九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版

合集下载

人教版九年级下册《第二十六章 反比例函数》单元测试卷和答案详解

人教版九年级下册《第二十六章 反比例函数》单元测试卷和答案详解

人教版九年级数学下册《第26章反比例函数》单元测试卷(2)一.选择题1.(3分)将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A.2B.C.D.62.(3分)反比例函数y=与y=﹣kx+1(k≠0)在同一坐标系的图象可能为()A.B.C.D.3.(3分)已知二次函数y=﹣x2+bx+c的图象如图,则一次函数y=﹣x﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.4.(3分)反比例函数y=的图象是轴对称图形,它的对称轴的表达式是()A.y=x B.y=﹣x C.y=x,y=﹣x D.无法确定5.(3分)如图,设直线y=kx(k<0)与双曲线y=﹣相交于A(x1,y1)B(x2,y2)两点,则x1y2﹣3x2y1的值为()A.﹣10B.﹣5C.5D.106.(3分)已知反比例函数y=,下列结论中不正确的是()A.其图象经过点(﹣1,﹣3)B.其图象分别位于第一、第三象限C.当x>1时,0<y<3D.当x<0时,y随x的增大而增大7.(3分)反比例函数y=﹣的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限8.(3分)如图,矩形ABCD的顶点A和对称中心在反比例函数y=(k≠0,x>0)的图象上,若矩形ABCD的面积为10,则k的值为()A.10B.4C.3D.59.(3分)如图,点A是第一象限内双曲线y=(m>0)上一点,过点A作AB∥x轴,交双曲线y=(n<0)于点B,作AC∥y轴,交双曲线y=(n<0)于点C,连接BC.若△ABC的面积为,则m,n的值不可能是()A.m=,n=﹣B.m=,n=﹣C.m=1,n=﹣2D.m=4,n=﹣210.(3分)若函数的图象经过点(3,﹣4),则它的图象一定还经过点()A.(3,4)B.(2,6)C.(﹣12,1)D.(﹣3,﹣4)二.填空题11.(3分)已知y与x成反比例,且当x=﹣3时,y=4,则当x=6时,y的值为.12.(3分)函数y=(m+1)x是y关于x的反比例函数,则m=.13.(3分)反比例函数经过(﹣3,2),则图象在象限.14.(3分)如果把函数y=x2(x≤2)的图象和函数y=的图象组成一个图象,并称作图象E,那么直线y=3与图象E的交点有个;若直线y=m(m为常数)与图象E有三个不同的交点,则常数m的取值范围是.15.(3分)如图所示,点P(3a,a)是反比例函数图象y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则k=.三.解答题16.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.17.有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)下表是y与x的几组对应值:x…﹣2﹣101245678…y…m0﹣132…则m的值为;(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(4)观察图象,写出该函数的一条性质;(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为;18.在如图所示的平面直角坐标系中,作出函数的图象,并根据图象回答下列问题:(1)当x=﹣2时,求y的值;(2)当2<y<4时,求x的取值范围;(3)当﹣1<x<2,且x≠0时,求y的取值范围.19.我们已经知道,一次函数y=x+1的图象可以看成由正比例函数y=x的图象沿x轴向左平移1个单位得到;也可以看成由正比例函数y=x的图象沿y轴向上平移1个单位得到.(1)函数y=的图象可以看成由反比例函数y=的图象沿x轴向平移1个单位得到;(2)函数y=2x+4的图象可以看成由正比例函数y=2x图象沿x轴向平移个单位得到;(3)如果将二次函数y=﹣x2的图象沿着x轴向右平移a(a>0)个单位,再沿y轴向上平移2a个单位,得到y=﹣x2+mx﹣15的图象,试求m的值.20.我们已经学习过反比例函数y=的图象和性质,请你回顾研究它的过程,运用所学知识对函数y=﹣的图象和性质进行探索,并解决下列问题:(1)该函数的图象大致是.(2)写出该函数两条不同类型的性质:①;②;(3)写出不等式﹣+4>0的解集.人教版九年级数学下册《第26章反比例函数》单元测试卷(2)参考答案与试题解析一.选择题1.(3分)将x =代入反比例函数y =﹣中,所得函数值记为y 1,又将x =y 1+1代入函数中,所得函数值记为y 2,再将x =y 2+1代入函数中,所得函数值记为y 3,…,如此继续下去,则y 2012的值为()A .2B .C .D .6【考点】反比例函数的定义.【分析】分别计算出y 1,y 2,y 3,y 4,可得到每三个一循环,而2012=670…2,即可得到y 2012=y 2.【解答】解:y 1=﹣=﹣,把x =﹣+1=﹣代入y =﹣中得y 2=﹣=2,把x =2+1=3代入反比例函数y =﹣中得y 3=﹣,把x =﹣+1=代入反比例函数y=﹣得y 4=﹣…,如此继续下去每三个一循环,2012=670…2,所以y 2012=2.故选:A .2.(3分)反比例函数y =与y =﹣kx +1(k ≠0)在同一坐标系的图象可能为()A .B .C .D .【考点】反比例函数的图象;一次函数的图象.【分析】分别根据反比例函数与一次函数的性质对各选项进行逐一分析即可.【解答】解:A、由反比例函数的图象可知,k>0,一次函数图象呈上升趋势且交与y轴的正半轴,﹣k>0,即k<0,故本选项错误;B、由反比例函数的图象可知,k>0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项正确;C、由反比例函数的图象可知,k<0,一次函数图象呈上升趋势且交与y轴的负半轴(不合题意),故本选项错误;D、由反比例函数的图象可知,k<0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项错误.故选:B.3.(3分)已知二次函数y=﹣x2+bx+c的图象如图,则一次函数y=﹣x﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【考点】反比例函数的图象;二次函数的图象;一次函数的图象.【分析】由函数图象经过y轴正半轴可知c>0,利用排除法即可得出正确答案.【解答】解:对称轴位于y轴左侧,a、b同号,即b<0.图象经过y轴正半可知c>0,根据对称轴和一个交点坐标用a表示出b,c,b=2a=﹣,c=,由一次函数y=﹣x﹣2b与反比例函数y=得到:=﹣x﹣2b,即x2﹣4x+3=0.则Δ=16﹣12=4>0,所以,可以确定一次函数和反比例函数有2个交点,由b<0可知,直线y=﹣x﹣2b经过一、二、四象限,由c>0可知,反比例函数y=的图象经过第一、三象限,故选:C.4.(3分)反比例函数y=的图象是轴对称图形,它的对称轴的表达式是()A.y=x B.y=﹣x C.y=x,y=﹣x D.无法确定【考点】反比例函数图象的对称性;轴对称图形.【分析】根据反比例函数图象为轴对称图形,并且有两条对称轴进行解答.【解答】解:反比例函数的图象是双曲线,且其为轴对称图形,关于直线y=x和y=﹣x 对称.故选:C.5.(3分)如图,设直线y=kx(k<0)与双曲线y=﹣相交于A(x1,y1)B(x2,y2)两点,则x1y2﹣3x2y1的值为()A.﹣10B.﹣5C.5D.10【考点】反比例函数图象的对称性.【分析】由反比例函数图象上点的坐标特征,两交点坐标关于原点对称,故x1=﹣x2,y1=﹣y2,再代入x1y2﹣3x2y1,由k=xy得出答案.【解答】解:由图象可知点A(x1,y1)B(x2,y2)关于原点对称,即x1=﹣x2,y1=﹣y2,把A(x1,y1)代入双曲线y=﹣得x1y1=﹣5,则原式=x1y2﹣3x2y1,=﹣x1y1+3x1y1,=5﹣15,=﹣10.故选:A.6.(3分)已知反比例函数y=,下列结论中不正确的是()A.其图象经过点(﹣1,﹣3)B.其图象分别位于第一、第三象限C.当x>1时,0<y<3D.当x<0时,y随x的增大而增大【考点】反比例函数的性质.【分析】根据反比例函数的性质对各选项进行逐一分析即可.【解答】解:A、∵(﹣1)×(﹣3)=3,∴图象必经过点(﹣1,﹣3),故本选项不符合题意;B、∵k=3>0,∴函数图象的两个分支分布在第一、三象限,故本选项不符合题意;C、∵x=1时,y=3且y随x的增大而增大,∴x>1时,0<y<3,故本选项不符合题意;D、函数图象的两个分支分布在第一、三象限,在每一象限内,y随x的增大而减小,故本选项符合题意.故选:D.7.(3分)反比例函数y=﹣的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【考点】反比例函数的性质;反比例函数的图象.【分析】根据k值确定函数图象经过的象限即可.【解答】解:因为k=﹣2020,所以反比例函数y=﹣的图象在第二、四象限,故选:C.8.(3分)如图,矩形ABCD的顶点A和对称中心在反比例函数y=(k≠0,x>0)的图象上,若矩形ABCD的面积为10,则k的值为()A.10B.4C.3D.5【考点】反比例函数系数k的几何意义;中心对称.【分析】设A点的坐标为()则根据矩形的性质得出矩形中心的坐标为:(),即(),进而可得出BC的长度.然后将坐标代入函数解析式即可求出k的值.【解答】解:设A(),∴AB=,∵矩形的面积为10,∴BC=,∴矩形对称中心的坐标为:(),即()∵对称中心在的图象上,∴,∴mk﹣5m=0,∴m(k﹣5)=0,∴m=0(不符合题意,舍去)或k=5,故选:D.法二:解:连接BE,作EH⊥AB于H.设A(),∴AB=,∴E(2m,),∵矩形ABCD的面积为10,∴△ABE的面积为=,∴=,即××(2m﹣m)=,∴k=5.故选:D.9.(3分)如图,点A是第一象限内双曲线y=(m>0)上一点,过点A作AB∥x轴,交双曲线y=(n<0)于点B,作AC∥y轴,交双曲线y=(n<0)于点C,连接BC.若△ABC的面积为,则m,n的值不可能是()A.m=,n=﹣B.m=,n=﹣C.m=1,n=﹣2D.m=4,n=﹣2【考点】反比例函数系数k的几何意义.【分析】根据反比例函数图象上点的坐标特征以及三角形的面积公式进行计算得出答案.【解答】解:设点A的坐标为(a,),∵AB∥x轴,AC∥y轴,∴点B的纵坐标为,点C的横坐标为a,将y=代入反比例函数y=得,x=,∴B(,),∴AB=a﹣,将x=a代入反比例函数y=得,y=,∴C(a,),∴AC=,=AB•AC=(a﹣)×==,∵S△ABC即(m﹣n)2=9m,当m=,n=﹣时,不满足(m﹣n)2=9m,因此选项A符合题意;当m=,n=﹣时,当m=1,n=﹣2时,当m=4,n=﹣2时,均满足(m﹣n)2=9m,因此选项B、C、D均不符合题意;故选:A.10.(3分)若函数的图象经过点(3,﹣4),则它的图象一定还经过点()A.(3,4)B.(2,6)C.(﹣12,1)D.(﹣3,﹣4)【考点】反比例函数图象上点的坐标特征.【分析】将(3,﹣4)代入y=求出k的值,再根据k=xy解答即可.【解答】解:∵函数的图象经过点(3,﹣4),∴k=3×(﹣4)=﹣12,符合题意的只有C:k=﹣12×1=﹣12.故选:C.二.填空题11.(3分)已知y与x成反比例,且当x=﹣3时,y=4,则当x=6时,y的值为﹣2.【考点】反比例函数的定义.【分析】根据待定系数法,可得反比例函数,根据自变量与函数值的对应关系,可得答案.【解答】解:设反比例函数为y=,当x=﹣3,y=4时,4=,解得k=﹣12.反比例函数为y=.当x=6时,y==﹣2,故答案为:﹣2.12.(3分)函数y=(m+1)x是y关于x的反比例函数,则m=3.【考点】反比例函数的定义.【分析】根据反比例函数的一般形式得到m2﹣2m﹣4=﹣1且m+1≠0,由此来求m的值即可.【解答】解:∵函数y=(m+1)是y关于x的反比例函数,∴m2﹣2m﹣4=﹣1且m+1≠0,解得m=3.故答案为:3.13.(3分)反比例函数经过(﹣3,2),则图象在二四象限.【考点】反比例函数的图象.【分析】易得反比例函数的比例系数,若为正数,在一三象限,若为负数在二四象限.【解答】解:∵反比例函数经过(﹣3,2),∴k=﹣3×2=﹣6,∴图象在二四象限,故答案为二四.14.(3分)如果把函数y=x2(x≤2)的图象和函数y=的图象组成一个图象,并称作图象E,那么直线y=3与图象E的交点有2个;若直线y=m(m为常数)与图象E有三个不同的交点,则常数m的取值范围是0<m<2.【考点】反比例函数的图象;二次函数的图象.【分析】在同一平面直角坐标系中,画出函数y=x2(x≤2)和函数y=的图象,根据函数图象即可得到直线y=3与图象E的交点个数以及常数m的取值范围.【解答】解:在同一平面直角坐标系中,画出函数y=x2(x≤2)和函数y=的图象,由图可得,直线y=3与图象E的交点有2个,∵直线y=m(m为常数)与图象E有三个不同的交点,∴直线y=m在直线y=2的下方,且在x轴的上方,∴常数m的取值范围是0<m<2,故答案为:2,0<m<2.15.(3分)如图所示,点P(3a,a)是反比例函数图象y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则k=12.【考点】反比例函数图象的对称性.【分析】根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.【解答】解:由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP==a.于是π(a)2=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.故答案为:12.三.解答题16.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.【考点】反比例函数的定义.【分析】根据反比例函数的定义,可得答案.【解答】解:(1)由平均数,得x=,即y=是反比例函数;(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数改为不是反比例函数.(3)由路程与时间的关系,得t=,即t=是反比例函数.17.有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)函数y=的自变量x的取值范围是x≠3;(2)下表是y与x的几组对应值:x…﹣2﹣101245678…y…m0﹣132…则m的值为;(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(4)观察图象,写出该函数的一条性质当x>3时y随x的增大而减小(答案不唯一);(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为y1<y3<y2;【考点】反比例函数的图象;反比例函数的性质.【分析】(1)依据函数表达式中分母不等于0,即可得到自变量x的取值范围;(2)把x=﹣1代入函数解析式,即可得到m的值;(3)依据各点的坐标描点连线,即可得到函数图象;(4)依据函数图象,即可得到函数的增减性;(5)依据函数图象,即可得到当x1<3时,y1<1;当3<x2<x3时,1<y3<y2.【解答】解:(1)∵x﹣3≠0,∴x≠3;(2)当x=﹣1时,y===;(3)如图所示:(4)由图象可得,当x>3时,y随x的增大而减小(答案不唯一);(5)由图象可得,当x1<3时,y1<1;当3<x2<x3时,1<y3<y2.∴y1、y2、y3之间的大小关系为y1<y3<y2.故答案为:x≠3;;当x>3时,y随x的增大而减小;y1<y3<y2.18.在如图所示的平面直角坐标系中,作出函数的图象,并根据图象回答下列问题:(1)当x=﹣2时,求y的值;(2)当2<y<4时,求x的取值范围;(3)当﹣1<x<2,且x≠0时,求y的取值范围.【考点】反比例函数的图象;反比例函数的性质.【分析】(1)把x=﹣2代入函数解析式可得y的值;(2)(3)根据函数图象可直接得到答案.【解答】解:(1)当x=﹣2时,y==﹣3;(2)当2<y<4时:<x<3;(3)由图象可得当﹣1<x<2且x≠0时,y<﹣6或y>3.19.我们已经知道,一次函数y=x+1的图象可以看成由正比例函数y=x的图象沿x轴向左平移1个单位得到;也可以看成由正比例函数y=x的图象沿y轴向上平移1个单位得到.(1)函数y=的图象可以看成由反比例函数y=的图象沿x轴向右平移1个单位得到;(2)函数y=2x+4的图象可以看成由正比例函数y=2x图象沿x轴向左平移2个单位得到;(3)如果将二次函数y=﹣x2的图象沿着x轴向右平移a(a>0)个单位,再沿y轴向上平移2a个单位,得到y=﹣x2+mx﹣15的图象,试求m的值.【考点】反比例函数的图象;二次函数图象与几何变换;一次函数的图象;正比例函数的图象;一次函数图象与几何变换.【分析】(1)利用反比例函数图象的左右平移规律是左加右减;(2)利用一次函数图象的左右平移规律是左加右减;(3)利用二次函数图象的平移规律,再对应比较.【解答】解:(1)利用反比例函数图象的左右平移规律是左加右减,函数y=的图象可以看成由反比例函数y=的图象沿x轴向右平移1个单位得到.故答案为:右.(2)利用一次函数图象的上下平移规律是上加下减,函数y=2x+4的图象可以看成由正比例函数y=2x图象沿x轴向左平移2个单位得到.故答案为:左,2.(3)利用二次函数图象的平移规律,y=﹣x2向右平移a个单位,再向上平移2a个单位后可得:y=﹣(x﹣a)2+2a与y=﹣x2+mx﹣15对应后可得:∵a>0,∴故答案为:m=10.20.我们已经学习过反比例函数y=的图象和性质,请你回顾研究它的过程,运用所学知识对函数y=﹣的图象和性质进行探索,并解决下列问题:(1)该函数的图象大致是C.(2)写出该函数两条不同类型的性质:①在第三象限内,y随x的增大而增小;②图象的两个分支分别位于第三、四象限;(3)写出不等式﹣+4>0的解集.【考点】反比例函数的性质;二次函数的图象;二次函数的性质;反比例函数的图象.【分析】(1)对于函数y=﹣的图象,无论x取非零实数时,y的值总小于零,可得图象;(2)可以从函数的增减性方面进行说明,也可以从函数图象位于的象限说明;函数图象关于y轴成轴对称图形;(3)先求出y=﹣4时x的值,再根据图形确定不等式﹣+4>0的解集.【解答】解:(1)∵函数y =﹣<0,∴函数y =﹣的图象是:C故答案为:C.(2)该函数的性质:①在第三象限内,y随x的增大而增小,②图象的两个分支分别位于第三、四象限;故答案为:在第三象限内,y随x的增大而增小,图象的两个分支分别位于第三、四象限;(3)当y=﹣4时,﹣=﹣4,解得:x =,根据函数的图象和性质得,不等式﹣+4>0的解集是:x <﹣或x >.第21页(共21页)。

人教版九年级数学下第26章 反比例函数单元测试题及答案

人教版九年级数学下第26章 反比例函数单元测试题及答案

人教版九年级数学下第26章 反比例函数单元测试题及答案一、选择题(每小题3分,共30分)1、下列函数中 y 是x 的反比例函数的是( )A 21x y =B xy=8C 52+=x yD 53+=x y2、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ).A 、-2B 、-1C 、0D 、1 3、函数与在同一平面直角坐标系中的图像可能是( )。

