数学建模十大经典算法( 数学建模必备资料)
数学建模竞赛中应当掌握的十类算法
![数学建模竞赛中应当掌握的十类算法](https://img.taocdn.com/s3/m/bcfa07b1b14e852458fb5788.png)
表示某一个体对于环境的适应程度。
遗传算法的原理
▪ 遗传算法GA把问题的解表示成“染色体”,在算法中也 即是以二进制编码的串。并且,在执行遗传算法之前,给 出一群“染色体”,也即是假设解。然后,把这些假设解 置于问题的“环境”中,并按适者生存的原则,从中选择 出较适应环境的“染色体”进行复制,再通过交叉,变异 过程产生更适应环境的新一代“染色体”群。这样,一代 一代地进化,最后就会收敛到最适应环境的一个“染色体” 上,它就是问题的最优解。
▪ 五 、基因位置(Gene Position)
一个基因在串中的位置称为基因位置,有时也简称基因位。 基因位置由串的左向右计算,例如在串S=1101中,0的 基因位置是3。基因位置对应于遗传学中的地点(Locus)。
▪ 六、基因特征值(Gene Feature)
在用串表示整数时,基因的特征值与二进制数的权一致; 例如在串S=1011中,基因位置3中的1,它的基因特征值 为2;基因位置1中的1,它的基因特征值为8。
▪ 举个例子就是97 年的A 题,每个零件都有自己的标定值, 也都有自己的容差等级,而求解最优的组合方案将要面对 着的是一个极其复杂的公式和108 种容差选取方案,根本 不可能去求解析解,那如何去找到最优的方案呢?随机性 模拟搜索最优方案就是其中的一种方法,在每个零件可行 的区间中按照正态分布随机的选取一个标定值和选取一个 容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量 的方案,从中选取一个最佳的。
x a1 2
其中ξ1,ξ2均为(0,1)上均匀分布的随机变量。
每次投针试验,实际上变成在计算机上从两个均匀分布
的随机变量中抽样得到(x,θ),然后定义描述针与平行 线相交状况的随机变量s(x,θ),为
数学建模10种常用算法
![数学建模10种常用算法](https://img.taocdn.com/s3/m/108c18e8ad51f01dc381f11e.png)
数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。
参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。
数学建模十大经典算法
![数学建模十大经典算法](https://img.taocdn.com/s3/m/24488ba01a37f111f1855b38.png)
法解及题试模建学数国全年历
。理处行进 baltaM 用使常通�题问的决解要需是就理处何如及以示展何如形
。 1 � y � x 是件条要充的内形扇在落 P。值似近的 k 为作 n/m 比的 n 数总的点投所与 m 数点的内形扇在落将。内形扇在落点个少多有中其看等相会机的置位 个一每中形方正在落点的投所使�点多很入投机随中形方正在是法办个一�呢 K 例比的占 中积面形方正在积面形扇出求样怎。值的 iP 到得而从�1S 到得能即立就 S/1S=K 例比的占 中 S 积面形方正在 1S 积面形扇出求能要只。分部一的形方正位单 1 为长边是它�形扇个一 是积面 4/1 的圆位单。iP 到得而从 4/iP 得求来积面的 4/1 的圆位单求用利�中法分积值数在 �等线行平括包�题例的似相多很有�例实法算、2 。解似近的题问得获以�样抽或拟模计统现实机算计用�系联 相型模率概的定一同题问的解求所将是它�法方的题问算计多很决解来�数机随伪的见常 更或�数机随用使指是�法方拟模计统称也。法方算计种一的础基为法方论理计统和率概以 解理的义含、1
�点特的展发题赛
论图
B01 A01 划规态动 排安理合的床病科眼 B90 析分法方制控的台验试器动制 A90 讨探准标费学育教等高 B80 位定机相码数 A80 理处据数 划规标目多 运奥看�交公乘 B70 测预长增口人国中 A70 测预的效疗及价评的法疗病滋艾 B60 置配源资版出 A60
393141.3 051931.3 002531.3 000580.3 000011.3
测预和价评的质水江长 A50 计设点网市超时临会运奥 A40 排安辆车的产生矿天露 B30 播传的 SRAS A30 题问票彩 B20 理管塞阻电输的场市力电 B40
赁租线在 DVD B50
数学建模十大算法
![数学建模十大算法](https://img.taocdn.com/s3/m/f7464dd26f1aff00bed51e58.png)
建模十大经典算法1、蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。
4、图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法。
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9、数值分析算法。
如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10、图象处理算法。
赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。
历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。
数学建模十大经典算法
