墩柱模板计算书-midas-civil
Midas civil墩身模板计算书共8页word资料

墩身模板复核计算书计算:复核:审核:日期:目录第一章工程简介........................................................................ 错误!未定义书签。
一、工程概况 (1)二、墩身模板结构介绍 (1)第二章计算验算相关参数选定................................................ 错误!未定义书签。
一、参考资料 (1)二、技术参数及相关荷载大小选定 (1)⑴设计荷载 (1)⑵材料性能 (2)⑶符号规定 (3)⑷荷载组合 (3)第三章墩身模板结构验算 (4)一、模型建立及分析 (4)⑴模型建立 (4)⑵荷载加载 (4)⑶边界约束 (4)二、墩身模板验算 (4)⑴面板强度验算 (4)⑵面板刚度验算 (4)⑶横、竖肋强度验算 (4)⑷横、竖肋刚度验算 (5)⑸横楞强度验算.......................................................... 错误!未定义书签。
⑹横楞刚度验算.......................................................... 错误!未定义书签。
⑺对拉拉杆验算 (5)第四章模板计算成果汇总及结论 (5)一、计算成果汇总 (5)二、计算结论 (6)第一章工程简介一、工程概况本标段起讫里程范围XXXXXXXXXXXX。
墩身高度12m以下采用整体钢模一次灌注成型,高度12m以上墩身采用整体钢模分次浇筑。
模板验算取高度12m 1:0墩身模板进行验算,墩身截面如下图1.1:0墩身横断面图二、墩身模板结构介绍墩身截面见图1,为圆端形。
墩身最大浇筑高度12m,采取大块钢模组拼进行模板浇筑完成。
模板规格为:高度为200cm模板、100cm模板、80mm模板、50mm模板、2000mm。
详见模板图纸。
1400×1800墩柱计算书

1400×1800墩柱模板支撑计算书一、墩柱模板基本参数墩柱模板的截面宽度 B=1400mm,墩柱模板的截面高度 H=1800mm,墩柱模板的计算高度 L = 6000mm,柱箍间距计算跨度 d = 1000mm。
墩柱模板竖楞截面宽度48mm,高度100mm,间距300mm。
柱箍采用轻型槽钢14#,每道柱箍2根钢箍,间距1000mm。
柱箍是墩柱模板的横向支撑构件,其受力状态为受弯杆件,应按受弯杆件进行计算。
墩柱模板计算简图二、墩柱模板荷载标准值计算强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载;挠度验算只考虑新浇混凝土侧压力。
新浇混凝土侧压力计算公式为下式中的较小值:其中——混凝土的重力密度,取24.000kN/m3;t ——新浇混凝土的初凝时间,为0时(表示无资料)取200/(T+15),取5.714h; T ——混凝土的入模温度,取20.000℃;V ——混凝土的浇筑速度,取2.500m/h;H —— 混凝土侧压力计算位置处至新浇混凝土顶面总高度,取3.000m ;1—— 外加剂影响修正系数,取1.000;2—— 混凝土坍落度影响修正系数,取0.850。
根据公式计算的新浇混凝土侧压力标准值 F1=40.540kN/m 2实际计算中采用新浇混凝土侧压力标准值 F1=40.000kN/m 2 倒混凝土时产生的荷载标准值 F2= 4.000kN/m 2。
三、墩柱模板面板的计算面板直接承受模板传递的荷载,应该按照均布荷载下的三跨连续梁计算,计算如下53.60k N/mA面板计算简图 1.面板抗弯强度计算 支座最大弯矩计算公式跨中最大弯矩计算公式其中 q —— 强度设计荷载(kN/m);q = (1.2×40.00+1.4×4.00)×1.00 = 53.60kN/m d —— 竖楞的距离,d = 300mm ;经过计算得到最大弯矩 M = 0.10×53.600×0.30×0.30=0.482kN.M 面板截面抵抗矩 W = 1000.0×6.0×6.0/6=6000.0mm 3经过计算得到f = M/W = 0.482×106/6000.0 = 80.400N/mm 2面板的抗弯计算强度小于190.0N/mm 2,满足要求!2.