 ln x 0 ,x 0则 x0, x 0 时, g ' x 0 , x x 0 ,时, g ' x0 ,∴ gx 在 0,x 0 上是减函数,在 x 0 ,上是增函数,∴ gx 有极小值,g x 0e xmln x 0 m12ln x 0 x 0 ,x 0①当 m 1时, x 0 1, g x 极小值 =g 10 , g x 有一个零点1;② m1时, 0 x 0 1, g x 0g 1 1 0 1 0,g x 没有零点;③当 m 1时, x 0 1, g x 010 1 0 ,又 g e me emmm m e e mm0 ,又对于函数 y e x x 1 , y ' e x 10 时 x 0 ,∴当 x 0 时, y1 0 1 0 ,即 e xx 1 ,∴g 3m e 2mln3m m2m 1 ln3m mm 1 lnmln3 ,令 tmm 1 lnm ln3 ,则 t ' m11 m 1mm ,∵ m 1,∴ t ' m 0 ,∴ t mt 12 ln3 0 ,∴ g 3m0 ,又 e m1 x 0 , 3m 3x 0 3lnx 0x 0 ,∴ g x 有两个零点,综上, 当 m 1时, g x 没有零点;m 1时, g x 有一个零点; m 1时, g x 有两个零点 .【点睛】 本题题考查导数的综合应用, 利用函数单调性极值和导数之间的关系是解决本题的关键.,对于参数要进行分类讨论,综合性较强,难度较大.16.( Ⅰ) y x 1 ( Ⅱ) 见解析.【解析】试题分析:( Ⅰ)求出 f x 在 x0 的导数即可得切线的斜率, 也就得到在 0, f处切线方程. (Ⅱ)先研究函数 fx 的单调性,其导数为 f ' x e axa sin x cosx ,当x 0,时,利用三角函数的符号可以判断出 f ' x 0 ,当 x, 时,导数有唯 22一的零点 x 0 且为函数的极大值点.结合f0 , f 0 f 0 可以判断 f x 在20,x 0 存在一个零点,在 x 0 , 上存在一个零点,故在 0,上存在两个不同的零点.解析:(Ⅰ)当 a 1 时, f xe x sinx 1,所以f x e x sinx cosx ,故 f ' 01 ,又 f 01 ,故曲线在 0, f 0 的切线方程为 y x 1 .(Ⅱ) f 'xe ax asinx cosx .当 x0, 时,因为 a 0,sin x 0,cosx 0 ,故 f ' x 0 ,所以 f x 在 0,是单22调增函数;当 x, 时, f ' xae ax cosx 1 tanx ,令 tanx1 0, x, ,此方程2aa2有唯一解 x x 0 .当 x, x 0 时, f ' x 0 , f x 在, x 0 上是单调增函数; 22当 xx 0 ,时,f ' x 0 , f x 在 x 0 ,上是单调减函数;因为 fx 的图像是不间断的, 所以 f x 在0,x 0上是单调增函数, 在 x 0 ,上是单调减a,f 0f1 0 , 而 x 0函 数 .又 f2e 21 02 , 故f x 0f0 ,根据零点存在定理和 f x 的单调性可知 f x 在 0,x 0存在一个零2点,在x 0 ,上存在一个零点,故f x 在 0,上存在两个不同的零点.点睛:导数背景下函数的零点个数的讨论不仅要考虑函数的极值的符号, 还要结合零点存在定理去判断.一般地,我们在一个单调区间中要找到这样的a, b ,使得 f a f b0 .。
导数含全参数问题经典
导数含参数问题类型一:没有其他未知字母情况下,求单调性,极值,最值例1:设函数32()91(0).f x x ax x a=+--若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求:(Ⅰ)a 的值;(Ⅱ)函数f (x )的单调区间.解:(Ⅰ) 3,0, 3.a a a =±<=-由题设所以(Ⅱ)由(Ⅰ)知323,()391,a f x x x x =-=---因此 212()3693(3(1)()0,1, 3.(,1)()0,()(1(1,3)()0,()13()0,()3.()(,13f x x x x x f x x x x f x f x x f x f x f x f x f x '=--=-+'==-='∈-∞->-∞-'∈-<-'∈∞>+∞-∞-+∞令解得:当时,故在,)上为增函数;当时,故在(,)上为减函数;当x (3,+)时,故在(,)上为增函数由此可见,函数的单调递增区间为)和(,);单调递减区13.-间为(,) 变式训练1:设函数432()2()f x x ax x b x =+++∈R ,其中a b ∈R ,. (Ⅰ)当103a =-时,讨论函数()f x 的单调性; (Ⅱ)若函数()f x 仅在0x =处有极值,求a 的取值范围;(Ⅰ)解:322()434(434)f x x ax x x x ax '=++=++. 当103a =-时,2()(4104)2(21)(2)f x x x x x x x '=-+=--.令()0f x '=,解得10x =,212x =,32x =.()f x 在102⎛⎫ ⎪⎝⎭,,(2)+,∞是增函数,在(0)-∞,,122⎛⎫ ⎪⎝⎭,内是减函数. (Ⅱ)解:2()(434)f x x x ax '=++,显然0x =不是方程24340x ax ++=的根. 为使()f x 仅在0x =处有极值,必须24340x ax ++≥恒成立,即有29640a ∆=-≤. 解此不等式,得8833a -≤≤.这时,(0)f b =是唯一极值. a 的取值范围是8833⎡⎤-⎢⎥⎣⎦,. 类型二:结合函数的图像与性质求参数的取值范围问题例2:设a 为实数,函数32()f x x x x a =--+。
2020年高考数学(理)函数与导数 专题02 函数的基本性质(解析版)
函数与导数02函数函数的基本性质【考点讲解】一、具体目标:1.结合具体函数,了解函数奇偶性的含义.会用函数的图象理解和研究函数的奇偶性.2.理解函数的单调性及其几何意义.会用基本函数的图象分析函数的性质.3. 了解函数的周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、知识概述:1.偶函数、奇函数的概念一般地,如果对函数f(x)的定义域内任意一个x,都有__f(-x)=f(x)__,那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有__f(-x)=-f(x)__,那么函数f(x)就叫做奇函数.2.奇、偶函数的图象特征偶函数的图象关于__y轴__对称,奇函数的图象关于__原点__对称.3.函数奇偶性的常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.4.判断函数的奇偶性的常用方法:(1)定义法一般地,对于较简单的函数解析式,可通过定义直接作出判断;对于较复杂的解析式,可先对其进行化简,再利用定义进行判断.利用定义判断函数奇偶性的步骤:(2)图象法:奇函数的图象关于原点成中心对称,偶函数的图象关于y 轴成轴对称.因此要证函数的图象关于原点对称,只需证明此函数是奇函数即可;要证函数的图象关于y 轴对称,只需证明此函数是偶函数即可.反之,也可利用函数图象的对称性去判断函数的奇偶性. (3)组合函数奇偶性的判定方法①两个奇(偶)函数的和、差还是奇(偶)函数,一奇一偶之和为非奇非偶函数.②奇偶性相同的两函数之积(商)为偶函数,奇偶性不同的两函数之积(商)(分母不为0)为奇函数. ③复合函数的奇偶性可概括为“同奇则奇,一偶则偶”. (4)分段函数的奇偶性判定分段函数应分段讨论,注意奇偶函数的整体性质,要避免分段下结1.已知函数的奇偶性求函数的解析式. 抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于()f x 的方程,从而可得()f x 的解析式.5.已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用()()0f x f x ±-=产生关于字母的恒等式,由系数的对等性可得知字母的值.6.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. 7.增函数与减函数一般地,设函数f (x )的定义域为I ,(1)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是__增函数__.(2)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是__减函数__.8.单调性与单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)__单调性__,区间D 叫做y =f (x )的__单调区间__. 9.函数的最大值与最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有__f (x )≤M __;存在x 0∈I ,使得__f (x 0)=M __,那么,我们称M 是函数y =f (x )的最 大值.(2)对于任意的x ∈I ,都有__f (x )≥M __;存在x 0∈I ,使得__f (x 0)=M __,那么我们称M 是函数y =f (x )的最小值.10.函数单调性的常用结论11.对勾函数的单调性对勾函数y =x +ax (a >0)的递增区间为(-∞,-a ]和[a ,+∞);递减区间为[-a ,0)和(0,a ],且对勾函数为奇函数. 12.函数的周期性(1)对于函数f (x ),如果存在一个__非零常数__T ,使得当x 取定义域内的每一个值时,都有__f (x +T )=f (x )__,那么函数f (x )就叫做周期函数,T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的__最小__正周期. 13.函数周期性的常用结论: 对f (x )定义域内任一自变量x 的值: (1)若f (x +a )=-f (x ),则T =2a (a >0); (2)若f (x +a )=1f (x ),则T =2a (a >0); (3)若f (x +a )=-1f (x ),则T =2a (a >0).14.函数的对称性与周期性的关系(1)如果函数f (x )(x ∈D )在定义域内有两条对称轴x =a ,x =b (a <b ),则函数f (x )是周期函数,且周期T =2(b -a )(不一定是最小正周期,下同).(2)如果函数f (x )(x ∈D )在定义域内有两个对称中心A (a,0),B (b,0)(a <b ),那么函数f (x )是周期函数,且周期 T =2(b -a ).(3)如果函数f (x ),x ∈D 在定义域内有一条对称轴x =a 和一个对称中心B (b,0)(a ≠b ),那么函数f (x )是周期函数,且周期T =4|b -a |.注:对于(1)(2)(3)中的周期公式可仿照正、余弦函数的图象加强记忆.判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.15.根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.1.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【解析】本题主要考查函数的奇偶性,对数的计算.由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=,所以3a -=,即3a =-.【答案】3-2.【2019优选题】已知()f x 是R 上的偶函数,且在[0,)+∞单调递增,若(3)f a f -<(4),则a 的取值范围为 .【解析】:()f x Q 是R 上的偶函数,且在[0,)+∞单调递增,∴不等式(3)f a f -<(4)等价为 (|3|)f a f -<(4),即|3|4a -<,即434a -<-<,得17a -<<,即实数a 的取值范围是17a -<<, 【真题分析】故答案为:17a -<< 【答案】17a -<<.3.【2017课标II 】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________.【解析】本题考点奇函数的性质解决求函数值的问题. 法一:(2)(2)[2(8)4]12=--=-⨯-+=f f .法二:由题意可知函数()f x 是定义在R 上的奇函数,所以有()()()232x x x f x f +-=-=-,而因为()0,∞-∈x ,()∞+∈-,0x ,()232x x x f --=-所以有()⎪⎩⎪⎨⎧>-<+=0,20,22323x x x x x x x f ,()12222223=-⨯=f【答案】124. 【2017山东】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6xf x -=,则f (919)= 【解析】由f (x +4)=f (x -2)可知,()()6=+f x f x 是周期函数,且6T =,所以(919)(66531)(1)f f f =⨯+=(1)6f =-=.【答案】65. 【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 . 【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数2()1(1)f x x =--1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则2()1(1),(0,2]f x x x =--∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为1211k =+,解得2(0)4k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =,∴1234k ≤<,综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为123⎡⎢⎣⎭,. 【答案】123⎡⎢⎣⎭6.【2017山东理15】若函数()e x f x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x = ④()22f x x =+【解析】①()e =e e 22xx x xy f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2x f x -=具有M 性质; ②()e =e e 33xx x x y f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3=e e xxy f x x =⋅,令()3e xg x x =⋅,则()()322e e 3e3xxxg x x x x x '=⋅+⋅=+,所以当3x >-时,()0g x '>;当3x <-时,()0g x '<,所以()3=e e xxy f x x =⋅在(),3-∞-上单调递减,在()3,-+∞上单调递增,故()3f x x =不具有M 性质;④()()2=e e 2x x y f x x =+.令()()2e 2x g x x =+, 则()()()22e 2e 2e 110xx x g x xx x ⎡⎤'=++⋅=++>⎣⎦,所以()()2=e e 2x x y f x x =+在R 上单调递增,故()22f x x =+具有M 性质.综上所述,具有M 性质的函数的序号为①④.【答案】①④7.【2017天津理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ). A.a b c << B.c b a <<C.b a c <<D.b c a <<【解析】 因为奇函数()f x 在R 上增函数,所以当0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在(0,)+∞上是增函数.()()22log 5.1log 5.1a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以0.8202log 5.13<<<,于是()()()0.822log 5.13g g g <<,即b a c <<.故选C.【答案】C8.【2018新课标II 卷11】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…( )A .50-B .0C .2D .50【解析】本题考点是函数的性质的具体应用,根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 由题意可知原函数的定义域为()∞+∞-,的奇函数,并且有()()x f x f +=-11,所以有()()()111--=-=+x f x f x f ,所以有()()()113-=+-=+x f x f x f ,即有()()4+=x f x f ,所以函数是以周期为4的周期函数.因此有()()()()()()()()[]()()2143211250321f f f f f f f f f f +++++=++++Λ.因为()()()()2413f f f f -=-=,,()()()()04321=+++f f f f ,由()()()113-=+-=+x f x f x f 可得()()()00112==+--=f f f从而()()()()()2150321==++++f f f f f Λ,选C .【答案】C9. .已知定义在错误!未找到引用源。
导数含参数取值范围分类讨论题型总结与方法归纳
1导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数axxaxxf2)2(2131)(23????(a>0),求函数的单调区间)2)((2)2()(????????xaxaxaxxf★★例1 已知函数xaxaxxfln)2(2)(????(a>0)求函数的单调区间222))(2(2)2()(xaxxxaxaxxf????????★★★例3已知函数? ???22211axafxxRx?????,其中aR?。
(Ⅰ)当1a?时,求曲线??yfx?在点????2,2f处的切线方程;(Ⅱ)当0a?时,求函数??fx的单调区间与极值。
解:(Ⅰ)当1a?时,曲线??yfx?在点????2,2f处的切线方程为032256???yx。
? ?12)1(222?????xxaxf ,由??'0fx? ,得(Ⅱ)由于0a?,所以??121,xxaa???。
这两个实根都在定??????? ?? ???22'2222122122111axaxaxxaxaafxxx?????????????????义域R内,但不知它们之间的大小。
因此,需对参数a的取值分0a?和0a?两种情况进行讨论。
(1)当0a?时,则12xx?。
易得??fx在区间1,a?????????,??,a??内为减函数,在区间1,aa???????为增函数。
故函数??fx在11xa?? 处取得极小值21faa?????????;函数??fx在2xa?处取得极大值??1fa?。
(1)当0a?时,则12xx?。
易得??fx在区间),(a?? ,),1(???a内为增函数,在区间)1,(aa?为减函数。
故函数??fx在11xa?? 处取得极小值21faa?????????;函数??fx在2xa?处取得极大值??1fa?。
高考数学热点难点突破技巧第06讲导数中的双参数问题的处理(含答案)
第06讲:导数中的双参数问题的处理
【知识要点】
对于导数中的单参数问题(零点问题、恒成立问题和存在性问题),大家解答的比较多,一般利用分离参数和分类讨论来分析解答. 对于双参数这些问题,大家如何处理呢?一般利
用下面分离次参法和反客为主法两种方法处理.