4、若点A(x1,1)、B(x2,2)、C(x3,-3)在双曲线上,则( )A 、x 1>x 2>x 3B 、x 1>x 3>x 2C 、x 3>x 2>x 1D 、x 3>x 1>x 2 5、如图4,A 、C 是函数y=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D ,记Rt ΔAOB 的面积为S 1, Rt △COD 的面积为S 2,则( )A 、S 1>S 2;B 、S 1<S 2;C 、S 1 =S 2;D 、S 1和S 2的大小关系不能确定6、在反比例函数1k y x -=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1-B .0C .1D .27、如图,正比例函数y=x 与反比例y=的图象相交于A 、C 两点,AB ⊥x轴于B ,CD ⊥x 轴于D ,则四边形ABCD 的面积为( ) A 、1 B 、 C 、2 D 、8、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <21 D 、m >21 9、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限 10、若反比例函数xy 4-=的图象经过点(a ,-a ),则a 的值为( ) A 、2; B 、±2; C 、-2; D 、±4二、填空题(每小题4分,共40分)11、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 .12、函数22)2(--=ax a y 是反比例函数,则a 的值是13、正比例函数5y x =-的图象与反比例函数(0)ky k x=≠的图象相交于点A (1,a ), 则k = . 14、反比例函数y =(m +2)x m2-10的图象分布在第二、四象限内,则m 的值为 .15、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,若时,,则的取值范围是 . 16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点,过M 点作x 轴、 y 轴的平行线,若S 阴影=5,则此反比例函数解析式为 .17、如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=.18、点P 在反比例函数1y x=(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是___________.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,则△ABC 的面积S =___________三、解答题(共50分)21、(8分)已知 21y y y += 若1y 与2x 成正比例关系 ,2y 与x 成反比例关系 ,且当X=-1时,y=3.由x=1时,y=-5时, 求y与x的函数关系式?22、(10分)如图所示:已知直线y=x 21与双曲线y=)0(>k xk交于A B两点,且点A的横坐标为4⑴ 求k的值 ⑵ 若双曲线y=)0(>k xk上的一点C 的纵坐标为8,求△AOC 的面积23、(8分)在反比例函数xky =的图像的每一条曲线上,y 都随x 的增大而减小.在曲线上取一点A ,分别向x 轴、y 轴作垂线段,垂足分别为B 、C ,坐标原点为O ,若四边形ABOC 面积为6,求k 的值24、(24分)如图, 已知反比例函数y =xk的图象与一次函数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上,并说明理由. (4)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.参考答案1、B2、D3、B4、C5、C6、D7、C8、D9、D 10、B 11、(2,1)12、-1 , 13、-5 14、-3 , 15、K <-116、y=x 5, 17、418、y=x6, 19、420、4 , 21、y=-x 2- x422、k=8, △AOC 的面积=15 23、k=6,24、(1) y=x 4, y=2x-2(2) =3, (3)在, (4)、x <-1 或 0< x <2人教版九年级下册第二十六章《反比例函数》单元测试及答案一、选择题1、已知反比例函数(≠0)的图象,在每一象限内,的值随值的增大而减少,则一次函数的图象不经过()A.第四象限 B.第三象限 C.第二象限 D.第一象限2、函数自变量x的取值范围是()A. 全体实数B.C.x<1D.x≠13、若反比例函数的图象过点(2,1),则这个函数的图象一定过点 ( )A.(2,—1) B.(1,—2) C.(—2,1) D.(—2,—1)4、反比例函数y=的图象,当x>0时,y随x的增大而减小,则k的取值范围是()A.k<2 B.k≤2 C.k>2 D.k≥25、如图,过双曲线(k是常数,k>0,x>0)的图象上两点A,B分别作AC⊥x轴于C,BD⊥x轴于D,则△AOC的面积S1和△BOD的面积S2的大小关系为()A.S1>S2 B.S1=S2 C.S1<S2 D.S1与S2无法确定6、已知, , 是反比例函数的图象上的三点,且,则、、的大小关系是( )A .B .C .D .7、当m ,n 是实数且满足m ﹣n=mn 时,就称点Q (m ,)为“奇异点”,已知点A 、点B 是“奇异点”且都在反比例函数y=的图象上,点O 是平面直角坐标系原点,则△OAB 的面积为( )A .1B .C .2D .8、如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数y=的图象经过A ,B 两点,则菱形ABCD 的面积为( )A .2B .4C .2D .49、如图,直线l 是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC边在直线l 上滑动,使A ,B 在函数y=的图象上.那么k 的值是( )A.3 B.6 C.12 D.10、物理学知识告诉我们,一个物体所受到的压强P与所受压力F及受力面积S之间的计算公式为.当一个物体所受压力为定值时,那么该物体所受压强P与受力面积S之间的关系用图象表示大致为()11、将一定浓度的溶液加水稀释,能正确表示加入水的质量与溶液酸碱度关系的是()12、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa时,气球将爆炸.为了安全起见,气球的体积应().A .不小于m 3B .小于m 3C .不小于m 3D .小于m 313、如图,平面直角坐标系中,矩形ABCO 与双曲线y=(x >0)交于D 、E 两点,将△OCD沿OD 翻折,点C 的对称点C ′恰好落在边AB 上,已知OA=3,OC=5,则AE 长为( )A .4B .3C .D .二、填空题14、.已知y 是x 的反比例函数,且在每个象限内,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式 .15、如图所示,直线y=x+a ﹣2与双曲线y=交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为 .16、某单位要建一个200 m 2的矩形草坪,已知它的长是y m ,宽是x m ,则y 与x 之间的函数解析式为______________;若它的长为20 m ,则它的宽为________m.17、如图,已知点A的坐标为(,3),AB⊥x轴,垂足为B,连接OA,反比例函数(k>0)的图象与线段OA、AB分别交于点C、D.若AB=3BD,以点C为圆心,CA的倍的长为半径作圆,则该圆与x轴的位置关系是(填“相离”、“相切”或“相交”).18、如图,已知点A在反比例函数(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k= .19、直线与双曲线交于、两点,则的值是.20、在双曲线上有三点,已知,则的大小关系是 .(用“<”连接)21、.如图,已知反比例函数的图象上有一组点B1,B2,…,B n,它们的横坐标依次增加1,且点B1横坐标为1.“①,②,③…”分别表示如图所示的三角形的面积,记S1=①-②,S2=②-③,…,则S7的值为,S1+S2+…+S n= (用含n的式子表示).22、如图,双曲线y=在第一象限内的图象与等腰直角三角形OAB相交于C点和D点,∠A=90°,OA=1,OC=2BD,则k的值是____.23、如图,已知点是反比例函数的图象上一点,轴于,且的面积为3,则的值为 .24、如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=3,则k的值是.25、在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是米。

九年级数学下册 反比例函数单元试卷(含答案)

九年级数学下册 反比例函数单元试卷(含答案)

人教版数学九年级第二十六章 反比例函数单元卷一、选择题1.在同一直角坐标系中,函数y =和y =kx -3的图象大致是()k x2.已知点P (-3,2),点Q (2,a )都在反比例函数y =(k ≠0)的图象上,过点Q 分别作两坐标轴的垂线,两垂线与两坐标轴围成的矩形面积为()A .3B .6C .9D .12k x3.已知一次函数y 1=x -3和反比例函数y 2=的图象在平面直角坐标系中交于A 、B 两点,当y 1>y 2时,x 的取值范围是()A .x <-1或x >4B .-1<x <0或x >4C .-1<x <0或0<x <4D .x <-1或0<x <44x4.如图是反比例函数y 1=和一次函数y 2=mx +n 的图像,若y 1<y 2,则相应的x 的取值范围是().A .1<x <6B .x <1C .x <6D .x >1k x5.已知关于x 的方程(x +1)2+(x -b )2=2有唯一的实数解,且反比例函数y =的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为()A .y =-B .y =C .y =D .y =-1+b x3x1x2x2x6.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =(x >0)的图象上,若AB =2,则k 的值为()kxA .4B .2C .2D .2–√2–√7.如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2=()A .3B .4C .5D .64x8.如图,在平面直角坐标系中,菱形ABCD 的顶点A 、B 在反比例函数y =(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为,则k 的值为()A .B .C .4D .5k x452541549.如图,一次函数y =2x 与反比例函数y =(k >0)的图象交于A ,B 两点,点P 在以C (-2,0)为圆心,1为半径的⊙C 上,Q 是AP 的中点,已知OQ 长的最大值为,则k 的值为()A .B .C .D .kx 3249322518322598二、填空题10.如图,B (3,-3),C (5,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为 .11.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点.若x 2=x 1+2,且=+,则这个反比例函数的表达式为 .1y 21y 11212.在平面直角坐标系中,我们把横,纵坐标均为整数的点叫做整点,已知反比例函数y =(m <0)与y =x 2-4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m 的取值范围为 .m x 13.如图,已知等边△OA 1B 1,顶点A 1在双曲线y =(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;……以此类推,则点B 6的坐标为 .3√x 三、解答题14.如图,反比例函数y =(x >0)的图象过格点(网格线的交点)P .(1)求反比例函数的解析式;(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ;②矩形的面积等于k 的值.k x15.如图,在平面直角坐标系中,直线y 1=kx +b (k ≠0)与双曲线y 2=(a ≠0)交于A 、B 两点,已知点A (m ,2),点B (-1,-4).a x(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.16.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(-,2),B(n,-1).(1)求直线与双曲线的表达式;(2)点P在x轴上,如果S△ABP =3,求点P的坐标.mx1217.一次函数y=kx+b的图象经过点A(-2,12),B(8,-3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.m x人教版数学九年级第二十六章 反比例函数单元卷【含参考答案】一、选择题1.在同一直角坐标系中,函数y =和y =kx -3的图象大致是()【参考答案】答案:B .解:k >0时,一次函数y =kx -3的图象经过第一、三、四象限,反比例函数的两个分支分别位于第一、三象限,无选项符合;k <0时,一次函数y =kx -3的图象经过第二、三、四象限,反比例函数的两个分支分别位于第二、四象限,B 选项符合.故选B .k x2.已知点P (-3,2),点Q (2,a )都在反比例函数y =(k ≠0)的图象上,过点Q 分别作两坐标轴的垂线,两垂线与两坐标轴围成的矩形面积为()A .3B .6C .9D .12【参考答案】答案:B .解:∵点P (-3,2)在反比函数图象上,∴k =-3×2=-6,∴两垂线与两坐标轴围成的矩形的面积为|-6|=6.故选B .反比例函数中k 值的几何意义k x3.已知一次函数y 1=x -3和反比例函数y 2=的图象在平面直角坐标系中交于A 、B 两点,当y 1>y 2时,x 的取值范围是()A .x <-1或x >4B .-1<x <0或x >4C .-1<x <0或0<x <4D .x <-1或0<x <4【参考答案】答案:B .解:解方程x -3=,得4x4xx =-1或x =4,那么A 点坐标是(-1,-4),B 点坐标是(4,1),如图所示,当x >4时,y 1>y 2,当-1<x <0时,y 1>y 2.故选B .4.如图是反比例函数y 1=和一次函数y 2=mx +n 的图像,若y 1<y 2,则相应的x 的取值范围是().A .1<x <6B .x <1C .x <6D .x >1【参考答案】答案:A .解:根据图象可知:反比例函数与一次函数的交点横坐标为1和6,∴当1<x <6时,y 1<y 2.故选A .反比例函数与一次函数的综合应用k x5.已知关于x 的方程(x +1)2+(x -b )2=2有唯一的实数解,且反比例函数y =的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为()A .y =-B .y =C .y =D .y =-【参考答案】答案:D .解:将方程(x +1)2+(x -b )2=2化成一般式,得2x 2+(2-2b )x +b 2-1=0,由方程有唯一的实数根可得△=(2-2b )2-8(b 2-1)=0,化简,得-4(b -1)(b +3)=0,解得b =1或b =-3.1+b x3x1x2x2x又因为反比例函数y =的图象在每个象限内y 随x 的增大而增大,所以1+b <0,即b <-1,故b =-3,所以反比例函数的关系式为y =-.故选D .1+b x2x6.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =(x >0)的图象上,若AB =2,则k 的值为()A .4B .2C .2D .【参考答案】答案:A .解:作BD ⊥AC 于D ,如图,∵△ABC 为等腰直角三角形,∴AC =AB =2,等腰直角三角形的性质∴BD =AD =CD =,∵AC ⊥x 轴,∴C (,2),把C (,2)代入y =得k =×2=4,用待定系数法求反比例函数 故选A .kx 2–√2–√2–√2–√2–√2–√2–√2–√2–√k x2–√2–√7.如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2=()4xA .3B .4C .5D .6【参考答案】答案:D .解:根据反比例函数比例系数k 的几何意义可知S 1+S 2+2S 阴影=2|k |,因此S 1+S 2=4+4-1×2=6.故选D .8.如图,在平面直角坐标系中,菱形ABCD 的顶点A 、B 在反比例函数y =(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为,则k 的值为()A .B .C .4D .5【参考答案】答案:D .解:∵菱形的面积为,∴AC •BD =45,对角线相互垂直的四边形的面积是其两条对角线乘积的一半 ∵A ,B 的横坐标是1和4,且A ,B 在反比例函数y =的图象上可得A (1,k )B (4,)∴BD =2(4-1)=6,∴AC =,∴k =+k解得:k =5.反比例函数中k 值的几何意义 故选D .k x45254154452k xk 4152154149.如图,一次函数y =2x 与反比例函数y =(k >0)的图象交于A ,B 两点,点P 在以C (-2,0)为圆心,1为半径的⊙C 上,Q 是AP 的中点,已知OQ 长的最大值为,则k 的值为()kx 32A .B .C .D .【参考答案】答案:C .解:连接BP .由对称性知OA =OB .∵Q 是AP 的中点,∴OQ =BP .∵OQ 的最大值为,∴BP 的最大值为2×=3.如图,当BP 过圆心C 时,BP 最长,则BP =3.∵⊙C 的半径为1,∴CP =1,∴BC =2.∵点B 在直线y =2x 上,∴可设B (t ,2t ).过点B 作BD ⊥x 轴于点D ,则CD =t -(-2)=t +2,BD =0-2t =-2t .在Rt △BCD 中,由勾股定理得CD 2+BD 2=BC 2,即(t +2)2+(-2t )2=22,解得t 1=0(不合题意,舍去),t 2=-,∴B (-,-).∵点B (-,-)在反比例函数y =的图象上,∴k =(-)×(-)=.故选C .493225183225981232324545854585k x45853225二、填空题【参考答案】y =.解:∵四边形AOBC 是平行四边形,=OC .6x∴在第四象限内二次函数的图象上和图象上方的整数点有3个,坐标为(1,-1)、(1,-2)、(1,-3).∵1×(-1)=-1,1×(-2)=-2,1×(-3)=-3,且在反比例函数的图象上和下方的整数点有2个,∴整点(1,-1)不在封闭区域内,∴-2≤m<-1.13.如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;……以此类推,则点B6的坐标为 .【参考答案】答案:(2,0).解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)·a=,解得a=-1,或a=--1(舍去),∴OB2=OB1+2B1C=2+2-2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)·b=,解得b=-+,或b=--(舍去),∴OB3=OB2+2B2D=2-2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),3√x6–√3–√3–√3√x3–√3–√2–√2–√2–√2–√2–√3–√2–√2–√3–√3√x2–√3–√3–√2–√3–√2–√3–√2–√2–√3–√3–√3–√4–√n−√∴点B 6的坐标为(2,0).6–√三、解答题14.如图,反比例函数y =(x >0)的图象过格点(网格线的交点)P .(1)求反比例函数的解析式;(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ;②矩形的面积等于k 的值.【参考答案】解:(1)∵反比例函数y =(x >0)的图象过格点P (2,2),∴k =2×2=4,∴反比例函数的解析式为y =;(2)如图所示:矩形OAPB 、矩形OCDP 即为所求作的图形.k x k x 4x 15.如图,在平面直角坐标系中,直线y 1=kx +b (k ≠0)与双曲线y 2=(a ≠0)交于A 、B 两点,已知点A (m ,2),点B (-1,-4).(1)求直线和双曲线的解析式;(2)把直线y 1沿x 轴负方向平移2个单位后得到直线y 3,直线y 3与双曲线y 2交于D 、E 两点,当y 2>y 3时,求x 的取值范围.a x【参考答案】解:(1)∵B (-1,-4),点B 在双曲线上,∴a =(-1)×(-4)=4.∵点A 在双曲线上,∴2m =4,即m =2,∴A (2,2).∵A (2,2),B (-1,-4)在直线y 1=kx +b 上,∴,∴,∴直线和双曲线的解析式分别为:y 1=2x -2和y 2=.用待定系数法求反比例函数待定系数法求一次函数表达式(2)∵直线y 3是直线y 1沿x 轴负方向平移2个单位得到,∴y 3=2(x +2)-2=2x +2,解方程组:得,或,∴点D (1,4),E (-2,-2),∴当y 2>y 3时,x 的取值范围是:x <-2或0<x <1.函数图象上点的坐标与函数关系式的关系一次函数图象的平移规律{2=2k +b−4=−k +b {k =2b =−24x {y =4xy =2x +2{x =1y =4{x =−2y =−216.如图,直线y =kx +b (k ≠0)与双曲线y =(m ≠0)交于点A (-,2),B (n ,-1).(1)求直线与双曲线的表达式;m x12(2)点P 在x 轴上,如果S △ABP =3,求点P 的坐标.【参考答案】解:(1)将A 代入反比例函数,可以得到m =2×(-)=-1,所以,反比例函数解析式为y =-用待定系数法求反比例函数将B 的坐标代入反比例函数,可得-1=-,所以n =1;函数图象上点的坐标与函数关系式的关系将A (-,2),B (1,-1),代入一次函数,可得解得,所以,一次函数的解析式是:y =-2x +1;待定系数法求一次函数表达式(2)当y =-2x +1=0时,x =,所以点C 为(,0),由此可得S △ABP =S △ACP +S △BCP =·2·CP +·1·CP =3,解得CP =2所以点P 的坐标是(-,0)或(,0).反比例函数与一次函数的综合应用121x 1n 12{−k +b =212k +b =−1{k =−2b =112121212325217.一次函数y =kx +b 的图象经过点A (-2,12),B (8,-3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y =(m>0)的图象相交于点C (x 1,y 1),D (x 2,y 2),与y 轴交于点E ,且CD =CE ,求m 的值.【参考答案】解:(1)把点A (-2,12),B (8,-3)代入y =kx +b 得:,解得:,∴一次函数解析式为:y =-x +9;待定系数法求一次函数表达式(2)分别过点C 、D 做CA ⊥y 轴于点A ,DB ⊥y 轴于点B ,如图所示:m x {12=−2k +b−3=8k +b {k =−32b =932设点C 坐标为(a ,b ),由已知,得ab =m ,反比例函数的图象与性质由(1)点E 坐标为(0,9),则AE =9-b .∵AC ∥BD ,CD =CE ,∴BD =2a ,EB =2(9-b ),∴OB =9-2(9-b )=2b -9,∴点D 坐标为(2a ,2b -9),∴2a •(2b -9)=m ,整理得:m =6a .∵ab =m ,∴b =6,则点D 坐标化为(2a ,3).∵点D 在y =-x +9图象上,∴a =2,∴m =ab =12.一次函数的图象和性质 32。