抗剪计算最大剪力的计算公式如下:Q = 0.6qd 截面抗剪强度必须满足:T = 3Q/2bh < [T] 其中最大剪力 Q=0.6×0.300×53.600=9.648kN截面抗剪强度计算值 T=3×9648/(2×1000×6)=2.412N/mm 2 截面抗剪强度设计值 [T]=110.00N/mm 2面板的抗剪强度计算满足要求!3.面板挠度计算 最大挠度计算公式其中 q ——混凝土侧压力的标准值,q = 40.000×1.000=40.000kN/m;E ——面板的弹性模量,取206000.0N/mm2;I ——面板截面惯性矩 I = 1000.0×6.0×6.0×6.0/12=18000.0mm4;经过计算得到 v =0.677×(40.000×1.00)×300.04/(100×206000.0×18000.0) = 0.592mm [v] 面板最大允许挠度,[v] = 300.000/250 = 1.20mm;面板的最大挠度满足要求!四、竖楞槽钢的计算竖楞槽钢直接承受模板传递的荷载,应该按照均布荷载下的三跨连续梁计算,计算如下10001000100016.08k N/mA B竖楞槽钢计算简图1.竖楞槽钢抗弯强度计算支座最大弯矩计算公式跨中最大弯矩计算公式其中 q ——强度设计荷载(kN/m);q = (1.2×40.00+1.4×4.00)×0.30 = 16.08kN/md为柱箍的距离,d = 1000mm;经过计算得到最大弯矩 M = 0.10×16.080×1.00×1.00=1.608kN.M竖楞槽钢截面抵抗矩 W = 48.0×100.0×100.0/6=80000.0mm3经过计算得到f = M/W = 1.608×106/80000.0 = 20.100N/mm2竖楞槽钢的抗弯计算强度小于190.0N/mm2,满足要求!2.竖楞槽钢抗剪计算最大剪力的计算公式如下:Q = 0.6qd截面抗剪强度必须满足:T = 3Q/2bh < [T]其中最大剪力 Q=0.6×1.000×16.080=9.648kN截面抗剪强度计算值 T=3×9648/(2×48×100)=3.015N/mm2截面抗剪强度设计值 [T]=110.00N/mm2竖楞槽钢抗剪强度计算满足要求!3.竖楞槽钢挠度计算 最大挠度计算公式其中 q —— 混凝土侧压力的标准值,q = 40.000×0.300=12.000kN/m ; E —— 竖楞槽钢的弹性模量,取206000.0N/mm 2;I —— 竖楞槽钢截面惯性矩 I = 48.0×100.0×100.0×100.0/12=4000000.3mm 4; 经过计算得到 v =0.677×(40.000×0.30)×1000.04/(100×206000.0×4000000.3) = 0.099mm[v] 竖楞槽钢最大允许挠度,[v] = 1000.000/250 = 4.00mm ;竖楞槽钢的最大挠度满足要求!五、B 方向柱箍的计算本算例中,柱箍采用钢楞,截面惯性矩I 和截面抵抗矩W 分别为: 钢柱箍的规格:槽钢14#;钢柱箍截面抵抗矩 W = 87.10cm 3; 钢柱箍截面惯性矩 I = 609.00cm 4;16.08k N 16.08k N16.08k N16.08k N16.08k NAB 方向柱箍计算简图其中 P —— 竖楞槽钢传递到柱箍的集中荷载(kN);P = (1.2×40.00+1.4×4.00)×0.30 × 1.00 = 16.08kN经过连续梁的计算得到B 方向柱箍剪力图(kN)0.000B方向柱箍弯矩图(kN.m)B方向柱箍变形图(kN.m)最大弯矩 M = 18.894kN.m最大支座力 N = 40.200kN最大变形 v = 2.063mm1.柱箍抗弯强度计算柱箍截面抗弯强度计算公式其中 M x ——柱箍杆件的最大弯矩设计值, M x = 18.89kN.m;x——截面塑性发展系数, 为1.05;W ——弯矩作用平面内柱箍截面抵抗矩, W = 174.20cm3;柱箍的抗弯强度设计值(N/mm2): [f] = 205.000B边柱箍的抗弯强度计算值 f = 108.46N/mm2;B边柱箍的抗弯强度验算满足要求!2.柱箍挠度计算经过计算得到 v =2.063mm[v] 柱箍最大允许挠度,[v] = 1400.000/400 = 3.50mm;柱箍的最大挠度满足要求!