![数学建模十大经典算法](https://img.taocdn.com/s3/m/b1b49fa80875f46527d3240c844769eae009a337.png)
数学建模十大经典算法数学建模是将现实问题转化为数学模型,并利用数学方法进行求解的过程。
下面是数学建模中常用的十大经典算法:1.线性规划(Linear Programming):通过确定一组线性约束条件,求解线性目标函数的最优解。
2.整数规划(Integer Programming):在线性规划的基础上,要求变量取整数值,求解整数目标函数的最优解。
3.非线性规划(Nonlinear Programming):目标函数或约束条件存在非线性关系,通过迭代方法求解最优解。
4.动态规划(Dynamic Programming):通过分阶段决策,将复杂问题分解为多个阶段,并存储中间结果,以求解最优解。
5.蒙特卡洛模拟(Monte Carlo Simulation):通过随机抽样和统计分析的方法,模拟系统的行为,得出概率分布或数值近似解。
6.遗传算法(Genetic Algorithm):模拟生物进化过程,通过选择、交叉和变异等操作,寻找最优解。
7.粒子群算法(Particle Swarm Optimization):模拟鸟群或鱼群的行为,通过个体间的信息交流和集体协作,寻找最优解。
8.模拟退火算法(Simulated Annealing):模拟金属退火的过程,通过控制温度和能量变化,寻找最优解。
9.人工神经网络(Artificial Neural Network):模拟生物神经网络的结构和功能,通过训练网络参数,实现问题的分类和预测。
10.遗传规划(Genetic Programming):通过定义适应性函数和基因编码,通过进化算子进行选择、交叉和变异等操作,求解最优模型或算法。
这些算法在不同的数学建模问题中具有广泛的应用,能够帮助解决复杂的实际问题。
数学建模常用的十大算法
![数学建模常用的十大算法](https://img.taocdn.com/s3/m/9550e3ccfbb069dc5022aaea998fcc22bcd14325.png)
数学建模常用的十大算法一、线性回归算法线性回归算法(linear regression)是数学建模中最常用的算法之一,用于研究变量之间的线性关系。
它可以将变量之间的关系建模为一个线性方程,从而找出其中的关键因素,并预测未来的变化趋势。
二、逻辑回归算法逻辑回归算法(logistic regression)是一种用于建立分类模型的线性回归算法。
它可用于分类任务,如肿瘤疾病的预测和信用评级的决定。
逻辑回归利用某个事件的概率来建立分类模型,这个概率是通过一个特定的函数来计算的。
三、决策树算法决策树算法(decision tree)是一种非参数化的分类算法,可用于解决复杂的分类和预测问题。
它使用树状结构来描述不同的决策路径,每个分支表示一个决策,而每个叶子节点表示一个分类结果。
决策树算法的可解释性好,易于理解和解释。
四、k-均值聚类算法k-均值聚类算法(k-means clustering)是无监督学习中最常用的算法之一,可用于将数据集分成若干个簇。
此算法通过迭代过程来不断优化簇的质心,从而找到最佳的簇分类。
k-均值聚类算法简单易用,但对于高维数据集和离群值敏感。
五、支持向量机算法支持向量机算法(support vector machine)是一种强大的分类和回归算法,可用于解决复杂的非线性问题。
该算法基于最大化数据集之间的间隔,找到一个最佳的超平面来将数据分类。
支持向量机算法对于大型数据集的处理效率较高。
六、朴素贝叶斯算法朴素贝叶斯算法(naive bayes)是一种基于贝叶斯定理的分类算法,用于确定不同变量之间的概率关系。
该算法通过使用先验概率来计算各个变量之间的概率,从而预测未来的变化趋势。
朴素贝叶斯算法的处理速度快且适用于高维数据集。
七、随机森林算法随机森林算法(random forest)是一种基于决策树的分类算法,它利用多个决策树来生成随机森林,从而提高预测的准确性。
该算法通过随机化特征选择和子决策树的训练,防止过度拟合,并产生更稳定的预测结果。
数学建模十类常用算法
![数学建模十类常用算法](https://img.taocdn.com/s3/m/5efacc6f1eb91a37f1115cb9.png)
十类常用算法数学建模竞赛中应当掌握的十类算法:1. 蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo 、Lingo 软件求解。
4. 图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。
这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法。
两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8. 一些连续数据离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9. 数值分析算法。
如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法。
赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。
以下将结合历年的竞赛题,对这十类算法进行详细地说明。
十类数学建模中的算法
![十类数学建模中的算法](https://img.taocdn.com/s3/m/4edf9b3a580216fc700afd5a.png)