【方法讲评】
方法一分离次参法
不等式中含有两个参数(主参数和次参数)和一个自变量,并且次参数比较容
使用情景
易分离.
解题步骤一般先分离次参,变成单参数的问题处理.
【例1】已知函数.
(1)若函数与函数在点处有共同的切线,求的值;(2)证明:;
(3)若不等式对所有,都成立,求实数的取值范围.【解析】(1),,,
与在点处有共同的切线,
,即,
设,,
故在上是增函数,在上是减函数,故,
1。
利用导数解决含参的问题(word版含答案和详细解析)
利用导数解决含参的问题(word版含答案和详细解析)高考理科复专题练利用导数解决含参的问题考纲要求:1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次),会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)。
命题规律:利用导数探求参数的范围问题每年必考,有时出现在大题,有时出现在小题中,变化比较多。
不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理。
这也是2018年考试的热点问题。
高考题讲解及变式:利用单调性求参数的范围例1.【2016全国1卷(文)】若函数f(x)=x-sin2x+asinx在(-∞,+∞)上单调递增,则a的取值范围是()。
A。
[-1,1]B。
(-1,1)C。
(-∞,-1]∪[1,+∞)D。
(-∞,-1)∪(1,+∞)答案】C解析】因为f(x)在(-∞,+∞)上单调递增,所以f'(x)>0.将f(x)代入f'(x)得f'(x)=1-2sinx+acosx。
要使f'(x)>0,即要使1-2sinx+acosx>0.因为-1≤sinx≤1,所以1-2sinx≥-1.所以acosx>-1,即a>-1/cosx。
因为cosx=1时,a不等于-1;cosx=-1时,a不等于1.所以a∈(-∞,-1]∪[1,+∞),选C。
变式1.【2018XXX高三实验班第一次月考(理)】若函数f(x)=kx-lnx在区间(1,+∞)上为单调函数,则k的取值范围是_______。
答案】k≥1或k≤-1解析】在区间(1,+∞)上,f'(x)=k-1/x。
一阶、二阶导数在含参数的函数问题中的应用
一阶、二阶导数在含参数的函数问题中的应用
作者:马群长
来源:《数学大世界·中旬刊》2019年第03期
【摘要】针对2018年高考数学试卷中出现的极值问题,利用数学分析中极值的相关定理,一阶、二阶导数这两种数学思想进行求解,最终可得到一致的答案。
【关键词】高考数学;极值问题;导数
纵观近几年的高考真题,极值问题是必考的一个知识点。
如已知某一点是函数的极大(极小)值点,求参数的取值或者参数的取值范围等。
通常情况下,学生会通过利用函数来求解极值点,再由极值点求参数值。
对于高中生来说这是一个难点问题。
为了帮助学生解决这一难点,本文将从函数的一阶导数和二阶导数出发,浅谈函数极值问题的求解。
【参考文献】
[1]欧阳广中.数学分析[M].北京:高等教育出版,2007.
[2]课程教材研究中心.高中数学人教A版选修2-3[D].北京:人民教育出版社,2009.
[3]楊玲.关于基础数学中极值问题的几点思考[J].保山学院学报,2013,32(02):69-72.。
专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数
专题2 函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一) 确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2. 判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x 轴交点的个数问题.(2)分离出参数,转化为a =g (x ),根据导数的知识求出函数g(x )在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y =a 与函数y =g (x )图象交点的个数问题.只需要用a 与函数g (x )的极值和最值进行比较即可.3. 处理函数y =f (x )与y =g (x )图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f (x )=g (x )根的个数问题,也通过构造函数y =f (x )-g (x ),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.【例1】(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数()()20,ex ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.【解析】(1)由题易得,函数()2ex ax f x =的定义域为R ,又()()()22222e e 2e e e x xx xxax x ax ax ax ax f x ---===¢,所以,当0a >时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢-0+0-()f x ]极小值Z极大值]由上表可知,()f x 的单调递增区间为()0,2,单调递减区间为()(),0,2,¥¥-+.所以()f x 的极大值为()()2420e af a =>.当a<0时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢+0-0+()f x Z 极大值]极小值Z由上表可知,()f x 的单调递增区间为()(),0,2,¥¥-+,单调递减区间为()0,2.所以()f x 的极大值为()()000f a =<.综上所述,当0a >时,()f x 的极大值为24ea;当a<0时,()f x 的极大值为0.(2)方法一:当1a =时,()2e x xf x =,所以函数()()2cos cos e x xg x f x x x =-=-.由()0g x =,得2cos e xx x =.所以要求()g x 在区间π,2024π2éù-êúëû上的零点的个数,只需求()y f x =的图象与()cos h x x =的图象在区间π,2024π2éù-êúëû上的交点个数即可.由(1)知,当1a =时,()y f x =在()(),0,2,¥¥-+上单调递减,在()0,2上单调递增,所以()y f x =在区间π,02éù-êúëû上单调递减.又()cos h x x =在区间π,02éù-êúëû上单调递增,且()()()()()1e 1cos 11,001cos00f h f h -=>>-=-=<==,所以()2e x xf x =与()cos h x x =的图象在区间π,02éù-êúëû上只有一个交点,所以()g x 在区间π,02éù-êúëû上有且只有1个零点.因为当10a x =>,时,()20ex x f x =>,()f x 在区间()02,上单调递增,在区间()2,¥+上单调递减,所以()2e x xf x =在区间()0,¥+上有极大值()2421e f =<,即当1,0a x =>时,恒有()01f x <<.又当0x >时,()cos h x x =的值域为[]1,1-,且其最小正周期为2πT =,现考查在其一个周期(]0,2π上的情况,()2ex x f x =在区间(]0,2上单调递增,()cos h x x =在区间(]0,2上单调递减,且()()0001f h =<=,()()202cos2f h >>=,所以()cos h x x =与()2ex x f x =的图象在区间(]0,2上只有一个交点,即()g x 在区间(]0,2上有且只有1个零点.因为在区间3π2,2æùçúèû上,()()0,cos 0f x h x x >=£,所以()2e x xf x =与()cos h x x =的图象在区间3π2,2æùçúèû上无交点,即()g x 在区间3π2,2æùçúèû上无零点.在区间3π,2π2æùçúèû上,()2ex x f x =单调递减,()cos h x x =单调递增,且()()3π3π002π1cos2π2π22f h f h æöæö>><<==ç÷ç÷èøèø,,所以()cos h x x =与()2ex x f x =的图象在区间3π,2π2æùçúèû上只有一个交点,即()g x 在区间3π,2π2æùçúèû上有且只有1个零点.所以()g x 在一个周期(]0,2π上有且只有2个零点.同理可知,在区间(]()*2π,2π2πk k k +ÎN 上,()01f x <<且()2e xx f x =单调递减,()cos h x x =在区间(]2π,2ππk k +上单调递减,在区间(]2ππ,2π2πk k ++上单调递增,且()()()02π1cos 2π2πf k k h k <<==,()()()2ππ01cos 2ππ2ππf k k h k +>>-=+=+()()()02ππ1cos 2ππ2ππf k k h k <+<=+=+,所以()cos h x x =与()2ex x f x =的图象在区间(]2π,2ππk k +和2ππ,2π2π]k k ++(上各有一个交点,即()g x 在(]2π,2024π上的每一个区间(]()*2π,2π2πk k k +ÎN 上都有且只有2个零点.所以()g x 在0,2024π](上共有2024π220242π´=个零点.综上可知,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.方法二:当1a =时,()2e x xf x =,所以函数()()2cos cos ex x g x f x x x =-=-.当π,02éùÎ-êúëûx 时,()22sin 0e x x x g x x -=¢+£,所以()g x 在区间π,02éù-êúëû上单调递减.又()π0,002g g æö-><ç÷èø,所以存在唯一零点0π,02x éùÎ-êúëû,使得()00g x =.所以()g x 在区间π,02éù-êúëû上有且仅有一个零点.当π3π2π,2π,22x k k k æùÎ++ÎçúèûN 时,20cos 0ex x x ><,,所以()0g x >.所以()g x 在π3π2π,2π,22k k k æù++ÎçúèûN 上无零点.当π0,2x æùÎçèû时,()22sin 0exx x g x x -=¢+>,所以()g x 在区间π0,2æöç÷èø上单调递增.又()π00,g 02g æö<>ç÷èø,所以存在唯一零点.当*π2π,2π,2x k k k æùÎ+ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0exx x x x j -=+¢+>所以()g x ¢在*π2π,2π,2k k k æù+ÎçúèûN 上单调递增.又()π2π0,2π+02g k g k æö¢<>ç÷èø¢,所以存在*1π2π,2π,2x k k k æùÎ+ÎçúèûN ,使得()10g x ¢=.即当()12π,x k x Î时,()()10,g x g x <¢单调递减;当1π,2π2x x k æùÎ+çúèû时,()()10,g x g x >¢单调递增.又()π2π0,2π02g k g k æö<+>ç÷èø,所以()g x 在区间*π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点所以()g x 在区间π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点.当3π2π,2π2π,2x k k k æùÎ++ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0e xx x x x j -=+¢+>所以()g x ¢在3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递增.又()3π2π0,2π2π02g k g k æö+<+<ç÷¢¢èø,所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递减:又()3π2π0,2π2π02g k g k æö+>+<ç÷èø,所以存在唯一23π2π,2π2π2x k k æöÎ++ç÷èø,使得()20g x =.所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上有且仅有一个零点.所以()g x 在区间(]2π,2π2π,k k k +ÎN 上有两个零点.所以()g x 在(]0,2024π上共有2024π220242π´=个零点.综上所述,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.(二) 根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.【例2】(2024届天津市民族中学高三下学期5月模拟)已知函数()()ln 2f x x =+(1)求曲线()y f x =在=1x -处的切线方程;(2)求证:e 1x x ³+;(3)函数()()()2h x f x a x =-+有且只有两个零点,求a 的取值范围.【解析】(1)因为()12f x x ¢=+,所以曲线()y f x =在=1x -处的切线斜率为()11112f -==-+¢,又()()1ln 120f -=-+=,所以切线方程为1y x =+.(2)记()e 1x g x x =--,则()e 1xg x ¢=-,当0x <时,()0g x ¢<,函数()g x 在(),0¥-上单调递减;当0x >时,()0g x ¢>,函数()g x 在()0,¥+上单调递增.所以当0x =时,()g x 取得最小值()00e 10g =-=,所以()e 10xg x x =--³,即e 1x x ³+.(3)()()()()()2ln 22,2h x f x a x x a x x =-+=+-+>-,由题知,()()ln 220x a x +-+=有且只有两个不相等实数根,即()ln 22x a x +=+有且只有两个不相等实数根,令()()ln 2,22x m x x x +=>-+,则()()()21ln 22x m x x -+=+¢,当2e 2x -<<-时,()0m x ¢>,()m x 在()2,e 2--上单调递增;当e 2x >-时,()0m x ¢<,()m x 在()e 2,¥-+上单调递减.