人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_18
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_13

2.1.2演绎推理学习目标 1.理解演绎推理的意义.2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的区别和联系.思考分析下面几个推理,找出它们的共同点.(1)所有的金属都能导电,铀是金属,所以铀能够导电;(2)一切奇数都不能被2整除,(2100+1)是奇数,所以(2100+1)不能被2整除.答案问题中的推理都是从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理叫演绎推理.梳理演绎推理的定义特点知识点二三段论思考所有的金属都能导电,铜是金属,所以铜能导电,这个推理可以分为几段?每一段分别是什么?答案分为三段.大前提:所有的金属都能导电.小前提:铜是金属.结论:铜导电.梳理三段论的一般模式类型一演绎推理与三段论例1将下列演绎推理写成三段论的形式.(1)平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分;(2)等腰三角形的两底角相等,∠A,∠B是等腰三角形的两底角,则∠A=∠B;(3)通项公式为a n=2n+3的数列{a n}为等差数列.解(1)平行四边形的对角线互相平分,大前提菱形是平行四边形,小前提菱形的对角线互相平分.结论(2)等腰三角形的两底角相等,大前提∠A,∠B是等腰三角形的两底角,小前提∠A=∠B.结论(3)在数列{a n}中,如果当n≥2时,a n-a n-1为常数,则{a n}为等差数列,大前提当通项公式为a n=2n+3时,若n≥2,则a n-a n-1=2n+3-[2(n-1)+3]=2(常数),小前提通项公式为a n=2n+3的数列{a n}为等差数列.结论反思与感悟用三段论写推理过程时,关键是明确大、小前提,三段论中的大前提提供了一个一般性的原理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系.有时可省略小前提,有时甚至也可把大前提与小前提都省略,在寻找大前提时,可找一个使结论成立的充分条件作为大前提.跟踪训练1(1)推理:“①矩形是平行四边形;②正方形是矩形;③所以正方形是平行四边形”中的小前提是________.(2)函数y=2x+5的图象是一条直线,用三段论表示为大前提:________________________________________________________________.小前提:______________________________________________________________.结论:________________________________________________________________.答案(1)②(2)一次函数y=kx+b(k≠0)的图象是一条直线函数y=2x+5是一次函数函数y=2x+5的图象是一条直线类型二三段论的应用命题角度1用三段论证明几何问题例2如图,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,DE∥BA,求证:ED=AF,写出三段论形式的演绎推理.证明因为同位角相等,两直线平行,大前提∠BFD与∠A是同位角,且∠BFD=∠A,小前提所以FD∥AE.结论因为两组对边分别平行的四边形是平行四边形,大前提DE∥BA,且FD∥AE,小前提所以四边形AFDE为平行四边形.结论因为平行四边形的对边相等,大前提ED和AF为平行四边形AFDE的对边,小前提所以ED=AF.结论反思与感悟(1)用“三段论”证明命题的格式××××××(大前提)××××××(小前提)××××××(结论)(2)用“三段论”证明命题的步骤①理清证明命题的一般思路;②找出每一个结论得出的原因;③把每个结论的推出过程用“三段论”表示出来.跟踪训练2已知:在空间四边形ABCD中,点E,F分别是AB,AD的中点,如图所示,求证:EF∥平面BCD.证明因为三角形的中位线平行于底边,大前提点E、F分别是AB、AD的中点,小前提所以EF∥BD.结论若平面外一条直线平行于平面内一条直线,则直线与此平面平行,大前提EF⊄平面BCD,BD⊂平面BCD,EF∥BD,小前提所以EF∥平面BCD.结论命题角度2用三段论证明代数问题例3设函数f(x)=e xx2+ax+a,其中a为实数,若f(x)的定义域为R,求实数a的取值范围.解若函数对任意实数恒有意义,则函数定义域为R,大前提因为f(x)的定义域为R,小前提所以x2+ax+a≠0恒成立.结论所以Δ=a 2-4a <0, 所以0<a <4.即当0<a <4时,f (x )的定义域为R . 引申探究若例3的条件不变,求f (x )的单调递增区间. 解 ∵f ′(x )=x (x +a -2)e x(x 2+ax +a )2,由f ′(x )=0,得x =0或x =2-a . ∵0<a <4,∴当0<a <2时,2-a >0. ∴在(-∞,0)和(2-a ,+∞)上,f ′(x )>0. ∴f (x )的单调递增区间为(-∞,0),(2-a ,+∞). 当a =2时,f ′(x )≥0恒成立, ∴f (x )的单调递增区间为(-∞,+∞). 当2<a <4时,2-a <0,∴在(-∞,2-a )和(0,+∞)上,f ′(x )>0, ∴f (x )的单调递增区间为(-∞,2-a ),(0,+∞).综上所述,当0<a <2时,f (x )的单调递增区间为(-∞,0),(2-a ,+∞); 当a =2时,f (x )的单调递增区间为(-∞,+∞);当2<a <4时,f (x )的单调递增区间为(-∞,2-a ),(0,+∞).跟踪训练3 已知函数f (x )=a x +x -2x +1(a >1),证明:函数f (x )在(-1,+∞)上为增函数.证明 方法一 (定义法)任取x 1,x 2∈(-1,+∞),且x 1<x 2, f (x 2)-f (x 1)=2xa +x 2-2x 2+1-1xa -x 1-2x 1+1=2x a -1xa +x 2-2x 2+1-x 1-2x 1+1=1xa (21x x a --1)+(x 1+1)(x 2-2)-(x 1-2)(x 2+1)(x 2+1)(x 1+1)=1xa (21x x a--1)+3(x 2-x 1)(x 2+1)(x 1+1).因为x 2-x 1>0,且a >1,所以21x x a->1,而-1<x 1<x 2,所以x 1+1>0,x 2+1>0, 所以f (x 2)-f (x 1)>0,所以f (x )在(-1,+∞)上为增函数. 方法二 (导数法)f (x )=a x +x +1-3x +1=a x +1-3x +1.所以f ′(x )=a x ln a +3(x +1)2.因为x >-1,所以(x +1)2>0,所以3(x +1)2>0.又因为a >1,所以ln a >0,a x >0, 所以a x ln a >0,所以f ′(x )>0.故f (x )=a x +x -2x +1在(-1,+∞)上是增函数.1.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°B .某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人C .由平面三角形的性质,推测空间四边形的性质D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式 答案 A解析 A 是演绎推理,B 、D 是归纳推理,C 是类比推理.2.“因为对数函数y =log a x 是增函数(大前提),又y =log 13x 是对数函数(小前提),所以y =log 13x 是增函数(结论).”下列说法正确的是( )A .大前提错误导致结论错误B .小前提错误导致结论错误C .推理形式错误导致结论错误D .大前提和小前提都错误导致结论错误 答案 A解析 y =log a x 是增函数错误.故大前提错误.3.三段论:“①只有船准时起航,才能准时到达目的港,②这艘船是准时到达目的港的,③这艘船是准时起航的”,其中的“小前提”是( ) A .① B .② C .①② D .③答案 D4.把“函数y=x2+x+1的图象是一条抛物线”改成三段论,则大前提:________________;小前提:________________________________________________________________________;结论:________________________________________________________________________. 答案二次函数的图象是一条抛物线函数y=x2+x+1是二次函数函数y=x2+x+1的图象是一条抛物线5.设m为实数,利用三段论证明方程x2-2mx+m-1=0有两个相异实根.证明因为如果一元二次方程ax2+bx+c=0(a≠0)的判别式Δ=b2-4ac>0,那么方程有两个相异实根.大前提方程x2-2mx+m-1=0的判别式Δ=(-2m)2-4(m-1)=4m2-4m+4=(2m-1)2+3>0,小前提所以方程x2-2mx+m-1=0有两个相异实根.结论1.应用三段论解决问题时,应当首先明确什么是大前提和小前提,但为了叙述的简洁,如果前提是显然的,则可以省略.2.合情推理是由部分到整体,由个别到一般的推理或是由特殊到特殊的推理;演绎推理是由一般到特殊的推理.3.合情推理与演绎推理是相辅相成的,数学结论、证明思路等的发现主要靠合情推理;数学结论、猜想的正确性必须通过演绎推理来证明.课时作业一、选择题1.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是()A.类比推理B.归纳推理C.演绎推理D.一次三段论答案 C2.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数.以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析 由于函数f (x )=sin(x 2+1)不是正弦函数.故小前提不正确.3.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( ) A .使用了归纳推理 B .使用了类比推理C .使用了“三段论”,但推理形式错误D .使用了“三段论”,但小前提错误 答案 C解析 由“三段论”的推理方式可知,该推理的错误原因是推理形式错误. 4.函数y =x cos x -sin x 在下列哪个区间内是增函数( ) A .(π2,3π2)B .(π,2π)C .(3π2,5π2)D .(2π,3π)答案 B解析 y ′=-x sin x .当x ∈(π,2π)时,y ′>0, ∴y =x cos x -sin x 在(π,2π)上为增函数.5.定义在R 上的函数f (x )满足f (-x )=-f (x +4),且f (x )在(2,+∞)上为增函数.已知x 1+x 2<4且(x 1-2)·(x 2-2)<0,则f (x 1)+f (x 2)的值( ) A .恒小于0 B .恒大于0 C .可能等于0 D .可正也可负答案 A解析 不妨设x 1-2<0,x 2-2>0, 则x 1<2,x 2>2,∴2<x 2<4-x 1, ∴f (x 2)<f (4-x 1),即-f (x 2)>-f (4-x 1), 从而-f (x 2)>-f (4-x 1)=f (x 1), ∴f (x 1)+f (x 2)<0.6.下面几种推理中是演绎推理的是( )A .因为y =2x 是指数函数,所以函数y =2x 经过定点(0,1)B .猜想数列11×2,12×3,13×4,…的通项公式为a n =1n (n +1)(n ∈N *)C .由圆x 2+y 2=r 2的面积为πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积为πabD .由平面直角坐标系中圆的方程为(x -a )2+(y -b )2=r 2,推测空间直角坐标系中,球的方程为(x -a )2+(y -b )2+(z -c )2=r 27.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 都成立,则( ) A .-1<a <1 B .0<a <2 C .-12<a <32D .-32<a <12答案 C解析 由题意知,(x -a )⊗(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a , ∴-x 2+x +a 2-a <1.即x 2-x -a 2+a +1>0对任意实数x 都成立, 则Δ=1-4(-a 2+a +1)<0, ∴4a 2-4a -3<0,解得-12<a <32.8.已知三条不重合的直线m 、n 、l ,两个不重合的平面α、β,有下列命题: ①若m ∥n ,n ⊂α,则m ∥α; ②若l ⊥α,m ⊥β且l ∥m ,则α∥β; ③若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ④若α⊥β,α∩β=m ,n ⊂β,n ⊥m ,则n ⊥α. 其中正确的命题个数是( ) A .1 B .2 C .3 D .4 答案 B解析 ①中,m 还可能在平面α内,①错误;②正确;③中,m 与n 相交时才成立,③错误;④正确.故选B. 二、填空题9.有一段演绎推理: 大前提:整数是自然数; 小前提:-3是整数; 结论:-3是自然数.这个推理显然错误,则错误的原因是________错误.(填“大前提”“小前提”“结论”) 答案 大前提10.若不等式ax 2+2ax +2<0的解集为∅,则实数a 的取值范围为__________. 答案 [0,2]解析 ∵不等式ax 2+2ax +2<0无解, 则不等式ax 2+2ax +2≥0的解集为R . ∴当a =0时,2≥0,显然成立,当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ=4a 2-8a ≤0, 解得0<a ≤2.∴a 的取值范围为[0,2].11.若f (a +b )=f (a )f (b )(a ,b ∈N *),且f (1)=2,则f (2)f (1)+f (4)f (3)+…+f (2 014)f (2 013)=________.答案 2 014 解析 利用三段论.∵f (a +b )=f (a )f (b )(a ,b ∈N *),大前提 令b =1,则f (a +1)f (a )=f (1)=2,小前提∴f (2)f (1)=f (4)f (3)=…=f (2 014)f (2 013)=2,结论 ∴原式=2+2+…+21 007个=2 014.三、解答题12.把下列演绎推理写成三段论的形式.(1)一切奇数都不能被2整除,(22 015+1)是奇数,所以(22 015+1)不能被2整除; (2)三角函数都是周期函数,y =tan α是三角函数,因此y =tan α是周期函数; (3)因为△ABC 三边的长依次为3,4,5,所以△ABC 是直角三角形. 解 (1)一切奇数都不能被2整除,大前提 22 015+1是奇数,小前提 22 015+1不能被2整除.结论 (2)三角函数都是周期函数,大前提 y =tan α是三角函数,小前提 y =tan α是周期函数.结论(3)一条边的平方等于其他两条边平方和的三角形是直角三角形,大前提 △ABC 三边的长依次为3,4,5,且32+42=52,小前提 △ABC 是直角三角形.结论13. 如图A ,B ,C ,D 为空间四点,在△ABC 中,AB =2,AC =BC = 2.等边三角形ADB 以AB 为轴旋转.(1)当平面ADB ⊥平面ABC 时,求CD ;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.解(1)取AB的中点E,连接CE,DE.因为AC=BC=2,AB=2,所以△ABC为等腰直角三角形,所以CE⊥AB.因为△ADB是等边三角形,所以DE⊥AB.又平面ADB⊥平面ABC,且平面ADB∩平面ABC=AB,DE⊂平面ADB,所以DE⊥平面ABC,所以DE⊥CE.由已知得DE=32AB=3,CE=1.所以在Rt△CDE中,CD=DE2+CE2=2.(2)当△ADB以AB为轴转动时,总有AB⊥CD.证明如下:当D在平面ABC内时,因为BC=AC,AD=BD,所以C,D都在AB的垂直平分线上,所以AB⊥CD.当D不在平面ABC内时,由(1)知AB⊥DE,AB⊥CE,又DE∩CE=E,所以AB⊥平面CDE.又CD⊂平面CDE,所以AB⊥CD.综上所述,当△ADB转动时,总有AB⊥CD.四、探究与拓展14.设是R的一个运算,A是R的非空子集.若对于任意a,b∈A,有a b∈A,则称A 对运算封闭.则下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是()A.自然数集B.整数集C.有理数集D.无理数集答案 C解析A错,因为自然数集对减法、除法不封闭;B错,因为整数集对除法不封闭;C对,因为任意两个有理数的和、差、积、商都是有理数,故有理数集对加、减、乘、除法(除数不等于零)四则运算都封闭;D错,因为无理数集对加、减、乘、除法都不封闭.15.已知f(x)=13x+3,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.解∵f(x)=13x+3,∴f(0)+f(1)=11+3+13+3=3-12+3-36=33,同理可得f(-1)+f(2)=3 3,f(-2)+f(3)=3 3.猜想f(x)+f(1-x)=3 3.证明:设x1+x2=1,则f(x1)+f(x2)=13x1+3+13x2+3=3x1+3x2+233(3x1+3x2)+6=33.。
新人教A版高中数学选修1-2第二章:推理与证明