十类数学建模中的算法1、蒙特卡罗算法:在大多数建模赛题中都离不开计算机的仿真,随机性模拟是非常常见的算法之一。
# Y) b; b' E" _5 ~/ H举个例子就是97年的A题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108种容差选取方案,根本不可能去解析求解的,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。
另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣决定于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。
! Z* ?. W# W n, c5 @0 g2、数据拟合、参数估计、插值等算法:数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98年美赛A题,生物组织切片的三维插值处理,94年A题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的非典问题也要用到数据拟合算法,观察数据的走向进行处理。
此类问题在Matlab中有很多数据处理现成的函数可以调用,熟悉Matlab,这些方法都能游刃有余的做好。
3、规划类问题算法:竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式组作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98B,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用Lindo、Lingo等软件来进行解决比较方便,所以还需要熟悉这两个软件。
T: y# q' F1 ~% ~$ K4、图论问题:98B、00B、95锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。
数模十大算法与思想
![数模十大算法与思想](https://img.taocdn.com/s3/m/78a93330a32d7375a417808a.png)
数学建模十大算法及思想1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、最动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中6、优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)把这些算法看懂,然后用c或者c++实现一遍,甚至做成有很好接口的dll,相信以后会受益匪浅...数学思想所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
数模十大常用算法及说明&参考文献
![数模十大常用算法及说明&参考文献](https://img.taocdn.com/s3/m/81a440630b1c59eef8c7b48f.png)
数模十大常用算法及说明1. 蒙特卡罗算法该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo 、Lingo 软件求解。
4. 图论算法这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8. 一些连续数据离散化方法很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9. 数值分析算法如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。
十类算法的详细说明1.蒙特卡罗算法大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。
数学建模中常用的十种算法
![数学建模中常用的十种算法](https://img.taocdn.com/s3/m/76ebaa56b6360b4c2e3f5727a5e9856a56122636.png)
数学建模中常用的十种算法在数学建模中,常用的算法有很多种。
以下是数学建模常用的十种算法:1.线性回归算法:线性回归是一种用于建立变量之间线性关系的统计算法。
它通过最小化预测值与实际值之间的均方误差来确定最佳拟合直线。
2.非线性回归算法:非线性回归是一种用于建立变量之间非线性关系的统计算法。
它通过最小化预测值与实际值之间的均方误差来确定最佳拟合曲线。
3.最小二乘法算法:最小二乘法是一种用于估计模型参数的优化算法。
它通过最小化观测值与预测值之间的平方差来确定最佳参数值。
4.插值算法:插值是一种用于根据已知数据点推断未知数据点的技术。
其中常用的算法包括线性插值、拉格朗日插值和样条插值。
5.数值积分算法:数值积分是一种用于计算函数的定积分的技术。
其中常用的算法包括梯形法则、辛普森法则和龙贝格积分。
6.数值优化算法:数值优化是一种用于求解最优化问题的技术。
其中常用的算法包括梯度下降法、牛顿法和拟牛顿法。
7.图形算法:图形算法是一种用于处理图像和图形数据的技术。
其中常用的算法包括图像滤波、图像分割和图像识别。
8.聚类算法:聚类是一种用于将数据集分组为不同类别的技术。
其中常用的算法包括K均值聚类、层次聚类和DBSCAN。
9.分类算法:分类是一种用于将数据分为不同类别的技术。
其中常用的算法包括支持向量机、决策树和随机森林。
10.贝叶斯算法:贝叶斯算法是一种用于计算后验概率的统计推断方法。