当x 趋近于2-时,()m x 趋近于-¥,当x 趋近于+¥时,()m x 趋近于0,又()1e 2ef -=,所以可得()m x 的图象如图:由图可知,当10ea <<时,函数()m x 的图象与直线y a =有两个交点,所以,a 的取值范围为10,e æöç÷èø.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.【例3】(2024届山东省烟台招远市高考三模)已知函数()()e x f x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.【解析】(1)求导知()1e xf x a =¢+.当0a ³时,由()1e 10xf x a ¢=+³>可知,()f x 在(),¥¥-+上单调递增;当a<0时,对()ln x a <--有()()ln 1e 1e0a xf x a a --=+>+×=¢,对()ln x a >--有()()ln 1e 1e 0a x f x a a --=+<+×=¢,所以()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.综上,当0a ³时,()f x 在(),¥¥-+上单调递增;当a<0时,()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.(2)当3a =时,()3e xf x x =+,故原方程可化为3e 13e 3e xx xx m x +=++.而()23e 13e 3e 3e 3e 3e 3e x x x x x x xx x x x x x x +-=-=+++,所以原方程又等价于()23e 3e xx x m x =+.由于2x 和()3e3e xxx +不能同时为零,故原方程又等价于()23e 3e x x xm x =×+.即()()2e 3e 90x x x m x m --×-×-=.设()e xg x x -=×,则()()1e xg x x -=-×¢,从而对1x <有()0g x ¢>,对1x >有()0g x ¢<.故()g x 在(],1-¥上递增,在[)1,+¥上递减,这就得到()()1g x g £,且不等号两边相等当且仅当1x =.然后考虑关于x 的方程()g x t =:①若0t £,由于当1x >时有()e 0xg x x t -=×>³,而()g x 在(],1-¥上递增,故方程()g x t =至多有一个解;而()110eg t =>³,()0e e t g t t t t --=×£×=,所以方程()g x t =恰有一个解;②若10e t <<,由于()g x 在(],1-¥上递增,在[)1,+¥上递减,故方程()g x t =至多有两个解;而由()()122222e2e e 2e 2e 12e 22x x x x xxx x g x x g g -------æö=×=×××=××£××=×ç÷èø有1222ln 1ln 222ln 2e2e t t g t t -×-æö£×<×=ç÷èø,再结合()00g t =<,()11e g t =>,()22ln 2ln 2e ln e 1t>>=,即知方程()g x t =恰有两个解,且这两个解分别属于()0,1和21,2ln t æöç÷èø;③若1t e=,则()11e t g ==.由于()()1g x g £,且不等号两边相等当且仅当1x =,故方程()g x t =恰有一解1x =.④若1e t >,则()()11eg x g t £=<,故方程()g x t =无解.由刚刚讨论的()g x t =的解的数量情况可知,方程()()2e 3e 90x x x m x m --×-×-=存在三个不同的实根,当且仅当关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû.一方面,若关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû,则首先有()20Δ93694m m m m <=+=+,且1212119e e m t t t -=£<.故()(),40,m ¥¥Î--È+, 219e m >-,所以0m >.而方程2390t mt m--=,两解符号相反,故只能1t =,2t =23e m >这就得到203e m ->³,所以22243e m m m æö->+ç÷èø,解得219e 3e m <+.故我们得到2109e 3em <<+;另一方面,当2109e 3e m <<+时,关于t 的二次方程2390t mt m --=有两个不同的根1t =,2t 22116e 13319e 3e 9e 3e 2et +×+×++===,2t 综上,实数m 的取值范围是210,9e 3e æöç÷+èø.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x ¢=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于a x ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.【例4】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()ln g x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a ->,且211x a<<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x x x x x x x x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例1】(2024届山西省晋中市平遥县高考冲刺调研)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.【解析】(1)因为()πln sin sin 10f x x x =++,所以1()cos f x x x ¢=+,令()1()cos g x f x x x ==+¢,()21sin g x x x-¢=-,当[]1,e Îx 时,()21sin 0g x x x =--<¢,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()112π11e cos e<cos 0e e 3e 2g =++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的a ,使()()0g f a a =¢=又当()1,x a Î时,()()0g x f x =¢>;当(),e x a Î时,()()0g x f x =¢<;所以()f x 在()1,x a Î上单调递增,在(),e x a Î上单调递减,又因为()ππ1ln1sin1sinsin1sin 1010f =++=+,()()ππe ln e sin e sin1sin e sin 11010f f =++=++>,所以函数()f x 在区间[1,e]上的最小值为()π1sin1sin10f =+.(2)函数()f x 在()0,¥+上有且仅有一个零点,证明如下:函数()πln sin sin 10f x x x =++,()0,x ¥Î+,则1()cos f x x x¢=+,若01x <£,1()cos 0f x x x+¢=>,所以()f x 在区间(]0,1上单调递增,又()π1sin1sin010f =+>,11πππ1sin sin 1sin sin 0e e 1066f æö=-++<-++=ç÷èø,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1πx <£,则ln 0,sin 0x x >³,πsin010>,则()0f x >,若πx >,因为ln ln π1sin x x >>³-,所以()0f x >,综上,函数()f x 在()0,¥+有且仅有一个零点.【例2】(2024届江西省九江市高三三模)已知函数()e e (ax axf x a -=+ÎR ,且0)a ¹.(1)讨论()f x 的单调性;(2)若方程()1f x x x -=+有三个不同的实数解,求a 的取值范围.【解析】(1)解法一:()()e eax axf x a -=-¢令()()e e ax axg x a -=-,则()()2e e0ax axg x a -+¢=>()g x \在R 上单调递增.又()00,g =\当0x <时,()0g x <,即()0f x ¢<;当0x >时,()0g x >,即()0f x ¢>()f x \在(),0¥-上单调递减,在()0,¥+上单调递增.解法二:()()()()e 1e 1e e e ax ax ax ax axa f x a -+-=-=¢①当0a >时,由()0f x ¢<得0x <,由()0f x ¢>得0x >()f x \在(),0¥-上单调递减,在()0,¥+上单调递增②当0a <时,同理可得()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.综上,当0a ¹时,()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.(2)解法一:由()1f x x x -=+,得1e e ax ax x x --+=+,易得0x >令()e e x xh x -=+,则()()ln h ax h x =又()e e x xh x -=+Q 为偶函数,()()ln h ax h x \=由(1)知()h x 在()0,¥+上单调递增,ln ax x \=,即ln xa x=有三个不同的实数解.令()()2ln 1ln ,x x m x m x x x -=¢=,由()0m x ¢>,得0e;x <<由()0m x ¢<,得e x >,()m x \在(]0,e 上单调递增,在()e,¥+上单调递减,且()()110,e em m ==()y m x \=在(]0,1上单调递减,在(]1,e 上单调递增,在()e,¥+上单调递减当0x →时,()m x ¥→+;当x →+¥时,()0m x →,故10ea <<解得10e a -<<或10e a <<,故a 的取值范围是11,00,e e æöæö-Èç÷ç÷èøèø解法二:由()1f x x x -=+得1e e ax ax x x --+=+,易得0x >令()1h x x x -=+,则()h x 在()0,1上单调递减,在()1,¥+上单调递增.由()()e axh h x =,得e ax x =或1e ax x -=两边同时取以e 为底的对数,得ln ax x =或ln ax x =-,ln ax x \=,即ln xa x=有三个不同的实数解下同解法一.【例3】(2024届重庆市第一中学校高三下学期模拟预测)已知函数31()(ln 1)(0)f x a x a x =++>.(1)求证:1ln 0x x +>;(2)若12,x x 是()f x 的两个相异零点,求证:211x x -<【解析】(1)令()1ln ,(0,)g x x x x =+Î+¥,则()1ln g x x ¢=+.令()0g x ¢>,得1ex >;令()0g x ¢<,得10e x <<.所以()g x 在10,e æöç÷èø上单调递减,在1,e ¥æö+ç÷èø上单调递增.所以min 11()10e e g x g æö==->ç÷èø,所以1ln 0x x +>.(2)易知函数()f x 的定义域是(0,)+¥.由()(ln f x a x =+,可得()a f x x ¢=.令()0f x ¢>得x >()0f x ¢<得0<所以()0f x ¢>在æççè上单调递减,在¥ö+÷÷ø上单调递增,所以min 3()ln 333a a f x f a æö==++ç÷èø.①当3ln 3033a aa æö++³ç÷èø,即403e a <£时,()f x 至多有1个零点,故不满足题意.②当3ln 3033a a a æö++<ç÷èø,即43e a >1<<.因为()f x 在¥ö+÷÷ø上单调递增,且(1)10f a =+>.所以(1)0f f ×<,所以()f x 在¥ö+÷÷ø上有且只有1个零点,不妨记为1x 11x <<.由(1)知ln 1x x>-,所以33221(1)0f a a a a a æö=+>+=>ç÷ç÷èø.因为()f x 在æççè0f f <×<,所以()f x 在æççè上有且只有1个零点,记为2x 2x <<211x x <<<<2110x x -<-<.同理,若记12,x x öÎÎ÷÷ø则有2101x x <-<综上所述,211x x -<.【例4】(2022高考全国卷乙理)已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 取值范围.的【解析】(1)当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x -¢¢=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =.(2)()ln(1)e x ax f x x =++,()2e 11(1)()1e (1)ex x xa x a x f x x x +--¢=+=++,设()2()e 1xg x a x=+-1°若0a >,当()2(1,0),()e 10x x g x a x Î-=+->,即()0f x ¢>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意,2°若10a -……,当,()0x Î+¥时,()e 20xg x ax ¢=->所以()g x 在(0,)+¥上单调递增,所以()(0)10g x g a >=+…,即()0f x ¢>所以()f x 在(0,)+¥上单调递增,()(0)0f x f >=,故()f x 在(0,)+¥上没有零点,不合题意.3°若1a <-,(1)当,()0x Î+¥,则()e 20x g x ax ¢=->,所以()g x 在(0,)+¥上单调递增,(0)10,(1)e 0g a g =+<=>,所以存在(0,1)m Î,使得()0g m =,即()0¢=f m .