第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理A级基础巩固一、选择题1.下列推理是归纳推理的是()A.F1,F2为定点,动点P满足|PF1|+|PF2|=2a>|F1F2|,得P 的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n 项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇解析:由归纳推理的定义知,B项为归纳推理.答案:B2.根据给出的数塔猜测123 456×9+7等于()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111A.111 1110B.1 111 111C.1 111 112 D.1 111 113解析:由1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=111 111;…归纳可得,等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,所以123 456×9+7=1 111 111.答案:B3.观察图形规律,在其右下角的空格内画上合适的图形为()解析:观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两个阴影一个空白,应为黑色矩形.答案:A4.设n是自然数,则18(n2-1)[1-(-1)n]的值()A.一定是零B.不一定是偶数C.一定是偶数D.是整数但不一定是偶数解析:当n为偶数时,18(n2-1)[1-(-1)n]=0为偶数;当n为奇数时(n=2k+1,k∈N),18(n2-1)[1-(-1)n]=18(4k2+4k)·2=k(k+1)为偶数.所以18(n 2-1)[1-(-1)n ]的值一定为偶数. 答案:C5.在平面直角坐标系内,方程x a +y b=1表示在x 轴,y 轴上的截距分别为a 和b 的直线,拓展到空间,在x 轴,y 轴,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +z c=1 B.x ab +y bc +z ca =1 C.xy ab +yz bc +zx ca =1 D .ax +by +cz =1解析:从方程x a +y b=1的结构形式来看,空间直角坐标系中,平面方程的形式应该是x a +y b +z c=1. 答案:A二、填空题6.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,计算a 2,a 3,猜想a n =________.解析:计算得a 2=4,a 3=9,所以猜想a n =n 2.答案:n 27.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18. 答案:1∶88.观察下列各式:①(x3)′=3x2;②(sin x)′=cos x;③(e x-e-x)′=e x+e-x;④(x cos x)′=cos x-x sin x.根据其中函数f(x)及其导数f′(x)的奇偶性,运用归纳推理可得到的一个命题是__________________________________________.解析:对于①,f(x)=x3为奇函数,f′(x)=3x2为偶函数;对于②,g(x)=sin x为奇函数,f′(x)=cos x为偶函数;对于③,p(x)=e x-e-x为奇函数,p′(x)=e x+e-x为偶函数;对于④,q(x)=x cos x 为奇函数,q′(x)=cos x-x sin x为偶函数.归纳推理得结论:奇函数的导函数是偶函数.答案:奇函数的导函数是偶函数三、解答题9.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(132+52)(102+72)≥(13×10+5×7)2.请你观察这三个不等式,猜想出一个一般性结论,并证明你的结论.解:一般性结论为(a2+b2)(c2+d2)≥(ac+bd)2.证明:因为(a2+b2)(c2+d2)-(ac+bd)2=a2c2+b2c2+a2d2+b2d2-(a2c2+2abcd+b2d2)=b2c2+a2d2-2abcd=(bc-ad)2≥0,所以(a2+b2)(c2+d2)≥(ac+bd)2.10.如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.解:如右图所示,在四面体PABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.B级能力提升1.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴的根数为() A.6n-2 B.8n-2C.6n+2 D.8n+2解析:从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.答案:C2.等差数列{a n}中,a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,q>1,写出b5,b7,b4,b8的一个不等关系________.解析:将乘积与和对应,再注意下标的对应,有b4+b8>b5+b7.答案:b4+b8>b5+b73.观察下列等式: ①sin 210°+cos 240°+sin 10°cos 40°=34; ②sin 26°+cos 236°+sin6°cos36°=34. 由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.解:由①②知,两角相差30°,运算结果为34, 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+ sin α⎝ ⎛⎭⎪⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边 故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 2.1.2 演绎推理A 级 基础巩固一、选择题1.若大前提是“任何实数的平方都大于0”,小前提是“a∈R”,结论是“a2>0”,那么这个演绎推理()A.大前提错误B.小前提错误C.推理形式错误D.没有错误解析:因为“任何实数的平方非负”,所以“任何实数的平方都大于0”是错误的,即大前提错误.答案:A2.在“△ABC中,E,F分别是边AB,AC的中点,则EF∥BC”的推理过程中,大前提是()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边长的一半C.E,F为AB,AC的中点D.EF∥BC解析:大前提是“三角形的中位线平行于第三边”.答案:A3.下列四个推导过程符合演绎推理“三段论”形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大小前提及结论颠倒,不符合演绎推理“三段论”形式.答案:B4.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)·f(y)”的是()A.幂函数B.对数函数C.指数函数D.余弦函数解析:只有指数函数f(x)=a x(a>0,a≠1)满足条件.答案:C5.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.答案:C二、填空题6.已知△ABC中,∠A=30°,∠B=60°,求证a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的________.解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提.答案:小前提7.在求函数y =log 2x -2的定义域时,第一步推理中大前提是当a 有意义时,a ≥0;小前提是log 2x -2有意义;结论是________.解析:要使函数有意义,则log 2x -2≥0,解得x ≥4,所以函数y =log 2x -2的定义域是[4,+∞).答案:函数y =log 2x -2的定义域是[4,+∞)8.下面几种推理过程是演绎推理的是________(填序号).①两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行线的同旁内角,那么∠A +∠B =180°②由平面三角形的性质,推测空间四面体的性质③某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人④在数列{a n }中,a 1=1,a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式.解析:①为演绎推理,②为类比推理,③④为归纳推理.答案:①三、解答题9.设m 为实数,利用三段论求证方程x 2-2mx +m -1=0有两个相异实根.证明:如果一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ=b 2-4ac >0,那么方程有两相异实根.(大前提)一元二次方程x 2-2mx +m -1=0的判别式Δ=(2m )2-4(m -1)=4m 2-4m +4=(2m -1)2+3>0,(小前提)所以方程x 2-2mx +m -1=0有两相异实根.(结论)10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数f (x )的单调增区间.解:(1)∵x =π8是函数y =f (x )的图象的对称轴, ∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1.∴π4+φ=k π+π2,k ∈Z. ∵-π<φ<0,∴φ=-3π4. (2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎪⎫2x -3π4. 由题意,得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z , ∴k π+π8≤x ≤5π8+k π,k ∈Z. 故函数f (x )的增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z. B 级 能力提升1.某人进行了如下的“三段论”:如果f ′(x 0)=0,则x =x 0是函数f (x )的极值点,因为函数f (x )=x 3在x =0处的导数值f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.你认为以上推理的( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确解析:若f ′(x 0),则x =x 0不一定是函数f (x )的极值点,如f (x )=x 3,f ′(0)=0,但x =0不是极值点,故大前提错误.答案:A2.设a >0,f (x )=e x a +a e x 是R 上的偶函数,则a 的值为________. 解析:因为f (x )是R 上的偶函数,所以f (-x )=f (x ),所以⎝ ⎛⎭⎪⎫a -1a ⎝ ⎛⎭⎪⎫e x -1e x =0对于一切x ∈R 恒成立,由此得a -1a =0,即a 2=1.又a >0,所以a =1.答案:13.在数列{a n }中,a 1=2,a n +1=4a n -3n +1(n ∈N *).(1)证明数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;(3)证明不等式S n +1≤4S n 对任意n ∈N *皆成立.(1)证明:由已知a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n ),n ∈N *,又a 1-1=2-1=1≠0,所以数列{a n -n }是首项为1,公比为4的等比数列.(2)解:由(1)得a n -n =4n -1,所以a n =4n -1+n .所以S n =a 1+a 2+a 3+…+a n =1+4+42+…+4n -1+(1+2+3+…+n )=4n -13+n (n +1)2. (3)证明:对任意的n ∈N *,S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎢⎡⎦⎥⎤4n -13+n (n +1)2=-12(3n 2+n -4)=-12(3n +4)(n -1)≤0. 所以不等式S n +1≤4S n 对任意n ∈N *皆成立.2.2 直接证明与间接证明2.2.1 综合法和分析法第1课 时综合法A 级 基础巩固一、选择题1.在下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:由题设知,f (x )在(0,+∞)上是减函数,由f (x )=1x,得f ′(x )=-1x2<0,所以f (x )=1x 在(0,+∞)上是减函数. 答案:A2.已知函数f (x )=lg 1-x 1+x,若f (a )=b ,则f (-a )等于( ) A .bB .-b C.1b D .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg ⎝ ⎛⎭⎪⎫1-a 1+a -1=-lg 1-a 1+a =-f (a )=-b .答案:B3.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .与n 取值有关解析:当n ≥2时,a n =S n -S n -1=4n -5又a 1=S 1=2×12-3×1=-1适合上式.∴a n =4n -5(n ∈N *),则a n -a n -1=4(常数)故数列{a n }是等差数列.答案:B4.若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2 D.a b <a +1b +1解析:在B 中,因为a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1)恒成立.答案:B5.在△ABC 中,已知sin A cos A =sin B cos B ,则该三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:由sin A cos A =sin B cos B 得sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2.所以该三角形是等腰或直角三角形.答案:D二、填空题6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.解析:本命题的证明,利用题设条件和导数与函数单调性的关系,经推理论证得到了结论,所以应用的是综合法的证明方法.答案:综合法7.角A,B为△ABC内角,A>B是sin A>sin B的________条件(填“充分”“必要”“充要”或“即不充分又不必要”).解析:在△ABC中,A>B⇔a>b由正弦定理asin A=bsin B,从而sin A>sin B.因此A>B⇔a>b⇔sin A>sin B,为充要条件.答案:充要8.已知p=a+1a-2(a>2),q=2-a2+4a-2(a>2),则p,q的大小关系为________.解析:因为p=a+1a-2=(a-2)+1a-2+2≥2(a-2)·1a-2+2=4,又-a2+4a-2=2-(a-2)2<2(a>2),所以q=2-a2+4a-2<4≤p.答案:p>q三、解答题9.已知a>0,b>0,且a+b=1,求证:1a+1b≥4.证明:因为a >0,b >0且a +b =1,所以1a +1b =a +b a +a +b b =2+b a +a b≥2+2 b a ·a b =4. 当且仅当b a =a b,即a =b 时,取等号, 故1a +1b≥4. 10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f ⎝ ⎛⎭⎪⎫x +12为偶函数. 证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称.∴f (x +1)=f (-x )则y =f (x )的图象关于x =12对称 ∴-b 2a =12,∴a =-b . 则f (x )=ax 2-ax +c =a ⎝ ⎛⎭⎪⎫x -122+c -a 4 ∴f ⎝ ⎛⎭⎪⎫x +12=ax 2+c -a 4为偶函数. B 级 能力提升1.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.答案:A2.已知sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,则tan⎝⎛⎭⎪⎫x-π4=________.解析:∵sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,∴cos x=-45,∴tan x=-12,∴tan⎝⎛⎭⎪⎫x-π4=tan x-11+tan x=-3.答案:-33.(2016·江苏卷)如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,所以DE∥A1C1.因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC A1B1C1中,A1A⊥平面A1B1C1,因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.又因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.第2课时分析法A级基础巩固一、选择题1.关于综合法和分析法的说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.综合法和分析法都是因果分别互推的两头凑法D.分析法又叫逆推证法或执果索因法解析:由综合法和分析法的意义与特点,知C错误.答案:C2.分析法又叫执果索因法,若使用分析法证明:设a>b>c,且a+b+c=0,求证:b2-ac<3a,则证明的依据应是() A.a-b>0B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析:b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔(a-c)·(2a +c)>0⇔(a-c)(a-b)>0.答案:C3.在不等边△ABC中,a为最大边,要想得到A为钝角的结论,对三边a,b,c应满足的条件,判断正确的是()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2解析:要想得到A为钝角,只需cos A<0,因为cos A=b2+c2-a22bc,所以只需b2+c2-a2<0,即b2+c2<a2.答案:C4.对于不重合的直线m,l和平面α,β,要证明α⊥β,需要具备的条件是()A.m⊥l,m∥α,l∥βB.m⊥l,α∩β=m,l⊂αC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,m⊂α解析:对于选项A,与两相互垂直的直线平行的平面的位置关系不能确定;对于选项B,平面内的一条直线与另一个平面的交线垂直,这两个平面的位置关系不能确定;对于选项C,这两个平面有可能平行或重合;根据面面垂直的判定定理知选项D正确.答案:D5.设P=2,Q=7-3,R=6-2,则P,Q,R的大小关系是()A.P>Q>R B.P>R>QC.Q>P>R D.Q>R>P解析:先比较Q与R的大小.Q-R=7-3-(6-2)=(7+2)-(6+3).因为(7+2)2-(6+3)2=7+2+214-(6+3+218)=2(14-18)<0,所以Q<R.又P=2>R=2(3-1),所以P>R>Q.答案:B二、填空题6.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b7.当x>0时,sin x与x的大小关系为________.解析:令f(x)=x-sin x(x>0),则f′(x)=1-cos x≥0,所以f(x)在(0,+∞)上是增函数,因此f(x)>f(0)=0,则x>sin x.答案:x>sin x8.如图,在直四棱柱A1B1C1D1ABCD(侧棱与底面垂直)中,当底面四边形ABCD满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).解析:要证明A 1C ⊥B 1D 1只需证明B 1D 1⊥平面A 1C 1C因为CC 1⊥B 1D 1只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)三、解答题9.已知a >1,求证:a +1+a -1<2a .证明:因为a >1,要证a +1+a -1<2a ,只需证(a +1+a -1)2<(2a )2,只需证a +1+a -1+2(a +1)(a -1)<4a , 只需证(a +1)(a -1)<a ,只需证a 2-1<a 2,即证-1<0.该不等式显然成立,故原不等式成立.10.求证:2cos(α-β)-sin (2α-β)sin α=sin βsin α. 证明:欲证原等式2cos(α-β)-sin (2α-β)sin α=sin βsin α成立. 只需证2cos(α-β)sin α-sin(2α-β)=sin β,①因为①左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α=sin β=右边.所以①成立,所以原等式成立.B 级 能力提升1.设a ,b ,c ,d 为正实数,若a +d =b +c 且|a -d |<|b -c |,则有( )A .ad =bcB .ad <bcC .ad >bcD .ad ≤bc解析:∵|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔a 2+d 2-2ad <b 2+c 2-2bc ①又a +d =b +c∴a 2+d 2+2ad =b 2+c 2+2bc ②由②-①,得4ad >4bc ,即ad >bc .答案:C2.设函数f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=3a -4a +1,则实数a 的取值范围是________. 解析:因为f (x )是周期为3的奇函数,且f (1)>1,所以f (2)=f (-1)=-f (1),因此3a -4a +1<-1,则4a -3a +1<0, 解之得-1<a <34. 答案:⎝ ⎛⎭⎪⎫-1,34 3.设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,证明:a x +c y=2.证明:要证明ax+cy=2,只要证ay+cx=2xy,也就是证明2ay+2cx=4xy.由题设条件b2=ac,2x=a+b,2y=b+c,所以2ay+2cx=a(b+c)+(a+b)c=ab+2ac+bc,4xy=(a+b)(b+c)=ab+b2+bc+ac=ab+2ac+bc,所以2ay+2cx=4xy成立,故ax+cy=2成立.2.2.2 反证法A级基础巩固一、选择题1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用()①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论.A.①②B.①②④C.①②③D.②③解析:由反证法的定义知,可把①②③作为条件使用,而④原命题的结论是不可以作为条件使用的.答案:C2.用反证法证明命题:“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根解析:“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根.”答案:A3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.答案:B4.否定结论“自然数a,b,c中恰有一个偶数”时,正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c都是奇数或至少有两个偶数解析:自然数a,b,c中奇数、偶数的可能情况有:全为奇数,恰有一个偶数,恰有两个偶数,全为偶数.除去结论即为反设,应选D.答案:D5.设实数a 、b 、c 满足a +b +c =1,则a ,b ,c 中至少有一个数不小于( )A .0B.13C.12 D .1解析:假设a ,b ,c 都小于13,则a +b +c <1,与a +b +c =1矛盾,选项B 正确.答案:B二、填空题6.已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a ,求证:b 与c 是异面直线,若利用反证法证明,则应假设________.解析:∵空间中两直线的位置关系有3种:异面、平行、相交, ∴应假设b 与c 平行或相交.答案:b 与c 平行或相交7.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:由假设p 为奇数可知(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…a 7)-(1+2+…+7)=0为偶数.答案:(a 1-1)+(a 2-2)+…+(a 7-7)8.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:0三、解答题9.设x ,y 都是正数,且x +y >2,试用反证法证明:1+x y <2和1+y x<2中至少有一个成立.证明:假设1+x y <2和1+y x <2都不成立,即1+x y ≥2,1+y x≥2. 又因为x ,y 都是正数,所以1+x ≥2y ,1+y ≥2x .两式相加,得2+x +y ≥2x +2y ,则x +y ≤2,这与题设x +y >2矛盾,所以假设不成立.故1+x y <2和1+y x<2中至少有一个成立. 10.已知三个正数a ,b ,c ,若a 2,b 2,c 2成公比不为1的等比数列,求证:a ,b ,c 不成等差数列.证明:假设a ,b ,c 成等差数列,则有2b =a +c ,即4b 2=a 2+c 2+2ac ,又a2,b2,c2成公比不为1的等比数列,且a,b,c为正数,所以b4=a2c2且a,b,c互不相等,即b2=ac,因此4ac=a2+c2+2ac,所以(a-c)2=0,从而a=c=b,这与a,b,c互不相等矛盾.故a,b,c不成等差数列.B级能力提升1.设a,b,c大于0,则3个数:a+1b,b+1c,c+1a的值()A.都大于2 B.至少有一个不大于2 C.都小于2 D.至少有一个不小于2解析:假设a+1b,b+1c,c+1a都小于2则a+1b<2,b+1c<2,c+1a<2∴a+1b+b+1c+c+1a<6,①又a,b,c大于0所以a+1a≥2,b+1b≥2,c+1c≥2.∴a+1b+b+1c+c+1a≥6.②故①与②式矛盾,假设不成立所以a+1b,b+1c,c+1a至少有一个不小于2.答案:D2.对于定义在实数集R上的函数f(x),如果存在实数x0,使f(x0)=x0,那么x0叫作函数f(x)的一个好点.已知函数f(x)=x2+2ax+1不存在好点,那么a的取值范围是()A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,12 C .(-1,1) D .(-∞,-1)∪(1,+∞)解析:假设函数f (x )存在好点,则x 2+2ax +1=x 有实数解,即x 2+(2a -1)x +1=0有实数解.所以Δ=(2a -1)2-4≥0,解得a ≤-12或a ≥32. 所以f (x )不存在好点时,a 的取值范围是⎝ ⎛⎭⎪⎫-12,32. 答案:A3.已知二次函数f (x )=ax 2+bx +c (a >0,c >0)的图象与x 轴有两个不同的交点,若f (c )=0且0<x <c 时,恒有f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小. (1)证明:因为f (x )的图象与x 轴有两个不同的交点,所以f (x )=0有两个不等实根x 1,x 2.因为f (c )=0,所以x 1=c 是f (x )=0的根,又x 1x 2=c a, 所以x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c , 所以1a是f (x )=0的一个根. (2)解:假设1a<c ,又1a>0,且0<x <c 时,f (x )>0, 所以知f ⎝ ⎛⎭⎪⎫1a >0,这与f ⎝ ⎛⎭⎪⎫1a =0矛盾, 因此1a≥c , 又因为1a≠c , 所以1a>c .。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_24

