最新北师大版八年级数学上册单元测试题全套及答案
北师大版数学八年级上册全册全套单元试题及答案
北师大版数学八年级上册全册单元试卷第一章 勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
最新最新北师大版八年级数学上册单元测试题全套及答案
最新北师大版八年级数学上册单元测试题全套及答案第一章 勾股定理综合测评时间: 满分:120分班级: 姓名: 得分:一、精心选一选(每小题4分,共32分)1. 在△ABC 中,∠B=90°,若BC=3,AC=5,则AB 等于( )A.3B.4C.5D.62.下列几组数中,能组成直角三角形的是( ) A.13,14,15B.3,4,6C.5,12,13D.0.8,1.2,1.5 3.如图1,正方形ABCD 的面积为100 cm 2,△ABP 为直角三角形,∠P=90°,且PB=6 cm,则AP 的长为( )A.10 cmB.6 cmC.8 cmD.无法确定4.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8 cm,另一只朝左挖,每分钟挖6 cm,10分钟后,两只小鼹鼠相距( )A.50 cmB.80 cmC.100 c mD.140 cm5.已知a,b,c 为△ABC 的三边,且满足()()22222a b ab c -+-=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 6. 图2中的小方格都是边长为1的正方形,试判断△ABC 的形状为( ) A .钝角三角形 B. 锐角三角形 C. 直角三角形 D.以上都有可能7.如图3,一圆柱高8 cm,底面半径为2 cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( )A.20 cmB.10 cmC.14 cmD.无法确定8.已知Rt △ABC 中,∠C=90°,若BC +AC =14 cm,AB =10 cm,则该三角形的面积是( )A.24 cm 2B.36 cm 2C.48 cm 2D.60 cm 2二、耐心填一填(每小题4分,共32分). :写出两组勾股数9. 10.在△ABC 中,∠C=90°, 若BC ∶AC =3∶4,AB =10,则BC =_____,AC =_____.11.如图4,等腰三角形ABC 的底边长为16,底边上的高AD 长为6,则腰AB 的长度为_____.____.=2OD 则2,=1,OA =CD =BC =,AB °90=CD O =∠OBC =∠B OA ∠5,如图12.13.一个三角形的三边长之比为5∶12∶13,它的周长为60,则它的面积是______.PC BD A14.图6是一个三级台阶,它的每一级长、宽、高分别是2米,0.3米,0.2米,A,B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面爬行到B 点的最短路程是_____米.15.一天,小明买了一张底面是边长为260 cm 的正方形,厚30 cm 的床垫回家,到了家门口,才发现屋门只有)“能”或“不能”填.( 拿进屋吗?把床垫宽.你认为小明能cm ,100高cm 242 16.图7是一束太阳光线从仓库窗户射入的平面示意图,小强同学测得BN =35米,NC =34米,BC =1米,AC =4.5米,MC =6米,则太阳光线MA 的长度为_____米.三、细心做一做(共56分)17.(10分)如图8,甲渔船以8海里/时的速度离开港口O 向东北方向航行,乙渔船以6海里/时的速度离开港口O 向西北方向航行,它们同时出发.一个半小时后,甲、乙两渔船相距多少海里?18.(10分)如图9,已知在△ABC 中,AB=13,AD=12,AC=15,CD=9,求△ABC 的面积.19.(12分)如图10,在一棵树的10米高处有两只猴子,一只猴子爬下树后走到离树20米处的池塘A 处.另一只爬到树顶D 后直接跃到A 处,距离以直线计算,若两只猴子所经过的距离相等,试求该树的高度.20.(12分)如图11,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=8 m,BC=6 m,CD=24 m,AD=26 m .求这块草坪的面积.21. (12分)对任意符合条件的直角三角形保持其锐角顶点A 不动,改变BC 的位置,使B →E ,C →D ,且∠BAE =90°,∠CAD =90°(如图12).【分析】所给数据如图中所示,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等.【解答】结合上面的分析过程验证勾股定理.第一章 勾股定理综合测评一、1.B 2.C 3.C 4.C 5.D 6.C 7.B 8.A二、9. 答案不唯一,如3,4,5;60,80,100 10.6 8 11.10 12.7 13.120 14.2.5 15.能16.7.5是直AOB △所以,90AOB ∠=︒,)海里(3692OB =⨯=,)海里(38122OA =⨯=由题意得解:17.三、角三角形..答略.(海里)15=AB 所以,=2252+122=92AB 即,222OA OB AB +=得,由勾股定理 .ADC=90°∠且,为直角三角形ADC △所以,2AC ==144+81=2252+CD 2AD 所以AD=12,AC=15,CD=9,因为:解.81 =BC 所以=5,所以BD,=252-AD2AB=2BD 勾股定理得由,AB=13,AD=12,中ABD △Rt 在BD+DC=5+9=14..×14×12=8421AD=·BC ·21=ABC △S 所以 19.解:由题意知AD+DB=BC+CA,且CA=20米,BC=10米,设BD=x,则AD=30-x ..)米(CD=10+x=15故树高,x=5解得,2+202)10+x (=2)x -30即(,2=AD 2+CA 2CD ,中ACD △Rt 在 .AC=10所以,100=2+62=82+BC 2AB =2AC 由勾股定理得,中ABC △Rt 在所以B=90°,∠因为AC,连接,如图解:20. .是直角三角形ACD △所以,2=AD 2+CD 2,AC 中ACD △在所以,AD=26,CD=24因为又 .)2m (=9624-=120×8×621-×10×2421AB•BC=21-AC•CD 21=ABC △S -CD A △=S ABCD 四边形S 所以 .2m 96该草坪的面积为故21.解:由分析可得S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE . 即b 2=12c 2+12(b +a )(b -a ). 整理,得2b 2=c 2+(b +a )(b -a ). 所以a 2+b 2=c 2.第二章 实数检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共30分)1.下列无理数中,在-2与1之间的是( )A .-B .-C .D . 2.(2014·南京中考)8的平方根是( )A .4B .±4C . 2D . 3. 若a ,b 为实数,且满足|a -2|+2b -=0,则b -a 的值为( )A .2B .0C .-2D .以上都不对 4. 下列说法错误的是( )A .5是25的算术平方根B .1是1的一个平方根C .(-4)2的平方根是-4D .0的平方根与算术平方根都是0 5. 要使式子 有意义,则x 的取值范围是( )A .x >0B .x ≥-2C .x ≥2D .x ≤26. 若a ,b 均为正整数,且a >7,b >32,则a +b 的最小值是( ) A.3 B.4 C.5 D.67. 在实数,,,-3.14,中,无理数有( ) A.1个 B.2个 C.3个 D.4个8. 已知3a =-1,b =1,212c ⎛⎫- ⎪⎝⎭=0,则abc 的值为( )A.0 B .-1 C.-12 D.129.若(m -1)2+2n +=0,则m +n 的值是( )A .-1B .0C .1D .210. 有一个数值转换器,原理如图所示:当输入的x =64时,输出的y 等于( ) B .8 C .32 D .22 A .2 二、填空题(每小题3分,共24分)11. 已知:若 3.65≈1.910,36.5≈6.042,则365000≈ ,±0.000365≈ . 12. 绝对值小于π的整数有 .13. 0.003 6的平方根是 ,81的算术平方根是 . 14. 已知|a -5|+3b +=0,那么a -b = .15. 已知a ,b 为两个连续的整数,且a >28>b ,则a +b = . 16.计算:(2+1)(2-1)=________.17.使式子1+x 有意义的x 的取值范围是________. 18.)计算:﹣=_________.三、解答题(共46分)19.(6分)已知,求的值.20.(6分)若5+7的小数部分是a ,5-7的小数部分是b ,求ab +5b 的值. 21.(6分)先阅读下面的解题过程,然后再解答:形如n m 2±的化简,只要我们找到两个数a ,b ,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+,这里7=m ,12=n , 因为,,即7)3()4(22=+,1234=⨯, 所以347+1227+32)34(2+=+.根据上述方法化简:42213-.22.