六、H方向柱箍的计算16.08k N16.08k N16.08k N16.08k N16.08k N16.08k N16.08k NH方向柱箍计算简图其中 P ——竖楞槽钢传递到柱箍的集中荷载(kN);P = (1.2×40.00+1.4×4.00)×0.30 × 1.00 = 16.08kN 经过连续梁的计算得到H方向柱箍剪力图(kN)0.000H方向柱箍弯矩图(kN.m)H方向柱箍变形图(kN.m)最大弯矩 M = 29.410kN.m最大支座力 N = 56.280kN最大变形 v = 5.005mm1.柱箍抗弯强度计算柱箍截面抗弯强度计算公式f = M/W < [f]其中 M ——柱箍杆件的最大弯矩设计值, M = 29.41kN.m;W ——弯矩作用平面内柱箍截面抵抗矩, W = 174.20cm3;柱箍的抗弯强度设计值(N/mm2): [f] = 205.000。
墩身模板计算书

钢模板验算书一、工程概况1、主墩为单曲线墩,墩身最小截面尺寸为3m*11m,最大截面尺寸为15m*3m,为了计算方便取值,墩身截面取最小值11m*3m 。
2、因墩高较低,故采用一次性拼装模板到顶,整体浇筑方式。
3、本计算书只针对砼对模板的侧压力分析,不包含施工时托架计算。
4、混凝土为C50混凝土,浇筑时温度约25摄氏度,混凝土浇筑速度为603m/h。
二、模板设计1、模板按高度分为2m、1m,其中1m为墩顶模板。
2、块件组合:1节模板包括6块正面模板、2块侧面模板,共计8 块模板组成。
3、模板构造:面板采用6mm钢板,边框法兰设置竖肋(t12*100),竖肋为10#槽钢,间距0.3m,模板最外侧采用2[20#槽钢作横向背杠,平向间距1m。
对拉杆采用PSB830精扎螺纹钢,直径为Φ25。
详见构造设计图。
墩身模板截面构造图三、模板验算依据1、计算依据:(1)、《公路桥涵施工规范》对模板的相关要求;(2)、《路桥施工计算手册》>对模板计算的相关说明。
2、荷载组合:(1)、强度校核:新浇砼对侧模板的压力+振捣砼产生的荷载(2)、挠度验算:新浇砼对侧模板的压力(3)、Q235钢材许用应力(新模板是提高系数1.25): 轴向应力: 140Mpa ,新模板计算采用175Mpa . 弯曲应力: 145Mpa ,新模板计算采用181Mpa . 剪应力: 85Mpa ,新模板计算采用106Mpa .弹性模童: Mpa E 5101.2⨯=.(4)、PCB830精轧螺纹钢许用应力为1030Mpa.3、变形里控制值:结构外露模板,其挠度值为≤L/400钢模面板变形≤1.5mm钢模板的钢棱、柱箍变形≤L/5004、计算范围:因墩身截面尺寸不固定,墩身下部截面较小,在固定砼输入的情况下,墩身部分有效压头高度最大,墩顶有效压头高度最小。
因此计算时只计算最不利的施工情况(最大混泥土浇筑速度,墩身下部模板所受混凝土侧压力最大时模板变形)。
墩身模板计算书

1#、2#墩身翻模计算书1.计算分析根据施工设计,分别对翻模结构进行整体建模计算,计算采用MIDAS civil 有限元分析软件进行计算。
计算标准参见《钢结构设计规范》、《路桥施工计算手册》。
2. 计算说明通过迈达斯计算软件对现浇托架进行整体建模计算,计算内容为构件的轴向应力,剪切应力,弯曲应力,变形量等,主要计算构件为:侧模板模板:竖肋[10槽钢;横肋10mm钢板;纵向连接板12mm钢板;外拉杆锚固梁2[16;内拉杆锚固梁2[12;面板:厚度5mm,;拉杆φ30mmQ235钢:[]Mpa140=轴σ,[]Mpa145=σ,[]Mpa85=τ边界条件介绍连接:各种连接均采用弹性连接中的刚性连接。
荷载:砼重按砼24kN/m3计,模板托架结构自重由软件自动计算。
工况:设置一个工况:第一个工况:浇筑状态,浇筑上两层4.5m混凝土,最底下一层最为承重结构,主要由拉杆承重,上两层拉杆承受侧压力荷载。
3.工况1:3.1计算模型图3.1-1 midas模型图边界3.2砼荷载取值计算4.5m高砼浇筑侧向压力荷载+模板托架自重(软件自动计算)+人员机具荷载(1)根据混凝土浇筑速度以及浇筑温度,计算按下图对侧面模板施加水平荷载。
荷载值单位:kN/m2。
60.060.04-3 midas 腹板侧模荷载布载荷载值(kN/m2)(2)、人员机具施工荷载:2.5kN/m23.3.计算分析3.3.1侧面模板计算分析侧面模板最大位移挠度变形1mm<1.5mm,满足要求。