2.1.2 演绎推理1)教材的地位和作用演绎推理是推理体系中一个重要组成部分,它与前面所学的合情推理构成了认识客观规律的基本方法。
演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用。
2)教学重点、难点重点:演绎推理的含义与三段论推理模式及合情推理和演绎推理的区别与联系难点:演绎推理的应用根据上述教材结构与内容分析,考虑到学生实际情况以及其认知结构心理特征我制定如下教学目标:1)知识与技能目标:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单推理。
会将推理写成三段论的形式,通过具体实例,了解合情推理和演绎推理之间的联系和差异。
2)过程与方法:通过对演绎推理的学习,了解合情推理和演绎推理的区别与联系,培养学生观察分析、类比归纳的探究能力,加深对部分与整体、从特殊到一般、类比与转等数学思想的认识。
3)情感态度价值观:通过帮助学生对演绎推理形成完整理论认识,让学生体会演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。
三:教法与学法1)教法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果→归纳总结。
创设情景,结合实际,通过事例启发学生思考,并在思考中体会数学概念的形成所蕴含的数学方法,使之从具体事例迁移到理论认识,获得身心感受。
在课堂中以学生为主体、教师为主导,发挥教师课堂控制能力。
逐步引导学生能应用新知解决新问题,使之体会问题的本质。
2)学法新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。
因此本节课学生将在教师的启发诱导下对演绎推理形成系统的认识,学生对演绎推理的理解将从经验认识上升到理性认识,形成较为完整的知识体系。
四:教学过程于是∠ACD > ∠BCD.。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_17