新人教版九年级下《第26章反比例函数》单元测试题含答案解析

新人教版九年级下《第26章反比例函数》单元测试题含答案解析

新人教版九年级下册数学?第26章反比例函数?单元测试题一.选择题〔共10小题〕1.以下关系式中,y是x的反比例函数的是〔〕A.y=4x B.=3 C.y=﹣ D.y=x2﹣12.在同一平面直角坐标系中,函数 y=kx与y=的图象大致是〔〕A.〔1〕〔3〕B.〔1〕〔4〕C.〔2〕〔3〕D.〔2〕〔4〕3.反比例函数y=﹣,以下结论中不正确的选项是〔〕A.图象必经过点〔﹣3,2〕B.图象位于第二、四象限C.假设x<﹣2,那么0<y<3D.在每一个象限内,y随x值的增大而减小4.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,S阴影=,那么S1+S2等于〔〕A.4B.C.D.5.以下各点中,在函数y=﹣图象上的是〔〕A.〔﹣3,﹣2〕B.〔﹣2,3〕C.〔3,2〕D.〔﹣3,3〕6.以下函数中,图象经过点〔1,﹣2〕的反比例函数关系式是〔〕A.y=B.y=C.y=D.y=7.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A〔2,2〕,当y=x的函数值大于y=的函数值时,x的取值范围〔〕A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>28.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了 6小时到达目的地,当他按原路匀速返回时,汽车的速度v〔千米/时〕与时间t〔小时〕的函数关系为〔〕A.v=B.v+t=480C.v=D.v=9.对于反比例函数y=〔k≠0〕,以下所给的四个结论中,正确的选项是〔〕A.假设点〔2,4〕在其图象上,那么〔﹣2,4〕也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,那么矩形OAPB的面积为kD.反比例函数的图象关于直线y =x和y=﹣x成轴对称10.反比例函数y=〔k≠0〕的图象经过〔﹣4,2〕,那么以下四个点中,在这个函数图象上的是〔〕A.〔1,8〕B.〔3,〕C.〔,6〕D.〔﹣2,﹣4〕二.填空题〔共8小题〕11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大〞,那么此函数的表达式可以为.12.如图,在平面直角坐标系xOy中,函数y=〔x>0〕的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,连接OA,OB,那么△OAC与△OBD的面积之和为.13.A〔x1,y1〕,B〔x2,y2〕都在反比例函数的图象y=﹣上,且x1<0<x2,那么y1与y2大小关系是.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A〔2,1〕,C2与C1关于x轴对称,那么图象C2对应的函数的表达式为〔x>0〕.15.反比例函数y=的图象与正比例函数y=6x的图象交于点P〔m,12〕,那么反比例函数的关系式是.16.如图、点P在反比例函数y=的图象上,PM⊥y轴于M,S△POM=4,那么k=.17.如图,在平面直角坐标系xOy中,函数y=〔x>0〕的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.假设点B在x轴上,点A的坐标为〔6,4〕,那么△BOC的面积为.18.如果点〔﹣1,y 1〕、B 〔1,y 2〕、C 〔2,y 3〕是反比例函数y =图象上的三个点,那么y 1、y 2、y 3的大小关系是 .三.解答题〔共7小题〕19.y =〔m 2+2m 〕x是关x 于的反比例函数,求m 的值及函数的解析式.20.反比例函数y =〔m ﹣2〕〔1〕假设它的图象位于第一、三象限,求m 的值;〔2〕假设它的图象在每一象限内 y 的值随x 值的增大而增大,求 m 的值.21.双曲线y =如下图,点 A 〔﹣1,m 〕,B 〔n ,2〕.求S △AOB .22.如图,在平面直角坐标系中,Rt △ABC 的边AB ⊥x 轴,垂足为 A ,C 的坐标为〔1,0〕,反比例函数y =〔x >0〕的图象经过 BC 的中点D ,交AB 于点E .AB =4,BC =5.求k 的值.23.如图,直线 y =﹣2x 经过点P 〔﹣2,a 〕,点P 关于y 轴的对称点 P ′在反比例函数y =〔k ≠0〕的图象上.1〕求反比例函数的解析式;2〕直接写出当y<4时x的取值范围.24.如图,一次函数y=kx+b与反比例函数y=〔x<0〕的图象相交于点A、点B,与X轴交于点C,其中点A〔﹣1,3〕和点B〔﹣3,n〕.〔1〕填空:m=,n=.〔2〕求一次函数的解析式和△AOB的面积.〔3〕根据图象答复:当x为何值时,kx+b≥〔请直接写出答案〕.25.如图,在平面直角坐标系中,一次函数y=kx+b〔k≠0〕与反比例函数y=〔m≠0〕的图象交于点A〔3,1〕,且过点B〔0,﹣2〕.1〕求反比例函数和一次函数的表达式;2〕如果点P是x轴上的一点,且△ABP的面积是3,求点P的坐标;〔3〕假设P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.新人教版九年级下册数学?第26章反比例函数?单元测试题参考答案与试题解析一.选择题〔共10小题〕1.以下关系式中, y 是x 的反比例函数的是〔A .y =4xB .=3【分析】根据反比例函数的定义判断即可. 【解答】解:A 、y =4x 是正比例函数;B 、 =3,可以化为 y =3x ,是正比例函数;C 、y =﹣ 是反比例函数;D 、y =x 2﹣1是二次函数;应选:C .【点评】此题考查的是反比例函数的定义,形如2.在同一平面直角坐标系中,函数 y =kx 与〕 C .y =﹣ D .y =x 2﹣1y = 〔k 为常数,k ≠0〕的函数称为反比例函数.y = 的图象大致是〔 〕A .〔1〕〔3〕B .〔1〕〔4〕C .〔2〕〔3〕D .〔2〕〔4〕 【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项. 【解答】解:当k >0时,函数y =kx 的图象位于一、三象限, y = 的图象位于一、三象限,〔1〕符合;当k <0时,函数y =kx 的图象位于二、四象限, y = 的图象位于二、四象限,〔4〕符合;应选:B .【点评】考查了反比例函数和正比例函数的性质,解题的关键是能够分类讨论,难度不大.3.反比例函数y=﹣,以下结论中不正确的选项是〔〕A.图象必经过点〔﹣3,2〕B.图象位于第二、四象限C.假设x<﹣2,那么0<y<3D.在每一个象限内,y随x值的增大而减小【分析】根据反比例函数的性质进行选择即可.【解答】解:A、图象必经过点〔﹣3,2〕,故A正确;B、图象位于第二、四象限,故B正确;C、假设x<﹣2,那么y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;应选:D.【点评】此题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.4.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,S阴影=,那么S1+S2等于〔〕A.4B.C.D.5【分析】根据反比例函数系数k的几何意义可得S四边形AEOF=4,S四边形BDOC=4,根据S1+S2=S 四边形AEOF+S四边形BDOC﹣2×S阴影,可求S1+S2的值.【解答】解:如图,∵A、B两点在双曲线y=上,S四边形AEOF=4,S四边形BDOC=4,S1+S2=S四边形AEOF+S四边形BDOC﹣2×S阴影,S1+S2=8﹣=应选:C.【点评】此题考查了反比例函数系数k的几何意义,熟练掌握在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.5.以下各点中,在函数y=﹣图象上的是〔〕A.〔﹣3,﹣2〕B.〔﹣2,3〕C.〔3,2〕D.〔﹣3,3〕【分析】只需把所给点的横纵坐标相乘,结果是﹣6的,就在此函数图象上.【解答】解:∵反比例函数y=﹣中,k=﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上,四个选项中只有B选项符合.应选:B.【点评】此题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.6.以下函数中,图象经过点〔1,﹣2〕的反比例函数关系式是〔〕A.y=B.y=C.y=D.y=【分析】利用待定系数法求出反比例函数解析式即可.【解答】解:设反比例函数解析式为y=〔k≠0〕,把〔1,﹣2〕代入得:k=﹣2,那么反比例函数解析式为y=﹣,应选:D.【点评】此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解此题的关键.7.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A〔2,2〕,当y=x的函数值大于y=的函数值时,x的取值范围〔〕A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>2【分析】由题意可求点B坐标,根据图象可求解.【解答】解:∵正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A〔2,2〕,∴点B坐标为〔﹣2,﹣2〕∴当x>2或﹣2<x<0应选:D.【点评】此题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.8.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v〔千米/时〕与时间t〔小时〕的函数关系为〔〕A.v=B.v+t=480C.v=D.v=【分析】先求得路程,再由等量关系“速度=路程÷时间〞列出关系式即可.【解答】解:由于以80千米/时的平均速度用了 6小时到达目的地,那么路程为∴汽车的速度v〔千米/时〕与时间t〔小时〕的函数关系为v=.应选:A.【点评】此题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.9.对于反比例函数y=〔k≠0〕,以下所给的四个结论中,正确的选项是〔A.假设点〔2,4〕在其图象上,那么〔﹣2,4〕也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,那么矩形OAPB D.反比例函数的图象关于直线y=x和y=﹣x成轴对称【分析】根据反比例函数的性质一一判断即可;80×6=480千米,〕的面积为k【解答】解:A、假设点〔2,4〕在其图象上,那么〔﹣2,4〕不在其图象上,故本选项不符合题意;B、当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C、错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,那么矩形OAPB的面积为|k|;故本选项不符合题意;D、正确,本选项符合题意,应选:D.【点评】此题考查反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.10.反比例函数y=〔k≠0〕的图象经过〔﹣4,2〕,那么以下四个点中,在这个函数图象上的是〔〕A.〔1,8〕B.〔3,〕C.〔,6〕D.〔﹣2,﹣4〕【分析】根据反比例函数y=〔k≠0〕的图象经过〔﹣4,2〕,可以得到k的值,从而可以判断各个选项是否符合题意,此题得以解决.【解答】解:∵反比例函数y=〔k≠0〕的图象经过〔﹣4,2〕,∴k=xy=〔﹣4〕×2=﹣8,∵1×8=8≠﹣8,应选项A不符合题意,∵3×〔﹣〕=﹣8,应选项B符合题意,∵×6=3≠﹣8,应选项C不符合题意,∵〔﹣2〕×〔﹣4〕=8≠﹣8,应选项D不符合题意,应选:B.【点评】此题考查反比例函数图象上点的坐标特征,解答此题的关键是明确题意,利用反比例函数的性质解答.二.填空题〔共8小题〕11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大〞,那么此函数的表达式可以为y=.【分析】根据题意和反比例函数的性质可以写出一个符合要求的函数解析式,此题得以解决.【解答】解:∵当x>0时,y随x的增大而增大,∴此函数的解析式可以为y=,故答案为:y=.【点评】此题考查反比例函数的性质,解答此题的关键是明确题意,写出相应的函数解析式,注意此题答案不唯一.12.如图,在平面直角坐标系xOy中,函数y=〔x>0〕的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,连接OA,OB,那么与△OBD的面积之和为2.△OAC【分析】根据反比例函数比例系数k的几何意义可得S△OAC=S△OBD=×2=1,再相加即可.【解答】解:∵函数y=〔x>0〕的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,∴S△OAC=S△OBD=×2=1,∴S△OAC+S△OBD=1+1=2.故答案为2.【点评】此题考查了反比例函数比例系数k的几何意义:过反比例函数图象上的点向x轴或y轴作垂线,这一点和垂足、原点组成的三角形的面积等于|k|.13.A〔x1,y1〕,B〔x2,y2〕都在反比例函数的图象y=﹣上,且x1<0<x2,那么y1与y2大小关系是y1>y2.【分析】将点A,点B坐标代入解析式,可求y1,y2,由x1<0<x2,可得y1>0,y2<0,即可得y1与y2大小关系.【解答】解:∵A〔x1,y1〕,B〔x2,y2〕都在反比例函数的图象y=﹣上,∴y1=,y2=,x1<0<x2,∴y1>0>y2,故答案为:y1>y2【点评】此题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A〔2,1〕,C2与C1关于x轴对称,那么图象C2对应的函数的表达式为y=﹣〔x>0〕.【分析】根据关于x轴对称的性质得出点A关于x轴的对称点A′坐标〔2,﹣1〕,从而得出C2对应的函数的表达式.【解答】解:∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A〔2,1〕,A′坐标〔2,﹣1〕,C2对应的函数的表达式为y=﹣,故答案为y=﹣.【点评】此题考查了反比例函数的性质,掌握关于x轴对称点的坐标是解题的关键.15.反比例函数y=的图象与正比例函数y=6x的图象交于点P〔m,12〕,那么反比例函数的关系式是y=.【分析】把点P〔m,12〕代入正比例函数 y=6x得到关于m的一元一次方程,解之求得m的值,把P的坐标代入反比例函数y=,得到关于k的一元一次方程,解之,求得k的值,代入即可得到答案.【解答】解:把点P〔m,12〕代入正比例函数y=6x得:12=6m,解得:m=2,把点P〔2,12〕代入反比例函数y=得:12=,解得:k=24,即反比例函数得关系式是y=,故答案为:y=.【点评】此题考查了反比例函数和一次函数的交点问题,正确掌握代入法是解题的关键.16.如图、点P在反比例函数 y=的图象上,PM⊥y轴于M,S△POM=4,那么k=﹣8.【分析】此题可从反比例函数系数k的几何意义入手,△PMO的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=|k|再结合反比例函数所在的象限确定出k的值即可.【解答】解:由题意知:S△PMO=|k|=4,所以|k|=8,即k=±8.又反比例函数是第二象限的图象,k<0,所以k=﹣8,故答案为:﹣8.【点评】此题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里表达了数形结合的思想,做此类题一定要正确理解k的几何意义.17.如图,在平面直角坐标系xOy中,函数y=〔x>0〕的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.假设点B在x轴上,点A的坐标为〔6,4〕,那么△BOC的面积为3.【分析】由于点A的坐标为〔6,4〕,而点D为OA的中点,那么D点坐标为〔3,2〕,利用待定系数法科得到k=6,然后利用k的几何意义即可得到△BOC的面积=|k|=×6=3.【解答】解:∵点A的坐标为〔6,4〕,而点D为OA的中点,∴D点坐标为〔3,2〕,把D〔3,2〕代入y=得k=3×2=6,∴反比例函数的解析式为y=,∴△BOC的面积=×|6|=3.|k|=故答案为:3;【点评】此题考查了反比例y=〔k≠0〕数k的几何意义:过反比例函数图象上任意一点分别作x|k|.轴、y轴的垂线,那么垂线与坐标轴所围成的矩形的面积为y1、y2、18.如果点〔﹣1,y1〕、B〔1,y2〕、C〔2,y3〕是反比例函数y=图象上的三个点,那么y3的大小关系是y2>y3>y1.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可【解答】解:∵1>0,∴反比例函数y=图象在一、三象限,并且在每一象限内y随x的增大而减小,∴∵﹣1<0,∴A点在第三象限,∴y1<0,∴2>1>0,∴B、C两点在第一象限,∴y2>y3>0,y 2>y 3>y 1.故答案是:y 2>y 3>y 1.【点评】此题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题〔共7小题〕19 .y =〔m 2+2m 〕x是关x 于的反比例函数,求 m 的值及函数的解析式.【分析】根据反比例函数的定义知m 2+2m =﹣1,且m 2+2m ≠0,据此可以求得m 的值,进而得出反比例函数的解析式.2是反比例函数,【解答】解:∵y =〔m+2m 〕x22∴m+2m =﹣1,且m+2m ≠0,∴〔m+1 〕〔m+1〕=0,∴ m+1= 0,即m =﹣ 1;∴反比例函数的解析式y =﹣x﹣1.【点评】此题考查了反比例函数的定义,重点是将一般式y =〔k ≠0〕转化为y =kx﹣1〔k ≠0〕的形式.20 .反比例函数 y =〔m ﹣2〕〔 1〕假设它的图象位于第一、三象限,求m 的值;〔 2〕假设它的图象在每一象限内y 的值随x 值的增大而增大,求 m 的值.【分析】〔1〕根据反比例函数的定义与性质,得出,进而求解即可;〔2〕根据反比例函数的定义与性质,得出 ,进而求解即可.【解答】解:〔1〕由题意,可得,解得m =3;〔2〕由题意,可得,解得m =﹣2.【点评】此题考查了反比例函数的性质;用到的知识点为:反比例函数y=kx〔k≠0〕的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.也考查了反比例函数的定义.21.双曲线y=如下图,点A〔﹣1,m〕,B〔n,2△AOB.〕.求S【分析】根据点A、B两点在反比例函数图象上得其坐标,再根据S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE可得答案.【解答】解:将点A〔﹣1,m〕、B〔n,2〕代入y=,得:m=6、n=﹣3,如图,过点A作x轴的平行线,交y轴于点C,过点B作y轴的平行线,交x轴于点D,交CA于点E,那么DE=OC=6、BD=2、BE=4、OD=3,AC=1、AE=2,S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE3×6﹣×1×6﹣×3×2﹣×2×48.【点评】此题主要考查反比例函数系数k的几何意义,熟练掌握割补法求三角形的面积是解题的关键.22.如图,在平面直角坐标系中,Rt△ABC的边AB⊥x轴,垂足为A,C的坐标为〔1,0〕,反比例函数y=〔x>0〕的图象经过BC的中点D,交AB于点E.AB=4,BC=5.求k的值.【分析】根据勾股定理可求AC=3,那么可求点A〔4,0〕,可得点B〔4,4〕,根据中点坐标公式可求点D坐标,把点D坐标代入解析式可求k的值.【解答】解:∵在Rt△ABC中,AB=4,BC=5∴AC===3∵点C坐标〔1,0〕OC=1OA=OC+AC=4∴点A坐标〔4,0〕∴点B〔4,4〕∵点C〔1,0〕,点B〔4,4〕∴BC的中点D〔,2〕∵反比例函数y=〔x>0〕的图象经过BC的中点D∴2=∴k=5【点评】此题考查了反比例函数图象上点的坐标特征,勾股定理,中点坐标公式,熟练运用反比例函数图象性质是解决问题的关键.23.如图,直线y=﹣2x经过点P〔﹣2,a〕,点P关于y轴的对称点P′在反比例函数y=〔k≠0〕的图象上.〔1〕求反比例函数的解析式;〔2〕直接写出当y<4时x的取值范围.【分析】〔1〕把P的坐标代入直线解析式求出a的值,确定出P′的坐标,即可求出反比例解析式;〔2〕结合图象确定出所求x的范围即可.【解答】解:〔1〕把P〔﹣2,a〕代入直线y=﹣2x解析式得:a=4,即P〔﹣2,4〕,∴点P关于y轴对称点P′为〔2,4〕,代入反比例解析式得:k=8,那么反比例解析式y=;为x>﹣2.〔2〕当y<4时,反比例函数自变量x的范围为x>2或x<0;一次函数自变量x的范围是【点评】此题考查了待定系数法求反比例函数解析式,以及一次函数、反比例函数的性质,熟练掌握待定系数法是解此题的关键.24.如图,一次函数y=kx+b与反比例函数y=〔x<0〕的图象相交于点A、点B,与X轴交于点C,其中点A〔﹣1,3〕和点B〔﹣3,n〕.〔1〕填空:m=﹣3,n=1.〔2〕求一次函数的解析式和△AOB的面积.〔3〕根据图象答复:当x为何值时,kx+b≥〔请直接写出答案〕﹣3≤x≤﹣1.【分析】〔1〕将A点坐标,B点坐标代入解析式可求m,n的值〔2〕用待定系数法可求一次函数解析式,根据S△AOB=S△AOC﹣S△BOC可求△AOB的面积.〔3〕由图象直接可得【解答】解:〔1〕∵反比例函数y=过点A〔﹣1,3〕,B〔﹣3,n〕m=3×〔﹣1〕=﹣3,m=﹣3nn=1故答案为﹣3,1〔2〕设一次函数解析式y=kx+b,且过〔﹣1,3〕,B〔﹣3,1〕∴解得:∴解析式y=x+4∵一次函数图象与x轴交点为C0=x+4x=﹣4C〔﹣4,0〕S△AOB=S△AOC﹣S△BOC∴S△AOB=×4×3﹣×4×1=43〕∵kx+b≥∴一次函数图象在反比例函数图象上方∴﹣3≤x≤﹣1故答案为﹣3≤x≤﹣1【点评】此题考查了反比例函数与一次函数的交点问题,待定系数法,利用函数图象上的点满足函数关系式解决问题是此题关键.25.如图,在平面直角坐标系中,一次函数y=kx+b〔k≠0〕与反比例函数y=〔m≠0〕的图象交于点A〔3,1〕,且过点B〔0,﹣2〕.1〕求反比例函数和一次函数的表达式;2〕如果点P是x轴上的一点,且△ABP的面积是3,求点P的坐标;〔3〕假设P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【分析】〔1〕将点A 〔3,1〕代入y =,利用待定系数法求得反比例函数的解析式,再将点A 〔3,1〕和B 〔0,﹣2〕代入y =kx+b ,利用待定系数法求得一次函数的解析式;〔2〕首先求得 AB 与x 轴的交点 C 的坐标,然后根据 S △ABP =S △ACP +S △BCP 即可列方程求得P 的横坐标;〔3〕分两种情况进行讨论: ①点P 在x 轴上;②点P 在y 轴上.根据 PA =OA ,利用等腰三角形的对称性求解.【解答】解:〔1〕∵反比例函数y = 〔m ≠0〕的图象过点 A 〔3,1〕,∴3=,解得m =3.∴反比例函数的表达式为 y = .∵一次函数 y =kx+b 的图象过点 A 〔3,1〕和B 〔0,﹣2〕,∴ ,解得:,∴一次函数的表达式为y =x ﹣2;2〕如图,设一次函数y =x ﹣2的图象与x 轴的交点为C .令y =0,那么x ﹣2=0,x =2, ∴点C 的坐标为〔2,0〕. ∵S △ABP =S△ACP +S △BCP =3, ∴PC ×1+PC ×2=3,PC =2,∴点P 的坐标为〔0,0〕、〔4,0〕;〔3〕假设P是坐标轴上一点,且满足PA=OA,那么P点的位置可分两种情况:①如果点P在x轴上,那么O与P关于直线x=3对称,所以点P的坐标为〔6,0〕;②如果点P在y轴上,那么O与P关于直线y=1对称,所以点P的坐标为〔0,2〕.综上可知,点P的坐标为〔6,0〕或〔0,2〕.【点评】此题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,三角形面积的计算以及等腰三角形的性质,正确求出函数的解析式是关键.。