(6分)比较大小,并说明理由:(1)与6; (2)与.23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分. 请解答:已知:5+的小数部分是,5-的整数部分是b ,求+b 的值. 24.(8分)计算:(1)862⨯-82734⨯+; (2))62)(31(-+-2)132(-.25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)n n ++11(n 为正整数)的值.(3++⋅⋅⋅的值.第二章 实数检测题参考答案一、选择题1.B 解析:,即-32;,即-21;,即12即23,所以选B.2.D 解析:8=±.点拨:注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.C 解析:∵ |a -2|0, ∴ a =2,b =0,∴b -a =0-2=-2.故选C .4.C 解析:A.所以A 项正确;B.=±1,所以1是1的一个平方根说法正确;C.±4,所以C 项错误;D.00,所以D 项正确. 故选C .5.D 解析:∵ 二次根式的被开方数为非负数,∴ 2-x ≥0,解得x ≤2.6.C 解析:∵a ,b 均为正整数,且a b ∴a 的最小值是3,b 的最小值是2, 则a +b 的最小值是5.故选C .7.A2,所以在实数23-,0, -,有理数有:23-,0,-.8.C=-1,212c ⎛⎫- ⎪⎝⎭=0,∴a =-1,b =1,c =12,∴abc =- 12.故选C .9.A 解析:根据偶次方、算术平方根的非负性,由(m -1)20,得m -1=0,n +2=0,解得m =1,n =-2,∴m +n =1+(-2)=-1.10.D 解析:由图得64的算术平方根是8,8的算术平方根是故选D .二、填空题11.604.2 ±0.019 1 解析:436500036.510=⨯≈604.2;±0.000365=±43.6510-⨯≈±0.019 1. 12.±3,±2,±1,0 解析:π≈3.14,大于-π的负整数有:-3,-2,-1,小于π的正整数有:3,2,1,0的绝对值也小于π.13.±0.06 3 解析:0.0036=0.0681=9±±,,9的算术平方根是3,所以81的算术平方根是3. 14.8 解析:由|a -5|+3b +=0,得a =5,b =-3,所以a -b =5-(-3) =8. 15.11 解析:∵a >28>b , a ,b 为两个连续的整数, 又25<28<36,∴a =6,b =5,∴a +b =11. 16.1 解析:根据平方差公式进行计算,(2+1)(2-1)=()22-12=2-1=1.17.x ≥0 解析:根据二次根式的被开方数必须是非负数,要使1+x 有意义,必须满足 x ≥0. 18.332解析:12-343333=23.222--==三、解答题19.解:因为,,即, 所以.故,从而,所以, 所以.20.解:∵ 2<7<3,∴ 7<5+7<8,∴ a =7-2. 又可得2<5-7<3,∴ b =3-7.将a =7-2,b =3-7代入ab +5b 中,得ab +5b =(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2. 21.解:根据题意,可知,因为,所以. 22. 分析:(1)可把6转化成带根号的形式,再比较它们的被开方数,即可比较大小; (2)可采用近似求值的方法来比较大小. 解:(1)∵ 6=36,35<36,∴35<6. (2)∵ -5+1≈-2.236+1=-1.236,-22≈-0.707,1.236>0.707, ∴-5+1<-22. 23. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴ =-2.又∵ -2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴ b =2, ∴ +b =-2+2=.24. 解:(1)62333223(2(266321343-623663 =432213.1362331(76)25.17 6.76(76)(76)⨯-++-解:()(2(1)11(1)(1)n n n n n n n n n n +==++++++-(3)11111 122334989999100 +++⋅⋅⋅+++++++=-1+100=-1+10=9.第三章位置与坐标检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2016•湖北荆门中考)在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在如图所示的直角坐标系中,点M,N的坐标分别为()A.M(-1,2),N(2,1)B.M(2,-1),N(2,1)C.M(-1,2),N(1,2)D.M(2,-1),N(1,2)第2题图第3题图3.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度/秒匀速运动,物体乙按顺时针方向以2个单位长度/秒匀速运动,则两个物体运动后的第2012次相遇点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)4.已知点P的坐标为,且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)5.(2016•福州中考)平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)6.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数,那么所得的图案与原图案相比()A.形状不变,大小扩大到原来的倍B.图案向右平移了个单位长度C.图案向上平移了个单位长度D.图案向右平移了个单位长度,并且向上平移了个单位长度7.(2016·武汉中考)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-18.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的21,则点A 的对应点的坐标是( ) A .(-4,3) B .(4,3)C .(-2,6)D .(-2,3)9.如果点),(n m A 在第二象限,那么点,(m B -│n │)在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.(湖南株洲中考)在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依次类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数是1时,则向右走1个单位,当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ) A .(66,34) B .(67,33) C .(100,33) D .(99,34)二、填空题(每小题3分,共24分)11.在平面直角坐标系中,点A (2,2m +1)一定在第 象限.12点和点关于轴对称,而点与点C (2,3)关于轴对称,那么 , , 点和点的位置关系是 .13.一只蚂蚁由点(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是 .14.(2015·南京中考)在平面直角坐标系中,点A 的坐标是(2,3),作点A 关于x 轴的对称点,得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是(____,____). 15.(2016·杭州中考)在平面直角坐标系中,已知A (2,3),B (0,1), C (3,1),若线段AC 与BD 互相平分,则点D 关于坐标原点的对称点的坐标为 . 16.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 _.17.已知点(1)M a -,和(2)N b ,不重合. (1)当点M N ,关于 对称时,21a b ==,;(2)当点M N ,关于原点对称时,a = ,b = .18.(2015·山东青岛中考)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的31,那么点A 的对应点A '的坐标是_______.第18题图三、解答题(共46分)19.(6分)如图所示,三角形ABC 三个顶点A ,B ,C 的坐标分别为A (1,2),B (4,3),C (3,1).把三角形A 1B 1C 1向右平移4个单位长度,再向下平移3个单位长度,恰好得到三角形ABC ,试写出三角形A 1B 1C 1三个顶点的坐标.第19题图 第20第8题图 第16题图题图20.(6分)如图,在平面网格中每个小正方形的边长为1个单位长度,(1)线段CD是线段AB经过怎样的平移后得到的?(2)线段AC是线段BD经过怎样的平移后得到的?21.(6分)在直角坐标系中,用线段顺次连接点A (,0),B(0,3),C(3,3),D(4,0).(1)这是一个什么图形;(2)求出它的面积;(3)求出它的周长.22.(6分)如图,点用表示,点用表示.若用→→→→表示由到的一种走法,并规定从到只能向上或向右走(一步可走多格),用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.