2.1合情推理与演绎推理(教学设计)(3)§2.1.2演绎推理教学目标:知识与技能目标:了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理。
过程与方法目标:能正确地运用演绎推理,进行简单的推理。
培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳,挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力。
情感、态度与价值观目标:了解合情推理与演绎推理之间的联系与差别。
体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质。
教学重点:正确地运用演绎推理,进行简单的推理教学难点:了解合情推理与演绎推理之间的联系与差别。
教学过程:一、复习回顾:1、合情推理归纳推理从特殊到一般类比推理从特殊到特殊从具体问题出发——观察、分析、比较、联想——归纳、类比——提出猜想二、创设情境,新课引入:情景创设1:小明是一名高二年级的学生,17岁,迷恋上网络,沉迷于虚拟的世界当中。
由于每月的零花钱不够用,便向亲戚要钱,但这仍然满足不了需求,于是就产生了歹念,强行向路人抢取钱财。
但小明却说我是未成年人而且就抢了50元,这应该不会很严重吧???情景创设2:完成下列填空并观察下列推理有什么特点?1.马有四条腿,因为白马是马, 所以2.学生要遵守校规校纪,因为小刚是学生,所以tan是三角函数,所以3.三角函数都是周期函数, 因为4.鱼类、贝类,都是海洋生物,它们世世代代生活在海洋里,因为喜马拉雅山上发现它们的化石,所以三、师生互动,新课讲解:1、演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.2、演绎推理的特点:是由一般到特殊的推理;3、演绎推理的一般模式:“三段论”,包括(1)大前提---已知的一般原理;(2)小前提---所研究的特殊情况;(3)结论-----据一般原理,对特殊情况做出的判断.4、三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)5、三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P. 练习1:请分别说出下列三段论的大小前提和结论?(1)所有的金属都能导电←————大前提铜是金属, ←-----小前提所以,铜能够导电←――结论(2)太阳系的大行星都以椭圆形轨道绕太阳运行,←————大前提天王星是太阳系的大行星,←――小前提因此天王星以椭圆形轨道绕太阳运行←―――结论(3)在一个标准大气压下,水的沸点是100°C,←——大前提所以一个标准大气压下把水加热到100°C, ←――小前提水会沸腾←――结论例1.用三段论的形式写出下列演绎推理1.三角形内角和180°,等边三角形内角和是180°2.所有的循环小数都是有理数,233.0是有理数小明是一名高二年级的学生,17岁,迷恋上网络,沉迷于虚拟的世界当中。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_15