人教版九年级数学下册《第26章反比例函数》单元测试卷-带参考答案

人教版九年级数学下册《第26章反比例函数》单元测试卷-带参考答案

人教版九年级数学下册《第26章反比例函数》单元测试卷-带参考答案满分120分一、单选题1. ( 3分) 如图,正比例函数y1=k1x和反比例函数y2=k2的图象交于A(﹣1,2)、B(1,﹣2)两点,x若y1<y2,则x的取值范围是()A.x<﹣1或x>1B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1D.﹣1<x<0或x>1【答案】D【考点】反比例函数与一次函数的交点问题【解析】【解答】由图象可得,﹣1<x<0或x>1时y1<y2.故D符合题意.【分析】因为y1<y2,所以正比例函数的图象低于反比例函数的图象,而两图像交于A(﹣1,2)、B (1,﹣2)两点,两交点和原点将图形分成四部分,则x的取值范围是﹣1<x<0或x>1。

的图像上,则k的值是()2. ( 3分) 若点A(-1,6)在反比例函数y=kxA.-6B.-3C.3D.6【答案】A【考点】反比例函数图象上点的坐标特征的图象上【解析】【解答】因为A(-1,6)在反比例函数y=kx所以6= k1解得:k=-6.故答案为:A.的图象上,则点的坐标一定满足解析式,代入就得到k的值.【分析】点A(-1,6)在反比例函数y=kx3. ( 3分) 下列函数的图象,一定经过原点的是()A.y=2B.y=5x2﹣3xC.y=x2﹣1D.y=﹣3x+7x【答案】B【考点】反比例函数的图象,二次函数图象与系数的关系,一次函数图象、性质与系数的关系【解析】【解答】A、x≠0,所以不经过原点,故错误;B、若x=0,则y=5×0﹣3×0=0.所以经过原点.故正确;C、若x=0,则y=﹣1.所以不经过原点.故错误;D、若x=0,则y=7.所以不经过原点.故错误.故答案为:B.【分析】反比例函数中由于自变量的取值范围是不能为零的故图像不可能经过坐标原点;二次函数的图像与y轴的交点取决于常数项C,只有C等于零的时候,图像才会经过坐标原点;一次函数的图像与y轴的交点取决于常数b,只有b=0的时候直线才经过坐标原点。

人教版初三数学9年级下册 第26章(反比例函数)单元测试卷1(含答案)

人教版初三数学9年级下册 第26章(反比例函数)单元测试卷1(含答案)

第1页,共5页人教版九年级数学下册第 26章反比例函数单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.如果函数y =(k +4)x k 2−17是反比例函数,那么( )A. k =4B. k =−4C. k =±4D. k ≠42.如果反比例函数y =a−2x(a 是常数)的图象在第一、三象限,那么a 的取值范围是()A. a <0 B. a >0C. a <2D. a >23.在下列反比例函数中,其图象经过点(3,4)的是( )A. y =−12xB. y =12xC. y =7xD. y =−7x4.如图,反比例函数y =−6x 的图象过点A ,则矩形ABOC 的面积为等于( )A. 3B. 1.5C. 6D. −65.一次函数y =kx−k 与反比例函数y =kx (k ≠0)在同一个坐标系中的图象可能是( )A. B.C. D.6.若点A(2,y 1),B(3,y 2)是反比例函数y=−6x 图象上的两点,则y 1与y 2的大小关系是( ).A. y1<y2B. y1>y2C. y1=y2D. 3y1=2y27.若点A(x1,−6),B(x2,−2),C(x3,2)均在反比例函数y=k2+1x的图象上,则x1,x2,x3的大小关系正确的是()A. x1<x2<x3B. x2<x1<x3C. x2<x3<x1D. x3<x2<x18.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A. 4B. −4C. 2D. ±29.点A(−1,1)是反比例函数y=m+1x的图象上一点,则m的值为( )A. −1B. −2C. 0D. 110.如图,直线y=−3x+3与x轴交于点A,与y轴交于点B,以AB为边在直线AB的左侧作正方形ABDC,反比例函数y=kx的图象经过点D,则k的值是( )A. −3B. −4C. −5D. −6二、填空题(本大题共5小题,共15分)11.反比例函数y=6x的图象经过点(m,−3),则m=________.12.反比例函数y=1−2mx的图象有一支位于第一象限,则常数m满足的条件是__.13.反比例函数y=2m−5x的图象的两个分支分别在第二、四象限,则m的取值范围为______,在每个象限内y随x的增大而______.14.已知同一个反比例函数图象上的两点P1(x1,y1)、P2(x2,y2),若x2=x1+2,且1y2=1 y1+12,则这个反比例函数的解析式为______.15.如图,一次函数y=−x+b与反比例函数y=4x(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D 两点,连结OA,OB,过A作AE⊥x轴于点E,交OB 于点F,设点A的横坐标为m.(1)b=______ (用含m的代数式表示);第3页,共5页(2)若S △OAF +S 四边形EFBC =4,则m 的值是______ .三、解答题(本大题共6小题,共55分)16.在一个不透明的布袋里,装有完全相同的3个小球,小球上分别标有数字1,2,5;先从袋子里任意摸出1个球,记其标有的数字为x ,不放回;再从袋子里任意摸出一个球,记其标有的数字为y ,依次确定有理数xy .(1)请用画树状图或列表的方法,写出xy 的所有可能的有理数;(2)求有理数xy 为整数的概率.17.已知平面直角坐标系xOy 中,O 是坐标原点,点A(2,5)在反比例函数y =kx 的图象上,过点A 的直线y =x +b 交x 轴于点B .(1)求反比例函数解析式;(2)求△OAB 的面积.18.如图,已知反比例函数y =6x 的图象与一次函数y =kx +b 的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;≥kx+b的解集;(2)直接写出不等式6x在第一象限的图像,如图所示,过点A(1,0)作x轴的垂线,交反比19.反比例函数y=kx的图像于点M,△AOM的面积为3.例函数y=kx(1)求反比例函数的解析式.(2)设点B的坐标为(t,0),其中t>1,若以AB为一边的正方形ABCD有一个顶点的图像上,求t的值.在反比例函数y=kx20.阅读材料:公元前3世纪,古希腊学者阿基米德发现了著名的“杠杆原理”.杠杆平衡时,阻力×阻力臂=动力×动力臂.第5页,共5页问题解决:若工人师傅欲用提棍动一块大石头,已知阻力和阻力臂不变,分别为1500N 和0.4m .(1)动力F(N)与动力臂l(m)有怎样的函数关系⋅当动力臂为1.5m 时,提动石头需要多大的力⋅(2)若想使动力F(N)不超过题(1)中所用力的一半,则动力臂至少要加长多少⋅数学思考(3)请用数学知识解释:我们使用攉棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.21.某商场出售一批名牌衬衣,衬衣进价为60元,在营销中发现,该衬衣的日销售量y(件)是日销售价x 元的反比例函数,且当售价定为100元/件时,每日可售出30件.(1)请写出y 关于x 的函数关系式;(2)该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?。

人教新版九年级数学下册《反比例函数》单元测试及答案

人教新版九年级数学下册《反比例函数》单元测试及答案

人教版 九下第二十六章《反比例函数》单元测试及答案【2】一、选择题(本题共10小题,每小题3分,共30分.每小题给出的4 个选项中只有一个是符合题目要求的。

)1、下列函数中,反比例函数是( ) (A ) 1)1(=-y x (B ) 11+=x y (C ) 21xy = (D ) x y 31= 2、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )3、若y 与-3x 成反比例,x 与z4成反比例,则y 是z 的( ) (A )正比例函数 (B )反比例函数 (C )一次函数 (D )不能确定 4、若反比例函数22)12(--=m x m y 的图像在第二、四象限,则m 的值是( )(A )-1或1 (B )小于21的任意实数 (C ) -1 (D) 不能确定 5、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) (A )(-a ,-b ) (B )(a ,-b ) (C )(-a ,b ) (D )(0,0) 6、若M(12-,1y )、N(14-,2y )、P(12,3y )三点都在函数k y x =(k>0)的图象上,则1y 、2y 、3y 的大小关系是( )(A )132y y y >> (B )312y y y >> (C ) 213y y y >> (D )123y y y >> 7、如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于B 点。

若AOB S ∆=5,则k 的值为( ) (A )10 (B )10-(C )5- (D )25-8、在同一直角坐标系中,函数y=kx-k 与(0)ky k x=≠的图像大致是( )9、如图是三个反比例函数312,,k k ky y y x x x===,在x 轴上方的图像,由此观察得到k l 、k 2、k 3的大小关系为( ) (A )k 1>k 2>k 3 (B )k 3>k 1>k 2 (C )k 2>k 3>k 1 (D )k 3>k 2>k 110、在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x=没有交点,那么1k 和2k 的关系一定是( )(A) 1k 、2k 异号 (B) 1k 、2k 同号 (C) 1k >0, 2k <0 (D) 1k <0, 2k >0二、填空题(本大题共6小题,每小题3分,共18分.请把下列各题的正确答实填写在横线上) 11、已知22)1(--=a xa y 是反比例函数,则a=____ .12、在函数y=25x -+13x -中自变量x 的取值范围是_________. 13、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,若120x x <<时,210y y >>,则k 的取值范围是 .14、已知圆柱的侧面积是π102cm ,若圆柱底面半径为r cm ,高为h cm ,则h 与r 的函数关系式是 。

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。

第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册

第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册

第26章反比例函数一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图是反比例函数的图象,它的函数表达式是( ).A. y=5xB. y=2x C. y=−1xD. y=−2x2.对于反比例函数y=−5x,下列说法错误的是( )A. 图象经过点(1,−5)B. 图象位于第二、四象限C. 当x<0时,y随x的增大而减小D. 当x>0时,y随x的增大而增大3.如图,点A在双曲线y=kx上,B在y轴上,且AO=AB.若△ABO的面积为6,则k的值为 ( )A. 6B. −6C. 12D. −124.如图,直线y1=kx+1与反比例函数y2=2x的图象在第一象限交于点P(1,t),与x轴、y轴分别交于A,B 两点,则下列结论错误的是 ( )A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y15.当x<0时,函数y=(k−1)x与y=2−k的y值都随x的增大而增大,则k的取值范围是( ).3xA. k>1B. 1<k<2C. k>2D. k<16.函数y=k和y=−kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )xA. B.C. D.7.若点A(−3,y1),B(−1,y2),C(2,y3)都在反比例函数y=k(k<0)的图象上,则y1,y2,y3的大小关系是( )xA. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y18.在大棚中栽培新品种的蘑菇,在18℃的条件下生长最快,因此用装有恒温系统的大棚栽培,如图是某天恒温系统从开启升温到保持恒温及关闭,大棚内温度y(℃)随时间x(时)变化的函数图象,其中BC段是函数(k>0)图象的一部分.若该蘑菇适宜生长的温度不低于12℃,则这y=kx天该品种蘑菇适宜生长的时间为( )A. 18小时B. 17.5小时C. 12小时D. 10小时9.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是( ).A. ①②B. ①④C. ②③D. ③④10.如图,点P、Q是反比例函数y=k(k≠0)图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥xx轴于点M,QB⊥y轴于点B,连接PB、QM.记SΔABP=S1,SΔQMN=S2,则S1与S2的大小关系为 ( )A. S1>S2B. S1<S2C. S1=S2D. 无法判断二、填空题:本题共6小题,每小题3分,共18分。

人教版九年级下数学第二十六章反比例函数单元检测卷含答案

人教版九年级下数学第二十六章反比例函数单元检测卷含答案

第二十六章检测卷(120分钟150分)一、选择题(本大题共1.已知反比例函数y=的图象过点A(1,-2),则k的值为A.1B.2C.-2D.-12.若反比例函数y=经过点(a,2a),a≠0,则此反比例函数的图象在A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限3.对于反比例函数y=-,下列说法不正确的是A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,-2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y24.已知一个矩形的面积为24 cm2,其长为y cm,宽为x cm,则y与x之间的函数关系的图象大致在A.第一、三象限,且y随x的增大而减小B.第一象限,且y随x的增大而减小C.第二、四象限,且y随x的增大而增大D.第二象限,且y随x的增大而增大5.在下列选项中,是反比例函数关系的为A.在直角三角形中,30°角所对的直角边y与斜边x之间的关系B.在等腰三角形中,顶角y与底角x之间的关系C.圆的面积S与它的直径d之间的关系D.面积为20的菱形,其中一条对角线y与另一条对角线x之间的关系6.若a≠0,则函数y=与y=-ax2+a在同一平面直角坐标系中的大致图象可能是7.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300 N/m2,那么为了不至于下陷,此人需要站立在木板上,则该木板的面积为(木板的重量忽略不计)A.至少2 m2B.至多2 m2C.2 m2D.无法确定8.如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是A.1<x<6B.x<1C.x<6D.x>19.如图,A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B,C在x轴上,点D在y 轴上,则平行四边形ABCD的面积为A.1B.3C.6D.1210.在同一平面直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为A.1B.mC.m2D.二、填空题(本大题共4小题,每小题5分,满分20分)11.若反比例函数y=k-在各自象限内y随x的增大而增大,则k的值为-.12.点A(a,b)是一次函数y=x-1与反比例函数y=的交点,则a2b-ab2=4.13.已知A,B两点分别在反比例函数y=(m≠0)和y=-的图象上,若点A与点B关于x轴对称,则m的值为1.14.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”,当双曲线y=(k>0)的眸径为6时,k的值为.三、(本大题共2小题,每小题8分,满分16分)15.如果函数y=x2m-1为反比例函数,求m的值.:16.学校食堂用1200元购买大米,写出购买的大米质量y(kg)与单价x(元)之间的函数解析式,y是x的反比例函数吗?四、(本大题共2小题,每小题8分,满分16分)17.已知点A(2,-3),P,Q(-5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求a+的值.18.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(-1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,求△BCE的面积.20.已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.六、(本题满分12分)21.已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1-y2=4时,求m的值;(2)如图,过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标.(不需要写解答过程)七、(本题满分12分)22.:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?八、(本题满分14分)23.我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如----=3+-.这种方法我们称为“分离常数法”.(1)如果-=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式--的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=--的图象是由哪个反比例函数的图象经过怎样的变换得到?第二十六章检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.已知反比例函数y=的图象过点A(1,-2),则k的值为A.1B.2C.-2D.-12.若反比例函数y=经过点(a,2a),a≠0,则此反比例函数的图象在A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限3.对于反比例函数y=-,下列说法不正确的是A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,-2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y24.已知一个矩形的面积为24 cm2,其长为y cm,宽为x cm,则y与x之间的函数关系的图象大致在A.第一、三象限,且y随x的增大而减小B.第一象限,且y随x的增大而减小C.第二、四象限,且y随x的增大而增大D.第二象限,且y随x的增大而增大5.在下列选项中,是反比例函数关系的为A.在直角三角形中,30°角所对的直角边y与斜边x之间的关系B.在等腰三角形中,顶角y与底角x之间的关系C.圆的面积S与它的直径d之间的关系D.面积为20的菱形,其中一条对角线y与另一条对角线x之间的关系6.若a≠0,则函数y=与y=-ax2+a在同一平面直角坐标系中的大致图象可能是7.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300 N/m2,那么为了不至于下陷,此人需要站立在木板上,则该木板的面积为(木板的重量忽略不计)A.至少2 m2B.至多2 m2C.2 m2D.无法确定8.如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是A.1<x<6B.x<1C.x<6D.x>19.如图,A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B,C在x轴上,点D在y轴上,则平行四边形ABCD的面积为A.1B.3C.6D.1210.在同一平面直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为A.1B.mC.m2D.二、填空题(本大题共4小题,每小题5分,满分20分)11.若反比例函数y=k-在各自象限内y随x的增大而增大,则k的值为-.12.点A(a,b)是一次函数y=x-1与反比例函数y=的交点,则a2b-ab2=4.13.已知A,B两点分别在反比例函数y=(m≠0)和y=-的图象上,若点A与点B关于x轴对称,则m的值为1.14.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”,当双曲线y=(k>0)的眸径为6时,k的值为.三、(本大题共2小题,每小题8分,满分16分)15.如果函数y=x2m-1为反比例函数,求m的值.解:∵y=x2m-1是反比例函数,∴2m-1=-1,解得m=0.16.学校食堂用1200元购买大米,写出购买的大米质量y(kg)与单价x(元)之间的函数解析式,y是x的反比例函数吗?解:∵由题意得xy=1200,∴y=,∴y是x的反比例函数.四、(本大题共2小题,每小题8分,满分16分)17.已知点A(2,-3),P,Q(-5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求a+的值.解:(1)设反比例函数解析式为y=,把A点坐标(2,-3)代入得k=2×(-3)=-6,所以反比例函数的解析式为y=-.(2)把P点坐标代入y=-,得3×=-6,解得a=-4,把Q点坐标(-5,b)代入y=-,得-5b=-6,解得b=,所以a+=-4+=-4+1=-3.18.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.解:(1)∵反比例函数y=的图象经过点C(3,m),∴m=4.作CD⊥x轴于点D,由勾股定理,得OC==5,∴菱形OABC的周长为20.(2)作BE⊥x轴于点E,∵BC=OA=5,OD=3,∴OE=8.又∵BC∥OA,∴BE=CD=4,∴B(8,4).五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(-1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,求△BCE的面积.解:如图,过D点作GH⊥x轴,过A点作AG⊥GH,过B点作BM⊥HC于点M.设D点坐标为,∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=-x-1,∴DG=BM,∴1-=-x-1-,x=-2,∴D点坐标为(-2,-3),CH=DG=BM=1-=4,-∵AG=DH=-1-x=1,∴点E的纵坐标为-4,当y=-4时,x=-,∴E点坐标为--,∴EH=2-,∴CE=CH-HE=4-,∴S△CEB=CE·BM=×4=7.20.已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.解:(1)将B点坐标代入函数解析式,得=2,解得k=6,∴反比例函数的解析式为y=.(2)∵B(3,2),点B与点C关于原点O对称,∴C点坐标(-3,-2).∵BA⊥x轴于点A,CD⊥x轴于点D,∴A点坐标(3,0),D点坐标(-3,0).∴S△ACD=AD·CD=×[3-(-3)]×|-2|=6.六、(本题满分12分)21.已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1-y2=4时,求m的值;(2)如图,过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标.(不需要写解答过程)解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(-4,-3),∴k=-4×(-3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),点C(6m,y2),∴y1=,y2=,∵y1-y2=4,∴=4,∴m=1.(2)设BD与x轴交于点E.∵点B,点C,∴D点坐标为,BD=.∵三角形PBD的面积是8,∴BD·PE=8,∴·PE=8,∴PE=4m,∵E点坐标为(2m,0),点P在x轴上,∴点P的坐标为(-2m,0)或(6m,0).七、(本题满分12分)22.:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)函数解析式为y=.表格中数从左至右:300,50.(2)2104-(30+40+48+50+60+80+96+100)=1600.当x=150时,y==80.1600÷80=20(天).答:余下的这些海产品预计再用20天可以全部售出.(3)1600-80×15=400(千克).400÷2=200(千克).即如果正好用2天售完,那么每天需要售出200千克.当y=200时,x==60.答:新确定的价格最高不超过60元/千克才能完成销售任务.八、(本题满分14分)23.我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如----=3+-.这种方法我们称为“分离常数法”.(1)如果-=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式--的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=--的图象是由哪个反比例函数的图象经过怎样的变换得到?解:(1)∵--=1+-,∴a=-4.(2)---------=-3--,∴当m-1=3或-3或1或-1时,分式的值为整数,解得m=4或m=-2或m=2或m=0.(3)y=------=3+-,∴将y=的图象向右移动2个单位长度得到y=-的图象,再向上移动3个单位长度得到y-3=-,即y=--.。