第22题图第23题图23.(6分)(湖南湘潭中考)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点的坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,点A1的坐标为.24.(8分)如图所示.(1)写出三角形③的顶点坐标.(2)通过平移由三角形③能得到三角形④吗?(3)根据对称性由三角形③可得三角形①,②,它们的顶点坐标各是什么?第24题图第25题图25.(8分)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可见,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.第三章位置与坐标检测题参考答案一、选择题1.D解析:根据各象限内点的坐标特征解答即可.∵点A(a,﹣b)在第一象限内,∴a>0,﹣b>0,∴b<0,∴ 点B (a ,b )所在的象限是第四象限.故选D .2.A 解析:本题利用了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.D 解析:长方形的边长为4和2,因为物体乙的速度是物体甲的速度的2倍,时间相同, 物体甲与物体乙的路程比为1︰2,由题意知: ①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×31=4,物体乙 行的路程为12×32=8,在BC 边相遇; ②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×31=8,物 体乙行的路程为12×2×32=16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×31=12, 物体乙行的路程为12×3×32=24,在A 点相遇,此时甲、乙回到出发点,则每相遇三次, 两物体回到出发点.因为2 012÷3=670……2,故两个物体运动后的第2012次相遇点与第二次相遇点为同一点,即物体甲行的路程为 12×2×31=8,物体乙行的路程为12×2×32=16,在DE 边相遇,此时相遇点的坐标为: (-1,-1),故选D .4.D 解析:因为点P 到两坐标轴的距离相等,所以,所以a =-1或a = -4.当a =-1时,点P 的坐标为(3,3);当a =-4时,点P 的坐标为(6,-6).5.A 解析:∵ A (m ,n ),C (﹣m ,﹣n ),∴ 点A 和点C 关于原点对称. ∵ 四边形ABCD 是平行四边形,∴ 点D 和B 关于原点对称. ∵ B (2,﹣1),∴ 点D 的坐标是(﹣2,1).故选A .6.D7.D 解析:因为点A (a ,1)与点A ′(5,b )关于坐标原点对称,而点(a ,b )关于坐标原点的对称点的坐标是(-a ,-b ),所以a =-5,b =-1.故选D. 8.A 解析:点A 变化前的坐标为(-4,6),将横坐标保持不变,纵坐标变为原来的21,则点A 的对应点的坐标是(-4,3),故选A .9.A 解析:因为点A 在第二象限,所以,0,0><n m 所以,0>-m ︱n ︱>0,因此点B 在第一象限. 10.C 解析:在1至100这100个数中:(1)能被3整除的为33个,故向上走了33个单位; (2)被3除,余数为1的数有34个,故向右走了34个单位; (3)被3除,余数为2的数有33个,故向右走了66个单位,故总共向右走了34+66=100(个)单位,向上走了33个单位.所以走完第100步时所处 位置的横坐标为100,纵坐标为33.故选C .二、填空题11.一 解析:因为2m ≥0,1>0,所以纵坐标2m +1>0.因为点A 的横坐标2>0,所以点A 一定在第一象限. 12. 关于原点对称 解析:因为点A (a ,b )和点关于轴对称,所以点的坐标为(a ,-b );因为点与点C (2,3)关于轴对称,所以点的坐标为(-2,3),所以a =-2,b =-3,点和点关于原点对称.13.(3,2) 解析:一只蚂蚁由点(0,0)先向上爬4个单位长度,坐标变为(0,4),再向右爬3个单位长度,坐标变为(3,4),再向下爬2个单位长度,坐标变为(3,2),所以它所在位置的坐标为(3,2). 14. 3 解析:点A 关于x 轴的对称点A ′的坐标是(2,3),点A ′关于y 轴的对称点A ″的坐标是(2,3). 15.(-5,-3) 解析:如图所示,∵ A (2,3),B (0,1),C (3,1),线段AC 与BD 互相平分,∴ D 点坐标为:(5,3), ∴ 点D 关于坐标原点的对称点的坐标为(-5,-3).第15题答图16.(3,5) 解析:因为正方形ABCD 的边长为4,点A 的坐标为(-1,1),所以点C 的横坐标为4-1=3,点C 的纵坐标为4+1=5,所以点C 的坐标为(3,5).17.(1)x 轴 (2)-2 1 解析:两点关于x 轴对称时,横坐标相等,纵坐标互为相反数;两点关于原点对称时,横、纵坐标都互为相反数. 18.(2,3) 解析:点A 的坐标是(6,3),它的纵坐标保持不变,把横坐标变为原来的31,得到它的对应点A '的坐标是16,33⎛⎫⨯ ⎪⎝⎭,即A '(2,3).三、解答题19.解:设△A 1B 1C 1的三个顶点的坐标分别为A 1(,将它的三个顶点分别向右平移4个单位长度,再向下平移3个单位长度,则此时三个顶点的坐标分别为(,由题意可得=2,2x +4=4,2y -3=3,3x +4=3,3y -3=1,所以A 1(-3,5),B 1(0,6),. 20. 解:(1)将线段AB 向右平移3个单位长度(向下平移4个单位长度),再向下平移4个单位长度(向右平移3个单位长度),得线段CD .(2)将线段BD 向左平移3个单位长度(向下平移1个单位长度),再向下平移1个单位长度(向左平移3个单位长度),得到线段AC . 21. 解:(1)因为点B (0,3)和点C (3,3)的纵坐标相同,点A 2,04,0D (-)和点()的纵坐标也相同, 所以BC ∥AD . 因为AD BC ≠, 所以四边形是梯形. 作出图形如图所示. (2)因为,,高, 故梯形的面积是21227. (3)在Rt △中,根据勾股定理,得,同理可得,因而梯形的周长是.22.解:走法一:;走法二:.答案不唯一. 路程相等.第21题答图23.分析:(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A,O,B向左平移后的对应点A1,O1,B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可.解:(1)B点关于y轴的对称点的坐标为(-3,2);(2)△A1O1B1如图所示;(3)点A1的坐标为(-2,3).第23题答图24.分析:(1)根据坐标的确定方法,读出各点的横、纵坐标,即可得出各个顶点的坐标;(2)根据平移过程中点的坐标的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,可得三角形④不能由三角形③通过平移得到;(3)根据对称性,即可得到三角形①,②顶点的坐标.解:(1)(-1,-1),(-4,-4),(-3,-5).(2)不能.(3)三角形②的顶点坐标分别为(-1,1),(-4,4),(-3,5)(三角形②与三角形③关于轴对称);三角形①的顶点坐标分别为(1,1),(4,4),(3,5)(由三角形③与三角形①关于原点对称可得三角形①的顶点坐标).25.分析:先根据点A(-3,1),B(-3,-3)的坐标,确定出x轴和y轴,再根据C点的坐标(3,2),即可确定C点的位置.解:点C的位置如图所示.第四章一次函数检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2015•上海中考)下列y关于x的函数中,是正比例函数的为()A .2y x = B .2y x =C .2x y =D .12x y +=2.(2016•南宁中考)已知正比例函数y =3x 的图象经过点(1,m ),则m 的值为( ) A .B .3 C.﹣D.﹣33.(2016•陕西中考)设点A (a ,b )是正比例函数y =﹣x 图象上的任意一点,则下列等式一定成立的是( )A .2a +3b =0B .2a ﹣3b =0C .3a ﹣2b =0D .3a +2b =04.(2016·湖南邵阳中考)一次函数y =﹣x +2的图象不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知一次函数y =kx +b 中y 随x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )6.已知直线y =kx -4(k <0)与两坐标轴所围成的三角形面积等于4,则直线的表达式 为( )A .y =-x -4B .y =-2x -4C .y =-3x +4D .y =-3x -47.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示,相交于点P 的两条线段l 1、l 2分别表示小敏、小聪离B 地的距离y km 与已用时间x h 之间的关系,则小敏、小聪行走的速度分别是( ) A .3 km/h 和4 km/h B .3 km/h 和3 km/h C .4 km/h 和4 km/h D .4 km/h 和3 km/h8.