2.1.2演绎推理一、教学目标1.知识与技能(1)让学生知道演绎推理的含义,以及演绎推理与合情推理的联系与差异.(2)能运用演绎推理的基本方法“三段论”进行一些简单的推理.(1)结合已学过的数学实例和生活中的实例,引出演绎推理的概念.(2)通过对实际例子的分析,从中概括出演绎推理的推理过程.(3)通过一些证明题的实例,让学生体会“三段论”的推理形式.3.情感、态度与价值观让学生体会演绎推理的逻辑推理美,让学生亲身经历数学研究的过程,感受数学的魅力,进而激发自身的求知欲.了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理,论证有据的思维习惯.二、教学重点难点重点:了解演绎推理的含义,理解合情推理与演绎推理的区别与联系,能利用“三段论”进行简单的推理.难点:利用三段论证明一些实际问题.三、教学过程(一)复习准备:1.问:合情推理的含义与特点是什么?2.常见的可以类比的知识点3.导入:(1)所有的金属都能够导电,铜是金属,所以铜可以导电。
(2)一切奇数都不能被2整除, 因为(12100+)是奇数, 因此(3)三角函数都是周期函数, 因为αtan 三角函数, 所以 .(4)全等的三角形面积相等 ,如果三角形ABC 与三角形321C B A 全等,那么 (填空→讨论上述例子的推理形式与我们学过的合情推理一样吗?→课题:演绎推理)(二)、讲授新课 :1.演绎推理(1)含义:从一般性的原理出发,推出某个特殊情况下的结论的推理.(2)特点:由一般到特殊的推理.2.演绎推理的模式:“三段论”是演绎推理的一般模式;M ……P (M 是P) 大前提---已知的一般原理;S ……M (S 是M) 小前提---所研究的特殊对象;S……P (S是P) 结论---据一般原理,对特殊对象做出的判断:三段论推理的依据P,S是M 的一个子集,那么S中所有元素也都具有性(P) M……P……M……P(三)、例题讲解:例1完成下面的推理过程“函数12++=xxy的图象是试将其恢复成完整的三段论.解:例2.在锐角三角形ABC中,AD⊥BC, BE⊥AC,D,E是垂足,用演绎推理“三段论”格式证AB的中点M到D,E的距离相等解:例3:证明函数xxxf2)(2+=在(-∞,1)是增函数。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_26

§2.1.2演绎推理教学设计【教材分析】本章内容属于数学思维方法的范畴,即把过去渗透在具体数学内容中的思维方法以集中显示的形式呈现出来,使学生更加明确这些方法,并能在今后的学习中有意识的使用。
推理是人们学习和生活中经常使用的思维方式。
而应用演绎推理可以使人们产生新的创意或新的发现。
在解决问题的过程中通过本节的学习,有利于发展学生的思维能力,提高学生的数学素养,让学生感受演绎推理在数学以及日常生活中的作用,从而架起数学与生活的桥梁,形成严谨的理性思维和科学精神。
一.教学目标:㈠知识与技能目标①了解演绎推理的含义,以及演绎推理与合情推理的联系与区别。
②能正确运用演绎推理的基本方法“三段论”进行一些简单的推理。
㈡过程与方法目标①通过了解和体会演绎推理在日常生活和学习中的应用,引出演绎推理的概念。
②通过对实际例子的分析,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳,挖掘其中所包含的推理思路和思想;③通过一些证明题的实例,明确演绎推理的“三段论”的推理形式,提高学生的创新能力。
㈢情感、态度与价值观目标通过本节课的学习,让学生体验演绎推理源于实践,又应用于实践的思想,感受演绎推理的逻辑推理美,让学生亲身经历数学研究的过程,感受数学的魅力,激发学生的学习兴趣,培养学生勇于探索、创新的个性品质。
二.教学重点与难点重点:了解演绎推理的含义,能利用“三段论”进行简单的推理证明。
难点:掌握演绎推理的基本方法,应用演绎推理产生新的创意或新的发现。
三.教学方法本节课采用范例分析、媒体演示、分层教学等启发发现法进行教学;课堂学习上,鼓励学生采取回顾复习、分组讨论、归纳总结等课堂讨论法进行学习;教法与学法协助提高,从而达到举一反三、触类旁通、提高课堂学习效率的效果。
四.教学过程(一)、创设情境,引入新课1.复习:合情推理的分类,应用归纳推理和类比推理的一般步骤(提问学生,多媒体展示)2. 在世界四大文明古国之一---印度,流传着一个古老的婚俗。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_8

演绎推理教学设计一、教材分析推理是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。
结合已学过的教学实例和日常生活中的实例,能够较好的让学生体会数学与其他学科的联系,在解决问题的过程中,合情推理和演绎推理相辅相成。
共同架起数学与生活的桥梁,形成严谨的理性思维与科学精神,归纳、发现、猜测、探索的过程有利于培养学生的创新精神,合情推理是具有创造性的或然推理,演绎推理形式化程度远比合情推理高,即用演绎法时,一个命题由其他命题推出,其根据是形式结构之间的联系。
二、学情分析高中必修课程以及选修1-1部分知识已学完,学生对主干知识有了初步的认识,相对系统性较差,而课本给的合情推理和演绎推理讲解基本都是文字性的知识,学生学起来感觉知道几个定义就可以了,推理能力得不到提升,于是本节课结合旧知识,以实际生活为例,增加趣味性,活跃了课堂气氛,数学内容来自必修的五本教材,同时起到了复习的效果,将死板的概念讲活,用活。
三、教学目标1、知识与技能了解演绎推理的含义及特点,会将推理写成三段论的形式2、过程与方法、通过日常生活的案例以及习题的讲解,使学生能对演绎推理的过程有个感性的认识,通过小组讨论以及讲评的形式,提升学生自主学习能力。
3、情感、态度与价值观了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。
四、教学重难点教学重点:了解演绎推理的含义,理解合情推理与演绎推理的区别与联系,能利用三段论进行简单的推理。
教学难点:利用三段论证明一些实际问题。
五、教学过程(一)创设问题情境、引入新课小明是一名高二年级的学生,17岁,迷恋上网络,沉迷于虚拟的世界当中。
由于每月的零花钱不够用,便向亲戚要钱,但这仍然满足不了需求,于是就产生了歹念,强行向路人抢取钱财。
但小明却说我是未成年人而且就抢了50元,这应该不会很严重吧???【学情预设:判断要有理有据】问:如果你是法官,你会如何判决呢?小明到底是不是犯罪呢?【设计意图:用一个简单的推理问题引起学生学习的欲望,使学生对接下来的学习有兴趣,调动学生积极性,而且紧扣本节课的主题】(二)师生互动、探究新知1、自学探究要求:学生自己在规定的时间中学习课本,回答以下问题:(1)、什么是演绎推理?(2)、什么是三段论?(3)、你能举出一些在生活和学习中有关演绎推理的例子吗?【情境预设:学生自学课本,了解课本的知识脉络】师:请学生回答问题【设计意图:熟悉课本,使学生能够对本节课的知识有个大概的了解】师:观察上述例子有什么特点?(1)太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此冥王星以椭圆形轨道绕太阳运行;(2)在一个标准大气压下,水的沸点是100°C ,所以在一个标准大气压下把水加热到100°C 时,水会沸腾;(3)一切奇数都不能被2整除,)12(100+是奇数,所以)12(100+不能被2整【情境预设:通过几个简单的例子,学生试着发现共同特征】师:这些都是一些简单的推理,而且是从一般到特殊的推理。
数学:2[1].1《合情推理与演绎证明--合情推理》PPT课件(新人教A版-选修1-2)
![数学:2[1].1《合情推理与演绎证明--合情推理》PPT课件(新人教A版-选修1-2)](https://img.taocdn.com/s3/m/33509701bd64783e08122b1f.png)
2
1
3
解;设an表示移动n块金属片时的移动次数. 当n=1时,a1=1 当n=2时,a2= 3 猜想 an= 2n -1 当n=3时,a3= 7 当n=4时,a4= 15
2
1
3
歌德巴赫猜想的提出过程:
…
这种由某类事物的部分对象具有某些特征, 推出该类事物的全部对象都具有这些特征 的推理,或者由个别事实概栝出一般结论 的推理,称为归纳推理.(简称;归纳) 归纳推理的几个特点;
1.归纳是依据特殊现象推断一般现象,因而,由归纳 所得的结论超越了前提所包容的范围. 2.归纳是依据若干已知的、没有穷尽的现象推断尚 属未知的现象,因而结论具有猜测性. 3.归纳的前提是特殊的情况,因而归纳是立足于观 察、经验和实验的基础之上. 归纳是立足于观察、经验、实验和对有限资料分 析的基础上.提出带有规律性的结论. 需证明
这就是著的哥德巴赫猜想。欧拉在6月30日给他的回信中说, 他相信这个猜想是正确的,但他不能证明。叙述如此简单的问 题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引 起了许多数学家的注意。从提出这个猜想至今,许多数学家都 不断努力想攻克它,但都没有成功。当然曾经有人作了些具体 的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一 一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚 待数学家的努力。从此,这道著名的数学难题引起了世界上成 千上万数学家的注意。200年过去了,没有人证明它。哥德巴 赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了 20世纪20年代,才有人开始向它靠近。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_3