人教版九年级数学下册《反比例函数》单元测试及答案

人教版九年级数学下册《反比例函数》单元测试及答案

.
7、如图,面积为 3 的矩形 OABC的一个顶点 B 在反比例函数 y k x
的图象上,另三点在坐标轴上,则 k =

k 8、反比例函数 y 与一次函数 y kx m 的图象有一个交点是
x
( -2 , 1),则它们的另一个交点的坐标是

9.收音机刻度盘的波长 λ 和频率 f 分别用米( m )的千赫兹( kHz )为单位标刻的。波
-6-
16. 某商场出售一批进价为 2 元的贺卡,在市场营销中发现此商品的日销售单价
销售量 y 个之间有如下关系: ( 10

x( 元 )
3
y(个) 20
4
5
6
15
12
10
x 元与日
( 1) 根 据表中数据,在直角坐标系中描出实数对( x,y )的对应点; ( 2) 猜 测并确定 y 与 x 之间的函数关系式,并画出图象; ( 3) 设 经营此贺卡的销售利润为 W元,试求出 W与 x 之间的函数关系式,若物价局规 定此贺卡的销售价最高不能超过 10 元,请你求出当日销售单价 x 定为多少元时,才能使 获利润最大?
药物燃烧后, y 关于 x 的函数关系式为
(2)研究表明,当空气中每立方米的含药量低于
1.6
毫克时学生方可进教室,那么从消毒开始,至少需要经过
分钟后,学生才能回到教室:
(3)研究表明,当空气中每立方米的含药量不低于3
毫克且持续时间不低于10分钟, 才能有效杀灭空气中的病
毒,那么此次消毒有效吗?为什么?
六.解:( 1)设轮船上的货物总量为 k 吨,则根据已知条件有
240 k 30 8 240 ∴ v 与 t 的函数式为 v
t
( 2)把 t

人教版九年级下册数学 第26章 反比例函数 单元测试卷(含答案解析)

人教版九年级下册数学 第26章 反比例函数 单元测试卷(含答案解析)

人教版九年级下册数学第26章反比例函数单元测试卷一、选择题:(每小题3分,共30分)1.下列函数:①y=﹣2x;②y=;③y=x﹣1;④y=5x2+1,是反比例函数的个数有()A.0个B.1个C.2个D.3个2.关于反比例函数y=,下列说法错误的是()A.图象关于原点对称B.y随x的增大而减小C.图象分别位于第一、三象限D.若点M(a,b)在其图象上,则ab=23.下列四个点中,在反比例函数y=﹣图象上的是()A.(2,4)B.(2,﹣4)C.(﹣4,﹣2)D.(4,2)4.如图,A是反比例函数图象上第二象限内的一点,若△ABO的面积为2,则k的值为()A.﹣4B.﹣2C.2D.45.在同一直角坐标系中反比例函数y=与一次函数y=x+a(a≠0)的图象大致是()A.B.C.D.6.已知点A(﹣1,y1)、B(﹣2,y2)、C(3,y3)都在反比例函数y=的图象上,则y1、y2、y3的关系是()A.y2>y1>y3B.y2>y3>y1C.y3>y1>y2D.y3>y2>y17.已知点(x1,y1),(x2,y2),(x3,y3)在反比例函数的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y18.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°.函数y=(x>0)的图象经过点C,则AC的长为()A.3B.2C.2D.9.如图,在平面直角坐标系中,第二象限内的点E(﹣3,m)(﹣2,n),若OE=OF,点E、F都在反比例函数y=,则k=()A.﹣4B.﹣6C.﹣8D.﹣1010.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣8二、填空题:(18分)11.已知y与x成反比例,并且当x=3时,y=﹣4,当x=﹣2时,y的值为.12.如图是三个反比例函数的图象的分支,其中k1,k2,k3的大小关系是.13.反比例函数,当x>0时,y随x的增大而减小,写出一个m的可能值.14.若点P(n,1),Q(n+6,3)在反比例函数图象上,请写出反比例函数的解析式.15.如图,直线AB过原点分别交反比例函数y=于A、B,过点A作AC⊥x轴,垂足为C,则△ABC的面积为.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴,函数y=(k>0,x>0)交BC于点D,交AB于点E.若BD=2CD,S四边形ODBE=4,则k的值为.三、解答题:(52分)17.一个不透明的口袋里装着分别标有数字﹣2,﹣1,1,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率为;(2)从中任取一球,将球上的数字记为x,然后再从剩余的球中任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在反比例函数图象上的概率.18.如图,在平面直角坐标系xOy中,直线y=2x+2与函数y=(k≠0)的图象交于A,B两点,且点A的坐标为(1,m).(1)求k,m的值;(2)直接写出关于x的不等式2x+2>的解集;(3)若Q在x轴上,△ABQ的面积是6,求Q点坐标.19.如图,一次函数y=kx+b的图象交反比例函数y=的图象于A(2,﹣4),B(a,﹣1)两点.(1)求反比例函数与一次函数解析式.(2)连接OA,OB,求△OAB的面积.(3)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?20.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是4的正方形OABC 的两边AB,BC分别相交于M,N两点,△OMN的面积为6.求k的值.21.某药品研究所研发一种抗菌新药,测得成人服用该药后血液中的药物浓度(微克/毫升)与服药后时间x(小时)之间的函数关系如图所示,当血液中药物浓度上升(0≤x≤a)时,满足y=2x,下降时,y与x 成反比.(1)求a的值,并求当a≤x≤8时,y与x的函数表达式;(2)若血液中药物浓度不低于3微克/毫升的持续时间超过4小时,则称药物治疗有效,请问研发的这种抗菌新药可以作为有效药物投入生产吗?为什么?22.疫情期间,某药店出售一批进价为2元的口罩,在市场营销中发现此口罩的日销售单价x(元)与日销售量y(只)之间有如下关系:日销售单价x3456(元)日销售量y(只)2000150012001000(1)猜测并确定y与x之间的函数关系式;(2)设经营此口罩的销售利润为W元,求出W与x之间的函数关系式,(3)若物价局规定此口罩的售价最高不能超过10元/只,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?参考答案与试题解析一、选择题:(每小题3分,共30分)1.下列函数:①y=﹣2x;②y=;③y=x﹣1;④y=5x2+1,是反比例函数的个数有()A.0个B.1个C.2个D.3个【分析】利用反比例函数定义可得答案.【解答】解:①y=﹣2x是正比例函数;②y=是反比例函数;③y=x﹣1是反比例函数;④y=2x2+1是二次函数,反比例函数共6个,故选:C.2.关于反比例函数y=,下列说法错误的是()A.图象关于原点对称B.y随x的增大而减小C.图象分别位于第一、三象限D.若点M(a,b)在其图象上,则ab=2【分析】利用反比例函数的性质以及反比例函数图象上点的坐标特点可得答案.【解答】解:A、图象关于原点对称;B、在每一象限内y随x的增大而减小;C、图象分别位于第一,故原题说法正确;D、若点M(a,则ab=2;故选:B.3.下列四个点中,在反比例函数y=﹣图象上的是()A.(2,4)B.(2,﹣4)C.(﹣4,﹣2)D.(4,2)【分析】根据反比例函数图象上点的坐标特征对各选项进行逐一判断即可.【解答】解:A、∵2×4=3≠﹣8;B、∵2×(﹣5)=﹣8;C、∵﹣4×(﹣4)=8≠﹣8;D、∵2×2=8≠﹣7.故选:B.4.如图,A是反比例函数图象上第二象限内的一点,若△ABO的面积为2,则k的值为()A.﹣4B.﹣2C.2D.4【分析】根据反比例函数k的几何意义可得|k|=2,再根据图象所在的象限,得出k的值.【解答】解:由反比例函数k的几何意义可得,|k|=3,∴k=±4,又∵图象在第二象限,即k<0,∴k=﹣2,故选:A.5.在同一直角坐标系中反比例函数y=与一次函数y=x+a(a≠0)的图象大致是()A.B.C.D.【分析】直接利用反比例函数以及一次函数图象分析得出答案.【解答】解:∵一次函数y=x+a(a≠0),∴一次函数图象y随x增大而增大,故A,D不符合题意;在B中,反比例函数过一,故a>0、三、四象限,不合题意;在C中,反比例函数过一,故a>7、二、四象限,符合题意;故选:C.6.已知点A(﹣1,y1)、B(﹣2,y2)、C(3,y3)都在反比例函数y=的图象上,则y1、y2、y3的关系是()A.y2>y1>y3B.y2>y3>y1C.y3>y1>y2D.y3>y2>y1【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【解答】解:∵在反比例函数y=中,k=1>6,∴此函数图象在一、三象限,∵﹣2<﹣1<6,∴点A(﹣1,y1),B(﹣2,y2)在第三象限,∴y1<y4<0,∵3>7,∴C(3,y3)点在第一象限,∴y5>0,∴y1,y7,y3的大小关系为y3>y7>y1.故选:D.7.已知点(x1,y1),(x2,y2),(x3,y3)在反比例函数的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【分析】依据反比例函数,可得函数图象在第一、三象限,在每个象限内,y随着x 的增大而减小,进而得到y1,y2,y3的大小关系.【解答】解:∵反比例函数,∴函数图象在第一、三象限,y随着x的增大而减小,又∵x1<x7<0<x3,∴y7<0,y2<8,y3>0,且y3>y2,∴y2<y8<y3,故选:B.8.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°.函数y=(x>0)的图象经过点C,则AC的长为()A.3B.2C.2D.【分析】根据A、B的坐标分别是(0,3)、(3、0)可知OA=OB=3,进而可求出AB2,通过作垂线构造等腰直角三角形,求得BC2=2CD2,设CD=BD=m,则C(3+m,m),代入y=,求得m的值,即可求得BC2,根据勾股定理即可求出AC的长.【解答】解:过点C作CD⊥x轴,垂足为D,∵A、B的坐标分别是(0、(3,∴OA=OB=4,在Rt△AOB中,AB2=OA2+OB6=18,又∵∠ABC=90°,∴∠OAB=∠OBA=45°=∠BCD=∠CBD,∴CD=BD,设CD=BD=m,∴C(3+m,m),∵函数y=(x>4)的图象经过点C,∴m(3+m)=4,解得m=3或﹣4(负数舍去),∴CD=BD=1,∴BC5=2,在Rt△ABC中,AB2+BC5=AC2,∴AC==4故选:B.9.如图,在平面直角坐标系中,第二象限内的点E(﹣3,m)(﹣2,n),若OE=OF,点E、F都在反比例函数y=,则k=()A.﹣4B.﹣6C.﹣8D.﹣10【分析】根据题意m=,n=,然后根据勾股定理得到32+()2=22+()2,解得k=﹣6.【解答】解:∵点E、F都在反比例函数y=,E(﹣3、F(﹣2,∴m=,n=,∵OE=OF,∴38+()2=82+()8,整理得k2=36,∵k<0,∴k=﹣7,故选:B.10.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣8【分析】作DM⊥x轴于M,BN⊥x轴于N,如图,先根据题意求得AN=2,然后证明△ADM ≌△BAN得到DM=AN=2,AM=BN=2,则D(﹣3,2),根据待定系数法即可求得m 的值.【解答】解:作DM⊥x轴于M,BN⊥x轴于N,∵点A的坐标为(﹣1,0),∴OA=3,∵AE=BE,BN∥y轴,∴OA=ON=1,∴AN=2,B的横坐标为2,把x=1代入y=,得y=4,∴B(1,2),∴BN=4,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM,在△ADM和△BAN中,∴△ADM≌△BAN(AAS),∴DM=AN=2,AM=BN=2,∴OM=OA+AM=8+2=3,∴D(﹣3,2),∵点D在反比例函数y=的图象上,∴m=﹣3×6=﹣6,故选:C.二、填空题:(18分)11.已知y与x成反比例,并且当x=3时,y=﹣4,当x=﹣2时,y的值为.【分析】首先设y=,然后求出反比例函数解析式,再代入x的值,进而可得y的值.【解答】解:设y=,∵当x=3时,y=﹣4,∴﹣7=,解得:k=﹣12,∴反比例函数关系式为:y=﹣,∵x=﹣2,∴y=﹣=6,故答案为:6.12.如图是三个反比例函数的图象的分支,其中k1,k2,k3的大小关系是k1>k2>k3.【分析】根据题意和反比例函数的图象,可以得到k1,k2,k3的大小关系,从而可以解答本题.【解答】解:由图象可得,k1>0,k6<0,k3<8,∵点(﹣1,﹣)在y2=的图象上,)在y3=的图象上,∴﹣<,∴k6>k3,由上可得,k1>k5>k3,故答案为:k1>k5>k3.13.反比例函数,当x>0时,y随x的增大而减小,写出一个m的可能值.【分析】利用反比例函数的性质可得m﹣2>0,再解即可.【解答】解:∵当x>0时,y随x的增大而减小,∴m﹣2>6,解得:m>2,∴m可以是4,故答案为:7.14.若点P(n,1),Q(n+6,3)在反比例函数图象上,请写出反比例函数的解析式y=﹣.【分析】根据反比例函数y=中k=xy,得到n=3(n+6),解方程求得n的值,即可求得反比例函数的解析式.【解答】解:设反比例函数解析式为y=,由题意得,k=n=3(n+6),解得n=﹣6,k=﹣9,∴反比例函数的解析式为y=﹣,故答案为y=﹣.15.如图,直线AB过原点分别交反比例函数y=于A、B,过点A作AC⊥x轴,垂足为C,则△ABC的面积为.【分析】证明△BOC的面积=△AOC的面积,而△AOC的面积=|k|=×6=3,即可求解.【解答】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积,又∵A是反比例函数y=图象上的点,∴△AOC的面积=|k|=,则△ABC的面积为7,故答案为6.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴,函数y=(k>0,x>0)交BC于点D,交AB于点E.若BD=2CD,S四边形ODBE=4,则k的值为.【分析】根据反比例函数k的几何意义得,S△OAE=S△OCD=|k|,根据OABC是矩形,求出S△OEB=S△ODB=S四边形ODBE=2,再根据BD=2CD,进而S△OAE=S△OEB=1=|k|,求出k的值即可.【解答】解:连接OB,由反比例函数k的几何意义得,S△OAE=S△OCD=|k|,∵OABC是矩形,∴S△OAB=S△OBC,∴S△OEB=S△ODB=S四边形ODBE=2,∵BD=6CD,∴S△OAE=S△OEB=7=|k|,∴k=2或k=﹣2(舍去),故答案为2.三、解答题:(52分)17.一个不透明的口袋里装着分别标有数字﹣2,﹣1,1,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率为;(2)从中任取一球,将球上的数字记为x,然后再从剩余的球中任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在反比例函数图象上的概率.【分析】(1)共有四个数,其中两个负数,因此可求抽取的数字恰好为负数的概率;(2)用列表法表示所有可能出现的结果情况,得出点(x,y)在反比例函数图象上的情况,进而求出概率.【解答】解:(1)共有四个数,其中两个负数=;故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中点(x图象上的有4种,因此点(x,y)在反比例函数y==.18.如图,在平面直角坐标系xOy中,直线y=2x+2与函数y=(k≠0)的图象交于A,B两点,且点A的坐标为(1,m).(1)求k,m的值;(2)直接写出关于x的不等式2x+2>的解集;(3)若Q在x轴上,△ABQ的面积是6,求Q点坐标.【分析】(1)将点A坐标代入直线解析式可求m的值,再将点A坐标代入反比例函数解析式可求k的值;(2)解析式联立成方程组,解方程组求得B的坐标,然后根据函数的图象即可求得不等式2x+2>的解集.(3)由直线解析式求得直线与x轴的交点坐标,然后设出Q的坐标,根据三角形面积公式得到•|a+1|•(2+1)=6,解得a的值,即可求得点Q的坐标.【解答】解:(1)∵点A(1,m)在直线y=2x+8上,∴m=2×1+2=4,∴点A的坐标为(1,7),代入函数y=(k≠0)中,∴k=4.(2)解得或,∴B(﹣2,﹣3),∴关于x的不等式2x+2>的解集是﹣5<x<0或x>1.(3)在y=7x+2中令y=0,解得x=﹣4,0).设点Q的坐标是(a,0).∵△ABQ的面积是6,∴•|a+5|•(2+4)=8,则|a+1|=2,解得a=8或﹣3.则点Q的坐标是(﹣3,3)或(1.19.如图,一次函数y=kx+b的图象交反比例函数y=的图象于A(2,﹣4),B(a,﹣1)两点.(1)求反比例函数与一次函数解析式.(2)连接OA,OB,求△OAB的面积.(3)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?【分析】(1)先把点A的坐标代入y=,求出m的值得到反比例函数解析式,再求点B 的坐标,然后代入反比例函数解析式求出点B的坐标,再将A、B两点的坐标代入y=kx+b,利用待定系数法求出一次函数的解析式;(2)先求出C点坐标,再根据△AOB的面积=△AOC的面积﹣三角形BOC的面积即可求解;(3)观察函数图象即可求得.【解答】解:(1)把A(2,﹣4)的坐标代入y=,∴反比例函数的解析式是y=﹣;把B(a,﹣1)的坐标代入y=﹣,解得:a=8,∴B点坐标为(8,﹣6),把A(2,﹣4),﹣4)的坐标代入y=kx+b,解得:,∴一次函数解析式为y=x﹣5;(2)设直线AB交x轴于C.∵y=x﹣5,∴当y=0时,x=10,∴OC=10,∴△AOB的面积=△AOC的面积﹣三角形BOC的面积=×10×4﹣=15;(3)由图象知,当0<x<7或x>8时.20.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是4的正方形OABC 的两边AB,BC分别相交于M,N两点,△OMN的面积为6.求k的值.【分析】由正方形OABC的边长是4,得到点M的横坐标和点N的纵坐标为4,求得M(4,),N(,4),根据三角形的面积列方程得到M,N的坐标,然后利用待定系数法确定函数关系式.【解答】解:∵正方形OABC的边长是4,∴点M的横坐标和点N的纵坐标为4,∴M(2,),N(,∴BN=4﹣,BM=4﹣,∵△OMN的面积为6,∴4×4﹣×4×﹣﹣(4﹣)4=6,解得k=8.21.某药品研究所研发一种抗菌新药,测得成人服用该药后血液中的药物浓度(微克/毫升)与服药后时间x(小时)之间的函数关系如图所示,当血液中药物浓度上升(0≤x≤a)时,满足y=2x,下降时,y与x成反比.(1)求a的值,并求当a≤x≤8时,y与x的函数表达式;(2)若血液中药物浓度不低于3微克/毫升的持续时间超过4小时,则称药物治疗有效,请问研发的这种抗菌新药可以作为有效药物投入生产吗?为什么?【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)把y=3分别代入正比例函数和反比例函数解析式求出自变量的值,进而得出答案.【解答】解:(1)有图象知,a=3;又由题意可知:当3≤x≤4时,y与x成反比,设.由图象可知,当x=3时,∴m=3×5=18;∴y=(3≤x≤8);(2)把y=7分别代入y=2x和y =得,x=1.5和x=6,∵6﹣2.5=4.6>4,∴抗菌新药可以作为有效药物投入生产.22.疫情期间,某药店出售一批进价为2元的口罩,在市场营销中发现此口罩的日销售单价x(元)与日销售量y(只)之间有如下关系:3456日销售单价x(元)日销售量y(只)2000150012001000(1)猜测并确定y与x之间的函数关系式;(2)设经营此口罩的销售利润为W元,求出W与x之间的函数关系式,(3)若物价局规定此口罩的售价最高不能超过10元/只,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?【分析】(1)由表知xy=60,据此可得y =(x>0),画出函数图象可得;(2)根据总利润=每个口罩的利润×口罩的日销售数量可得函数解析式;(3)根据反比例函数的性质求解可得.【解答】解:(1)由表可知,xy=6000,∴y =&nbsp;(x>0);(2)根据题意,得:W=(x﹣2)•y=(x﹣5)•=6000﹣;(3)∵x≤10,∴6000﹣≤4800,即当x=10时,W取得最大值,答:当日销售单价x定为10元/个时,才能获得最大日销售利润.。