若甲、乙两弹簧的长度y cm 与所挂物体质量x kg 之间的函数表达式分别为y =k 1x +b 1和y =k 2x +b 2,如图所示,所挂物体质量均为2 kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( ) A.y 1> y 2 B.y 1=y 2 C.y 1<y 2 D.不能确定 9.如图所示,已知直线l :y =33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线于点B 1,过点B 1作直线l 的 垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( ) A .(0,64) B .(0,128) C .(0,256) D .(0,512)第7题图 第9题图第10题图第8题图 y x O y x O y x O y x O A B D10.如图所示,在平面直角坐标系中,直线y =23x -23与矩形ABCO 的边OC 、BC 分别交 于点E 、F ,已知OA =3,OC =4,则△CEF 的面积是( ) A .6 B .3 C .12 D .43二、填空题(每小题3分,共24分)11. 已知函数y =(m -1)2m x +1是一次函数,则m = . 12.( 2015·天津中考)若一次函数y =2x +b (b 为常数)的图象经过点(1,5),则b 的值为 .13.已知A 地在B 地正南方3km 处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离s (km )与所行的时间t (h )之间的函数图象如图所示,当行走3 h 后,他们之间的距离为 km. 14.(2015·海南中考)点(-1,1y )、(2,2y )是直线y =2x +1上的两点,则1y ________2y .(填“>”或“=”或“<”) 15.如图所示,一次函数y =kx +b (k <0)的图象经过点A .当y <3时,x 的 取值范围是 .16.函数y =-3x +2的图象上存在点P ,使得点P •到x •轴的距离等于3,则点P •的坐标为 .17.(浙江金华中考)小明从家跑步到学校,接着马上步行回家. 如图是小明离家的路程y (米)与时间t (分)的函数图象,则小明回家的速度是每分钟步行 米.第17题图18.据有关资料统计,两个城市之间每天的电话通话次数T •与这两个城市的人口数m 、n (单 位:万人)以及两个城市间的距离d (单位:km )有T =2kmnd的关系(k 为常数).•现测 第15题图第13题图s tO 4 2B A CD第18题图。
最新最新北师大版八年级数学上册单元测试题全套及答案
最新北师大版八年级数学上册单元测试题全套及答案第一章 勾股定理综合测评时间: 满分:120分班级: 姓名: 得分:一、精心选一选(每小题4分,共32分)1. 在△ABC 中,∠B=90°,若BC=3,AC=5,则AB 等于( )A.3B.4C.5D.62.下列几组数中,能组成直角三角形的是( ) A.13,14,15B.3,4,6C.5,12,13D.0.8,1.2,1.5 3.如图1,正方形ABCD 的面积为100 cm 2,△ABP 为直角三角形,∠P=90°,且PB=6 cm,则AP 的长为( )A.10 cmB.6 cmC.8 cmD.无法确定4.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8 cm,另一只朝左挖,每分钟挖6 cm,10分钟后,两只小鼹鼠相距( )A.50 cmB.80 cmC.100 c mD.140 cm5.已知a,b,c 为△ABC 的三边,且满足()()22222a b ab c -+-=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 6. 图2中的小方格都是边长为1的正方形,试判断△ABC 的形状为( ) A .钝角三角形 B. 锐角三角形 C. 直角三角形 D.以上都有可能7.如图3,一圆柱高8 cm,底面半径为2 cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( )A.20 cmB.10 cmC.14 cmD.无法确定8.已知Rt △ABC 中,∠C=90°,若BC +AC =14 cm,AB =10 cm,则该三角形的面积是( )A.24 cm 2B.36 cm 2C.48 cm 2D.60 cm 2二、耐心填一填(每小题4分,共32分). :写出两组勾股数9. 10.在△ABC 中,∠C=90°, 若BC ∶AC =3∶4,AB =10,则BC =_____,AC =_____.11.如图4,等腰三角形ABC 的底边长为16,底边上的高AD 长为6,则腰AB 的长度为_____.____.=2OD 则2,=1,OA =CD =BC =,AB °90=CD O =∠OBC =∠B OA ∠5,如图12.13.一个三角形的三边长之比为5∶12∶13,它的周长为60,则它的面积是______.PC BD A14.图6是一个三级台阶,它的每一级长、宽、高分别是2米,0.3米,0.2米,A,B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面爬行到B 点的最短路程是_____米.15.一天,小明买了一张底面是边长为260 cm 的正方形,厚30 cm 的床垫回家,到了家门口,才发现屋门只有)“能”或“不能”填.( 拿进屋吗?把床垫宽.你认为小明能cm ,100高cm 242 16.图7是一束太阳光线从仓库窗户射入的平面示意图,小强同学测得BN =35米,NC =34米,BC =1米,AC =4.5米,MC =6米,则太阳光线MA 的长度为_____米.三、细心做一做(共56分)17.(10分)如图8,甲渔船以8海里/时的速度离开港口O 向东北方向航行,乙渔船以6海里/时的速度离开港口O 向西北方向航行,它们同时出发.一个半小时后,甲、乙两渔船相距多少海里?18.(10分)如图9,已知在△ABC 中,AB=13,AD=12,AC=15,CD=9,求△ABC 的面积.19.(12分)如图10,在一棵树的10米高处有两只猴子,一只猴子爬下树后走到离树20米处的池塘A 处.另一只爬到树顶D 后直接跃到A 处,距离以直线计算,若两只猴子所经过的距离相等,试求该树的高度.20.(12分)如图11,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=8 m,BC=6 m,CD=24 m,AD=26 m .求这块草坪的面积.21. (12分)对任意符合条件的直角三角形保持其锐角顶点A 不动,改变BC 的位置,使B →E ,C →D ,且∠BAE =90°,∠CAD =90°(如图12).【分析】所给数据如图中所示,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等.【解答】结合上面的分析过程验证勾股定理.第一章 勾股定理综合测评一、1.B 2.C 3.C 4.C 5.D 6.C 7.B 8.A二、9. 答案不唯一,如3,4,5;60,80,100 10.6 8 11.10 12.7 13.120 14.2.5 15.能16.7.5是直AOB △所以,90AOB ∠=︒,)海里(3692OB =⨯=,)海里(38122OA =⨯=由题意得解:17.三、角三角形..答略.(海里)15=AB 所以,=2252+122=92AB 即,222OA OB AB +=得,由勾股定理 .ADC=90°∠且,为直角三角形ADC △所以,2AC ==144+81=2252+CD 2AD 所以AD=12,AC=15,CD=9,因为:解.81 =BC 所以=5,所以BD,=252-AD2AB=2BD 勾股定理得由,AB=13,AD=12,中ABD △Rt 在BD+DC=5+9=14..×14×12=8421AD=·BC ·21=ABC △S 所以 19.解:由题意知AD+DB=BC+CA,且CA=20米,BC=10米,设BD=x,则AD=30-x ..)米(CD=10+x=15故树高,x=5解得,2+202)10+x (=2)x -30即(,2=AD 2+CA 2CD ,中ACD △Rt 在 .AC=10所以,100=2+62=82+BC 2AB =2AC 由勾股定理得,中ABC △Rt 在所以B=90°,∠因为AC,连接,如图解:20. .是直角三角形ACD △所以,2=AD 2+CD 2,AC 中ACD △在所以,AD=26,CD=24因为又 .)2m (=9624-=120×8×621-×10×2421AB•BC=21-AC•CD 21=ABC △S -CD A △=S ABCD 四边形S 所以 .2m 96该草坪的面积为故21.解:由分析可得S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE . 即b 2=12c 2+12(b +a )(b -a ). 整理,得2b 2=c 2+(b +a )(b -a ). 所以a 2+b 2=c 2.第二章 实数检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共30分)1.下列无理数中,在-2与1之间的是( )A .