当(0,),()0,()x m f x f x ¢Î<单调递减,当(,),()0,()x m f x f x ¢Î+¥>单调递增,所以当(0,),()(0)0x m f x f Î<=,当,()x f x →+¥→+¥,所以()f x 在(,)m +¥上有唯一零点,又()f x 在(0,)m 没有零点,即()f x 在(0,)+¥上有唯一零点,(2)当()2(1,0),()e 1xx g x a xÎ-=+-,()e2xg x ax ¢=-,设()()h x g x ¢=,则()e 20x h x a ¢=->,所以()g x ¢在(1,0)-上单调递增,1(1)20,(0)10eg a g ¢¢-=+<=>,所以存(1,0)n Î-,使得()0g n ¢=当(1,),()0,()x n g x g x ¢Î-<单调递减当(,0),()0,()x n g x g x ¢Î>单调递增,()(0)10g x g a <=+<,在又1(1)0eg -=>,所以存在(1,)t n Î-,使得()0g t =,即()0f t ¢=当(1,),()x t f x Î-单调递增,当(,0),()x t f x Î单调递减有1,()x f x →-→-¥而(0)0f =,所以当(,0),()0x t f x Î>,所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点,即()f x 在(1,0)-上有唯一零点,所以1a <-,符合题意,综上得()f x 在区间(1,0),(0,)-+¥各恰有一个零点,a 的取值范围为(,1)-¥-.【例5】(2024届辽宁省凤城市高三下学期考试)已知函数()1e ln xf x x x x -=--.(1)求函数()f x 的最小值;(2)求证:()()1e e e 1ln 2xf x x x +>---éùëû.【解析】(1)因为函数()1e ln x f x x x x -=--,所以()()()11111e 11e x x f x x x x x --æö=+--=+-çè¢÷ø,记()11e,0x h x x x -=->,()121e 0x h x x-¢=+>,所以()h x 在()0,¥+上单调递增,且()10h =,所以当01x <<时,()0h x <,即()0f x ¢<,所以()f x 在()0,1单调递减;当1x >时,()0h x >,即()0f x ¢>,所以()f x 在()1,¥+单调递增,且()10f ¢=,所以()()min 10f x f ==.(2)要证()()1e e e 1ln 2xf x x x éù+>---ëû,只需证明:()11e ln 02xx x --+>对于0x >恒成立,令()()11e ln 2xg x x x =--+,则()()1e 0xg x x x x¢=->,当0x >时,令1()()e xm x g x x x=¢=-,则21()(1)e 0xm x x x =+¢+>,()m x 在(0,)+¥上单调递增,即()1e xg x x x=¢-在(0,)+¥上为增函数,又因为222333223227e e033238g éùæöæöêú=-=-<ç÷ç÷êøøëû¢úèè,()1e 10g =¢->,所以存在02,13x æöÎç÷èø使得()00g x ¢=,由()0200000e 11e 0x x x g x x x x ¢-=-==,得020e 1xx =即0201x e x =即0201x e x =即002ln x x -=,所以当()00,x x Î时,()1e 0xg x x x=¢-<,()g x 单调递减,当()0,x x ¥Î+时,()1e 0xg x x x=¢->,()g x 单调递增,所以()()()0320000000022min0122111e ln 2222x x x x x x g x g x x x x x -++-==--+=++=,令()3222213x x x x x j æö=++-<<ç÷èø,则()22153223033x x x x j æö=++=++>ç÷èø¢,所以()x j 在2,13æöç÷èø上单调递增,所以()0220327x j j æö>=>ç÷èø,所以()()()002002x g x g x x j ³=>,所以()11e ln 02xx x --+>,即()()1e e e 1ln 2xf x x x éù+>---ëû.1.(2024届湖南省长沙市第一中学高考最后一卷)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()hx 零点的个数.2.(2024届河南省信阳市高三下学期三模)已知函数()()()ln 1.f x ax x a =--ÎR (1)若()0f x ³恒成立,求a 的值;(2)若()f x 有两个不同的零点12,x x ,且21e 1x x ->-,求a 的取值范围.3.(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数()()1e x f x ax a a -=--ÎR .(1)当2a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 有2个零点,求a 的取值范围.4.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin x f x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.5.(2024届河北省张家口市高三下学期第三次模)已知函数()ln 54f x x x =+-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:3()25f x x>--.6.(2024届上海市格致中学高三下学期三模)已知()e 1xf x ax =--,a ÎR ,e 是自然对数的底数.(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()10f x +=有两个不等实根,求a 的取值范围;(3)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<.7.(2024届河南师范大学附属中学高三下学期最后一卷)函数()e 4sin 2x f x x l l =-+-的图象在0x =处的切线为3,y ax a a =--ÎR .(1)求l 的值;(2)求()f x 在(0,)+¥上零点的个数.8.(2024年天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.9.(2024届河北省高三学生全过程纵向评价六)已知函数()ex axf x =,()sin cosg x x x =+.(1)当1a =时,求()f x 的极值;(2)当()0,πx Î时,()()f x g x £恒成立,求a 的取值范围.10.(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数()()1ln R f x a x x a x=-+Î.(1)讨论()f x 的零点个数;(2)若关于x 的不等式()22ef x x £-在()0,¥+上恒成立,求a 的取值范围.11.(2024届四川省成都石室中学高三下学期高考适应性考试)设()21)e sin 3x f x a x =-+-((1)当a =()f x 的零点个数.(2)函数2()()sin 22h x f x x x ax =--++,若对任意0x ³,恒有()0h x >,求实数a 的取值范围12.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,()cos f x ax x ³恒成立,求实数a 的取值范围.13.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+Î.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.14.(2023届黑龙江省哈尔滨市高三月考)设函数(1)若,,求曲线在点处的切线方程;(2)若,不等式对任意恒成立,求整数k 的最大值.15.(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数零点的个数,并证明;(2)证明:.322()33f x x ax b x =-+1a =0b =()y f x =()()1,1f 0a b <<1ln 1x k f f x x +æöæö>ç÷ç÷-èøèø()1,x Î+¥21()e xf x x=-()f x 2e ln 2cos 0x x x x x --->。
高考数学热点必会题型第5讲 导数中含参讨论问题总结(解析版)
高考数学热点必会题型第5讲 导数中含参讨论问题总结——每天30分钟7天掌握一、重点题型目录【题型】一、由函数的单调区间求参数 【题型】二、由函数在区间上的单调性求参数 【题型】三、含参分类讨论求函数单调性区间 【题型】四、根据极值点求参数【题型】五、有导数求函数的最值(含参) 【题型】六、已知函数最值求参数 【题型】七、参变分离法解决导数问题【题型】八、构造函数并利用函数的单调性判定函数值大小 【题型】九、构造函数法解决导数问题 二、题型讲解总结【题型】一、由函数的单调区间求参数第一天学习及训练例1.(2023·全国·高三专题练习)已知函数()2ln x ax f x x =++的单调递减区间为1,12⎛⎫⎪⎝⎭,则( ). A .(],3a ∈-∞- B .3a =- C .3a = D .(],3a ∈-∞【答案】B【分析】根据()f x 得到()f x ',再根据()f x 的单调递减区间是1,12⎛⎫ ⎪⎝⎭,得到12和1是方程()0f x '=的两个根,代入解方程即可.【详解】由()2ln x ax f xx =++得()221x ax f x x++'=,又()f x 的单调递减区间是1,12⎛⎫ ⎪⎝⎭,所以12和1是方程2210x ax x++=的两个根,代入得3a =-.经检验满足题意故选:B.例2.(2023·全国·高三专题练习)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫⎪⎝⎭上是减函数,则实数a 的取值范围为( ) A.1a > B .1a ≥ C .1a >D .1a ≥-【答案】B【分析】根据函数的单调性知导数小于等于0恒成立,分离参数后由正切函数单调性求解.【详解】由题意,()cos sin 0f x x a x '=-≤在ππ,42⎛⎫⎪⎝⎭上恒成立,即cos 1sin tan x a x x ≥=在ππ,42⎛⎫⎪⎝⎭上恒成立, 因为tan y x =在ππ,42⎛⎫⎪⎝⎭上单调递增,所以tan 1y x =>,所以在ππ,42x ⎛⎫∈ ⎪⎝⎭时,101tan x <<, 所以1a ≥. 故选:B例3.(2022·全国·高三专题练习)已知函数()32f x x ax bx c =+++,()g x 为()f x 的导函数.若()f x 在(0,1)上单调递减,则下列结论正确的是( )A .23a b -有最小值3B .23a b -有最大值C .()()010f f ⋅≤D .()()010g g ⋅≥【答案】D【分析】由()f x 在(0,1)上单调递减,得到()00g b =≤,()1230g a b =++≤,即可判断D ;求出()()()2011f f c a b c ⋅=+++,当0c <时,有()()010f f ⋅>,可否定C ;记23z a b =-,其中(),a b 满足2300a b b ++≤⎧⎨≤⎩,利用数形结合求出,判断A 、B.【详解】由题意可得()()232g x f x x ax b ='=++.因为()f x 在(0,1)上单调递减,所以()0g x ≤在(0,1)上恒成立,即()00g b =≤,()1230g a b =++≤,所以()()010g g ⋅≥, 因为()()0,11f c f a b c ==+++,()f x 在(0,1)上单调递减, 所以1c a b c >+++,即10a b ++<,所以()()()()20111f f c a b c c a b c ⋅=+++=+++,当0c <时,有()()010f f ⋅> 所以C 错误,D 正确. 记23z ab =-,其中(),a b 满足2300a b b ++≤⎧⎨≤⎩,作出可行域如图示:由2300a b b ++=⎧⎨=⎩解得:3,02A ⎛⎫- ⎪⎝⎭.当抛物线21133a z b -=,经过点3,02A ⎛⎫- ⎪⎝⎭时94z =最小,没有最大值.故A 、B 错误.故选:D.例4.(2023·全国·高三专题练习)已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为( )A .B .1-C .1D 【答案】AD【分析】由条件可得()f x 在(1,)+∞上单调递增,再结合导数和单调性的关系列不等式求a 的范围,由此确定正确选项.【详解】设1ln (1)y x x x =-->,则110y x'=->, 所以1ln y x x =--在(1,)+∞上单调递增,所以1ln 0x x -->, 所以ln 1,(1,)x x x <-∈+∞,∴0ln 1x x <<-, ∴110ln 1x x >>-. 又11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立, 所以()f x 在(1,)+∞上单调递增,所以()21()1e 0x f x a x -=--≥'对(1,)x ∀∈+∞恒成立,即211ex x a --≥恒成立.令111(),()ee x x xxg x g x ---='=,当1x >时,()0g x '<,故()(1)1g x g <=, ∴211a -≥,解得a ≥a ≤所以a 的值可以为, 故选:AD.【题型】二、由函数在区间上的单调性求参数例5.