图3.3.1-1 侧面模板最大位移挠度变形计算3.3.2竖横肋计算分析计算竖肋最大组合应力63MPa,满足要求。
图3.3.2-1 竖横肋最大组合应力计算计算竖肋最大位移挠度变形0.75mm<L/400=1MM,满足要求。
图3.3.2-2 竖横肋最大位移挠度变形计算3.3.3拉杆锚固梁计算分析计算拉杆锚固梁最大组合应力30MPa,满足要求。
图3.3.3-1 拉杆锚固梁最大组合应力计算计算拉杆锚固梁最大位移挠度变形0.2mm<l/400=1mm,满足要求。
墩柱模板计算书

墩柱模板计算书墩柱模板构造尺寸见施工设计图纸,计算如下:解:依据《公路桥涵施工技术规范》(JTJ041-2000)P309页普通模板荷载的计算公式,结合现场施工的机具、设备情况,新浇混凝土对模板的最大侧压力为:P max =0.22rt0k1k2v1/2=0.22×26×6×1.15×31/2=68Kpa式中P max:新浇混凝土对模板的最大侧压力(Kpa);V:混凝土的浇筑速度(m/h),结合现场钢筋密集,取v=3m/h;t0:新浇混凝土的初凝时间(h),取t0=6小时;r:混凝土的容重r=26KN/m3k1:外加计影响修正系数,不掺加外加剂取1.0k2:混凝土塌落度(140~160mm)影响修正系数,取1.151、面板计算(1)强度计算选用模板区格中四面固结的最不利受力情况进行计算。
Ly/Lx=350/450=0.78 查《路桥施工计算手册》P775页,均布荷载作用下四面固结的板的计算系数,得:Km x0= -0.0679 Km y0= -0.0561KM x0= 0.0281 Km y0= 0.0138 K f=0.00188取1mm宽的板条作为计算单元,荷载q为:q=0.074×1=0.074N/mm支点处的弯矩为:M x0= Km x0×q×L x2= -0.0679×0.074×4502=-1017N·mmM y0= Km x0×q×L y2= -0.0561×0.074×3502=-509N·mm面板的截面系数:W=1/6×bh2=1/6×1×62=6mm3应力为:σmax=M max/W=1017/6=170Mpa<[σ]=215Mpa可满足施工要求。
跨中弯矩:M x= KM x×q×L x2= 0.0281×0.074×4502=421N·mm M y= KM y×q×L y2= 0.0138×0.074×3502=125N·mm 钢板的泊松比ζ=0.3 故需换算为:M x(ζ)= M x+ζM y=421+0.3×125=459N·mmM y(ζ)= M y+ζM x=125+0.3×421=251N·mm应力为:σmax=M max/W=459/6=76.5Mpa<[σ]=215Mpa可满足施工要求。
墩柱模板设计计算书

墩柱模板设计计算书一、设计依据1、面板采用6mm钢板,竖肋采用[10槽钢,横向小肋采用-100×6mm钢板,横肋采用槽钢做成桁架,所有钢材都采用国标的A3钢。
2、竖肋间距控制在350mm,横向小肋间距控制在350mm,横肋间距1000mm。
3、设计采用的标准及规范《铁路混凝土工程施工验收补充标准》(铁建设[2005]160号);参照《公路桥涵施工技术规范》(JTJ041-2000)9.2节相关规定;参照《混凝土结构工程施工及验收规范》(GB50204)相关规定;《钢结构设计规范》(GB50017-2003)。
4、荷载的取值:新浇筑混凝土对侧面模板的压力:F1=1.2×0.22×r×t×β1×β2×υ1/2=0.22×25×7×1.2×1.2×21/2=78.4kN/m2F1:新浇注混凝土对模板的最大侧压力(kN/m2)r: 混凝土的重力密度(kN/m3)t:混凝土的初凝时间(h)υ:混凝土的浇注速度(m/h)β1:外加剂影响修正系数,掺具有缓凝作用的外加剂时取1.2; β21:混凝土坍落度修正系数,取1.2倾倒混凝土时产生的水平荷载;F2=1.4×2=2.8 kN/m 2F=F1+F2=78.4+2.8=81.2 kN/m 2取F=80 kN/m 2二、计算(一)、面板验算1、强度验算1350350==ly lx 查表得=K mx 0=K my 0-0.0513,=K Mx =K My 0.0176 ,=K f 0.00127。