-B .-C .D . 2.(2014·南京中考)8的平方根是( )A .4B .±4C . 2D . 3. 若a ,b 为实数,且满足|a -2|+2b -=0,则b -a 的值为( )A .2B .0C .-2D .以上都不对 4. 下列说法错误的是( )A .5是25的算术平方根B .1是1的一个平方根C .(-4)2的平方根是-4D .0的平方根与算术平方根都是0 5. 要使式子 有意义,则x 的取值范围是( )A .x >0B .x ≥-2C .x ≥2D .x ≤26. 若a ,b 均为正整数,且a >7,b >32,则a +b 的最小值是( ) A.3 B.4 C.5 D.67. 在实数,,,-3.14,中,无理数有( ) A.1个 B.2个 C.3个 D.4个8. 已知3a =-1,b =1,212c ⎛⎫- ⎪⎝⎭=0,则abc 的值为( )A.0 B .-1 C.-12 D.129.若(m -1)2+2n +=0,则m +n 的值是( )A .-1B .0C .1D .210. 有一个数值转换器,原理如图所示:当输入的x =64时,输出的y 等于( ) B .8 C .32 D .22 A .2 二、填空题(每小题3分,共24分)11. 已知:若 3.65≈1.910,36.5≈6.042,则365000≈ ,±0.000365≈ . 12. 绝对值小于π的整数有 .13. 0.003 6的平方根是 ,81的算术平方根是 . 14. 已知|a -5|+3b +=0,那么a -b = .15. 已知a ,b 为两个连续的整数,且a >28>b ,则a +b = . 16.计算:(2+1)(2-1)=________.17.使式子1+x 有意义的x 的取值范围是________. 18.)计算:﹣=_________.三、解答题(共46分)19.(6分)已知,求的值.20.(6分)若5+7的小数部分是a ,5-7的小数部分是b ,求ab +5b 的值. 21.(6分)先阅读下面的解题过程,然后再解答:形如n m 2±的化简,只要我们找到两个数a ,b ,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+,这里7=m ,12=n , 因为,,即7)3()4(22=+,1234=⨯, 所以347+1227+32)34(2+=+.根据上述方法化简:42213-.22.(6分)比较大小,并说明理由:(1)与6; (2)与.23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分. 请解答:已知:5+的小数部分是,5-的整数部分是b ,求+b 的值. 24.(8分)计算:(1)862⨯-82734⨯+; (2))62)(31(-+-2)132(-.25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)n n ++11(n 为正整数)的值.(3++⋅⋅⋅的值.第二章 实数检测题参考答案一、选择题1.B 解析:,即-32;,即-21;,即12即23,所以选B.2.D 解析:8=±.点拨:注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.C 解析:∵ |a -2|0, ∴ a =2,b =0,∴b -a =0-2=-2.故选C .4.C 解析:A.所以A 项正确;B.=±1,所以1是1的一个平方根说法正确;C.±4,所以C 项错误;D.00,所以D 项正确. 故选C .5.D 解析:∵ 二次根式的被开方数为非负数,∴ 2-x ≥0,解得x ≤2.6.C 解析:∵a ,b 均为正整数,且a b ∴a 的最小值是3,b 的最小值是2, 则a +b 的最小值是5.故选C .7.A2,所以在实数23-,0, -,有理数有:23-,0,-.8.C=-1,212c ⎛⎫- ⎪⎝⎭=0,∴a =-1,b =1,c =12,∴abc =- 12.故选C .9.A 解析:根据偶次方、算术平方根的非负性,由(m -1)20,得m -1=0,n +2=0,解得m =1,n =-2,∴m +n =1+(-2)=-1.10.D 解析:由图得64的算术平方根是8,8的算术平方根是故选D .二、填空题11.604.2 ±0.019 1 解析:436500036.510=⨯≈604.2;±0.000365=±43.6510-⨯≈±0.019 1. 12.±3,±2,±1,0 解析:π≈3.14,大于-π的负整数有:-3,-2,-1,小于π的正整数有:3,2,1,0的绝对值也小于π.13.±0.06 3 解析:0.0036=0.0681=9±±,,9的算术平方根是3,所以81的算术平方根是3. 14.8 解析:由|a -5|+3b +=0,得a =5,b =-3,所以a -b =5-(-3) =8. 15.11 解析:∵a >28>b , a ,b 为两个连续的整数, 又25<28<36,∴a =6,b =5,∴a +b =11. 16.1 解析:根据平方差公式进行计算,(2+1)(2-1)=()22-12=2-1=1.17.x ≥0 解析:根据二次根式的被开方数必须是非负数,要使1+x 有意义,必须满足 x ≥0. 18.332解析:12-343333=23.222--==三、解答题19.解:因为,,即, 所以.故,从而,所以, 所以.20.解:∵ 2<7<3,∴ 7<5+7<8,∴ a =7-2. 又可得2<5-7<3,∴ b =3-7.将a =7-2,b =3-7代入ab +5b 中,得ab +5b =(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2. 21.解:根据题意,可知,因为,所以. 22. 分析:(1)可把6转化成带根号的形式,再比较它们的被开方数,即可比较大小; (2)可采用近似求值的方法来比较大小. 解:(1)∵ 6=36,35<36,∴35<6. (2)∵ -5+1≈-2.236+1=-1.236,-22≈-0.707,1.236>0.707, ∴-5+1<-22. 23. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴ =-2.又∵ -2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴ b =2, ∴ +b =-2+2=.24. 解:(1)62333223(2(266321343-623663 =432213.1362331(76)25.17 6.76(76)(76)⨯-++-解:()(2(1)11(1)(1)n n n n n n n n n n +==++++++-(3)11111 122334989999100 +++⋅⋅⋅+++++++=-1+100=-1+10=9.第三章位置与坐标检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2016•湖北荆门中考)在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在如图所示的直角坐标系中,点M,N的坐标分别为()A.M(-1,2),N(2,1)B.M(2,-1),N(2,1)C.M(-1,2),N(1,2)D.M(2,-1),N(1,2)第2题图第3题图3.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度/秒匀速运动,物体乙按顺时针方向以2个单位长度/秒匀速运动,则两个物体运动后的第2012次相遇点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)4.已知点P的坐标为,且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)5.(2016•福州中考)平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)6.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数,那么所得的图案与原图案相比()A.形状不变,大小扩大到原来的倍B.图案向右平移了个单位长度C.图案向上平移了个单位长度D.图案向右平移了个单位长度,并且向上平移了个单位长度7.(2016·武汉中考)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-18.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的21,则点A 的对应点的坐标是( ) A .(-4,3) B .(4,3)C .(-2,6)D .(-2,3)9.如果点),(n m A 在第二象限,那么点,(m B -│n │)在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.(湖南株洲中考)在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依次类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数是1时,则向右走1个单位,当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ) A .