其中常用的算法包括贝叶斯分类、朴素贝叶斯和马尔科夫链蒙特卡洛。
以上是数学建模中常用的十种算法,它们在不同的应用领域和问题中具有广泛的应用价值,并且常常可以相互结合以获得更好的建模结果。
十类数学建模中的算法
![十类数学建模中的算法](https://img.taocdn.com/s3/m/eb43e1bf7375a417876f8f02.png)
十类数学建模中的算法1、蒙特卡罗算法:在大多数建模赛题中都离不开计算机的仿真,随机性模拟是非常常见的算法之一。
# Y) b; b' E" _5 ~/ H举个例子就是97年的A题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108种容差选取方案,根本不可能去解析求解的,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。
另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣决定于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。
! Z* ?. W#W n, c5 0 g2、数据拟合、参数估计、插值等算法:数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98年美赛A题,生物组织切片的三维插值处理,94年A题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的非典问题也要用到数据拟合算法,观察数据的走向进行处理。
此类问题在Matlab中有很多数据处理现成的函数可以调用,熟悉Matlab,这些方法都能游刃有余的做好。
3、规划类问题算法:竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式组作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98B,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用Lindo、Lingo等软件来进行解决比较方便,所以还需要熟悉这两个软件。
T: y# q' F1 ~% ~$ K4、图论问题:98B、00B、95锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。
数学建模十大经典算法
![数学建模十大经典算法](https://img.taocdn.com/s3/m/9f87650b3d1ec5da50e2524de518964bcf84d2bb.png)
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)1、蒙特卡罗方法(MC)(Monte Carlo):蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。
建模十大经典算法
![建模十大经典算法](https://img.taocdn.com/s3/m/3bdcb2efba0d4a7302763a49.png)
数学建模十大经典算法1、蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、M A T L A B软件实现。
4、图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法。
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9、数值分析算法。
如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10、图象处理算法。
赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理。
预测与预报 8种(必掌握:回归马尔可夫列时间序列小波分析神经网络混沌序列备用高大上:灰色预测微分方程预测)评价与决策 8种(常用的备用的)模糊评价主成分分析纸和笔综合评价层次分析数据包络分析优劣节方差分析协方差分析分类与判别 8种(聚类5距离关联层次密度判别3贝叶斯模糊识别马歇尔)关联与因果 8种(样本少,样本小)灰色 candleprosingcouple典型相关分析标准化生产可兰姐因果检测优化与控制 8种(单一,多目标,约束条件)线性整数分析性动态网络计算机灰色模糊多目标。
数学建模的十大算法(数学建模必读)
![数学建模的十大算法(数学建模必读)](https://img.taocdn.com/s3/m/cf61b81414791711cc791770.png)
数学建模主要参考资料作者:佚名来源:网络时间:2007-2-1 17:34:13 阅读次数:588 