取1mm 宽的板条作为计算单元,荷载为:q=0.08×1=0.08N/mm求支座弯距:=M x 0=M y 0K my 0·q ·l y 2=-0.0513×0.08×3502=503 N ·mm 面板的截面系数:W=61bh 2=61×1×62=6mm 3应力为:σmax =W M max =6503=84N/mm 2<215 N/mm 2 满足要求。
墩柱模板计算书-midascivil

墩柱模板计算书一、计算依据1、《铁路桥涵设计基本规范》(TB10002.1-2005)2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005)3、《铁路混凝土与砌体工程施工规范》(TB10210-2001)4、《钢筋混凝土工程施工及验收规范》(GBJ204-83)5、《铁路组合钢模板技术规则》(TBJ211-86)6、《铁路桥梁钢结构设计规范》(TB10002.2-2005)7、《铁路桥涵施工规范》(TB10203-2002)8、《京沪高速铁路设计暂行规定》(铁建设[2004])9、《钢结构设计规范》(GB50017—2003)二、设计参数取值及要求1、混凝土容重:25kN/m3;2、混凝土浇注速度:2m/h;3、浇注温度:15℃;4、混凝土塌落度:16~18cm;5、混凝土外加剂影响系数取1.2;6、最大墩高17.5m;7、设计风力:8级风;8、模板整体安装完成后,混凝土泵送一次性浇注。
三、荷载计算1、新浇混凝土对模板侧向压力计算混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。
侧压力达到最大值的浇筑高度称为混凝土的有效压头。
新浇混凝土对模板侧向压力分布见图1。
图1新浇混凝土对模板侧向压力分布图在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算:在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算:新浇混凝土对模板侧向压力按下式计算: Pmax=0.22γt 0K 1K 2V 1/2Pmax =γh式中:Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度;H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取1.2;K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50~90mm 时,取1;110~150mm 时,取1.15。
最新墩柱模板计算书-midascivil

墩柱模板计算书-m i d a s c i v i l墩柱模板计算书一、计算依据1、《铁路桥涵设计基本规范》(TB10002.1-2005)2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005)3、《铁路混凝土与砌体工程施工规范》(TB10210-2001)4、《钢筋混凝土工程施工及验收规范》(GBJ204-83)5、《铁路组合钢模板技术规则》(TBJ211-86)6、《铁路桥梁钢结构设计规范》(TB10002.2-2005)7、《铁路桥涵施工规范》(TB10203-2002)8、《京沪高速铁路设计暂行规定》(铁建设[2004])9、《钢结构设计规范》(GB50017—2003)二、设计参数取值及要求1、混凝土容重:25kN/m3;2、混凝土浇注速度:2m/h;3、浇注温度:15℃;4、混凝土塌落度:16~18cm;5、混凝土外加剂影响系数取1.2;6、最大墩高17.5m;7、设计风力:8级风;8、模板整体安装完成后,混凝土泵送一次性浇注。
三、荷载计算1、新浇混凝土对模板侧向压力计算混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。
侧压力达到最大值的浇筑高度称为混凝土的有效压头。
新浇混凝土对模板侧向压力分布见图1。