2.1.2演绎推理教学目标:1.了解演绎推理在证明中的应用;2.了解演绎推理的含义、基本方法及其与合情推理的区别与联系。
教学重点:1.了解演绎推理的含义;2.能利用“三段论”进行简单的推理。
教学难点:用“三段论”进行简单的推理。
教学设计:复习:合情推理归纳推理类比推理归纳推理的一般步骤:⑴对有限的资料进行观察、分析、归纳整理;⑵提出带有规律性的结论,即猜想;⑶检验猜想。
类比推理的一般步骤:⑴找出两类对象之间可以确切表述的相似特征;⑵用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;⑶检验猜想。
观察与是思考1.所有的金属都能导电,因为铜是金属,所以铜能够导电.2.一切奇数都不能被2整除,因为(2100+1)是奇数,所以(2100+1)不能被2整除.3.三角函数都是周期函数,因为tanα三角函数所以是tanα周期函数4.全等的三角形面积相等如果三角形ABC与三角形A1B1C1全等,那么三角形ABC与三角形A1B1C1面积相等.从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.注:1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式;包括⑴大前提---已知的一般原理;⑵小前提---所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.3.三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.想一想???1.全等三角形面积相等如果三角形ABC 与三角形A 1B 1C 1相似,那么三角形ABC 与三角形A 1B 1C 1面积相等.2.相似三角形面积相等如果三角形ABC 与三角形A 1B 1C 1相似,那么三角形ABC 与三角形A 1B 1C 1面积相等.例.如图;在锐角三角形ABC 中,AD ⊥BC, BE ⊥AC, D,E是垂足,求证AB 的中点M 到D,E 的距离相等.证明:(1)因为有一个内角是只直角的三角形是直角三角形, 大前提 在△ABC 中,AD ⊥BC,即∠ADB=900 小前提 所以△ABD 是直角三角形 结论 同理△AEB 是直角三角形(2)因为直角三角形斜边上的中线等于斜边的一半, 大前提 M 是Rt △ABD 斜边AB 的中点,DM 是斜边上的中线 小前提 所以 DM=21AB 结论 同理 EM=21AB 所以 DM = EM例:证明函数f(x)=-x 2+2x 在(-∞,1)上是增函数.合情推理与演绎推理的区别:• ①归纳是由特殊到一般的推理; ②类比是由特殊到特殊的推理; ③演绎推理是由一般到特殊的推理.•从推理的结论来看,合情推理的结论不一定正确,有待证明;演绎推理得到的结论一定正确.•演绎推理是证明数学结论、建立数学体系的重要思维过程.•数学结论、证明思路的发现,主要靠合情推理.作业;P84 6。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_4

演绎推理教学目标:(1)知识与能力:了解演绎推理的含义及特点,会将推理写成三段论的形式(2)过程与方法:了解合情推理和演绎推理的区别与联系(3)情感态度价值观:了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。
教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系 教学难点:演绎推理的应用教具:课件教学方法:自学指导法教学设计一、导入新课现在冰雪覆盖的南极大陆,地质学家说它们曾在赤道附近,是从热带飘移到现在的位置的,为什么呢?原来在它的地底下,有着丰富的煤矿,煤矿中的树叶表明它们是阔叶树。
从繁茂的阔叶树可以推知当时有温暖湿润的气候。
所以南极大陆曾经在温湿的热带。
被人们称为世界屋脊的西藏高原上,一座座高山高入云天,巍然屹立。
西藏高原南端的喜马拉雅山横空出世,雄视世界。
珠穆郎玛峰是世界第一高峰,登上珠峰顶,一览群山小。
谁能想到,喜马拉雅山所在的地方,曾经是一片汪洋,高耸的山峰的前身,竟然是深不可测的大海。
地质学家是怎么得出这个结论的呢? 科学家们在喜马拉雅山区考察时,曾经发现高山的地层中有许多鱼类、贝类的化石。
还发现了鱼龙的化石。
地质学家们推断说,鱼类贝类生活在海洋里,在喜马拉雅山上发现它们的化石,说明喜马拉雅山曾经是海洋。
科学家们研究喜马拉雅变迁所使用的方法,就是一种名叫演绎推理的方法。
二、讲授新课(学生阅读课本,找到定义)1.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论的推理方法。
2.演绎推理的一般模式分析喜马拉雅山所在的地方,曾经是一片汪洋推理过程:鱼类、贝类、鱼龙,都是海洋生物,它们世世代代生活在海洋里……大前提 在喜马拉雅山上发现它们的化石……小前提喜马拉雅山曾经是海洋……结论三段论(1)大前提……已知的一般原理(2)小前提……所研究的特殊情况(3)结论……根据一般原理,对特殊情况作出的判断3.练习把下列推理写成三段论的形式(1)太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此冥王星以椭圆形轨道绕太阳运行;(2)在一个标准大气压下,水的沸点是100°C ,所以在一个标准大气压下把水加热到100°C 时,水会沸腾;(3)一切奇数都不能被2整除,)12(100+是奇数,所以)12(100+不能被2整除;(4)三角函数都是周期函数,αtan 是三角函数,因此αtan 是周期函数;(6)两条直线平行,同旁内角互补。
高中数学 第二章推理与证明全章归纳总结 新人教A版选修1-2

第二章 推理与证明2.1.1 合情推理与演绎推理(1)归纳推理【要点梳理】1、从一个或几个已知命题得出另一个新命题的思维过程称为 任何推理包括 和 两个部分。
是推理所依据的命题,它告诉我们 是什么, 是根据前提推得的命题,它告诉我们 是什么。
2、从个别事实中推演车一般性的结论的推理通常称为 ,它的思维过程是3、归纳推理有如下特点(1)归纳推理的前提是几个已知的 现象,归纳所得的结论是尚属未知的 现象,该结论超越了前提所包含的范围。
(2)由归纳推理得到的结论具有 的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它 作为数学证明的工具。
(填“能”或“不能”)(3)归纳推理是一种具有 的推理,通过归纳法得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。
【指点迷津】1、运用归纳推理的一般步骤是什么?首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广为一个明确表述的一般命题(猜想);然后,对所得的一般性命题进行检验。
2、在数学上,检验的标准是什么?标准是是否能进行严格的证明。
3、归纳推理的一般模式是什么?S 1具有P ;S 2具有P ;……;S n 具有P (S 1、S 2、…、S n 是A 类事件的对象) 所以A 类事件具有P【典型例题】例1、设N n x f x f x f x f x f x f x x f n n ∈'='='==-),()(,),()(),()(,sin )(112010 ,则)()(2005=x fA 、x sinB 、x sin -C 、x cosD 、x cos - 【解析】:,cos )(sin )(1x x x f ='=)()()(sin )(cos )()(cos )(sin )(sin )cos ()(cos )sin ()(sin )(cos )(42615432x f x f x f x x x f x f x x x f xx x f xx x f x x x f n n ====-='==='=='-=-='-=-='=+故可猜测)(x f n 是以4为周期的函数,有x x f x f x f n n sin )(,cos )1()(2414-===++xf x f x x f n n sin )4()(cos )(4434==-=++故选C【点评】归纳推理是由部分到整体、由个别到一般的推理,是人们在日常活动和科学学习研究中经常使用的一种推理方法,必须认真学习领会,在归纳推理的过程中,应注意所探求的事物或现象的本质属性和因果关系。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_16

§2.1.2演绎推理教学设计一、学习目标1、知识目标①让学生知道演绎推理的含义,以及演绎推理与合情推理的联系与差异。
②能运用演绎推理的基本方法“三段论”进行一些简单的推理。
①结合已学过的数学实例和生活中的实例,引出演绎推理的概念。
②通过对实际例子的分析,从中概括出演绎推理的推理过程。
③通过一些证明题的实例,让学生体会“三段论”的推理形式。
3、情感态度与价值观目标:让学生体会演绎推理的逻辑推理美,让学生亲身经历数学研究的过程,感受数学的魅力,进而激发自身的求知欲。
二、①重点:知道演绎推理的含义,能利用“三段论”进行简单的推理.;②难点:利用三段论证明一些实际问题。
三、学习方法:问题诱思法四、教学过程1、引入:问题1:在美丽的云南大理,居住着一个古老的少数民族——白族,那里的人们都把未婚女孩叫做“金花”,未婚男孩叫做“阿鹏哥”。
小李家在大理,大家平时都叫她“金花”,那么小李( )A :是个女孩,已婚B :是个男孩,已婚C :是个女孩,未婚D :是个男孩,未婚生答: 选C设问:上述推理是合情推理吗?为什么?生答(1):是,因为上述例子是从特殊到一般的推理。
生答(2):不是,上述例子是从一般到特殊的推理,所以不是合情推理。
【师点评】:第一位同学回答错误,上面这个例子它是从一般到特殊的推理,因此它并不是合情推理。
2、概念的提炼问题2:请同学们思考下列推理有何特点?① 所有的金属都能够导电,铀是金属,所以铀能导电。
② 太阳系的行星都以椭圆形轨道绕太阳运行,天王星是太阳系的行星,因此天王星以椭圆形轨道绕太阳运行。
③ 一切奇数都不能被2整除,)12(100+是奇数,所以)12(100+不能被2整除。
④ 三角函数都是周期函数,∂tan 是三角函数,因此∂tan 是周期函数。
⑤ 两条直线平行,同旁内角互补。
如果∠A 与∠B 是两条平行直线的同旁内角,那么∠A +∠B =180°生答:上述例子都是从一般到特殊的推理。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_14

教学要求:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。
.教学重点:了解演绎推理的含义,能利用“三段论”进行简单的推理.教学难点:分析证明过程中包含的“三段论”形式.教学过程:一、复习准备:1. 练习: ① 对于任意正整数n ,猜想(2n -1)与(n +1)2的大小关系?若,a c b c ⊥⊥,则//a b ;或在空间中,若,,//αγβγαβ⊥⊥则.合情推理的结论不一定正确,有待进一步证明,有什么能使结论正确的推理形式呢?3. 导入:① 所有的金属都能够导电,铜是金属,所以 ;② 太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ; ③ 奇数都不能被2整除,2007是奇数,所以 .(填空→讨论:上述例子的推理形式与我们学过的合情推理一样吗?→课题:演绎推理)二、讲授新课:1. 教学概念:① 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。
要点:由一般到特殊的推理。
② 讨论:演绎推理与合情推理有什么区别?合情推理⎧⎨⎩归纳推理:由特殊到一般类比推理:由特殊到特殊;演绎推理:由一般到特殊. P——所研究的特殊情况;第三段:结论——根据一般原理,对特殊情况做出的判断. ④ 举例:举出一些用“三段论”推理的例子.2. 教学例题:① 出示例1:证明函数2()2f x x x =-+在(],1-∞-上是增函数.板演:证明方法(定义法、导数法) → 指出:大前题、小前题、结论.② 出示例2:在锐角三角形ABC 中,,AD BC BE AC ⊥⊥,D ,E 是垂足. 求证:AB 的中点M 到D ,E 的距离相等.分析:证明思路 →板演:证明过程 → 指出:大前题、小前题、结论.③ 讨论:因为指数函数x y a =是增函数,1()2x y =是指数函数,则结论是什么? (结论→指出:大前提、小前提 → 讨论:结论是否正确,为什么?)④ 讨论:演绎推理怎样才结论正确?(只要前提和推理形式正确,结论必定正确)。
人教版数学高二 数学A版选修1-2 第二章《推理与证明》教辅资料