(2023·全国·高三专题练习)若函数2()ln 2f x x x x =+--在其定义域的一个子区间(21,21)k k -+内不是单调函数,则实数k 的取值范围是( ) A .33,24⎛⎫- ⎪⎝⎭B .1,32⎡⎫⎪⎢⎣⎭C .3,32⎛⎫- ⎪⎝⎭D .13,24⎡⎫⎪⎢⎣⎭【答案】D【分析】先求出函数的定义域(0,)+∞,则有210k -≥,对函数求导后,令()0f x '=求出极值点,使极值点在(21,21)k k -+内,从而可求出实数k 的取值范围.【详解】因为函数()f x 的定义域为(0,)+∞, 所以210k -≥,即12k ≥, 2121(1)(21)()21x x x x f x x x x x+-+-'=+-==, 令()0f x '=,得12x =或=1x -(舍去), 因为()f x 在定义域的一个子区间(21,21)k k -+内不是单调函数, 所以121212k k -<<+,得4143k -<<, 综上,1324k ≤<, 故选:D例6.(2023·全国·高三专题练习)若函数()324f x x ax x =-++在区间()0,2上单调递增,则实数a 的取值范围为( ) A .[)2,+∞ B .()2,+∞ C .(],2-∞ D .(),2-∞【答案】A【分析】将问题转化为()0f x '≥在()0,2上恒成立,采用分离变量法可得423a x x ≥-,由434x x-<可构造不等式求得结果. 【详解】()f x 在()0,2上单调递增,()23240f x x ax '∴=-++≥在()0,2上恒成立,即234423x a x x x-≥=-在()0,2上恒成立, 又43y x x =-在()0,2上单调递增,43624x x ∴-<-=,24a ∴≥,解得:2a ≥,即实数a 的取值范围为[)2,+∞. 故选:A.例7.(2023·全国·高三专题练习)下列说法正确的有( )A .设{}25A x x =≤≤,{}23B x a x a =≤≤+,若B A ⊆,则实数a 的取值范围是[]1,2 B .“1a >,1b >”是“1ab >”成立的充分条件C .命题p :x ∀∈R ,20x >,则p ⌝:x ∃∈R ,20x <D .“5a ≤”是“函数()()e 23xf x a x -=--是R 上的单调增函数”的必要不充分条件【答案】BD【分析】分B =∅与B ≠∅两种情况讨论,求出参数a 的范围,即可判断A ,根据不等式的性质及充分条件的定义判断B ,根据全称量词命题的否定为特称量词命题判断C ,求出函数的导数,由()0f x '≥恒成立求出a 的取值范围,再根据集合的包含关系判断D 即可; 【详解】解:对于A :当B =∅,即23a a >+,解得3a >时满足B A ⊆, 当B ≠∅,因为B A ⊆,所以352223a a a a +≤⎧⎪≥⎨⎪≤+⎩,解得12a ≤≤,综上可得[][)1,23,a ∈+∞,故A错误;对于B :由1a >,1b >则1ab >,故“1a >,1b >”是“1ab >”成立的充分条件,即B 正确; 对于C :命题p :x ∀∈R ,20x >,则p ⌝:x ∃∈R ,20x ≤,故C 错误;对于D :因为()()e 23xf x a x -=--,所以()()e 2x f x a =-'-,若()f x 在R 上单调递增,则()()e 20xf x a -'=-≥恒成立,所以20a -≤,解得2a ≤,因为(],2-∞ (],5-∞,所以“5a ≤”是“函数()()e 23xf x a x -=--是R 上的单调增函数”的必要不充分条件,故D正确; 故选:BD例8.(2023·全国·高三专题练习)已知函数()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减,则实数m 的最小值是___________【分析】原问题等价于()2cos 206f x x x m π⎛⎫'=+--≤ ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上恒成立,构造函数求最值即可.【详解】由()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减,得()2cos 206f x x x m π⎛⎫'=+--≤ ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,即2cos 26x x m π⎛⎫+-≤ ⎪⎝⎭,令()2cos 26g x x xπ⎛⎫=+- ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,则()4sin 216g x x π⎛⎫'=-+- ⎪⎝⎭,当0,6x π⎡⎤∈⎢⎥⎣⎦时,2662x πππ≤+≤ ,则24sin 246x π⎛⎫≤+≤ ⎪⎝⎭,所以54sin 2+136x π-≤-≤-⎛⎫- ⎪⎝⎭,即()0g x '<,所以()g x 在0,6x π⎡⎤∈⎢⎥⎣⎦是单调递减函数,max ()(0)g x g ≤=得m ≥m第二天学习及训练【题型】三、含参分类讨论求函数单调性区间例9.(2023·全国·高三专题练习)已知()()ln 11axf x x x =+++,则下列说法正确的是( ) A .当0a >时,()f x 有极大值点和极小值点 B .当a<0时,()f x 无极大值点和极小值点 C .当0a >时,()f x 有最大值 D .当a<0时,()f x 的最小值小于或等于0【答案】D【分析】讨论0a >、a<0,利用导数研究()f x 在定义域上的单调性,进而判断极值点及最值情况,即可确定答案. 【详解】由题设,2211()(1)1(1)a x a f x x x x ++'=+=+++且(1,)∈-+∞x ,当0a >时()0f x '>,则()f x 在(1,)-+∞上递增,无极值点和最大值,A 、C 错误; 当a<0时,若(1,1)x a ∈---则()0f x '<,()f x 递减;(1,)x a ∈--+∞则()0f x '>,()f x 递增;所以()(1)1ln()f x f a a a ≥--=++-,即()f x 无极大值点,有极小值点,B 错误; 令()1ln()g a a a =++-且(,0)a ∈-∞,则11()1a g a a a+'=+=, 当1a <-时()0g a '>,()g a 递增;当10a -<<时()0g a '<,()g a 递减; 所以()(1)0g a g ≤-=,即()f x 的最小值小于或等于0,D 正确; 故选:D例10.(2023·全国·高三专题练习)已知函数()ln 1f x x x =--,若不等式()()21f x a x ≥-在区间(]0,1上恒成立,则实数a 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫-∞ ⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】2()(1)0f x a x --≥即为2ln 1(1)0x x a x ----≥,设2()ln 1(1)g x x x a x =----,(0,1]x ∈,求出函数()g x 的导函数,分解12a ≤和12a >讨论函数()g x 的单调性,求出函数()g x 在区间(]0,1上的最小值,即可得解.【详解】解:由已知可得2()(1)0f x a x --≥即为2ln 1(1)0x x a x ----≥, 设2()ln 1(1)g x x x a x =----,(0,1]x ∈, 则(1)(12)()x ax g x x--'=,当0a ≤时,显然()0g x '≤,当102a <≤时,()0g x '≤在(0,1]x ∈上也成立,所以12a ≤时,()g x 在(0,1]上单调递减,()(1)0g x g ≥=恒成立; 当12a >时,当102x a <<时,()0g x '<,当112x a<<时,()0g x '>, 所以()g x 在10,2a ⎛⎤ ⎥⎝⎦上单调递减,在1,12a ⎛⎫ ⎪⎝⎭上单调递增, 于是,存在01,12x a ⎛⎫∈ ⎪⎝⎭,使得0()(1)0g x g <=,不满足()0g x ≥,舍去此情况,综上所述,12a ≤. 故选:A.例11.(2023·全国·高三专题练习)已知()()22e 2e e 2e a a b bm m a m m +--=+-,则( )A .当()1,0m ∈-,a ,(),0b ∈-∞时,a b >B .当()1,0m ∈-,a ,(),0b ∈-∞时,a b <C .当()1,2m ∈,a ,()0,b ∈+∞时,a b >D .当()1,2m ∈,a ,()0,b ∈+∞时,a b < 【答案】AC【分析】根据等号两边式子的结构特征构造函数()f x ,利用导数分类讨论函数()f x 的单调性进行求解.【详解】设()()2e 2e x xf x m m x =+--,因为()()22e 2e e 2e a a b bm m a m m +--=+-,所以()()f a f b b =+,当a ,(),0b ∈-∞时,()()0f a f b b -=<,即()()f a f b <.易知()()()e 12e 1x xf x m '=-+,当()1,0m ∈-时,()0f x '<,所以()f x 在(),0∞-上单调递减, 所以a b >,故选项A 正确,选项B 错误.当a ,()0,b ∈+∞时,()()0f a f b b -=>,即()()f a f b >. 当()1,2m ∈时,令()0f x '=,解得ln x m =-,所以()f x 在(),ln m -∞-上单调递减,在()ln ,m -+∞上单调递增, 所以a b >,故选项C 正确,选项D 错误. 故选:AC.【题型】四、根据极值点求参数例12.(2023·全国·高三专题练习)若函数3()3f x x bx b =-+在区间(0,1)内有极小值,则b 的取值范围是( ) A .(,1)-∞ B .(0,1)C .(1,)+∞D .(1,0)-【答案】B【分析】先利用导数求出函数的极小值点,然后使极小值点在(0,1)内,从而可求出b 的取值范围【详解】由题意,得2()33f x x b '=-,当0b ≤时,()0f x '>在(0,1)上恒成立,所以()f x 在(0,1)上递增,函数无极值, 所以0b >,令()0f x '=,则x =,∴函数在()上()0f x '<,+∞)上()0f x '>,函数递增∴x =∴函数3()3f x x bx b =-+在区间(0,1)内有极小值,∴01, ∴b ∴(0,1) 故选:B .例13.(2023·全国·高三专题练习)若3π-,3π分别是函数()()()sin 0,0f x x ωϕωϕπ=+><<的零点和极值点,且在区间,155ππ⎛⎫⎪⎝⎭上,函数()y f x =存在唯一的极大值点0x ,使得()01f x =,则下列数值中,ω的可能取值是( ) A .814B .994C .1054D .1174【答案】C【分析】由函数的零点和极值点的概念结合正弦函数图象的性质对各个选项进行判断即可. 【详解】设函数()y f x =的最小正周期为T ,由题意得1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩则3(21),4,24k k ωππϕ+⎧=⎪='⎪⎨⎪+⎪⎩其中121221,(,),k k k k k Z k k k =+⎧∈⎨=-⎩'在区间,155ππ⎛⎫ ⎪⎝⎭上, 函数()y f x =存在唯一的极大值点0x ,使得()01f x =, 所以22,51515T πππ-=≤解得030,ω<≤即3(21)30,4k +≤解得19.5.k ≤ 对于D.若1174ω=,则19.k =由11139(),34k k k Z ππϕπωπ=+=+∈且0ϕπ<<可知3,4πϕ=可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立, 当,155x ππ⎛⎫∈ ⎪⎝⎭时1173(2.7,6.6),44x πππ+∈当011739442x ππ+=或132π时,()01f x =都成立, 故不符合; 对于C. 若1054ω=,则17k =,1135,34k k ππϕπωπ=+=+且0ϕπ<<可知 3,4πϕ=可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立,当,155x ππ⎛⎫∈ ⎪⎝⎭时1053(2.5,6)44x πππ+∈,当010539442x ππ+=时,存在唯一的极大值点0x ,使得()01f x =,故符合条件; 对于B. 若949ω=,则16,k =由1133,34k k ππϕπωπ=+=+且0ϕπ<<可知,4πϕ= 可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立,当,155x ππ⎛⎫∈ ⎪⎝⎭时99(1.9,5.2)44x πππ+∈, 当0995442x ππ+=或92π时,()01f x =都成立,故不符合; 对于A. 若148ω=,则13,k =由 112734k k ππϕπωπ=+=+且0ϕπ<<可知3,4πϕ=可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立,当,155x ππ⎛⎫∈ ⎪⎝⎭时,813(2,1,4.8)44x πππ+∈, 当08135442x ππ+=或92π时,()01f x =都成立,故不符合; 故选:C第三天学习及训练【题型】五、有导数求函数的最值(含参)例14.(2023·全国·高三专题练习)设直线x t =与函数()22f x x =,()ln g x x =的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( ) A .1 B .12CD【答案】B【分析】由题意,函数()()22ln y f x g x x x =-=-的最小值即|MN |达到最小值时,再求导分析()()22ln y f x g x x x =-=-的极小值点即可【详解】设函数()()22ln y f x g x x x =-=-,求导数得()()212114x x y x x x+-'=-=因为0x >,故当102x <<时,0'<y ,函数在10,2⎛⎫⎪⎝⎭上为单调减函数, 当12x >时,0'>y ,函数在1,2⎛⎫+∞ ⎪⎝⎭上为单调增函数 所以x 12=为()()22ln y f x g x x x =-=-的极小值点.故当|MN |达到最小时t 的值为12. 故选:B .例15.