(66,34) B .(67,33) C .(100,33) D .(99,34)二、填空题(每小题3分,共24分)11.在平面直角坐标系中,点A (2,2m +1)一定在第 象限.12点和点关于轴对称,而点与点C (2,3)关于轴对称,那么 , , 点和点的位置关系是 .13.一只蚂蚁由点(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是 .14.(2015·南京中考)在平面直角坐标系中,点A 的坐标是(2,3),作点A 关于x 轴的对称点,得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是(____,____). 15.(2016·杭州中考)在平面直角坐标系中,已知A (2,3),B (0,1), C (3,1),若线段AC 与BD 互相平分,则点D 关于坐标原点的对称点的坐标为 . 16.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 _.17.已知点(1)M a -,和(2)N b ,不重合. (1)当点M N ,关于 对称时,21a b ==,;(2)当点M N ,关于原点对称时,a = ,b = .18.(2015·山东青岛中考)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的31,那么点A 的对应点A '的坐标是_______.第18题图三、解答题(共46分)19.(6分)如图所示,三角形ABC 三个顶点A ,B ,C 的坐标分别为A (1,2),B (4,3),C (3,1).把三角形A 1B 1C 1向右平移4个单位长度,再向下平移3个单位长度,恰好得到三角形ABC ,试写出三角形A 1B 1C 1三个顶点的坐标.第19题图 第20第8题图 第16题图题图20.(6分)如图,在平面网格中每个小正方形的边长为1个单位长度,(1)线段CD是线段AB经过怎样的平移后得到的?(2)线段AC是线段BD经过怎样的平移后得到的?21.(6分)在直角坐标系中,用线段顺次连接点A (,0),B(0,3),C(3,3),D(4,0).(1)这是一个什么图形;(2)求出它的面积;(3)求出它的周长.22.(6分)如图,点用表示,点用表示.若用→→→→表示由到的一种走法,并规定从到只能向上或向右走(一步可走多格),用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.第22题图第23题图23.(6分)(湖南湘潭中考)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点的坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,点A1的坐标为.24.(8分)如图所示.(1)写出三角形③的顶点坐标.(2)通过平移由三角形③能得到三角形④吗?(3)根据对称性由三角形③可得三角形①,②,它们的顶点坐标各是什么?第24题图第25题图25.(8分)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可见,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.第三章位置与坐标检测题参考答案一、选择题1.D解析:根据各象限内点的坐标特征解答即可.∵点A(a,﹣b)在第一象限内,∴a>0,﹣b>0,∴b<0,∴ 点B (a ,b )所在的象限是第四象限.故选D .2.A 解析:本题利用了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.D 解析:长方形的边长为4和2,因为物体乙的速度是物体甲的速度的2倍,时间相同, 物体甲与物体乙的路程比为1︰2,由题意知: ①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×31=4,物体乙 行的路程为12×32=8,在BC 边相遇; ②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×31=8,物 体乙行的路程为12×2×32=16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×31=12, 物体乙行的路程为12×3×32=24,在A 点相遇,此时甲、乙回到出发点,则每相遇三次, 两物体回到出发点.因为2 012÷3=670……2,故两个物体运动后的第2012次相遇点与第二次相遇点为同一点,即物体甲行的路程为 12×2×31=8,物体乙行的路程为12×2×32=16,在DE 边相遇,此时相遇点的坐标为: (-1,-1),故选D .4.D 解析:因为点P 到两坐标轴的距离相等,所以,所以a =-1或a = -4.当a =-1时,点P 的坐标为(3,3);当a =-4时,点P 的坐标为(6,-6).5.A 解析:∵ A (m ,n ),C (﹣m ,﹣n ),∴ 点A 和点C 关于原点对称. ∵ 四边形ABCD 是平行四边形,∴ 点D 和B 关于原点对称. ∵ B (2,﹣1),∴ 点D 的坐标是(﹣2,1).故选A .6.D7.D 解析:因为点A (a ,1)与点A ′(5,b )关于坐标原点对称,而点(a ,b )关于坐标原点的对称点的坐标是(-a ,-b ),所以a =-5,b =-1.故选D. 8.A 解析:点A 变化前的坐标为(-4,6),将横坐标保持不变,纵坐标变为原来的21,则点A 的对应点的坐标是(-4,3),故选A .9.A 解析:因为点A 在第二象限,所以,0,0><n m 所以,0>-m ︱n ︱>0,因此点B 在第一象限. 10.C 解析:在1至100这100个数中:(1)能被3整除的为33个,故向上走了33个单位; (2)被3除,余数为1的数有34个,故向右走了34个单位; (3)被3除,余数为2的数有33个,故向右走了66个单位,故总共向右走了34+66=100(个)单位,向上走了33个单位.所以走完第100步时所处 位置的横坐标为100,纵坐标为33.故选C .二、填空题11.一 解析:因为2m ≥0,1>0,所以纵坐标2m +1>0.因为点A 的横坐标2>0,所以点A 一定在第一象限. 12. 关于原点对称 解析:因为点A (a ,b )和点关于轴对称,所以点的坐标为(a ,-b );因为点与点C (2,3)关于轴对称,所以点的坐标为(-2,3),所以a =-2,b =-3,点和点关于原点对称.13.(3,2) 解析:一只蚂蚁由点(0,0)先向上爬4个单位长度,坐标变为(0,4),再向右爬3个单位长度,坐标变为(3,4),再向下爬2个单位长度,坐标变为(3,2),所以它所在位置的坐标为(3,2). 14. 3 解析:点A 关于x 轴的对称点A ′的坐标是(2,3),点A ′关于y 轴的对称点A ″的坐标是(2,3). 15.(-5,-3) 解析:如图所示,∵ A (2,3),B (0,1),C (3,1),线段AC 与BD 互相平分,∴ D 点坐标为:(5,3), ∴ 点D 关于坐标原点的对称点的坐标为(-5,-3).第15题答图16.(3,5) 解析:因为正方形ABCD 的边长为4,点A 的坐标为(-1,1),所以点C 的横坐标为4-1=3,点C 的纵坐标为4+1=5,所以点C 的坐标为(3,5).17.(1)x 轴 (2)-2 1 解析:两点关于x 轴对称时,横坐标相等,纵坐标互为相反数;两点关于原点对称时,横、纵坐标都互为相反数. 18.(2,3) 解析:点A 的坐标是(6,3),它的纵坐标保持不变,把横坐标变为原来的31,得到它的对应点A '的坐标是16,33⎛⎫⨯ ⎪⎝⎭,即A '(2,3).三、解答题19.解:设△A 1B 1C 1的三个顶点的坐标分别为A 1(,将它的三个顶点分别向右平移4个单位长度,再向下平移3个单位长度,则此时三个顶点的坐标分别为(,由题意可得=2,2x +4=4,2y -3=3,3x +4=3,3y -3=1,所以A 1(-3,5),B 1(0,6),. 20. 解:(1)将线段AB 向右平移3个单位长度(向下平移4个单位长度),再向下平移4个单位长度(向右平移3个单位长度),得线段CD .(2)将线段BD 向左平移3个单位长度(向下平移1个单位长度),再向下平移1个单位长度(向左平移3个单位长度),得到线段AC . 21. 解:(1)因为点B (0,3)和点C (3,3)的纵坐标相同,点A 2,04,0D (-)和点()的纵坐标也相同, 所以BC ∥AD . 因为AD BC ≠, 所以四边形是梯形. 作出图形如图所示. (2)因为,,高, 故梯形的面积是21227. (3)在Rt △中,根据勾股定理,得,同理可得,因而梯形的周长是.22.解:走法一:;走法二:.答案不唯一. 路程相等.第21题答图23.分析:(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A,O,B向左平移后的对应点A1,O1,B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可.解:(1)B点关于y轴的对称点的坐标为(-3,2);(2)△A1O1B1如图所示;(3)点A1的坐标为(-2,3).第23题答图24.