图1新浇混凝土对模板侧向压力分布图在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算:在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算:新浇混凝土对模板侧向压力按下式计算: Pmax=0.22γt 0K 1K 2V 1/2Pmax =γh式中:Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度;H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取1.2;K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50~90mm 时,取1;110~150mm 时,取1.15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
墩柱模板计算书计算依据1、《铁路桥涵设计基本规范》(TB10002.1-2005)2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005)3、《铁路混凝土与砌体工程施工规范》(TB10210-2001)4、《钢筋混凝土工程施工及验收规范》(GBJ204-83)5、《铁路组合钢模板技术规则》(TBJ211-86)6、《铁路桥梁钢结构设计规范》(TB10002.2-2005)7、《铁路桥涵施工规范》(TB10203-2002)8、《京沪高速铁路设计暂行规定》(铁建设[2004])9、《钢结构设计规范》(GB50017 —2003)二、设计参数取值及要求1、混凝土容重:25kN/m3 ;2、混凝土浇注速度:2m/h ;3、浇注温度:15C;4、混凝土塌落度:16〜18cm ;5 、混凝土外加剂影响系数取1.2 ;6 、最大墩高17.5m ;7、设计风力:8 级风;8、模板整体安装完成后,混凝土泵送一次性浇注。
三、荷载计算1 、新浇混凝土对模板侧向压力计算混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。
侧压力达到最大值的浇筑高度称为混凝土的有效压头。
新浇混凝土对模板侧向压力分布见图1 。
图1新浇混凝土对模板侧向压力分布图在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算:72。
72x2 ““Pmax 4°kPa.1.6 2 1.6在《钢筋混凝土工程施工及验收规范》(GBJ204-83)中规定,新浇混凝土对模板侧向压力按下式计算:新浇混凝土对模板侧向压力按下式计算:Pmax=°.22 Y0K1K2V1/2Pmax = Y式中:Pmax ------ 新浇筑混凝土对模板的最大侧压力(kN/m2)Y-----混凝土的重力密度(kN/m3 )取25kN/m3t° ----- 新浇混凝土的初凝时间(h);V ----- 混凝土的浇灌速度(m/h);取2m/hh ------ 有效压头高度;H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m);K1——外加剂影响修正系数,掺外加剂时取 1.2;K2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85 ;5°90mm 时,取1; 11°〜150mm 时,取1.15。
Pmax=0.22 Y°K1K2V1/2=0.22 X25 X8X1.2 X1.15 >21/2=85.87 kN/m2 h= Pmax/ f=87.87/25=3.43m由计算比较可知:以上两种规范差别较大,为安全起见,取大值作为设计计算的依据2、风荷载计算风荷载强度按下式计算:W二K1K2K3W0W------风荷载强度(Pa);1 2W0——基本风压值(Pa), W0 =16V, 8级风风速v=17.2〜20.7m/s ;K1------风载体形系数,取K仁0.8 ;K2------风压高度变化系数,取K2=1 ;K3——地形、地理条件系数,取K3=1 ;W0=丄V2 = —x 20.72 = 267.8Pa1.6 1.6W=K1K2K3W0=0.8 X267.8=214.2Pa桥墩受风面积按桥墩实际轮廓面积计算。
3、倾倒混凝土时产生的荷载取4kN/ m2。
四、荷载组合墩身模板设计考虑了以下荷载;①新浇注混凝土对侧面模板的压力②倾倒混凝土时产生的荷载③风荷载荷载组合1:①+②+③(用于模板强度计算)荷载组合2:①(用于模板刚度计算)五、计算模型及结果采用有限元软件midas6.7.1进行建模分析,其中模板面板采用4节点薄板单元模拟,横肋、竖肋及大背楞采用空间梁单元模拟,拉筋采用只受拉的杆单元模拟。