(2023·全国·高三专题练习)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC △,ECA △,FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起DBC △,ECA △,FAB ,使得D 、E 、F 重合,得到三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:3cm )的最大值为______.【答案】3【分析】连接OD ,交BC 于点G ,设OG x =,则BC =,5DG x =-, 进而算出三棱锥的高和体积,构造函数,令45()2510f x x x =-,5(0,)2x ∈,求导,根据导函数的正负判断单调性进而求出最大值.【详解】由题意,连接OD ,交BC 于点G ,由题意得OD BC ⊥,OG =,即OG 的长度与BC 的长度成正比,设OG x =,则BC =,5DG x =-,三棱锥的高h 221)2ABCS==,则213ABC V Sh =⨯=45()2510f x x x =-,5(0,)2x ∈,34()10050f x x x '=-,令()0f x '≥,即4320x x -≤,解得2x ≤,则()(2)80f x f ≤=,∴3V ,∴体积最大值为3.故答案为:3【点睛】思路点睛:本题将三棱锥体积的计算转化为利用导数研究函数的最值问题,考查学生对这些知识的掌握能力,本题的解题关键是掌握根据导数求单调性的方法,属于中档题.例16.(2023·河北·高三阶段练习)R,2e 12x x x a ∀∈-≥+,则a 的最大值为_____________.【答案】1【分析】R,2e 12x x x a ∀∈-≥+,即R,2e 12x x x a ∀∈--≥,令()2e 12xf x x =--,分1ln2x >和1ln2x ≤两种情况讨论,利用导数求出函数的最小值,即可得出答案. 【详解】解:R,2e 12xx x a ∀∈-≥+,即R,2e 12xx x a ∀∈--≥,令()2e 12xf x x =--,当2e 10x ->,即1ln 2x >时,()2e 12xf x x =--,则()2e 2xf x '=-,当1ln02x <<时,()0f x '<,当0x >时,0f x ,所以函数()f x 在1ln ,02⎛⎫⎪⎝⎭上递减,在()0,∞+上递增,所以当1ln 2x >时,()()min 01f x f ==,当2e 10x -≤,即1ln2x ≤时,()12e 2xf x x =--, 因为函数2e ,2x y y x ==为增函数,所以函数()12e 2xf x x =--在1,ln 2⎛⎫-∞ ⎪⎝⎭上递减,所以当1ln2x ≤时,()min 1ln ln 412f x f ⎛⎫==> ⎪⎝⎭, 综上所述,()()min 01f x f ==, 所以1a ≤, 即a 的最大值为1. 故答案为:1.【题型】六、已知函数最值求参数例17.(2023·广西·模拟预测(文))已知函数()ln f x x ax =+存在最大值0,则a 的值为( ) A .2- B .1e-C .1D .e【答案】B【分析】讨论a 与0的大小关系确定()f x 的单调性,求出()f x 的最大值. 【详解】因为()1f x a x'=+,0x >, 所以当0a ≥时,0fx恒成立,故函数()f x 单调递增,不存在最大值;当a<0时,令()0f x '=,得出1x a=-,所以当10,x a ⎛⎫∈- ⎪⎝⎭时,0fx ,函数单调递增,当1,x a ∈-+∞⎛⎫⎪⎝⎭时,()0f x '<,函数单调递减,所以() max11ln 10f x f a a ⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,解得:=a 1e -. 故选:B.例18.(2023·全国·高三专题练习)若函数()22exx x af x +-=在区间(,1)a a +上存在最小值,则实数a 的取值范围为( ) A .(),1-∞- B .()2,1--C .⎛-∞ ⎝⎭D .1⎫-⎪⎪⎝⎭【答案】D【分析】求得()22exx a f x -++'=,根据()f x 在区间(,1)a a +上存在最小值,得到()00f x '=且()0f a '<,()10f a '+>,设()22g x x a =-++,根据()0g a <且()10g a +>,列出不等式组,即可求解.【详解】由函数()22exx x a f x +-=,可得()22e x x af x -++'=, 且()f x 在区间(,1)a a +上存在最小值, 即()f x '在区间(,1)a a +上存在0(,1)x a a ∈+, 使得()00f x '=且()0f a '<,()10f a '+>,设()22g x x a =-++,即满足()0g a <,且()10g a +>,可得()()2220110g a a a g a a a ⎧=-++<⎪⎨+=--+>⎪⎩1a <<-,即实数a 的取值范围是1⎫-⎪⎪⎝⎭. 故选:D.例19.(2023·全国·高三专题练习)已知函数21()e xx x f x +-=,则下列结论正确的是( )A .函数()f x 只有一个零点B .函数()f x 只有极大值而无极小值C .当e 0k -<<时,方程()f x k =有且只有两个实根D .若当[,)x t ∈+∞时,max 25()e f x =,则t 的最大值为2 【答案】CD【分析】解方程()0f x =判断A ;利用导数探讨()f x 的极值判断B ;分析函数()f x 的性质,借助图象判断C ;由25(2)e f =结合取最大值的x 值区间判断D 作答.【详解】对于A ,由()0f x =得:210x x +-=,解得x =A 不正确;对于B ,对()f x 求导得:22(1)(2)()e ex xx x x x f x '--+-=-=-,当1x <-或2x >时,()0f x '<,当12x -<<时,()0f x '>,即函数()f x 在(,1)-∞-,(2,)+∞上单调递减,在(1,2)-上单调递增,因此,函数()f x 在=1x -处取得极小值(1)e f -=-,在2x =处取得极大值25(2)e f =,B 不正确;对于C ,由选项B 知,作出曲线()y f x =及直线y k =,如图,观察图象得当e 0k -<<时,直线y k =与曲线()y f x =有2个交点,所以当e 0k -<<时,方程()f x k =有且只有两个实根,C 正确; 对于D ,因25(2)e f =,而函数()f x 在(2,)+∞上单调递减,因此当[,)x t ∈+∞时,max25()e f x =, 当且仅当2[,)t ∈+∞,即2t ≤,所以t 的最大值为2,D 正确.故选:CD【点睛】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f (x )=0的解;(2)图象法:作出函数f (x )的图象,观察与x 轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.第四天学习及训练【题型】七、参变分离法解决导数问题例20.(2023·江苏·苏州中学高三阶段练习)若关于x 的不等式(41ln )ln 3k x x x x --<-+对于任意(1,)x ∈+∞恒成立,则整数k 的最大值为( ) A .-2 B .-1 C .0 D .1【答案】C【分析】参变分离将恒成立问题转化为求函数最值问题,然后利用导数求最值可得. 【详解】(41ln )ln 3k x x x x --<-+对于任意(1,)x ∈+∞恒成立 等价于ln 34ln x k x x x<++对于任意(1,)x ∈+∞恒成立 令ln 3()ln x f x x x x =++,则2221ln 13ln 2()x x x f x x x x x ---'=+-= 令()ln 2g x x x =--,则11()10x g x x x-'=-=> 所以()g x 在(1,)+∞上单调递增,又(3)1ln30,(4)2ln 40g g =-<=-> 所以()g x 在()3,4有且仅有一个根0x ,满足00ln 20x x --=,即00ln 2x x =- 当0(1,)x x ∈时,()0g x <,即()0f x '<,函数()f x 单调递减, 0(,)x x ∈+∞时,()0g x >,即()0f x '>,函数()f x 单调递增,所以0min 000000231()()21x f x f x x x x x x -==+-+=+-由对勾函数可知001113114134x x +-<+-<+-,即0713()34f x << 因为04()k f x <,即0()4f x k <,0()71312416f x <<,Z k ∈ 所以0k ≤. 故选:C例21.(2023·全国·高三专题练习)已知1a >,1x ,2x ,3x 均为2x a x =的解,且123x x x <<,则下列说法正确的是( ) A .1(2,1)x ∈-- B .2e (1,e )a ∈ C .120x x +< D .232e x x +<【答案】B【分析】A 选项:根据“三个等价”,将方程根的问题转化成构造出的函数零点的问题,利用零点存在性定理确定出1x 的取值情况;B ,C ,D 选项:对方程变形,参变分离构造函数,从函数的角度以及利用极值点偏移可以得出相应结论,详细过程见解析.【详解】对于A ,令2()x f x a x =-,因为1a >,所以()f x 在(,0)-∞上单调递增,与x 轴有唯一交点,由零点存在性定理,得1(1)10f a --=-<,0(0)00f a =->,则1(1,0)x ∈-,故A 错误. 对于B ,C ,D ,当0x >时,两边同时取对数,并分离参数得到ln ln 2a xx=, 令ln ()x g x x =,()21ln xg x x -'∴=, 当()0,e x ∈时,()0g x '>,()g x 单调递增; 当()e,x ∈+∞时,()0g x '<,()g x 单调递减; 如图所示,∴当0x >时,ln 2a y =与ln ()xg x x =的图象有两个交点,ln 1(0,)2ea ∈,解得2e (1,e )a ∈,故B 正确; ∴2(1,e)x ∈,由A 选项知1(1,0)x ∈-,120x x ∴+>,故C 错误;由极值点偏移知识,此时函数()g x 的极值点左移,则有23e 2x x +>,故D 错误. 故选:B.例22.(2023·上海·高三专题练习)在空间直角坐标系O xyz -中,三元二次方程所对应的曲面统称为二次曲面.比如方程2221x y z ++=表示球面,就是一种常见的二次曲面.二次曲面在工业、农业、建筑等众多领域应用广泛.已知点(,,)P x y z 是二次曲面22420x xy y z -+-=上的任意一点,且0x >,0y >,0z >,则当zxy取得最小值时,不等式ln e 3022xa yx za +-≥恒成立,则实数a 的取值范围是________.【答案】[e,)-+∞ 【分析】先通过zxy取得最小值这个条件找出当,,x y z 的关系,带入后一个不等式,利用对数恒等式变型,此后分离参数求最值即可.【详解】根据题意22420x xy y z -+-=,带入z xy 可得:2224212222z z x xy y x y xy xy xy y x -+===+-,而0x >,0y >,利用基本不等式222x y y x +≥=,当22x y y x =,即2y x =取得等号,此时22224246z x x x x x =-⋅+=,即23z x =,综上可知,当z xy 取得最小值时,223y x z x =⎧⎨=⎩,带入第二个式子可得,2e ln 02x a x ax x +-≥,即e ln 0x ax a x x +-≥,于是ln e ln (ln )0xx x ax a x e a x x x-+-=+-≥,设()ln u u x x x ==-,11()1x u x x x -'=-=,故当1x >时,()u x 递增,01x <<时,()u x 递减,min ()(1)1u x u ==;于是原不等式转化为1u ≥时,0u e au +≥恒成立,即u e a u -≤在1u ≥时恒成立,设()u e h u u=(1)u ≥,于是2(1)()0u e u h u u -'=≥,故()h u 在1u ≥时单调递增,min ()(1)h u h e ==,故a e -≤,a e ≥-即可.故答案为:[e,)-+∞ 【点睛】本题e ln 0xax a x x+-≥恒成立的处理用到了对数恒等式,若直接分离参数求最值,会造成很大的计算量.【题型】八、构造函数并利用函数的单调性判定函数值大小例23.(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∴R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣1)∴(﹣1,0)B .(0,1)∴(1,+∞)C .(﹣∞,﹣1)∴(0,1)D .(﹣1,0)∴(1,+∞)【答案】D【分析】构造函数()()f x g x x =,求导结合题意可得()()f x g x x =的单调性与奇偶性,结合()10g -=求解即可【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'= ∴当x >0时,有()()0xf x f x '->,∴当x >0时,()0g x '>,∴函数()()f x g x x=在(0,+∞)上为增函数, ∴函数f (x )是奇函数,∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数,g (x )在(﹣∞,0)上递减,由f (﹣1)=0得,g (﹣1)=0,∴不等式f (x )>0∴x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∴(1,+∞),故选:D .例24.