满足y=x 2,则log 2(22)x y +的最小值是78;④若a 、b ∈R ,则221a b ab a b +++>+。
其中正确的是( )。
(A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④解析 用综合法可得应选(B ) 例2 函数y =f (x )在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是 .解析∵函数y =f (x )在(0,2)上是增函数, ∴ 0<x+2<2即-2<x <0∴函数y=f(x+2) 在(-2,0)上是增函数, 又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2) 在(0,2)上是减函数 由图象可得f(2.5)>f(1)>f(3.5)故应填f(2.5)>f(1)>f(3.5)例3 已知a ,b ,c 是全不相等的正实数,求证3>-++-++-+ccb a b bc a a a c b解析∵ a ,b ,c 全不相等∴ a b 与b a ,a c 与c a ,b c 与c b 全不相等。
∴ 2,2,2b a c a c ba b a c b c+>+>+>三式相加得6b c c a a ba ab bc c+++++>∴ (1)(1)(1)3b c c a a ba ab bc c+-++-++->即 3b c a a c b a b c a b c+-+-+-++>练习一、选择题1.如果数列{}n a 是等差数列,则( )。
(A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a =2.在△ABC 中若b=2asinB 则A 等于( )(A)06030或 (B)06045或 (C)0012060或 (D)0015030或 3.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+•+.其中不成立的有(A )1个 (B )2个 (C )3个 (D )4个二、填空题4. 已知 5,2==b a ,向量b a 与的 夹角为0120,则a b a .)2(-=5. 如图,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足n,n证明:如图,连接BD ,∵在△ABC 中,BE=CE DF=CF ∴E F ∥BD又BD ⊂平面ABD ∴BD ∥平面ABD7.解:∵f(x-4)=f(2-x),∴函数的图象关于x= -1对称 ∴12-=-ab即b =2a 由③知当x = 1时,y=0,即ab +c =0;由①得 f (1)≥1,由②得 f (1)≤1. ∴f (1)=1,即a +b +c =1,又ab +c =0 ∴a =41 b =21 c =41 ,∴f (x )=4121412++x x 假设存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x 取x =1时,有f (t +1)≤1⇒41(t +1)2+21(t +1)+41≤1⇒-4≤t ≤0 对固定的t ∈[-4,0],取x =m ,有f (t +m )≤m ⇒41(t +m )2+21(t +m )+41≤m ⇒2m +2(t-1)m +(t 2+2t +1)≤0 ⇒t t 41---≤m ≤t t 41-+- ∴m ≤t t 41--≤)4(4)4(1-⋅-+--=9当t = -4时,对任意的x ∈[1,9],恒有f(x-4)≤x ⇒41(2x -10x +9)=41(x-1)(x-9)≤0∴m 的最大值为9.解法二:∵f (x -4)=f (2-x ),∴函数的图象关于x =-1对称 ∴ 12-=-abb =2a 由③知当x=1时,y=0,即a b +c =0;由①得 f (1)≥1,由②得 f (1)≤1∴f (1)=1,即a +b +c =1,a b +c =0∴a =41 b =21 c =41∴f (x )=4121412++x x =41(x +1)2由f (x +t )=41(x +t +1)2≤x 在x ∈[1,m ]上恒成立 ∴4[f (x +t )-x ]=x 2+2(t -1)x +(t +1)2≤0当x ∈[1,m ]时,恒成立 令 x =1有t 2+4t ≤0⇒-4≤t ≤0令x =m 有t 2+2(m +1)t +(m -1)2≤0当t ∈[-4,0]时,恒有解令t = -4得,2m - 10m +9≤0⇒1≤m ≤9 即当t = -4时,任取x ∈[1,9]恒有f (x -4)-x =41(2x -10x +9)=41(x-1)(x-9)≤0 ∴ m max =92.2直接证明2.2.1 综合法一、选择题(1)由等差数列的性质:若m+n=p+q 则q p n m a a a a +=+可知应填(B )。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_6

2.1.3 演绎推理一、三维目标1. 知识与能力:①结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;②掌握演绎推理的基本方法,并能运用它们进行一些简单推理.2. 情感、态度与价值观:①通过演绎推理与三段论法则的学习,促使学生崇尚理智、逻辑、科学,提倡求实精神,批判精神;②严谨的逻辑思维训练、缜密的思考与推算过程,可促使学生的道德准则合乎理性,形成诚实、顽强、谨慎、勇敢和一丝不苟等个性品质.3. 过程与方法:演绎推理是严谨的数学思维中必不可少的推理方式,通过已学过的数学实例的讲解让学生认识到演绎推理在数学思考中的重要作用,培养和提高学生的演绎推理或逻辑证明的能力,这也是高中数学课程的重要目标.二、教学重点演绎推理的概念;三段论式推理的格式.三、教学难点三段论式推理的格式.四、教学过程(一)引入课题判断下列推理结果正确与否:所有的金属能导电,铀是金属,所以铀能导电。
(二)传授新知1. 认识演绎推理与类比推理、归纳推理都不相同,演绎推理是从一般到特殊的推理。
一般中概括了特殊,凡是一类事物所共有的属性,其中每一特殊事物必然具有。
演绎推理中推理的前提是一般性的,即普遍性的知识、原理、定律、公式等,推出的结论是特殊的知识。
所以,演绎推理是必然性推理,其结论是可靠的,这就是演绎推理的特点。
2.演绎推理的主要形式——三段论三段论:大前提——已知的一般性原理;小前提——所研究的特殊情况;结论——根据一般性原理,对特殊情况所下的结论。
例如:所有的金属能导电(大前提)铀是金属(小前提)所以铀能导电(结论)三段论是由两个包含着一个共同项的性质判断作前提,推出另一个性质判断为结论的间接推理。
第一个判断称为大前提,它提供了一个一般的事实或道理;第二个判断称为小前提,它指出了一个特殊情况;这两个判断联合起来揭示了一般事实或道理和特殊情况的内在联系,从而产生了第三个判断——结论。
注意:①三段论全由性质判断组成;②两个前提必须有一个共同项(即相同的概念);③三段论是间接推理,因为它的前提是两个判断组成.再如三角形内角和等于180°,(大前提)图形ABC是三角形,(小前提)所以,图形ABC内角和等于180°。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》精品课件_23