感谢点击本站广告:1、主要参考资料:2、数学模型相关软件工具:matlab,lingo,lindo,mathmatic,maple,spss等3、数学基础:高等数学,概率统计,线性代数,离散数学,微分方程,运筹学,图论与网络流,4数学建模的十大算法(按重要程度排序)(1)、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)(2)、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)(3)、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)(4)、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)(5)、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)(6)、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)(7)、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)(8)、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)(9)、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)(10)、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)常用网站:;;其他主要算法:Floyd算法、分治算法、概率算法、模拟退火算法、神经网络、搜索算法、贪婪算法、遗传算法、组合算法、蒙特卡罗算法、数据拟合、参数估计、插值等数据处理算法、线性规划、整数规划、多元规划、二次规划等规划类问题、图论算法、动态规划、回溯搜索、分治算法、分支定界等计算机算法、模拟退火法、神经网络、遗传算法、网格算法和穷举法一些数学建模的资料,我放到下面的邮箱中,需要的进,....user_mosaic@密码:16899168数学建模竞赛中应当掌握的十类算法发布时间:2008-5-11 点击数:30221、十类常用算法数学建模竞赛中应当掌握的十类算法:1.蒙特卡罗算法。
常用的十大算法
![常用的十大算法](https://img.taocdn.com/s3/m/e84eb46d33687e21af45a92e.png)
数学建模常用的十大算法==转1. 蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。
4. 图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。
这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法。
两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8. 一些连续数据离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9. 数值分析算法。
如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法。
赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。
以下将结合历年的竞赛题,对这十类算法进行详细地说明。
数学建模竞赛中应当掌握的十类算法
![数学建模竞赛中应当掌握的十类算法](https://img.taocdn.com/s3/m/f8e84cec856a561252d36fd0.png)
数学建模竞赛中应当掌握的十类算法排名如下:1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)举例说明:偶以赛题为背景来说明一下:1、蒙特卡罗算法:在大多数建模赛题中都离不开计算机的仿真,随机性模拟是非常常见的算法之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建模十大经典算法1、蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。
4、图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法。
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9、数值分析算法。
如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10、图象处理算法。
赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。
历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。
问题的数据读取需要计算机技术,如00A (大数据),01A (图象数据,图象处理的方法获得),04A (数据库数据,数据库方法,统计软件包)。
计算机模拟和以算法形式给出最终结果。
2.赛题的开放性增大 解法的多样性,一道赛题可用多种解法。
开放性还表现在对模型假设和对数据处理上。
3.试题向大规模数据处理方向发展4.求解算法和各类现代算法的融合从历年竞赛题来看,常用的方法:线性规划 整数规划 非线性规划 动态规划 层次分析法 图论方法 拟合方法 插值方法 随机方法 微分方程方法各种算法的详解一、蒙特卡洛算法1、含义的理解以概率和统计理论方法为基础的一种计算方法。
也称统计模拟方法,是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法,它是将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。
2、算法实例(有很多相似的例题,包括平行线等)在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi 。
单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。