人教版九年级数学下册《第26章反比例函数》单元测试卷(有答案)

人教版九年级数学下册《第26章反比例函数》单元测试卷(有答案)

人教版九年级数学下册第26章反比例函数单元测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 在下列函数中表示y是x的反比例函数的是()A.y=−2xB.y=2008xC.y=8x+1D.y=2x22. 已知点(1, 1)在反比例函数y=kx(k为常数,k≠0)的图象上,则这个反比例函数的大致图象是()A. B.C. D.3. 对于反比例函数y=−3x,下列说法正确的是()A.它的图象在第一、三象限B.点(1, 3)在它的图象上C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大4. 若反比例函数y=1x的图象上有两点P1(1, y1)和P2(2, y2),那么()A.y2<y1<0B.y1<y2<0C.y2>y1>0D.y1>y2>05. 在同一平面直角坐标系中,函数y=−x+k(−2<k<2)与y=1x的图象的公共点的个数是()A.0个B.1个C.2个D.3个6. 购买x斤水果需24元,购买一斤水果的单价y与x的关系式是()A.y=24x(x>0) B.y=24x(x为自然数)C.y=24x(x为整数) D.y=24x(x为正整数)7. 下列四个点中,有三个点在同一反比例函数y=kx的图象上,则不在这个函数图象上的点是()A.(5, 1) B.(−1, 5)C.(53, 3) D.(−3, −53)8. 已知反比例函数y=kx(k<0)的图象上有两点A(x1, y1),B(x2, y2),且0<x1<x2,设y1−y2=a,则()A.a>0B.a<0C.a≥0D.a≤09. 下列四个关系式中,y是x的反比例函数的是()A.y=4xB.y=13xC.y=1x2D.y=1x+1精品 Word 可修改欢迎下载10. 已知反比例函数y=m2x 的图象过点(−3, −12),且y=mx的图象位于二、四象限,则m的值为()A.36B.±6C.6D.−6二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 已知点(a, −1)在反比例函数y=2x的图象上,则a=________.12. 已知反比例函数y=kx(k≠0)的图象与正比例函数y=mx(m≠0)的图象交于点(2, 1),则其另一个交点坐标为________.13. 反比例函数y=(2k+1)x k2−2在每个象限内y随x的增大而增大,则k=________.14. 若点(√3,−√3)在反比例函数y=kx(k≠0)的图象上,则k=________.15. 已知反比例函数y=k−1x的图象在第二、四象限内,那么k的取值范围是________.16. 设函数y=x−3与y=2x 的图象的两个交点的横坐标为a、b,则1a+1b=________.17. 有一块长方形试验田面积为3×106m2,试验田长y(单位:m)与宽x(单位:m)之间的函数关系式是________.18. 已知反比例函数y=2x的图象经过点A(m, 1),则m的值为________.19. 已知函数y=(m2+2m−3)x|m|−2.(1)若它是正比例函数,则m=________;(2)若它是反比例函数,则m=________.20. 双曲线y=kx 的部分图象如图所示,那么k=________.三、解答题(本题共计 6 小题,每题 10 分,共计60分,)21. 已知函数y=2m+1x m2−24的图象是双曲线.(1)求m的值;(2)若该函数的图象经过第二、四象限,求函数的表达式.22. 已知反比例函数y=kx(k为常数,且k≠0)的图象经过点A(2, 3)(1)画出这个反比例函数的图象并观察,这个函数的图象位于哪些象限?y随x怎样变化?(2)判断点B(−1, 6),C(3, 2)是否在这个函数的图象上,并说明理由.精品 Word 可修改欢迎下载23. 在平面直角坐标系xOy中,已知:直线y=−x反比例函数y=kx的图象的一个交点为A(a, 3).(1)试确定反比例函数的解析式;(2)写出该反比例函数与已知直线l的另一个交点坐标.24. 已知反比例函数y=1−2mx的图象经过点(−1, 4).(1)试确定m的值;(2)图象经过哪些象限?(3)若A(−1, y1),B(−4, y2),C(1, y3)是该函数图象上的点,试比较y1,y2,y3的大小;(4)直接回答点D(2, −2),E(−14, 16)是否在这个函数的图象上.25. 已知A(x1, y1),B(x2, y2)是反比例函数y=−2x图象上的两点,且x2−x1=−2,x1⋅x2=3.(1)在图中用“描点”的方法作出此反比例函数的图象;(2)求y1−y2的值及点A的坐标;(3)若−4<y≤−1,依据图象写出x的取值范围.26. 某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)精品 Word 可修改欢迎下载答案1. B2. C3. D4. D5. A6. A7. B8. B9. B10. D11. −212. (−2, −1)13. −114. −315. k<116. −1.517. y=3×106x18. 219. 3;(2)若它是反比例函数,则|m|−2=−1,解得:m1=1,m2=−1,∴m=−1.故答案为:−1.20. 221. 解:(1)根据题意得:m2−24=1,解得:m=±5.(2)∵函数的图象经过第二、四象限,∴2m+1<0,解得m<−12,∴m=−5,∴函数的表达式y=−9x.22. 解:(1)∵反比例函数的图象经过点A(2, 3),如图,∴k=2×3=6>0,∴这个函数的图象分布在一三象限,且在每一象限内y随x的增大而减小;(2)∵(−1)×6=−6,2×3=6,∴点B(−1, 6)不在这个函数的图象上,点C(3, 2)在这个函数的图象上.23. 解:(1)因为A(a, 3)在直线y=−x上,则a=−3,即A(−3, 3),又因为A(−3, 3)在y=kx的图象上,可求得k=−9,所以反比例函数的解析式为y=−9x;(2)另一个交点坐标是(3, −3).24. 解:(1)∵反比例函数y=1−2mx的图象经过点(−1, 4),∴4=1−2m−1,∴m=52;(2)∵1−2m=−4<0,精品 Word 可修改欢迎下载精品 Word 可修改 欢迎下载∴图象经过二、四象限;(3)∵反比例函数为:y =−4x , ∵A(−1, y 1),B(−4, y 2),C(1, y 3)是该函数图象上的点, ∴y 1=4,y 2=1,y 3=−4,∴y 1,y 2,y 3的大小是y 1>y 2>y 3;(4)当x =2时,y =−2,当x =−14时,y =16, ∴D(2, −2),E(−14, 16)在这个函数的图象上. 25. 解(1),(2)∵x 2−x 1=−2,x 1⋅x 2=3, ∴y 1−y 2=−2x 1−(−2x 2)=2(x 1−x 2)x 1x 2=2×23=43;由x 1−x 2=2得x 2=x 1−2,代入x 1⋅x 2=3得:x 12−2x 1−3=0,解得x 1=−1或x 1=3,当x 1=−1时,y 1=−2−1=2; 当x 1=3时,y 2=−23,∴点A 的坐标(−1, 2)或(3, −23);(3)如图,当−4<y ≤−1时,x 的取值范围为12<x ≤2. 26. 解:(1)设p =kv , 由题意知120=k 0.8, 所以k =96, 故p =96v;(2)当v =1m 3时,p =961=96(kPa);(3)当p =140kPa 时,v =96140≈0.69(m 3).所以为了安全起见,气体的体积应不少于0.69m 3.。