模板杆件规格见下表:表1模板杆件规格杆件型号材质面板6mm厚钢板Q235法兰14mm厚钢板Q235拉筋直径25mm精扎螺纹钢竖肋10号槽钢Q235横肋10mm厚钢板Q235大背楞25号双拼槽钢Q2351、墩帽模板计算(墩身厚2.8m)1)有限元模型墩帽模板有限元模型见图2〜图3墩帽模板中间流水槽处设一道水平拉筋, 顺桥长方向设4道水平拉筋。
顶部高出混凝土面100mm处立面平面图2墩帽模板有限元网格模型图3墩帽模板三维有限元模型3 )纵、横肋强度计算墩帽模板纵横肋采用100 x iomm钢板,其在荷载组合一作用下应力见MiDA5Kl^POST-PfiCCESSCiR.5.77015a+0014.73430H-KOJ2£O433a-K»]停林■呻8】0XXKWk-KX»-1 ^1679^+0(11-38?2734*+001C3i 2MA^ : 2^20M3N :; 2^44 云岸:■ fl:且知] gSBJZO&SK:-O.4^3Tl-OSO?Z= 0255图5纵、横肋应力图4)面板强度计算墩帽模板面板采用6mm钢板,其在荷载组合一作用下应力见图62 )大背楞强度计算大背楞采用3槽25a,在荷载组合1作用下应力见图4SE*** STRESS -max= 71MPavL「l-140MPa图4大背楞应力图,强度满足。
S.KS5Jt+«iJ5^M073*+MI3424L®fr+ffl)j九申阿2 1$&35*+<WJEJ4G*]*+H11ODOCKK4*<M»•UniEDBgXl -1^^73**001.-a.^zsh+ooi.Hwt : sg!芒芮#tt:NJhM A Sm聊花]罰raws 二max二58MPav L「丨-l40MPa,强度满足。
PQ5T-PR<:H^55OP.rqP J M磁ar+OQiL37E7?*+OCIJ和E5*+CK»3J M727*+™DjOOlXtarrtKH-3OTWSt+-™-J ■SSIM+DO LCB: 1袖胡::)04咖:3TO■H: NAftrh^J 口軒03尼BfZ«W厦fr卉規图6面板应力图fx =24MPav I - MOMPa,强度满足。
5)顶帽模板刚度计算在荷载组合2作用下各节点位移见图7。
MEDhS/CIHillPQST-PR<»JESS::>RDI5FLACEMETMTT-#HZLZ389fl-HKML.7L3Z3*+<™L302E7eHXB e^L^L&fiWL 对JBL257400L 0XBW0»+™ -3.+K57*-00fi -7i50715ft-00fi -1.3ta37**ODQ -iszaajkft*-iMM-23933W+-(MM3*e?9E*QQQ咖I 7»■H:tti m 凶柯;03尼BfTOH■: B: j^1-04^3Tl-OiSQ?J=巾图7节点位移图从图中看出,模板在荷载组合2作用下最大位移为2mm,为顺桥方向6)拉杆强度计算拉杆采用©25精扎螺纹钢筋,在模板中间流水槽位置水平设一道,高度方向设3层。
通过计算可知,如只设一道拉杆,其最大拉应力为284MPa,只能采ooonei立面 r;用精扎螺纹钢。
如设二道拉杆,其最大拉应力为 177MPa 图9墩帽模板有限元网格模型图8拉杆应力图2、墩帽模板计算(墩身厚2m ) 1)有限元模型墩帽模板有限元模型见图9〜图10平面墩帽模板中间流水槽处设一道水平拉筋, 顶部高出混凝土面100mm 处顺桥长方向设4道水平拉筋21 f :ESI-侧面i^?W*+WK----- Smn>a+D022^?W *+WESA4R9«*DG2图10墩帽模板三维有限元模型2 )大背楞强度计算大背楞采用2槽16a,在荷载组合1作用下应力见图11KM图11大背楞应力图二max = 75MPav I - 140MPa,强度满足。
3 )纵、横肋强度计算墩帽模板纵横肋采用100 x10mm钢板,其在荷载组合一作用下应力见图12MT: PdlPC5T-PRCHZESSWSTRESSSSW3S«*0Ci|533154*-* DO!!I.TIH-na-Dai□J MHOO H'HKO]JQ?L9]«4-O£l2<B I iMAK s 237flMW;畑酣帀丽lBE>!来】L ¥■&:X -O^B3Zi 0.2SS1图12纵、横肋应力图。