分析:(1)根据坐标的确定方法,读出各点的横、纵坐标,即可得出各个顶点的坐标;(2)根据平移过程中点的坐标的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,可得三角形④不能由三角形③通过平移得到;(3)根据对称性,即可得到三角形①,②顶点的坐标.解:(1)(-1,-1),(-4,-4),(-3,-5).(2)不能.(3)三角形②的顶点坐标分别为(-1,1),(-4,4),(-3,5)(三角形②与三角形③关于轴对称);三角形①的顶点坐标分别为(1,1),(4,4),(3,5)(由三角形③与三角形①关于原点对称可得三角形①的顶点坐标).25.分析:先根据点A(-3,1),B(-3,-3)的坐标,确定出x轴和y轴,再根据C点的坐标(3,2),即可确定C点的位置.解:点C的位置如图所示.第四章一次函数检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2015•上海中考)下列y关于x的函数中,是正比例函数的为()A .2y x = B .2y x =C .2x y =D .12x y +=2.(2016•南宁中考)已知正比例函数y =3x 的图象经过点(1,m ),则m 的值为( ) A .B .3 C.﹣D.﹣33.(2016•陕西中考)设点A (a ,b )是正比例函数y =﹣x 图象上的任意一点,则下列等式一定成立的是( )A .2a +3b =0B .2a ﹣3b =0C .3a ﹣2b =0D .3a +2b =04.(2016·湖南邵阳中考)一次函数y =﹣x +2的图象不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知一次函数y =kx +b 中y 随x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )6.已知直线y =kx -4(k <0)与两坐标轴所围成的三角形面积等于4,则直线的表达式 为( )A .y =-x -4B .y =-2x -4C .y =-3x +4D .y =-3x -47.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示,相交于点P 的两条线段l 1、l 2分别表示小敏、小聪离B 地的距离y km 与已用时间x h 之间的关系,则小敏、小聪行走的速度分别是( ) A .3 km/h 和4 km/h B .3 km/h 和3 km/h C .4 km/h 和4 km/h D .4 km/h 和3 km/h8.若甲、乙两弹簧的长度y cm 与所挂物体质量x kg 之间的函数表达式分别为y =k 1x +b 1和y =k 2x +b 2,如图所示,所挂物体质量均为2 kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( ) A.y 1> y 2 B.y 1=y 2 C.y 1<y 2 D.不能确定 9.如图所示,已知直线l :y =33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线于点B 1,过点B 1作直线l 的 垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( ) A .(0,64) B .(0,128) C .(0,256) D .(0,512)第7题图 第9题图第10题图第8题图 y x O y x O y x O y x O A B D10.如图所示,在平面直角坐标系中,直线y =23x -23与矩形ABCO 的边OC 、BC 分别交 于点E 、F ,已知OA =3,OC =4,则△CEF 的面积是( ) A .6 B .3 C .12 D .43二、填空题(每小题3分,共24分)11. 已知函数y =(m -1)2m x +1是一次函数,则m = . 12.( 2015·天津中考)若一次函数y =2x +b (b 为常数)的图象经过点(1,5),则b 的值为 .13.已知A 地在B 地正南方3km 处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离s (km )与所行的时间t (h )之间的函数图象如图所示,当行走3 h 后,他们之间的距离为 km. 14.(2015·海南中考)点(-1,1y )、(2,2y )是直线y =2x +1上的两点,则1y ________2y .(填“>”或“=”或“<”) 15.如图所示,一次函数y =kx +b (k <0)的图象经过点A .当y <3时,x 的 取值范围是 .16.函数y =-3x +2的图象上存在点P ,使得点P •到x •轴的距离等于3,则点P •的坐标为 .17.(浙江金华中考)小明从家跑步到学校,接着马上步行回家. 如图是小明离家的路程y (米)与时间t (分)的函数图象,则小明回家的速度是每分钟步行 米.第17题图18.据有关资料统计,两个城市之间每天的电话通话次数T •与这两个城市的人口数m 、n (单 位:万人)以及两个城市间的距离d (单位:km )有T =2kmnd的关系(k 为常数).•现测 第15题图第13题图s tO 4 2B A CD第18题图。
北师大版数学八年级上册全册单元测试题(附答案_可打印)
北师大版八年级数学上册单元测试卷(含答案)第一章勾股定理测试题一、选择题1、下列各组数中不能作为直角三角形的三边长的是 ( ) A. 1.5, 2, 3; B. 7, 24, 25; C. 6 ,8, 10; D. 9, 12, 15.2、适合下列条件的△ABC 中, 是直角三角形的个数为 ( ) ①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320, ∠B=580; ④ ;25,24,7===c b a ⑤.4,2,2===c b aA. 2个;B. 3个;C. 4个;D. 5个.3、已知直角三角形两直角边的长为A 和B ,则该直角三角形的斜边的长度为( ) A 、A +B B 、2AB C 、B -A D 、22B A +4、直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( ) A 、6厘米 B 、8厘米 C 、1380厘米 D 、1360厘米5、若等腰三角形腰长为10cm ,底边长为16 cm,那么它的面积为 ( )A. 48 cm 2B. 36 cm 2C. 24 cm 2D.12 cm 26、如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面 成30°夹角,这棵大树在折断前的高度为( ) A .10米 B .15米 C .25米 D .30米7、若一个直角三角形的一条直角边长是7cm ,另一条直角边比斜边短1cm ,则斜边长为 ( ) A.18 cm B.20 cm C.24 cm D.25 cm8、一部电视机屏幕的长为58厘米,宽为46厘米,则这部电视机大小规格(实际测量误差忽略不计)( )A.34英寸(87厘米)B. 29英寸(74厘米)C. 25英寸(64厘米)D.21英寸(54厘米)9、一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为( )A .60B .30C .24D .1210、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( ) A .8cm B .10cm C .12cm D .14cm30°6 A DBC第9题北南 A 东第12题图11、已知Rt △ABC 中,∠C =90°,若14=+b a cm ,10=c cm ,则Rt △ABC 的面积为( ).A.24cm 2B.36cm 2C.48cm 2D.60cm 212、已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A 、25海里 B 、30海里 C 、35海里 D 、40海里二、填空题13、在△ABC 中,∠C =90°,若 a =5,b =12,则 c = . 14、在△ABC 中,∠C =90°,若c =10,a ∶ b =3∶4,则S Rt △AB = .15、如图,从电线杆离地面3米处向地面拉一条长为5米的拉线,这条拉线在地面的固定点距离电线杆底部有 米。
最新北师大版八年级数学上册单元测试题附答案全套