只要能求出扇形面积S1在正方形面积S 中占的比例K=S1/S 就立即能得到S1,从而得到Pi 的值。
怎样求出扇形面积在正方形面积中占的比例K 呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。
将落在扇形内的点数m 与所投点的总数n 的比m/n 作为k 的近似值。
P 落在扇形内的充要条件是 221x y +≤ 。
已知:K=1s s ,K ≈m n ,s=1,s1=4Pi ,求Pi 。
由1s m s n ≈,知s1≈*m s n =m n , 而s1=4Pi ,则Pi=*4m n程序:(该算法可以修改后用Mathematica 计算或者Matlab )/* 利用蒙特卡洛算法近似求圆周率Pi*/ /*程序使用:VC++6.0 */ #include<stdio.h> #include<math.h> #include<stdlib.h>#define COUNT 800 /*循环取样次数,每次取样范围依次变大*/ void main() {double x,y; int num=0; int i;for(i=0;i<COUNT;i++) {x =rand()*1.0/RAND_MAX;/*RAND_MAX=32767,包含在<stdio.h>中*/ y =rand()*1.0/RAND_MAX; i f((x*x+y*y)<=1)num++; /*统计落在四分之一圆之内的点数*/ }printf("Pi 值等于:%f\n",num*4.0/COUNT); }结果:循环取样次数 求得的Pi 值 800 3.085000 8000 3.110000 80000 3.135200 800000 3.139150 80000003.141393如果加入程序:srand(time(NULL)); ,同时循环取样次数一定,让取样结果随时间变化,当取样次数为80000000时,可得6次的结果显示:3.141290 3.141400 3.141268 3.141484 3.141358 3.141462 3、应用的范围蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运 计算、量子热力学计算、空气动力学计算)等领域应用广泛。
4、参考书籍[1]蒙特卡罗方法及其在粒子输运问题中的应用 [2]蒙特卡罗方法引论二、数据拟合、参数估计、插值等数据处理算法(1)数据拟合在Mathematica 中,用Fit 对数据进行最小二乘拟合:Fit[data ,funs ,vars ] 在Matlab 中,工具箱(toolboxes )中有曲线拟合工具(curve Fitting )。
实例:2010年苏北赛B 题 温室中的绿色生态臭氧病虫害防治 中关于中华稻蝗密度与水稻减产率之间的关系可以通过数据拟合来观察(简单举例,没有考虑全部数据)程序(Mathematica ):data={{3,2.4},{10,12.9},{20,16.3},{30,20.1},{40,26.8}}; a1=Fit[data,{1,x,x^2,x^3},x]Show[ListPlot[data,Filling->Axis],Plot[{a1},{x,0,60}]] 结果:-3.68428+2.38529 x-0.0934637 x 2+0.00132433 x 3(2)参数估计(参考书:概率论与数理统计)参数估计为统计推断的基本问题,分为点估计和区间估计。
点估计: ①矩估计法X 连续型随机变量,概率密度12(;,,)n f x θθθX 为离散型随机变量 分布律12{}(;,,,)k P X x p x θθθ==12,,,k θθθ为待估参数,12,,n X X X 是来自X 的样本,假设总体X 的前k 阶矩存在,为12()(;,,)ll l n E X x f x dx μθθθ∞-∞==⎰(X 连续型)或12()(;,,,)Xlll k x R E X x p x μθθθ∈==∑(X 离散型)1,2,,l k =(其中X R 是X 可能取值的范围)。
一般来说,它们是12,,,k θθθ的函数。
基于样本矩11n ll i i A X n ==∑依概率收敛于相应的总体矩(1,2,)l l k μ=,样本矩的连续函数依概率收敛于相应的总体矩的连续函数,我们就用样本矩作为相应的总体矩的估计量,而以样本矩的连续函数作为相应的总体矩的连续函数的估计量。
这种估计方法成为矩估计法。
②最大似然估计法X 连续型随机变量 似然函数 121()(,,,;)(;)n n i i L L x x x f x θθθ===∏ 其中1(;)ni i f x θ=∏是来自X 的样本12,,n X X X 的联合密度。
X 为离散型随机变量 似然函数121()(,,,;)(;),nn i i L L x x x p x θθθθ===∈Θ∏ 其中1(;)nii p x θ=∏是来自X 的样本12,,n X XX 的联合分布律。
若1212ˆ()(,,,;)max (,,,;)n n L L x x x L x x x θθθθ∈Θ==则称12ˆ(,,,)n x x x θ为θ的最大似然估计值,称12ˆ(,,,)n X X X θ为θ的最大似然估计量。
这样,确定最大似然估计量的问题就归结为微分学中的求最大值的问题了。
估计量的评选标准为:(1)无偏性(2)有效性(3)相合性 区间估计:对于一个未知量,人们在测量或计算时,常不以得到近似值为满足,还需要估计误差,即要求知道近似值的精确程度(亦即所求真值所在的范围)。
这样的范围常以区间的形式给出,同时还给出此区间包含参数真值的可信度,这种形式的估计称为区间估计,这样的区间即所谓置信区间。