(2023·全国·模拟预测)以下数量关系比较的命题中,正确的是( )A .2e e 2>B .2ln 23>C .ln π1πe <D .ln 2ln π2π> 【答案】ABC【分析】令()()eln 0f x x x x =->,利用导数研究函数的单调性,进而可判断A ;根据指数函数与对数函数的单调性可判断B ;令()()ln 0x g x x x =>,利用导数研究函数的单调性,进而可判断CD ;【详解】对于A :设()()eln 0f x x x x =->,则()()e e 10x f x x x x -'=-=>, 当0e x <<时,0f x ,函数单调递增;当e x >时,()0f x '<,函数单调递减; 所以()()e elne e 0f x f <=-=,所以()()2eln 22e 0f f =-<=,即2>eln 2,所以 2e e 2>,故A 正确;对于B :因为28e >,所以2ln8ln e >,所以3ln 22>,即2ln 23>,故B 正确;对于CD :设()()ln 0x g x x x =>,()21ln x g x x-'=, 当0e x <<时,()0g x '>,函数单调递增;当e x >时,()0g x '<,函数单调递减; 所以()()e πg g >,即ln π1πe<,故C 正确; 又()()()e π4g g g >>,所以ln πln 4ln 2π42>=,故D 错误; 故选:ABC 第五天学习及训练【题型】九、构造函数法解决导数问题例25.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln 2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞,【答案】D 【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解.【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= , 由)(e 0x f x +>,得)>(e (2)x g g ,∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .例26.(2023·全国·高三专题练习)已知e ,3,e a b c πππ===,则它们的大小关系是( )A .a b c >>B .c b a >>C .b c a >>D .c a b >> 【答案】C【分析】由y x π=在区间(0,)+∞上为单调递增函数,可得到b c >,设()eln f x x x =-,利用导数求得函数()f x 单调递增,可得eln 0ππ->,进而得到c a >,即可求解.【详解】由函数y x π=在区间(0,)+∞上为单调递增函数,因为3e >,所以3e ππ>,即b c >,设()eln f x x x =-,可得()e 1f x x '=-, 令()e 10f x x '=-=,解得x e =, 当e x >时,0f x ,()f x 单调递增,可得()()e 0f f π>=,即eln 0ππ->,即eln ππ>,两边取e 的指数,可得e e ππ>,即c a >,所以b c a >>.故选:C.例27.(2023·江西·赣州市赣县第三中学高三期中(理))设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫ ⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .(D .e 3⎛ ⎝ 【答案】C【分析】构造函数()()3e xf xg x =,由已知可得函数()g x 在R 上为增函数,不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,根据函数的单调性即可得解. 【详解】解:令()()3e x f x g x =,则()()()33e xf x f xg x '-'=,因为()()()3R f x f x x '>∈,所以()()()330e xf x f xg x '-'=>, 所以函数()g x 在R 上为增函数,不等式()3ln f x x <即不等式()3ln <1>0f x x x ⎧⎪⎨⎪⎩,又()()()3ln 3ln ln ln e x f x f x g x x ==,11313e f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭, 所以不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭, 即1ln 3x <,解得0x << 所以不等式()3ln f x x <的解集为(. 故选:C.例28.(2023·全国·高三专题练习)已知函数()()()()e 1,1ln x f x x g x x x =+=+,若()()120f x g x =>,则21x x 可取( ) A .1B .2C .eD .2e【答案】CD 【分析】由()()()ln 1ln ln e 1x g x x x x =+=+,利用同构结合()f x 在(0,)+∞上单调递增,即可得到12ln x x =,则()12111e ,0x x x x x =>,记e (),(0)x h x x x=>,求出()h x '即可判断()h x 在(0,)+∞上的单调性,即可得出21e x x ≥,由此即可选出答案. 【详解】因为()()120f xg x =>,所以120,1x x >>,因为()e ()0e e 111x x x x x x f =+'+++>=恒成立,所以()f x 在(0,)+∞上单调递增,又()()()ln 1ln ln e 1x g x x x x =+=+,因为()()12f x g x =,即()()12ln 12e 1ln e 1x x x x +=+,所以1122ln e x x x x =⇒=, 所以()12111e ,0x x x x x =>, 记e (),(0)xh x x x=>, 所以2(1)()x e x h x x '-= 当01x <<时,()0h x '<,()h x 单调递减,当1x >时,()0h x '>,()h x 单调递增,所以()(1)e h x h ≥=,即21e x x ≥ 故选:CD.【点睛】本题考查利用导数求函数的最值,属于难题,其中将()()()ln 1ln ln e 1x g x x x x =+=+变形为()()e 1x f x x =+的结构,是解本题的关键.。
导数典型例题(含答案)
导数典型例题导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点.一、与导数概念有关的问题【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 A.0 B.1002 C.200 D.100! 解法一 f '(0)=xf x f x ∆-∆+→∆)0()0(lim=xx x x x ∆--∆-∆-∆∆→∆0)100()2)(1(lim=lim 0→∆x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D.解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D.点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解.【例2】 已知函数f (x )=nn n k k n n n n x c nx c k x c x c c 1121221++++++ ,n ∈N *,则 x x f x f x ∆∆--∆+→∆)2()22(lim= .解 ∵xx f x f x ∆∆--∆+→∆)2()22(lim=2xf x f x ∆-∆+→∆2)2()22(lim+[]xf x f x ∆--∆-+→∆-)2()(2lim=2f '(2)+ f '(2)=3 f '(2),又∵f '(x )=1121--+++++n n n k k n n n x c x c x c c ,∴f '(2)=21(2nn n k n k n n c c c c 222221+++++ )=21[(1+2)n -1]= 21(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如xm x f x m x f x ∆--∆-→∆-)()(000lim,且其定义形式可以是xm x f x m x f x ∆--∆-→∆)()(000lim,也可以是00)()(limx x x f x f x --→∆(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关知识的综合题,连接交汇、自然,背景新颖.【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .解 ∵S =πR 2,而R =R (t ),t R '=2 cm/s ,∴t S '=t R )π(2'=2πR ·t R '=4πR ,∴t S '/R =10=4πR/R =10=40π cm 2/s.点评 R 是t 的函数,而圆面积增加的速度是相当于时间t 而言的(R 是中间变量),此题易出现“∵S =πR 2,S '=2πR ,S '/R =10=20π cm 2/s ”的错误.本题考查导数的物理意义及复合函数求导法则,须注意导数的物理意义是距离对时间的变化率,它是表示瞬时速度,因速度是向量,故变化率可以为负值.2004年高考湖北卷理科第16题是一道与实际问题结合考查导数物理意义的填空题,据资料反映:许多考生在求出距离对时间的变化率是负值后,却在写出答案时居然将其中的负号舍去,以致痛失4分.二、与曲线的切线有关的问题【例4】 以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是A.⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3 B. []π,0 C.⎥⎦⎤⎢⎣⎡4π3,4π D. ⎥⎦⎤⎢⎣⎡4π,0∪⎦⎤⎢⎣⎡4π3,2π 解 设过曲线y =sin x 上点P 的切线斜率角为α,由题意知,tan α=y '=cos x . ∵cos x ∈[-1,1], ∴tan α∈[-1,1],又α∈[)π,0,∴α∈⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3.故选A.点评 函数y =f (x )在点x 0处的导数f '(x 0)表示曲线,y =f (x )在点(x 0,f (x 0))处的切线斜率,即k =tan α(α为切线的倾斜角),这就是导数的几何意义.本题若不同时考虑正切函数的图像及直线倾斜角的范围,极易出错.【例5】 曲线y =x 3-ax 2的切线通过点(0,1),且过点(0,1)的切线有两条,求实数a 的值.解 ∵点(0,1)不在曲线上,∴可设切点为(m ,m 3-am 2).而y '=3x 2-2ax , ∴k 切=3m 3-2am ,则切线方程为y =(3m 3-2am )x -2m 3-am 2. ∵切线过(0,1),∴2m 3-am 2+1=0.(*)设(*)式左边为f (m ),∴f (m )=0,由过(0,1)点的切线有2条,可知f (m )=0有两个实数解,其等价于“f (m )有极值,且极大值乘以极小值等于0,且a ≠0”.由f (m )=2m 3-am 2+1,得f '(m )= 6m 3-am 2=2m (3m -a ),令f '(m )=0,得m =0,m =3a, ∴a ≠0,f (0)·f (3a )=0,即a ≠0,-271a 3+1=0,∴a =3.点评 本题解答关键是把“切线有2条”的“形”转化为“方程有2个不同实根”的“数”,即数形结合,然后把三次方程(*)有两个不同实根予以转化.三次方程有三个不同实根等价于“极大值大于0,且极小值小于0”.另外,对于求过某点的曲线的切线,应注意此点是否在曲线上.三、与函数的单调性、最(极)值有关的问题【例6】 以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是A.①、②B.①、③C.③、④D.①、④解 由题意知导函数的图像是抛物线.导函数的值大于0,原函数在该区间为增函数;导函数的值小于0,原函数在该区间为减函数,而此抛物线与x 轴的交点即是函数的极值点,把极值点左、右导数值的正负与三次函数在极值点左右的递增递减结合起来考虑,可知一定不正确的图形是③、④,故选C.点评 f '(x )>0(或<0)只是函数f '(x )在该区间单递增(或递减)的充分条件,可导函数f '(x )在(a ,b )上单调递增(或递减)的充要条件是:对任意x ∈(a ,b ),都有f '(x )≥0(或≤0)且f '(x )在(a ,b )的任意子区间上都不恒为零.利用此充要条件可以方便地解决“已知函数的单调性,反过来确定函数解析式中的参数的值域范围”问题.本题考查函数的单调性可谓新颖别致.【例7】函数y =f (x )定义在区间(-3,7)上,其导函数如图所示,则函数y =f (x )在区间(-3,7)上极小值的个数是 个.解 如图,A 、O 、B 、C 、E 这5个点是函数的极值点,观察这5个极值点左、右导数的正、负,可知O 点、C 点是极小值点,故在区间(-3,7)上函数y =f (x )的极小值个数是2个.点评 导数f '(x )=0的点不一定是函数y =f (x )的极值点,如使f '(x )=0的点的左、右的导数值异号,则是极值点,其中左正右负点是极大值点,左负右正点是极小值点.本题考查函数的极值可以称得上是匠心独运.【例8】 设函数f (x )与数列{a n }满足关系:①a 1>α,其中α是方程f (x )=x 的实数根;②a n+1=f (a n ),n ∈N *;③f (x )的导数f '(x )∈(0,1).(1)证明:a n >α,n ∈N *;(2)判断a n 与a n+1的大小,并证明你的结论. (1)证明:(数学归纳法)当n =1时,由题意知a 1>α,∴原式成立. 假设当n =k 时,a k >α,成立. ∵f '(x )>0,∴f (x )是单调递增函数.∴a k+1= f (a k )> f (α)=α,(∵α是方程f (x )= x 的实数根)即当n =k +1时,原式成立.故对于任意自然数N *,原式均成立.(2)解:g (x )=x -f (x ),x ≥α,∴g '(x )=1-f '(x ),又∵0< f '(x )<1,∴g '(x )>0. ∴g '(x )在[)+∞,α上是单调递增函数.而g '(α)=α-f (α)=0,∴g '(x )>g (α) (x >α),即x >f (x ). 又由(1)知,a n >α,∴a n >f (a n )=a n+1.