……
……大前提
在△ABD中,AD⊥B△ABD是直角三角形. …………结论
同理,△AEB也是直角三角形
(2)因为直角三角形斜边上的中线等于斜边的一半,
…………………大前提
而M是Rt△ABD斜边AB的中点,DM是斜边上的中线,
…
……小前提
所以DM=1/2AB ,
练习:把下列推理写成三段论的形式
(1)太阳系的大行星都以椭圆形轨道绕太阳运行, 冥王星是太阳系的大行星,因此冥王星以椭圆形轨道
绕太阳运行;
(2)在一个标准大气压下,水的沸点是100°C,所 以在一个标准大气压下把水加热到100°C时,水会沸
腾;
(3)一切奇数都不能被2整除, 是奇数,所以 不能 被2整除;
三段论的基本格式
M—P(M是P) S—M(S是M) S—P(S是P)
(大前提) (小前提)
(结论)
演绎推理
例1、把“函数y x2 x 1的图象是一条抛物线”
恢复成完全三段论。
解:二次函数的图象是一条抛物线 函数y x2 x 1是二次函数
(大前提) (小前提)
所以,函数 y x2 x 1的图象是一条抛物线( 结论)
的数列 an 为等比数列
2.用三段论证明:若梯形的两个腰和一个 底如果相等,它的对an cq角n 线必平分另一底上 的两个角。
推理.
2 从推理的结论来看:
合情推理的结论不一定正确,有待证明; 演绎推理得到的结论一定正确.
合情推理与演绎推理的相关说明:
1 演绎推理是证明数学结论、建立数 学体系的重要思维过程. 2 数学结论、证明思路的发现,主要 靠合情推理.
练习(自己动手练习巩固,寻找 不足当堂解决)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2演绎推理教学设计整体设计教材分析《演绎推理》是高中数学中的基本思维过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程,也是人们学习和生活中经常使用的思维方式,是正确进行逻辑推理必不可少的基础知识,是高考热点.演绎推理具有证明结论、整理和构建知识体系的作用,是公理体系中的基本推理方法.本节内容相对比较抽象,教学中应紧密结合已学过的生活实例和数学实例,让学生了解演绎推理的含义,并在上一节学习的基础上,了解合情推理与演绎推理之间的联系与差异,同时纠正推理过程中可能犯的典型错误,增强学生的好奇心,激发出潜在的创造力,使学生能正确应用合情推理和演绎推理去进行一些简单的推理,证明一些数学结论.课时划分1课时.教学目标1.知识与技能目标了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理.2.过程与方法目标了解和体会演绎推理在日常生活和学习中的应用,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳、挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力.3.情感、态度与价值观通过本节课的学习,体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质.重点难点重点:正确地运用演绎推理进行简单的推理证明.难点:了解合情推理与演绎推理之间的联系与差别.教学过程引入新课观察与思考:新学期开始了,班里换了新的老师,他们是林老师、王老师和吴老师,三位老师分别教语文、数学、英语.已知:每个老师只教一门课;林老师上课全用汉语;英语老师是一个学生的哥哥;吴老师是一位女教师,她比数学老师活泼.问:三位老师各上什么课?活动设计:让学生带着浓厚的兴趣,先独立思考,然后小组交流.引导分析:启发学生把自己的思考过程借助于下列表格展示出来,从而解决问题.注意与学生交流.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于准确.活动结果:林老师——数学,王老师——英语,吴老师——语文.设计意图本着“兴趣是最好的老师”的原则,结合生活中具体的实例,激发学生学习的兴趣,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,体会演绎推理的现实意义.探究新知判断下列推理是合情推理吗?分析推理过程,明确它们的推理形式.(1)所有的金属都能导电,铜是金属,所以,铜能够导电.(2)一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.(3)三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.活动设计:学生口答,教师板书.学情预测:学生积极思考片刻,有学生举手回答且回答准确.活动结果:以上推理不是合情推理,它们的推理形式如下:(1)所有的金属都能导电,第一段铜是金属,第二段所以,铜能够导电.第三段(2)一切奇数都不能被2整除,第一段(2100+1)是奇数,第二段所以,(2100+1)不能被2整除.第三段(3)三角函数都是周期函数,第一段tanα是三角函数,第二段所以,tanα是周期函数.第三段提出问题:对于上面的三个推理,它们的推理形式有什么特点?活动设计:学生独立思考,并自由发言.学情预测:通过观察和分析,学生有足够的能力来解决上面所提问题.活动结果:上面的例子都有三段,是以一般的判断为前提,得出一些个别的、具体的判断:(1)所有的金属都能导电,大前提铜是金属,小前提所以,铜能够导电.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提所以,(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提tanα是三角函数,小前提所以,tanα是周期函数.结论教师:演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式,包括(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.设计意图通过对演绎推理概念的学习,体会以“三段论”模式来说明演绎推理的特点,从中概括出演绎推理的推理过程,对演绎推理是一般到特殊的推理有一个直观的认识,训练和培养学生的演绎推理能力.理解新知提出问题:在应用“三段论”进行推理的过程中,得到的推理结论一定正确吗?为什么?例如:(1)所有阔叶植物都是落叶的,葡萄树是阔叶植物,所以,葡萄树都是落叶的.(2)因为所有边长都相等的凸多边形是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形.(3)英雄难过美人关,我难过美人关,所以,我是英雄.活动设计:学生独立思考,先有学生自由发言,然后教师小结并形成新知.学情预测:学生们在积极思考,对(2)(3)两个小题的结论产生分歧,意见不统一.活动结果:(1)推理形式正确,前提正确,结论正确.(2)推理形式正确,大前提错误,结论错误.(3)推理形式错误(大、小前提没有连接起来),结论错误.教师:通过上面的学习,学生们对演绎推理和“三段论”模式都有了更深的了解,其中特别注意:(1)三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)(2)三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S 是M的一个子集,那么S中所有元素也都具有性质P.(3)在演绎推理中,只有前提和推理形式都正确,结论才是正确的.设计意图通过所举的例子,教师可以了解学生对演绎推理和三段论模式的理解程度,明确概念的内涵和外延,加深理解,及时更正学生在认识推理中产生的错误和偏差.提出问题:合情推理与演绎推理有什么区别与联系?活动设计:学生独立思考,先由学生自由发言,然后教师小结并形成新知.活动结果:设计意图通过比较合情推理与演绎推理的区别与联系,有助于学生更清晰地理解和掌握这两种推理方法,并能灵活应用.运用新知例1如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到D ,E 的距离相等.思路分析:根据三段论的推理过程进行证明.证明:(1)因为有一个内角是直角的三角形是直角三角形,——大前提 在△ABC 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ABD 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提 因为DM 是直角三角形ABD 斜边上的中线,——小前提 所以DM =12AB.——结论同理EM =12AB.所以DM =EM.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,突出演绎推理中的“大前提”“小前提”和“结论”.巩固练习由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理得出一个结论,则这个结论是( )A .正方形的对角线相等B .平行四边形的对角线相等C .正方形是平行四边形D .其他 答案:A例2证明函数f(x)=-x 2+2x 在(-∞,1)内是增函数.思路分析:证明本例所依据的大前提是:在某个区间(a ,b)内,如果f ′(x)>0,那么函数y =f(x)在这个区间内单调递增.小前提是f(x)=-x 2+2x 在(-∞,1)内有f ′(x)>0,这是证明本例的关键. 证明:f ′(x)=-2x +2,因为当x ∈(-∞,1)时,有1-x>0, 所以f ′(x)=-2x +2=2(1-x)>0,于是,根据“三段论”,可知f(x)=-x 2+2x 在(-∞,1)内是增函数.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,并加深对演绎推理的认识.教师:许多学生能写出证明过程,但不一定非常清楚证明的逻辑规则,因此在表述证明过程时往往显得杂乱无章,通过这两个例子的教学,应当使这种状况得到改善.变练演编(1)已知a ,b ,m 均为正实数,且b<a ,求证:b a <b +ma +m.(2)已知△ABC 的三条边分别为a ,b ,c ,则1+ <1+.思路分析:(1)中根据演绎推理的证明过程进行证明;(2)中不必证明,答案不唯一. 证明:(1)不等式两边乘以同一个正数,不等式仍成立,——大前提 b<a ,m>0,——小前提 所以mb<ma.——结论不等式两边加上同一个数,不等式仍成立,——大前提 mb<ma ,ab =ab ,——小前提所以ab +mb<ab +ma ,即b(a +m)<a(b +m).——结论 不等式两边除以同一个正数,不等式仍成立,——大前提 b(a +m)<a(b +m),a(a +m)>0,——小前提所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .——结论(2)c 1+c <a +b 1+a +b (答案不唯一,例如a1+a <c +b 1+c +b). 点评:通过证明(1)中不等式成立,感知条件与结论的不唯一性,例如:已知a ,b ,m 均为正实数,若a<b ,求证:a b <a +mb +m.(2)中加强学生思维的灵活性、分析问题的深刻性.活动设计:学生讨论交流并回答问题,老师对不同的合理答案给予肯定,将所有发现的结论一一列举,并由学生予以评价.设计意图通过变练演编,使学生对演绎推理的认识不断加深,同时培养学生逻辑思维的严谨性. 达标检测1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内的所有直线;已知直线平面α,直线平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 答案:1.D 2.C 3.A课堂小结1.知识收获:(1)演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.2.方法收获:利用演绎推理判断进行证明的方法与步骤:①找出大前提;②找出小前提;③根据“三段论”推出结论.3.思维收获:培养和训练学生严谨缜密的逻辑思维.布置作业课本本节练习1、2、3.补充练习基础练习1.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论.2.下面说法正确的有()(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理的一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个3.下列几种推理过程是演绎推理的是()A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.预测股票走势图4.已知△ABC,∠A=30°,∠B=60°,求证:a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的()A.大前提B.小前提C.结论D.三段论5.用演绎推理法证明y=x是增函数时的大前提是______.答案:1.解:二次函数的图象是一条抛物线(大前提),函数y=x2+x+1是二次函数(小前提),所以,函数y=x2+x+1的图象是一条抛物线(结论).2.C 3.A 4.B 5.增函数的定义拓展练习6.S为△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC.证明:如图,作AE⊥SB于E.∵平面SAB⊥平面SBC,∴AE⊥平面SBC,∴AE⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.∵SA∩AE=A,SA⊂平面SAB,AE⊂平面SAB,∴BC⊥平面SAB.∵AB⊂平面SAB,∴AB⊥BC.设计说明由于这节课概念性、理论性较强,一般的教学方式会使学生感到枯燥乏味,为此,激发学生的学习兴趣是上好本节课的关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去总结概念“下定义”,去体会概念的本质属性.学生对于演绎推理和三段论的理解,需要经过一定时间的体会,先给出学生常见问题的解决步骤,结合以前所学的知识来解决问题,在教学中经常借助这些概念表达、阐述和分析问题.引导学生从日常生活中的推理问题出发,激发学生的学习兴趣,结合学生熟知的旧知识归纳新知识,同时在应用新知的过程中,将所学的知识条理化,使学生的认知结构更趋于合理.备课资料例1小王、小刘、小张参加了今年的高考,考完后在一起议论.小王说:“我肯定考上重点大学.”小刘说:“重点大学我是考不上了.”小张说:“要是不论重点不重点,我考上肯定没问题.”发榜结果表明,三人中考取重点大学、一般大学和没考上大学的各有一个,并且他们三个人的预言只有一个人是对的,另外两个人的预言都同事实恰好相反.可见() A.小王没考上,小刘考上一般大学,小张考上重点大学B.小王考上一般大学,小刘没考上,小张考上重点大学C.小王没考上,小刘考上重点大学,小张考上一般大学D.小王考上一般大学,小刘考上重点大学,小张没考上解析:根据推理知识得出结论.答案:C例2已知直线l、m,平面α、β,且l⊥α,m∥β,给出下列四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4解析:根据演绎推理的定义,逐一判断结论的正误.由直线和平面、平面和平面平行和垂直的判定定理、性质定理,可知应选B.答案:B点评:以准确、完整地理解条件为基础,才能判断命题的正误.例3函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是______.解析:根据函数的性质进行判断.∵函数y=f(x)在(0,2)上是增函数,∴0<x+2<2,即-2<x<0.∴函数y=f(x+2)在(-2,0)上是增函数.又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2)在(0,2)上是减函数.由图象可得f(2.5)>f(1)>f(3.5).故应填f(2.5)>f(1)>f(3.5).答案:f(2.5)>f(1)>f(3.5)点评:根据函数的基本性质,结合三段论的推理模式可得.例4已知lg2=m,计算lg0.8.分析:利用所学的推理知识解决问题.解:lga n=nlga(a>0),——大前提lg8=lg23,——小前提lg8=3lg2.——结论lg ab=lga-lgb(a>0,b>0),——大前提lg0.8=lg 810,——小前提所以lg0.8=lg8-1=3lg2-1=3m-1.——结论点评:找出三段论的大前提与小前提即可得到答案.设计者:李效三2018年5月22日星期二。