人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案

人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案

人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案(考试时间:90分钟 试卷满分:100分)一、选择题:(本大题共10小题,每小题3分,满分30分) 1.在下列函数中,y 是x 的反比例函数的是( ) A .2y x = B .2x y =C .2y x=D .21yx【答案】C【详解】A .该函数是正比例函数,故本选项错误; B .该函数是正比例函数,故本选项错误; C .该函数符合反比例函数的定义,故本选项正确; D .y 是()1x -的反比例函数,故本选项错误; 故选:C . 2.若双曲线(0)ky k x=<,经过点()12,A y -,()25,B y -则1y 与2y 的大小关系为( ) A .12y y < B .12y y > C .12y y = D .无法比䢂1y 与2y 的大小 【答案】B【详解】解: (0)ky k x=< ∴ 在同一象限内,y 随着x 的增大而增大即可求解()12,A y -,()25,B y -都在第二象限,且25->-∴12y y >.故选:B .3.已知反比例函数4y x=,则它的图象经过点( ) A .(2,8) B .(1,4)- C .(4,1) D .(2,2)-【答案】C【详解】解:由反比例函数4y x=可得:4xy = 2816⨯=,故A 选项不符合题意; 144-⨯=-,故B 选项不符合题意; 414⨯=,故C 选项符合题意;()224⨯-=-,故D 选项不符合题意.故选:C4.反比例函数5m y x-=的图象在第一、三象限,则m 的取值范围是( ) A .5m ≥ B .5m > C .5m ≤ D .5m <【答案】B【详解】解:∵反比例函数5m y x-=图象在第一、三象限 50m ∴->解得5m >. 故选:B5.如图,一次函数1y ax b 的图象与反比例函数2ky x=图象交于()2,A m 、()1,B n -两点,则当12y y >时,x 的取值范围是( )A .1x <-或2x >B .10x -<<或2x >C .12x -<<D .1x <-或02x <<【答案】B【详解】解:∵图象交于()2,A m 、()1,B n -两点 ∵当12y y >时,10x -<<或2x >. 故选B .6.若0ab >,则反比例函数aby x=与一次函数y ax b =+在同一坐标系中的大致图象可能是( )A .B .C .D .【答案】A【详解】解:0ab > ∴aby x=的图象在第一、三象限,排除B ,D ; 0ab >∴a ,b 同号当0a >,0b >时,y ax b =+的图象经过第一、二、三象限 当a<0,0b <时,y ax b =+的图象经过第二、三、四象限 综上可知,只有A 选项符合条件 故选A .7.在平面直角坐标系中,若反比例函数()0ky k x=≠的图像经过点()1,2A 和点()2,B m -,则m 的值为( ) A .1 B .1- C .2 D .2-【答案】B【详解】解:根据题意,将点()1,2A 代入()0ky k x =≠中得:21k =解得:2k =∵反比例函数解析式为2y x =将()2,B m -代入2y x =中得212m ==--故选:B .8.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流(A)I 与电阻()R Ω成反比例函数的图像,该图像经过点()880,0.25P .根据图像可知,下列说法正确的是( )A .当0.25I <时,880R <B .I 与R 的函数关系式是()2000I R R=> C .当1000R >时,0.22I >D .当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【详解】解:设I 与R 的函数关系式是(0)UI R R=>∵该图像经过点()880,0.25P ∵0.25880U= ∵220U =∵I 与R 的函数关系式是220(0)I R R=>,故选项B 不符合题意; 当0.25I =时,880R =,当1000R =时0.22I = ∵反比例函数(0)UI R R=>I 随R 的增大而减小 当0.25R <时880I >,当1000R >时0.22I <,故选项A ,C 不符合题意; ∵0.25R =时880I =,当1000R =时0.22I =∵当8801000R <<时,I 的取值范围是0.220.25I <<,故D 符合题意; 故选:D .9.正比例函数y x =与反比例函数1y x=的图象相交于A 、C 两点,AB x ⊥轴于点B ,CD x ⊥轴于点D (如图),则四边形ABCD 的面积为( )A .1B .32C .2D .52【答案】C【详解】解:解方程组1y xy x =⎧⎪⎨=⎪⎩,得:11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩ 即:正比例函数y x =与反比例函数1y x=的图象相交于两点的坐标分别为(1,1)A (1,1)C -- ∵AB x ⊥ CD x ⊥ ∵(1,0)D - (1,0)B ∵1111212122222四边形=⋅+⋅=⨯⨯+⨯⨯=ABCD S BD AB BD CD 即:四边形ABCD 的面积是2. 故选:C10.如图,正方形ABCD 的顶点分别在反比例函数11(0)k y k x=>和22(0)ky k x =>的图象上.若BD y ∥轴,点C 的纵坐标为4,则12k k +=( )A .32B .30C .28D .26【答案】A【详解】解:连接AC 交BD 于E ,延长BD 交x 轴于F ,连接OD 、OB 如图:四边形ABCD 是正方形AE BE CE DE ∴===设AE BE CE DE m ==== (,4)C aBD y ∥轴(,4)B a m m ∴++ (2,4)A a m + (,4)D a m m +-A ,B 都在反比例函数11(0)k y k x=>的图象上 14(2)(4)()k a m m a m ∴=+=++0m ≠4m a ∴=- (4,8)B a ∴-()4,D a(4,8)B a -在反比例函数11(0)k y k x=>的图象上,(4,)D a 在22(0)ky k x =>的图象上14(8)324k a a ∴=-=- 24k a =12324432k k a a ∴+=-+=;故选:A .二、填空题:(本大题共6小题,每小题3分,满分18分)11.已知反比例函数(0)ky kx=≠ 当x = y =- 则比例系数k 的值是______.【答案】4-【详解】解:把x = y =-4k =-=-;故答案为4-.12.如图 若反比例函数(0)ky x x=<的图像经过点A AB x ⊥轴于B 且AOB 的面积为5 则k =______.【答案】10-【详解】解:∵反比例函数(0)ky x x=<的图像经过点A AB OB ⊥ ∵设,k A a a ⎛⎫ ⎪⎝⎭∵12AOB k S a a=△ ∵反比例函数的图像在第二象限 ∵0k < a<0 则0ka> ∵11522AOB k S a k a ===△ ∵10k =- 故答案为:10-. 13.已知反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 则k 的取值范围是_____.【答案】3k >##3k < 【详解】解:∵反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 ∵30k -< ∵3k >.故答案为:3k >.14.如图 点M 和点N 分别是反比例函数a y x =(0x <)和by x=(0x >)的图象上的点MN x ∥轴 点P 为x 轴上一点 若4b a -= 则MNP S △的值为_______.【答案】2【详解】解:如图 连接,OM ON∵MN x ∥轴 ∵ ||||22MNP MNO a b S S ∆∆==+ ∵点M 和点N 分别是反比例的数(0)ay x x =<和(0)b y x x=> 的图象上的点 ∵0,0a b <> ∵||||4222222a b a b b a -+=-+== ∵2MNP S =△; 故答案为:2.15.已知点(3,)C n 在函数ky x=(k 是常数 0k ≠)的图象上 若将点C 先向下平移2个单位 再向左平移4个单位 得点D 点D 恰好落在此函数的图象上 n 的值是______. 【答案】12##0.5【详解】解:点(3,)C n 向下平移2个单位 再向左平移4个单位得(,)n --12; ∵(,)D n --12 ∵点C 、点D 均在函数k y x=上 ∵3k n = ()k n =--2 ∵()n n =--32 解得:12n =故答案为:1216.如图 正方形ABCD 的边长为5 点A 的坐标为(4,0) 点B 在y 轴上 若反比例函数(0)ky k x=≠的图象过点C 则k 的值为_______.【答案】3-【详解】解:如图 过点C 作CE y ⊥轴于E 在正方形ABCD 中 AB BC = 90ABC ∠=︒90ABO CBE ∴∠+∠=︒ 90OAB ABO ∠+∠=︒ OAB CBE ∴∠=∠点A 的坐标为(4,0)4∴=OA 5AB =3OB ∴= 在ABO 和BCE 中OAB CBE AOB BEC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABO BCE ∴≌4OA BE ∴== 3CE OB ==431OE BE OB ∴=-=-= ∴点C 的坐标为(3,1)-反比例函数(0)ky k x=≠的图象过点C 313k xy ∴==-⨯=-故答案为:3-.三、解答题(本大题共6题 满分52分) 17.(8分)已知反比例函数12y x=-. (1)说出这个函数的比例系数和自变量的取值范围. (2)求当3x =-时函数的值.(3)求当y =x 的值. 【答案】(1)12,0k x =-≠ (2)4(3)【详解】(1)解:∵12y x=- ∵12,0k x =-≠;(2)解:把3x =- 代入12y x =-得:1243y =-=-; ∵当3x =-时函数的值为:4;(3)解:把y = 代入12y x =-得:12x - 解得:43x ;∵当y =x 的值为:18.(9分)已知一次函数y =kx +b 与反比例函数y mx=的图像交于A (﹣3 2)、B (1 n )两点.(1)求一次函数和反比例函数的表达式; (2)求∵AOB 的面积;(3)结合图像直接写出不等式kx +b mx>的解集. 【答案】(1)一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=- (2)8(3)x <﹣3或0<x <1【详解】(1)解:∵反比例函数y mx =的图象经过点A (﹣3 2)∵m =﹣3×2=﹣6∵点B (1 n )在反比例函数图象上 ∵n =﹣6. ∵B (1 ﹣6)把A B 的坐标代入y =kx +b 则326k b k b -+=⎧⎨+=-⎩ 解得k =﹣2 b =﹣4∵一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=-; (2)解:如图 设直线AB 交y 轴于C则C (0 ﹣4)∵S △AOB =S △OCA +S △OCB 12=⨯4×312+⨯4×1=8; (3)解:观察函数图象知 不等式kx +b mx>的解集为x <﹣3或0<x <1. 19.(6分)某气球内充满一定质量的气体 当温度不变时 气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时 气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时 它的压强是多少?(2)当气球内气体的压强大于150kPa 时 气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?【答案】(1)当气体的体积为31m 时 它的压强是90kPa (2)当气球内气体的体积应不小于30.6m 时 气球才不会爆炸 【详解】(1)解:设k V p=由题意得:0.8112.5k= ∵90k = ∵90V p=∵当1V =时 90p =∵当气体的体积为31m 时 它的压强是90kPa ; (2)解:当150p =时 900.6150V == ∵900k =>∵V 随p 的增大而增大∵要使气球不会爆炸 则0.6V ≥∵当气球内气体的体积应不小于30.6m 时 气球才不会爆炸.20.(9分)如图 一次函数28y x =-+与函数(0)ky x x=>的图像交于(,6)A m (,2)B n 两点 AC y ⊥轴于C BD x ⊥轴于D .(1)求k 的值;(2)连接OA OB 求AOB 的面积;(3)在x 轴上找一点P 连接AP BP 使ABP 周长最小 求点P 坐标. 【答案】(1)6 (2)8 (3)5,02⎛⎫ ⎪⎝⎭【详解】(1)解:∵一次函数28y x =-+与函数(0)k y x x=>的图像交于(,6)A m (,2)B n 两点 ∵628m =-+ 228n =-+ 解得1m = 3n = ∵点(1,6)A (3,2)B 代入反比例函数得 61k= ∵616k =⨯=.(2)解:如图所示设一次函数图像与x 轴的交点为M 在一次函数28y x =-+中 令0y = 则4x = ∵(4,0)M 且(1,6)A (3,2)B∵114642822AOB AOM BOM S S S =-=⨯⨯-⨯⨯=△△△.(3)解:已知(1,6)A (3,2)B 则点A 关于x 轴的对称点A '的坐标(1,6)- 如图所示 A P AP '= 则ABP 的周长为AP BP AB A P BP AB '++=++设直线BA '的解析式为y kx b =+将点(3,2)B 、(1,6)A '-代入 得326k b k b +=⎧⎨+=-⎩解得410k b =⎧⎨=-⎩ ∵直线BA '的解析式为410=-y x 当0y =时 则4100x -= 解方程得 52x = ∵点P P 的坐标为5,02⎛⎫⎪⎝⎭.21.(10分)已知一次12y x a =-+的图象与反比例函数()20ky k x=≠的图象相交. (1)判断2y 是否经过点(),1k .(2)若1y 的图象过点(),1k 且25a k +=. ∵求2y 的函数表达式.∵当0x >时 比较1y 2y 的大小. 【答案】(1)过 (2)∵21=y x;∵当01x <<时 12y y < 当1x >时 12y y > 当1x =时 12y y = 【详解】(1)∵()20ky k x =≠∵把点(),1k 代入反比例函数 得1kk= ∵2y 经过点(),1k . (2)①∵1y 的图象过点(),1k∵把点(),1k 代入12y x a =-+ 得12k a =-+ 又∵25a k += ∵解得2a = 1k = ∵21=y x∵2y 的函数表达式为:21=y x②如图所示:由函数图象得 当01x <<时 12y y <;当1x >时 12y y >;当1x =时 12y y =.22.(10分)图1 已知双曲线(0)ky k x=>与直线y k x '=交于A 、B 两点 点A 在第一象限 试回答下列问题:(1)若点A 的坐标为(3,1) 则点B 的坐标为 ;(2)如图2 过原点O 作另一条直线l 交双曲线(0)ky k x=>于P Q 两点 点P 在第一象限.∵四边形ABPQ 一定是 ;∵若点A 的坐标为(3,1) 点P 的横坐标为1 求四边形ABPQ 的面积.(3)设点A 、P 的横坐标分别为m 、n 四边形ABPQ 可能是矩形吗?可能是正方形吗?若可能 直接写出m 、n 应满足的条件;若不可能 请说明理由. 【答案】(1)(3,1)-- (2)∵平行四边形;∵16(3)mn k =时 四边形ABPQ 是矩形 不可能是正方形 理由见解析 【详解】(1)A 、B 关于原点对称 (3,1)A ∴点B 的坐标为(3,1)--故答案为:(3,1)--(2)∵A 、B 关于原点对称 P 、Q 关于原点对称 ∴OA OB = OP OQ = ∴四边形ABPQ 是平行四边形故答案为:平行四边形 ∵点A 的坐标为(3,1) ∴313k =⨯=∴反比例函数的解析式为3y x=点P 的横坐标为1 ∴点P 的纵坐标为3∴点P 的坐标为(1,3)由双曲线关于原点对称可知 点Q 的坐标为(1,3)-- 点B 的坐标为(3,1)--如图 过点A 、B 分别作y 轴的平行线 过点P 、Q 分别作x 轴的平行线 分别交于C 、D 、E 、F则四边形CDEF 是矩形 6CD = 6DE = 4DB DP == 2CP CA ==则四边形ABPQ 的面积=矩形CDEF 的面积-ACP △的面积-PDB △的面积-BEQ 的面积-AFQ △的面积36282816=----=(3)当AB PQ ⊥时四边形ABPQ 是正方形 此时点A 、P 在坐标轴上 由于点A P 不可能在坐标轴上且都在第一象限故不可能是正方形 即90POA ∠≠︒ PO AO BO QO ===时 四边形ABPQ 是矩形此时P 、A 关于直线y x =对称 即22k k m n m n ++=化简得mn k =∴mn k =时 四边形ABPQ 是矩形 不可能是正方形。

第二十六章 反比例函数数学九年级下册-单元测试卷-人教版(含答案)

第二十六章 反比例函数数学九年级下册-单元测试卷-人教版(含答案)

第二十六章反比例函数数学九年级下册-单元测试卷-人教版(含答案)一、单选题(共15题,共计45分)1、下列语句.①横坐标与纵坐标互为相反数的点在直线y=-x上;②直线y=-x+2不经过第三象限;③除了用有序实数对,我们也可以用方向和距离来确定物体的位置;④若点P的坐标为(a,b),且ab=0,则P点是坐标原点;⑤函数中y的值随x的增大而减小.其中叙述正确的有()A.2个B.3个C.4个D.5个2、反比例函数的图象如图所示,则K的值可能是()A. B.1 C.2 D.-13、如图,反比例函数的图象与矩形ABCO的边AB、BC相交于E、F两点,点A、C 在坐标轴上.若,则四边形OEBF的面积为()A.1B.2C.3D.44、设P是函数在第一象限的图象上的任意一点,点P关于原点的对称点为P′,过P作PA平行于y轴,过P′作P′A平行于x轴,PA与P′A交于A点,则△PAP′的面积()A.随P点的变化而变化B.等于1C.等于2D.等于45、若反比例函数y=﹣的图象上有3个点A(x1, y1),B(x2, y2),C(x3,y3),且满足x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y1<y36、已知点A(1,2)在反比例函数y=的图象上,则该反比例函数的解析式是( )A.y=B.y=C.y=D.y=2x7、关于函数,下列说法中错误的是()A.函数的图象在第二、四象限B. 的值随值的增大而增大C.函数的图象与坐标轴没有交点D.函数的图象关于原点对称8、已知反比例函数y=﹣,下列各点中,在其图象上的有()A.(﹣2,﹣3)B.(2,3)C.(2,﹣3)D.(1,6)9、已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.若此蓄电池为某用电器的电源,限制电流不能超过12A,那么用电器的可变电阻R应控制在什么范围?()A.R≥3ΩB.R≤3ΩC.R≥12ΩD.R≥24Ω10、已知双曲线y=过点A(1,1),那么过点A的直线y=kx+b经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限11、如图,一块含有30°的直角三角板的直角顶点和坐标原点重合,30°角的顶点在反比例函数的图象上,顶点B在反比例函数的图象上,则k的值为()A.-4B.4C.-6D.612、反比例函数是y= 的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限13、在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度(单位:)与体积(单位:)满足函数关系式(为常数,),其图象如图所示,则的值为()A. B. C. D.14、如图,A、B两点在双曲线上,分别经过点A、B两点向x、y轴作垂线段,已知,则( )A.6B.5C.4D.315、已知y=2x,z=,那么z与x之间的关系是()A.成正比例B.成反比例C.有可能成正比例有可能成反比例D.无法确定二、填空题(共10题,共计30分)16、如图,点A是反比例函数(x>0)图象上一点,过点A作x轴的平行线,交反比例函数(x>0)的图象于点B,连接OA、OB,若△OAB的面积为2,则k的值为________.17、如图,已知点A的坐标为(,3),AB⊥x轴,垂足为B,连接OA,反比例函数y= (k>O,x>O)的图象与线段OA、OB分别交于点C、D,过点C作CE⊥x轴于E.若AB=3BD,则△COE的面积为________.18、某公司有500吨煤,这些煤所用天数y(天)与平均每天用煤量x(吨)的函数解析式为________ ,自变量x的取值范围是________ .19、如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y =的图象交于A,B两点,则四边形MAOB的面积为________.20、为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为6mg.研究表明当每立方米空气中含药量低于1.2mg时,对人体方能无毒害作用,那么从消毒开始,至少需要经过________分钟后,学生才能回到教室.21、如图,直线与轴、轴分别相交于点A,B,四边形ABCD是正方形,曲线在第一象限经过点D,则=________.22、若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为________23、司机老王驾驶汽车从甲地去乙地,他以80km/h的平均速度用6h达到目的地.当他按原路匀速返回时,汽车的速度v与时间t之间的函数关系式为________ .24、已知y与 2x成反比例,且当x=3时,y=,那么当x=2时,y=________,当y=2时,x=________ 。