点评 本题是函数、方程、数列、导数等知识的自然链接,其中将导数知识融入数学归纳法,令人耳目一新.四、与不等式有关的问题【例9】 设x ≥0,比较A =xe -x ,B =lg(1+x ),C =xx +1的大小.解 令f (x )=C -B=xx +1-lg(1+x ),则f '(x )=xx x ++-+1)1(2)11(2>0,∴f (x )为[)+∞,0上的增函数,∴f (x )≥f (0)=0,∴C ≥B .令g (x )=B -A =lg(1+x )-xe -x,则当x ≥0时,g '(x )=xx e x +---1)1(12≥0,∴g (x )为[)+∞,0上的增函数,∴g (x )≥g (0)=0,∴B ≥A .因此,C ≥B ≥A (x =0时等号成立).点评 运用导数比较两式大小或证明不等式,常用设辅助函数法,如f (a )=φ(a ),要证明当x >a 时,有f (a )=φ(a ),则只要设辅助函数F (x )= f (a )-φ(a ),然后证明F (x )在x >a 单调递减即可,并且这种设辅助函数法有时可使用多次,2004年全国卷Ⅱ的压轴题就考查了此知识点.五、与实际应用问题有关的问题【例10】 某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y 万元与技术改造投入x 万元之间满足:①y 与(a -x )和x 2的乘积成正比;②当2ax =时,y =a 3.并且技术改造投入比率:)(2x a x-∈(]t ,0,其中t 为常数,且t ∈(]2,0.(1)求y =f (x )的解析式及定义域;(2)求出产品的增加值y 的最大值及相应的x 值. 解:(1)由已知,设y =f (x )=k (a -x )x 2,∵当2a x =时,y = a 3,即a 3=k ·2a ·42a ,∴k =8,则f (x )=8-(a -x )x 2.∵0<)(2x a x-≤t ,解得0<x ≤122+t at .∴函数f (x )的定义域为0<x ≤122+t at .(2)∵f '(x )= -24x 2+16ax =x (-24x +16a ),令f '(x )=0,则x =0(舍去),32ax =,当0<x <32a 时,f '(x )>0,此时f (x )在(0,32a)上单调递增;当x >32a 时,f '(x )<0,此时f (x )是单调递减.∴当122+t at ≥32a 时,即1≤t ≤2时,y max =f (32a )=32732a ;当122+t at <32a 时,即0<t <1时,y max =f (122+t at )=323)12(32+t t a . 综上,当1≤t ≤2时,投入32a 万元,最大增加值是32732a ,当0<t <1时,投入122+t at万元,最大增加值是323)12(32+t t a .点评 f '(x 0)=0,只是函数f (x )在x 0处有极值的必要条件,求实际问题的最值应先建立一个目标函数,并根据实际意义确定其定义域,然后根据问题的性质可以断定所建立的目标函数f (x )确有最大或最小值,并且一定在定义区间内取得,这时f (x )在定义区间内部又只有一个使f '(x 0)=0的点x 0,那么就不必判断x 0是否为极值点,取什么极值,可断定f (x 0)就是所求的最大或最小值.。
导数问题中的双参数问题
导数问题中的双参数问题导数问题中双参数证明问题例1:设0a >0) ,常规方法证明:(1)先证右边不等式,设ϕ(x ) =lnx -lna -111a (x −a ) 2因为ϕ(x)=−(+) =−故当x>a时,ϕ(x ) 单调减少,又ϕ(a ) =0,所以,当x>a时,ϕ(x )从而当b>a>0时,lnx -lna a >0)1(x-a) 2因为f (x) =2x(lnx-lna ) +(x +a ) −2a =2x(lnx-lna) +>0,x x ' 22故当x>a时,f (x ) 单调增加,有f (a ) =0,所以当x>a时,f (x ) >f(a) =0,即(x 2+a 2)(lnx -lna ) −2a (x -a ) >0. 从而当b>a>0时,有(a 2+b 2)(lnb -lna ) −2a(b-a ) >0, 即综合(1)(2)有2a lnb -lna 1. 上面的解法固然易想,但是计算量有点大容易出错,这个时候如果用构造函数法的话,就可以减少一定程度的计算量。
我们注意到,函数中有两个参数a,b ,但是我们所学的函数都是一个变量的,为了好设函数,我们希望有方法把函数变成一个变量。
我们以左式为例。
为了证明2a lnb -lnab b b b ⇒2(-1)b 这个时候我们注意到不等式中剩下一个参数,所以很容易设函数a 2a(b-a )f (x ) =(1+x 2) ln x −2(x −1), (x >1) ,(因为a0, (x >1) 恒成立。
此时f ' (x ) =2x ln x ++x −2, (x >1) f ' ' (x ) =2ln x −1x 1+3, (x >1) ,2x注意到f ' ' (x ) 是单调递增函数,所以f ' ' (x ) >f ' ' (1) =2>0,即f ' (x ) 单调递增. 又f ' (x ) >f ' (1) =0,所以f (x ) 单调递增,即f (x ) >f (1) =0,即f (x ) =(1+x 2) ln x −2(x −1) >0, (x >1) ,所以左式得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题02导数中的参数问题【题型综述】导数中的参数问题主要指的是形如“已知不等式成立/存在性/方程的根/零点等条件,求解参数的取值或取值范围”。
这类型题目在近几年的高考全国卷还是地方卷中,每一年或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型。
学生要想解决这类型的题目,关键的突破口在于如何处理参数,本专题主要介绍分类讨论法和分离参数法。
一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的,如下面的第2种情形),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离。
1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题。
例1.已知函数()ln sin f x x a x =-在区间,64ππ⎡⎤⎢⎥⎣⎦上是单调增函数,则实数a 的取值范围为()A .43,π⎛-∞⎝⎦B .42,π⎛-∞⎝⎦C .4243,ππ⎡⎢⎣⎦D .42,π⎡⎫+∞⎪⎢⎪⎣⎭【思路引导】已知函数()f x 在固定区间上的单调性,先转化为()11cos 0cos f x a x a x x x'=-≥⇒≤在固定区间上恒成立,cos 0x >在固定区间上是成立的,故而把自变量x 与参数a 进行完全分离,转化为求不含参函数()1cos h x x x=的最值问题,再利用求导求单调性就可以求的函数()h x 的最值。
∴()22210424224p x p πππ⎛⎫⎫≤=-+⨯=-<⎪ ⎪⎝⎭⎝⎭∴()0h x '<在,64ππ⎡⎤⎢⎥⎣⎦上恒成立,∴()h x 在,64ππ⎡⎤⎢⎥⎣⎦上减函数,∴4242a h ππ⎛⎫≤= ⎪⎝⎭,实数a 的取值范围为42,π⎛-∞ ⎝⎦,故选B .2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了。
例2.已知函数()3232f x x x mx m =-+--,若存在唯一的正整数0x ,使得()00f x >,则m 的取值范围是()A .()0,1B .1,13⎡⎫⎪⎢⎣⎭C .2,13⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭【思路引导】该题为含参数的存在性问题,()00f x >可以进行半分离为3232x x mx m -+>+,再利用数形结合的思想对g 3232)x x x h x m x =-+=+(),()(的图像进行分析即可。
即044 133m m m⎪≤⎪-⎩+⎧⎨>>,解得213a ≤<,所以m 的取值范围是2,13⎡⎫⎪⎢⎣⎭,故选C 。
二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论。
1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程,可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决。
例3.当0x >时,不等式()22131ln 222x a x a x a a +-->-恒成立,则a 的取值范围是()A .[)()0,11,⋃+∞B .()0,+∞C .(](),01,-∞⋃+∞D .()(),11,-∞⋃+∞【思路引导】该含参数的恒成立问题可以转化为求解函数()()22131ln 222f x x a x a x a a =+---+的最值,利用求导求单调性的标准过程进行求解,求导后关键是解决含参数的二次函数不等式,可以依次确定对应二次函数的定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较),然后做出简图,即可得到函数的单调性,进而求的()f x的最值。
()()10min g a g ==,故当0a >时且1a ≠时()0f x >综上a 的取值范围是[)()0,11,⋃+∞,故选A 2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程,可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论。
即可解决。
例4.函数()()211,12xf x x e kx k ⎛⎫⎛⎤=--∈ ⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =()A .()32ln22ln2--B .1- C .()22ln22ln2k--D .()31k k e k --【思路引导】该题为含参数的最值问题,关键是确定单调性和区间,即含参数的导函数在区间上的符号,该导数含f’(x )=x xe −2kx =x (xe −2k )含有指数,且()'0f x =有两个根,故而要根据两个根的大小和两根与固定区间端点的大小进行相应的讨论,确定单调性,再确定最值。
【同步训练】1.已知函数()ln a f x x x=-,若()2f x x <在()1,+∞上恒成立,则a 的取值范围是()A .[)1,-+∞B .[)1,1-C .()1,-+∞D .()1,1-【思路引导】该恒成立问题可以转化为含参数的最值问题,然后进行参数完全可分离,求解不含参函数的最值即可解决。
【详细解析】由题意得3ln a x x x >-,令3ln (1)y x x x x =->21ln 12,40,y x x y x x∴=+-=-'<''2ln 12ln1120,y x x ∴<+'=+--=1ln1111y a ∴<⨯-=-∴≥-;故选A .2.设()ln f x x =,若函数()()g x f x ax =-在区间()20,e 上有三个零点,则实数a 的取值范围是()A .10,e ⎛⎫ ⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭C .222,e e ⎛⎫⎪⎝⎭D .221,e e ⎛⎫⎪⎝⎭【思路引导】()()g x f x ax =-的零点可以半分离为()f x 与直线y ax =的交点,再利用数学结合和切线的性质求解即可。
3.不等式()()2ln 20x a x x +++≥的解集为A ,若[)1,A -+∞⊆,则实数a 的取值范围是()A .[)0,+∞B .[]0,1C .[]0,e D .[]1,0-【思路引导】该题为恒成立问题,可以转化为含有参数的最值问题,求导可得是含参数的二次项,所以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据.进行分类讨论,得到单调性和最值即可。
4.当0x ≥时,()ln 11xxe a x x ≥++恒成立,则a 的取值范围为()A .(],1-∞B .(],e -∞C .1,e⎛⎤-∞ ⎥⎝⎦D .(],0-∞【思路导引】该类恒成立问题,因为()ln 10x +>,可以使用分离参数法进行完全分离,然后转化为不含参函数的最值问题,求导求单调性即可。
【详细解析】当x ≥0时,1x xe x +≥aln (x +1)恒成立,∴()()()·,1ln 1xx e a f x x x ≤=++x ≥0则f ′(x )=()()()()2221ln 11ln1x xe x x xe x x ++-++,再设g (x )=(1+x )2ln (x +1)﹣x ,则g ′(x )=(1+x )ln (x +1)+1+x ﹣x =(1+x )ln (x +1)+1>0恒成立,∴g (x )在[0,+∞)上单调递增,∴g (x )≥g (0)=0,∴f ′(x )≥0∴f ′(x )在[0,+∞)上单调递增,∴f (x )≥f (0),∵根据洛必达法则可得∵f (0)=1∴a ≤1,故a 的取值范围为(﹣∞,1],故答案为A 。
5.已知函数()()()221ln ,,1xf x ax a x x a Rg x e x =-++∈=--,若对于任意的()120,,x x R ∈+∞∈,不等式()()12f x g x ≤恒成立,,则实数a 的取值范围为()A.[)1,0- B.[]1,0- C.3,2⎡⎫-+∞⎪⎢⎣⎭D.3,2⎛⎤-∞- ⎥⎝⎦【思路导引】该问题是恒成立和存在性问题的综合,都转化为最值问题,但是参数无法进行分离,所以带参数求导为二次项,故而根据含参数根的大小和根与区间端点的大小进行分类讨论,得最值即可。
综上可知10a -≤≤.故选B 6.已知函数()()()21,,2xx f x e a e e aex b a b R =+--+∈(其中e 为自然对数底数)在1x =取得极大值,则a 的取值范围是()A.0a < B.0a ≥ C.0e a -≤< D.a e<-【思路导引】该类已知极值情况,求参数取值范围的题目,可以先转化为已知导函数的零点情况,求参数取值范围,求导数后为含参数的指数形式,根据对应指数方程的根情况进行讨论即可。