人教版九年级数学下册《第二十六章 反比例函数》测试卷-含参考答案

人教版九年级数学下册《第二十六章 反比例函数》测试卷-含参考答案

人教版九年级数学下册《第二十六章 反比例函数》测试卷-含参考答案一、选择题1.下列关系式中,y 是x 反比例函数的是( ) A .y= 13 xB .y=- 3xC .y=3x 2D .y=6x+12.函数 y =(m +1)x m 2+m−1是反比例函数,则m 的值为( )A .0B .﹣1C .0或﹣1D .0或13.若点A(x 1,−5),B(x 2,2),C(x 3,5)都在反比例函数y =m 2+1x的图象上,则x 1,x 2,x 3的大小关系是( ) A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 3<x 1<x 24.函数y =x −a 与y =ax (a ≠0)在同一坐标系内的图象可以是( )A .B .C .D .5.反比例函数y =2−3k x的图象经过点(−2,5),则k 的值为( )A .10B .-10C .4D .-43⎛⎫2⎛⎫2⎛⎫7.验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于x 的函数表达式为( )A.y=100x B.y=x100C.y=400xD.y=x4008.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=kx(x>0)的图象经过顶点B,则k的值为()A.12 B.16 C.20 D.32二、填空题9.反比例函数y=m−5x,其图象分别位于第一、第三象限,则m的取值范围是.10.已知点P位于第三象限内,且点P到两坐标轴的距离分别为3和4,若反比例函数图象经过点P,则该反比例函数的解析式为.11.在平面直角坐标系xOy中,直线y=−2x与双曲线y=mx交于A,B两点,若点A,B的纵坐标分别为y1,y2,则−3y1−3y2的值为.12.如图,一次函数y1=k1x+b与反比例函数y2=k2x的图象相交于A,B两点,点A的横坐标为2,点B的横坐标为−1,则不等式k1x+b<k2x的解集是.13.如图所示,点A是反比例函数y=kx(x<0)的图象上一点,过点A作AB⊥y轴于点P,点P在x轴上,若△ABP的面积是2,则k=.三、解答题14.已知道y=y 1+y 2,y 1与x 2成正比例,y 2与x+3成反比例.并且x=0时,y=2,x=1时,y=0.试求函数y 的解析式,并指出自变量的取值范围.15.如图,双曲线y 1=kx (k 为常数,且k ≠0)与直线y 2=﹣13x+b 交于点A (﹣2,a )和B (3c ,2﹣c ).(1)求k ,b 的值;(2)求直线与x 轴的交点坐标.17.某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20m 和11m 的矩形大厅内修建一个60m2的矩形健身房ABCD. 该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/m 2,新建(含装修)墙壁的费用为80元/m 2.设健身房的高为3m,一面旧墙壁AB 的长为xm,修建健身房墙壁的总投入为y 元. (1)求y 与x 的函数关系式;(2)为了合理利用大厅,要求自变量x 必须满足条件:8≤x ≤12, 当投入的资金为4800元时,问利用旧墙壁的总长度为多少?18.如图,已知一次函数y =ax +b(a,b 为常数,a ≠0)的图象与x 轴,y 轴分别交于点A ,B ,且与反比例函数y =kx (k 为常数,k ≠0)的图象在第二象限内交于点C ,作CD ⊥x 轴于D ,若OA =OD =34OB =3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax +b ≤kx的解集;(3)在y 轴上是否存在点P ,使得△PBC 是以BC 为一腰的等腰三角形?如果存在,请直接写出P 点的坐标;如果不存在,请简要说明理由.11m20mDCB A参考答案 1.B 2.A 3.C 4.D 5.C 6.A 7.A 8.D 9.m >5 10.y =12x11.012.-1<x <0或x >2 13.-414.解:∵y 1与x 2成正比例,y 2与x+3成反比例.∴y 1=k 1x 2,y 2= k2x+3∵y=y 1+y 2 ∴y=k 1x 2+k 2x+3∵x=0时,y=2,x=1时,y=0. ∴{k 23=2k 1+k 24=0解得k 1=﹣ 32 ,k 2=6∴y=﹣ 32 x 2+ 6x+3 (x ≠﹣3)15.(1)解:∵点B (3c ,2﹣c )在直线y 2=﹣13x+b 的图象上 ∴−13×3c +b =2−c 解得:b =2∴直线解析式为y 2=﹣13x+2∵点A (﹣2,a )在直线y 2=﹣13x+2的图象上∴a =−13×(−2)+2=83 ∴点A 坐标为(-2,83) ∵点A (-2,83)在y 1=k x 图象上 ∴83=k −2解得:k =−163.(2)解:∵直线解析式为y 2=﹣13x+2 ∴当y 2=0时,x=6∴直线与x 轴的交点坐标为(6,0). 16.(1)∵点A 、B 是反比例函数ky x=的图象上一点,AC x ⊥轴,BC y ⊥轴()3,4C - ∴3,3k A ⎛⎫ ⎪⎝⎭(),44kB --∵AB 经过原点∴A 、B 两点关于原点对称 ∴34k =∴12k =∴()3,4A ()3,4B -- ∴8AC = 6BC = ∴Rt ACB △的面积11862422AC BC =⋅=⨯⨯=; (2)∵()3,4A∴将()3,4A 代入y k x '=得43k '= 解得43k '=∴经过AB 两点的直线43y x =; 由图象可得当30x -<<或3x >时k k x x'>. 17.解:(1)根据题意,AB=x,AB ·BC=60,所以BC=60x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x2.若反比例函数2y x=的图像经过(),n n ,则n 的值是( )A .2±B .CD .3.如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x的图象经过点C和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)4.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交 B .它的图象绕原点旋转180°能和本身重合 C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点5.如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >6.如图,在平面直角坐标系中直线y mx =(0m ≠,m 为常数)与双曲线ky x=(0k ≠,k 为常数)交于点A ,B ,若()1,A a -和(),3B b -,过点A 作AM x ⊥轴,垂足为M ,连接BM ,则ABM ∆的面积是( )A .2B .1m -C .3D .67.如图,在平面直角坐标系中函数()0ky x x=>的图象经过点P 、Q 、R ,分别过这个三个点作x 轴、y 轴的平行线,阴影部分图形的面积从左到右依次为若OE ED DC ==,1310S S +=则k 的值为( )A .6B .12C .18D .24二、填空题8.平面直角坐标系xOy 中已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x =≠图象上的三点.若2ABC S =△,则k 的值为___________.9.如图,△AOB 中AO =AB ,OB 在x 轴上C ,D 分别为AB ,OB 的中点,连接CD ,E 为CD 上任意一点,连接AE ,OE ,反比例函数y k x=(x >0)的图象经过点A .若△AOE 的面积为2,则k 的值是___.10.在平面直角坐标系xOy 中过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x=的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.11.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-1,2,3,4四个数,从袋子中随机抽取一个小球,记标号为k ,不放回,将袋子摇匀,再随机抽取一个小球,记标号为b ,两次抽取完毕后,则直线y kx =与反比例函数by x=的图象经过的象限相同的概率为______. 12.如图,点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴,作AC x ⊥轴于点C ,交OB 于点D .若2OD BD =,则k 的值是______.13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =﹣6x(x <0)和y=8x(x >0)的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为__.14.一定质量的二氧化碳,其密度()3kg /m ρ=是体积()3m V 的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式___________,当33m V =时,则ρ=_______3kg /m .三、解答题15.如图1,反比例函数()0my x x=>的图象过点()4,3M .(1)求反比例函数my x=的表达式,判断点()2,8在不在该函数图象上,并说明理由; (2)反比例函数()16my x x=≤≤的图象向左平移2个单位长度,平移过程中图象所扫过的面积是______; (3)如图2,直线:8l y x =-+与x 轴、y 轴分别交于点A 、点B ,点P 是直线l 下方反比例函数my x=图象上一个动点,过点P 分别作PC x ∥轴交直线l 于点C ,作PD y ∥轴交直线l 于点D ,请判断AC BD ⋅的值是否发生变化,并说明理由,如果不变化,求出这个值. 16.阅读下列材料定义运算min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a =.例如:min 1,31-=-与min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4--=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,则()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 17.在如图平面直角坐标系中矩形OABC 的顶点B 的坐标为(4,2),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将△OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到△ODE ,OD 与CB 相交于点F ,反比例函数y =kx(x >0)的图象经过点F ,交AB 于点G .(1)求k 的值和点G 的坐标;(2)连接FG ,则图中是否存在与△BFG 相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA 上存在这样的点P ,使得△PFG 是等腰三角形.请直接写出点P 的坐标.18.我们不妨约定:在平面直角坐标系中若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则把该函数称之为“()X n 函数”.(1)在下列关于x 的函数中是“()X n 函数”的是________(填序号); ①6y x=,②4y x =,③225y x x =-- (2)若关于x 的函数y x h =-(h 为常数)是“()3X 函数”,与my x=(m 为常数,0m >)相交于A (A x ,A y )、B (B x ,B y )两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数”24y ax bx =++(a ,b 为常数)经过点(1-,1),且1n =,当1t x t -≤≤时,则函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 19.如图,在平面直角坐标系中四边形ABCD 为正方形,已知点A (0,﹣6)、D (﹣3,﹣7),点B 、C 在第三象限内.(1)求点B 的坐标;(2)在y 轴上是否存在一点P ,使ABP 是AB 为腰的等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.(3)将正方形ABCD 沿y 轴向上平移,若存在某一位置,使在第二象限内点B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上,求该反比例函数的解析式.参考答案与解析1.【答案】A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】解:设这个反比例函数的表达式为(0)ky k x =≠ 由题意,将点(3,1)P --代入得:3(1)3k =-⨯-= 则这个反比例函数的表达式为3y x =故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键. 2.【答案】B【分析】将(),n n 代入解析式中即可求出n 的值. 【详解】解:将(),n n 代入2y x =中得2n n=解得:n =故选B.【点睛】此题考查的是根据点所在的图像求点的坐标,将点的坐标代入解析式求点的坐标是解决此题的关键.3.【答案】B【分析】作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标. 【详解】解:作CE ⊥OA 于E ,如图∵B(5,4),四边形AOCB为平行四边形∴CE=4∵反比例函数y=8x的图象经过点C∴S△COE=12OE•CE=12×8∵CE=4∴OE=2∴C(2,4),OA=BC=5-2=3 ∴A(3,0)∵点D是AB的中点∴点D的坐标为(3+50+422,),即D(4,2)故选:B.【点睛】本题考查了平行四边形的性质,反比例函数系数k的几何意义等,求得点C和点A的坐标是解题的关键.4.【答案】D【分析】当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.∵反比例函数4yx=中4>0,∴此函数图象在一、三象限,故本选项正确;B.∵反比例函数4yx=的图象双曲线关于原点对称,故本选项正确;C.反比例函数的图象可知,图象关于直线y x=±对称,故本选项正确;D.∵反比例函数4yx=的图象位于第一、三象限,直线y x=-经过第二、四象限,所以直线y x=-与双曲线4yx=无交点,故本选项错误;故选D.【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 5.D【分析】根据图象进行分析即可得结果; 【详解】解:∵22x x> ∴12y y >由图象可知,函数12y x=和22y x =分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-, 由图象可以看出当10x -<<或1x >时,则函数12y x=在22y x =上方,即12y y >故选:D .【点睛】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键. 6.【答案】C【分析】根据直线y mx =与双曲线k y x =都经过点A ,得出1a mk a =-⎧⎪⎨=⎪⎩-,进而得到k m =,再由直线y mx =与双曲线k y x =都经过点B ,得到33k b bm ⎧-=⎪⎨⎪-=⎩,进而得到2b m k =,进而求出b 的值,得到点A 的坐标,即可得到答案.【详解】由题,直线y mx =与双曲线ky x=都经过点A ∴1a m k a =-⎧⎪⎨=⎪⎩- ,得:k m =直线y mx =与双曲线ky x=都经过点B 33bm k b -=⎧⎪∴⎨-=⎪⎩,得:2b m k = 21b ∴=0b >1b ∴=13B ∴-(,)将点B 代入y mx =,得:3m -=3y x ∴=-13A ∴-(,)111313322ABM S ∆∴=⨯⨯+⨯⨯=故选:C【点睛】本题考查一次函数与反比例函数的图像问题,根据两者的交点结合解析式求出点的坐标是解题关键.7.【答案】B【分析】设未知数,表示出点P 、Q 、R 的坐标,进而表示S 1、S 2、S 3,由S 1+S 3=10列方程求解即可. 【详解】解:设OE =ED =DC =a ∵函数ykx =(x >0)的图象经过点P 、Q 、R∴点P (3k a ,3a ),Q (2k a ,2a ),R (ka ,a )∴OF 3k a =,OG 2k a =,OA k a =∴S 1=OF •CD 3k a =⨯a 3k =S 3=AG •OE =(2k k a a -)×a 2k =又∵S 1+S 3=10 ∴32k k +=10 解得k =12 故选:B .【点睛】本题考查反比例函数系数k 的几何意义以及反比例函数图象上点的坐标特征,用坐标表示线段的长是解决问题的关键. 8.【答案】34##0.75 【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值. 【详解】解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点 ∴260k m => 6k mn = ∴m =n∴(3,2)B m m (3,2)C m m -- ∴点B 、C 关于原点对称∴设直线BC 的解析式为()0y kx k =≠ 代入(3,2)B m m 得:23m mk = 解得:23k =∴直线BC 的解析式为23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D 把x =m 代入23y x =得:23y m =∴D (m ,23m )∴AD =216633m m m -=∴()11633223ABCSm m m =⨯⋅+= ∴218m =∴2136684k m ==⨯=而当m <0时,则同样可得34k =故答案为:34【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.9.【答案】4【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S△AOD=2,应用|k|的几何意义求k.【详解】解:如图:连接AD△AOB中AO=AB,OB在x轴上,C、D分别为AB,OB的中点∴AD⊥OB,AO∥CD∴S△AOE=S△AOD=2∴k=4.故答案为:4.【点睛】本题考查了反比例函数图象、等腰三角形以及中位线的性质、三角形面积,解题的关键是灵活运用等腰三角形的性质.10.【答案】254或754【分析】先根据“和谐点”的定义求出m的值,进而可求出点A的坐标,根据三角形的面积可求出△OAP的面积.【详解】解:∵点P(52-,m)是“和谐点”∴5+2|m|52=|m|,解得m=±10当m=10时,则P(52-,10)把点P的坐标代入一次函数和反比例的解析式得:k1=5,k2=﹣25∴A(0,5)∴S△OAP15255224=⨯⨯=.当m =﹣10时,则P (52-,﹣10)∴k 1=﹣15,k 2=25 ∴A (0,﹣15) ∴S △OAP 12=⨯1557524⨯=. 故答案为:254或754. 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |,读懂题意,明确和谐点的定义是解题的关键. 11.【答案】12【分析】画树状图,共有12个等可能的结果,直线y kx =与反比例函数by x=的图象经过的象限相同的结果有6个,再由概率公式求解即可. 【详解】解:画树状图如图:∵从袋子中随机抽取一个小球,记标号为k ,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b ,共有12个数组∴直线y kx =与反比例函数by x=的图象经过的象限相同的数组有(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共有6组∴k ,b 直线y kx =与反比例函数b y x=的图象经过的象限相同的概率为61122=.故答案为:12【点睛】此题考查了用列表法或树状图法求概率及一次函数与反比例函数的性质,熟练掌握利用列表法或树状图列出所有等可能的结果以及一次函数与反比例函数的性质是解题的关键. 12.【答案】9【分析】先求解A 的坐标,再表示B 的坐标,再证明,ABD COD ∽利用相似三角形的性质列方程求解即可.【详解】解: 点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴 63,,3,23kmB2,3,AAC x ⊥轴2,0,CAB x ∥轴,ABD COD ∽,ABBDOC OD而2OD BD = 213,22k 解得:9,k = 故答案为:9【点睛】本题考查的是反比例函数的性质,相似三角形的判定与性质,掌握“反比例函数的图像与性质”是解本题的关键. 13.【答案】7【分析】连接OA ,OB ,利用同底等高的两三角形面积相等得到三角形AOB 面积等于三角形ACB 面积,再利用反比例函数k 的几何意义求出三角形AOP 面积与三角形BOP 面积,即可得到结果. 【详解】解:如图,连接OA ,OB∵△AOB 与△ACB 同底等高 ∴S △AOB =S △ACB ∵AB ∥x 轴∴AB ⊥y 轴∵A 、B 分别在反比例函数y =﹣6x (x <0)和y =8x (x >0)的图象上∴S △AOP =3,S △BOP =4∴S △ABC =S △AOB =S △AOP +S △BOP =3+4=7. 故答案为:7.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数y =kx的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了三角形的面积. 14.【答案】10V ρ=103【分析】由函数图像信息可得反比例函数过点(5,2),根据待定系数法求解析式;将3V =代入即可求得ρ. 【详解】反比例函数过点(5,2) 设反比例函数解析式为kVρ= 则10k =∴反比例函数解析式为10Vρ=当3V =时,则103ρ= 故答案为:10V ρ=103【点睛】本题考查了反比例函数的应用,待定系数法求反比例函数的解析式,根据解析式求函数值,从图像获取信息是解题的关键.15.【答案】(1)不在,理由见解析 (2)20 (3)不变化,24【分析】对于(1),利用待定系数法求出函数关系式,再代入判断即可;对于(2),设点E 的横坐标和点F 的横坐标,再分别表示出点E ,F ,G ,H 的坐标,进而得出线段的长度,再根据平行四边形面积公式得出答案;对于(3),设点P 的横坐标为t ,分别表示点C ,点D 的坐标,再根据两点之间的距离公式得出AC 和BD 的长,进而得出答案.(1)将点()4,3M 代入m y x =得34m= 12m =∴12y x=;当2x =时,则6y = ∵68≠∴点()2,8不在函数图象上;(2)设点E 的横坐标是1,点F 的横坐标是6,点G ,H 分别对应点E ,F ,如图所示.图形扫过的面积即为平行四边形EFHG 的面积.令12y x=中1x =,则12y = 所以(112)E , -1,12G ()令12y x=中6x =,则2y = 所以(62)F ,,(4,2)H . 因为EG FH ∥,且EM FH = 所以四边形EGHF 为平行四边形所以=()2(122)20E F S EG y y ⋅-=⨯-=. 故答案为:20;(3)不变化,理由如下:因为直线l :8y x =-+与x 轴,y 轴分别交于点A ,点B 所以点A (8,0),B (0,8). 设点P 的横坐标是t 所以12(,)P t t.因为PC x ∥轴交直线l 于点C ,PD y ∥轴交直线l 于点D 所以1212(8,)C tt-+ (,8)D t t -+所以AC =BD =即24AC BD ⋅=⋅=所以AC BD ⋅为定值,为24..【点睛】本题主要考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,求平行四边形面积等,掌握数形结合思想是解题的关键.16.【答案】(1)①1;②4- (2)12y x=- 223y x =--【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,则2kx bx ,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式. (1)解:根据题意∵min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a = ∴①()0min 3,21-=;∵4-∴②min 44-=-; 故答案为:①1;②4-;(2)解:由函数图像可知当20x -<<时,则2k x bx∴min,22kx b x b x-+=-+ 又∵()()2min,213kx b x x x x-+=+-- ∴()()2213x b x x x -+=+-- ∴3b =-∴一次函数223y x =-- 当x =-2时21y = ∴A (-2,1) 将A (-2,1)代入1ky x=得212k =-⨯=-∴反比例函数12y x=-.【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.17.【答案】(1)k =2,点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG ,证明详见解析;(3)点P 的坐标为(40)或(158,00). 【分析】(1)证明△COF ∽△AOB ,则CF OCAB OA=,求得:点F 的坐标为(1,2),即可求解; (2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG .证△OAB ∽△BFG :43AO BF = 24332AB BG ==即可求解.(3)分GF =PF 、PF =PG 、GF =PG 三种情况,分别求解即可. 【详解】解:(1)∵四边形OABC 为矩形,点B 的坐标为(4,2) ∴∠OCB =∠OAB =∠ABC =90°,OC =AB =2,OA =BC =4 ∵△ODE 是△OAB 旋转得到的,即:△ODE ≌△OAB ∴∠COF =∠AOB ,∴△COF ∽△AOB ∴CF OC AB OA =,∴2CF =24,∴CF =1∴点F 的坐标为(1,2) ∵y =kx(x >0)的图象经过点F∴2=1k ,得k =2 ∵点G 在AB 上 ∴点G 的横坐标为4对于y =2x ,当x =4,得y =12∴点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG . 下面对△OAB ∽△BFG 进行证明: ∵点G 的坐标为(4,12),∴AG =12 ∵BC =OA =4,CF =1,AB =2∴BF=BC﹣CF=3BG=AB﹣AG=32.∴43AOBF=24332ABBG==∴AO AB BF BG=∵∠OAB=∠FBG=90°∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,12)则FG2=9+94=454,PF2=(m﹣1)2+4,PG2=(m﹣4)2+14当GF=PF时,则即454=(m﹣1)2+4,解得:m;当PF=PG时,则同理可得:m=158;当GF=PG时,则同理可得:m=4综上,点P的坐标为(40)或(158,00).【点睛】本题考查的是反比例函数综合运用,涉及到旋转的性质、三角形相似、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.18.【答案】(1)②③( 2)4 (3)t=2或t=1【分析】(1)根据定义分析判断即可;(2)作出图形,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点,由xB﹣xA=5,设CN=x,则MC=5﹣x,则B(3+x,x),A(x﹣2,5﹣x),根据轴对称的性质以及反比例函数的性质可得(3+x)x+(x﹣2)(5﹣x)=0,继而求得x的值,即可求得B的坐标,根据反比例函数的意义即可求得m的值;(3)根据题意以及二次函数的性质,待定系数求二次函数解析式,进而分类讨论,根据121 2y y-=,即可求得t的值.(1)解:根据定义,函数关于直线x n=(n为常数)对称,即该函数图象是轴对称图形①6yx=的图象是中心对称图象,不符合题意;②4y x=,③225y x x=--的图象是轴对称图形,符合题意故答案为:②③(2)∵y=|x-h|是“X(3)”函数∴h=3如图,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点∴C(3,0),D(0,﹣3)∴∠BCN=∠OCD=45°由对称性可知,∠ACM=∠OCD=45°∴AM=CM,BN=CN∵xB﹣xA=5∴MN=5设CN=x,则MC=5﹣x∴B(3+x,x),A(x﹣2,5﹣x)∴(3+x)x+(x﹣2)(5﹣x)=0∴x=1∴B(4,1)∴m=4;(3)由题意得4112a bba-+=⎧⎪⎨-=⎪⎩解得12 ab=-⎧⎨=⎩∴此“X(n)函数”为y=﹣x2+2x+4①当t<1时x=t时,则y1=﹣t2+2t+4x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=(﹣t2+2t+4)﹣[﹣(t﹣1)2+2(t﹣1)+4]=﹣2t+3=12∴t=54(舍);②当t﹣1≥1,即t≥2时x=t﹣1时,则y1=﹣(t﹣1)2十2(t﹣1)+4x=t时,则y2=﹣t2+2t+4y1-y2=﹣(t﹣1)2+2(t﹣1)+4﹣(﹣t2+2t+4)=2t﹣3=12∴t=74(舍);③当1≤t<32时x=1时,则y1=5x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=5﹣[﹣(t﹣1)2+2(t﹣1)+4]=t2﹣4t+4=12∴t=2±,又因为1≤t<3 2∴t=2-④32≤t<2时x=1时,则y1=5x=t时,则y2=﹣t2十2t+4y1﹣y2=5﹣(﹣t2+2t+4)=t2﹣4t+4=12∴t=1,又因为32≤t<2∴t=1综上所述:t=2-t=1【点睛】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质,根据新定义以及轴对称的性质求解是解题的关键.19.【答案】(1)B (-1,-3)(2)存在,(06-,或(06-,或()00,(3)6y x =-【分析】(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,证明ADF BAE ≅得出BE 与OE 的长度便可求得B 点坐标;(2)先求出AB 的值,再根据题意可得分类讨论,分为当AB =AP 时有两种情况和当AB =BP 时有一种情况进行求解即可;(3)先设向上平移了m 表示B '和D 的坐标,再根据B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上得B '和D 点的横、纵坐标的积相等,列出关于m 的方程即可求解.(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,如下图则90AFD AEB ∠=∠=︒∵点A (0,-6),D (-3,-7)∴DF =3,AF =1∵四边形ABCD 是正方形∴AB =AD 90BAD ∠=︒∴90DAF BAE DAF ADF ∠+∠=∠+∠=︒∴ADF BAE =∠∠∵ADF BAE F EAD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADF BAE ≅∴DF =AE =3,AF =BE =1∴OE=OA-AE=6-3=3∴B(-1,-3).(2)存在3种情况由(1)得ADF BAE≅且在Rt AFD中AB=AD①当AB=AP时的等腰三角形,如图则AP∵A为(0,-6)∴P点的坐标为(0,);②当AB=AP时,则如下图则AP∵A 为(0,-6)∴P 点的坐标为(0,);③当AB =BP 时,则如下图则BP ,且过B 作BE ⊥AP 于点E∵AB BP BE AP =⊥,∴3PE AE ==∴P 点在原点上则P 为(0,0).综上所述点P 的坐标为(06-,或(06-,或()00,. (3)设向上平移了m 可得B '为(-1,-3+m ),D 为(-3,-7+m ) 反比例函数关系式为k y x=()0k ≠ ∴()()1337k m m =-⨯-+=-⨯-+解得m =9∴k =()13166m -⨯-+=-⨯=- ∴反比例函数解析式为:6y x=- 【点睛】此题是反比例函数与正方形结合的综合体,主要考查了反比例函数的性质、待定系数法、全等三角形的性质和判定和等腰三角形的性质和判定,解决本题的关键是证明全等三角形和分类讨论.。

相关文档
最新文档