最新北师大版八年级数学上册单元测试题附答案全套第一章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列各组线段中,能够组成直角三角形的一组是()A.3,4,4 B.3,4,6C.3,4,7 D.3,4,52.如图,在Rt△ABC中,∠A=90°,BC=2.5cm,AC=1.5cm,则AB的长为() A.3.5cm B.2cmC.3cm D.4cm3.如图,在Rt△ABC中,∠ACB=90°.若AB=15cm,则正方形ADEC和正方形BCFG 的面积之和为()A.150cm2B.200cm2C.225cm2D.无法计算4.适合下列条件的△ABC中,直角三角形的个数为()①a=6,b=8,c=10;②a∶b∶c=1∶2∶2;③∠A=32°,∠B=58°;④a=7,b=24,c=25.A.2个B.3个C.4个D.1个5.在△ABC中,AB=12,BC=16,AC=20,则△ABC的面积为()A.96 B.120C.160 D.2006.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是()A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形7.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的()A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定8.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB =3,AD =4,则ED 的长为( )A.32 B .3 C .1 D.439.某市在旧城改造中,计划在市内一块如图所示的三角形ABC 空地上种植草皮以美化环境,已知AB =13米,AD =12米,AD ⊥BC ,AC =20米.若这种草皮每平方米售价a 元,则购买这种草皮至少需要( )A .126a 元B .150a 元C .156a 元D .300a 元10.如图,长方体的高为9m ,底面是边长为6m 的正方形,一只蚂蚁从顶点A 开始爬向顶点B ,那么它爬行的最短路程为( )A .10mB .12mC .15mD .20m二、填空题(每小题3分,共24分)11.如图,一架长为4m 的梯子,一端放在离墙脚2.4m 处,另一端靠墙,则梯子顶端离墙脚________m.12.如图,在△ABC 中,AB =5cm ,BC =6cm ,BC 边上的中线AD =4cm ,则∠ADB 的度数是________.13.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,以点A 为圆心,AC 长为半径画弧,交AB 于点D ,则BD =________.14.如图是一个三级台阶,每一级的长,宽和高分别是50cm,30cm,10cm,A和B是这个台阶的两个相对的端点.若一只壁虎从A点出发沿着台阶面爬到B点,则壁虎爬行的最短路线的长是________.15.已知某长方形两邻边的差为2,对角线长为4,则此长方形的面积是________.16.如图所示的螺旋由一系列直角三角形组成,则OA2024=________.17.如图是一种饮料的包装盒,其长、宽、高分别为4cm,3cm,12cm,现有一长为16cm 的吸管插入到盒的底部,则吸管露在盒外部分的长度h的取值范围为____________.18.在△ABC中,若AC=15,BC=13,AB边上的高CD=12,则△ABC的周长为________.三、解答题(共66分)19.(8分)如图,正方形网格中有△ABC,若小方格边长为1,请你根据所学的知识,判断△ABC是什么三角形,并说明理由.20.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=16cm,正方形BCEF的面积为144cm2,BD⊥AC于点D,求BD的长.21.(8分)如图,铁路上A,B两点相距25km,C,D为两村庄,AD⊥AB于点A,BC⊥AB 于点B.已知AD=15km,BC=10km,现在要在铁路AB旁建一个货运站E,使得C,D两村到E站距离相等,问E站应建在离A地多远的地方?22.(10分)如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2-AE2=AC2.(1)判断△ABC的形状,并证明你的结论;(2)若DE=3,BD=4,求AE的长.23.(10分)有一个如图所示的长方体透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深AE=40cm.在水面上紧贴内壁G处有一块面包屑,G在水面线EF上,且EG=60cm,一只蚂蚁想从鱼缸外的A点沿鱼缸壁爬进鱼缸内的G处吃面包屑.(1)该蚂蚁应该沿怎样的路线爬行才能使路程最短呢?请你画出它爬行的路线,并用箭头标注;(2)求蚂蚁爬行的最短路线长.24.(10分)如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从点B 出发沿射线BC以2cm/s的速度移动,设运动的时间为t s.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.25.(12分)图甲是任意一个直角三角形ABC,它的两条直角边的长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)图乙、图丙中①②③都是正方形.由图可知:①是以________为边长的正方形,②是以________为边长的正方形,③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为__________;(4)图乙中①②的面积之和与图丙中正方形③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?参考答案与解析1.D 2.B 3.C 4.B 5.A 6.D 7.B 8.A 9.A10.C 解析:如图①,AB 2=62+152=261;如图②,AB 2=122+92=225.∵261>225,∴蚂蚁爬行的最短路程为15m.11.3.2 12.90° 13.414.130cm 15.6 16.45 17.3cm ≤h ≤4cm18.32或42 解析:∵AC =15,BC =13,AB 边上的高CD =12,∴AD 2=AC 2-CD 2,即AD =9;BD 2=BC 2-CD 2,即BD =5.如图①,CD 在△ABC 内部时,AB =AD +BD =9+5=14,此时,△ABC 的周长为14+13+15=42;如图②,CD 在△ABC 外部时,AB =AD -BD =9-5=4,此时,△ABC 的周长为4+13+15=32.综上所述,△ABC 的周长为32或42.19.解:△ABC 是直角三角形.(2分)理由如下:∵AC 2=22+42=20,AB 2=12+22=5,BC 2=32+42=25,∴AB 2+AC 2=BC 2,(6分)∴△ABC 是直角三角形.(8分)20.解:∵正方形BCEF 的面积为144cm 2,∴BC =12cm.(2分)∵∠ABC =90°,AB =16cm ,∴AC =20cm.(4分)∵BD ⊥AC ,∴S △ABC =12AB ·BC =12BD ·AC ,∴BD =485cm.(8分)21.解:设AE =x km ,则BE =(25-x )km.(2分)根据题意列方程,得152+x 2=(25-x )2+102,(6分)解得x =10.故E 站应建立在离A 地10km 处.(8分)22.解:(1)△ABC 是直角三角形.(1分)证明如下:连接CE .∵D 是BC 的中点,DE ⊥BC ,∴CE =BE .∵BE 2-AE 2=AC 2,∴CE 2-AE 2=AC 2,∴AE 2+AC 2=CE 2,∴△ACE 是直角三角形,∠A =90°,∴△ABC 是直角三角形.(4分)(2)∵DE ⊥BC ,∴∠BDE =90°.在Rt △BDE 中,DE =3,BD =4,∴BE 2=DE 2+BD 2=25,∴CE =BE =5.(6分)由(1)可知∠A =90°,∴AC 2=CE 2-AE 2=25-AE 2.∵D 是BC 的中点,∴BC =2BD =8.(8分)在Rt △ABC 中,AB =5+AE ,由勾股定理得BC 2-BA 2=AC 2,∴64-(5+AE )2=25-AE 2,∴AE =75.(10分)23.解:(1)如图,作点A 关于BC 的对称点A ′,连接A ′G 交BC 于点Q ,连接AQ ,蚂蚁沿着A →Q →G 的路线爬行时,路程最短.(5分)(2)∵在Rt △A ′EG 中,A ′E =2AB -AE =80cm ,EG =60cm ,∴由勾股定理得A ′G =100cm ,(8分)∴最短路线长为AQ +QG =A ′Q +QG =100cm.(10分)24.解:(1)∵在Rt △ABC 中,BC 2=AB 2-AC 2=102-62=64,∴BC =8cm.(3分) (2)由题意知BP =2t cm ,分两种情况进行讨论:①当∠APB 为直角时,点P 与点C 重合,BP =BC =8cm ,即t =4;(5分)②当∠BAP 为直角时,BP =2t cm ,CP =(2t -8)cm ,AC =6cm.在Rt △ACP 中,AP 2=62+(2t -8)2,在Rt △BAP 中,AB 2+AP 2=BP 2,(7分)∴102+[62+(2t -8)2]=(2t )2,解得t =254.故当△ABP 为直角三角形时,t =4或254.(10分)25.解:(1)a b c (3分) (2)a 2 b 2 c 2(6分)(3)a 2+b 2(7分)(4)S ①+S ②=S ③.(8分)由图乙和图丙可知大正方形的边长为a +b ,则面积为(a +b )2,图乙中把大正方形的面积分为了四部分,分别是:边长为a 的正方形,边长为b 的正方形,还有两个长为a 、宽为b 的长方形,(10分)根据面积相等得(a +b )2=a 2+b 2+2ab ,由图丙可得(a +b )2=c 2+4×12ab .所以a 2+b 2=c 2.(12分)第二章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.9的平方根是( ) A .±3 B .±13C .3D .-32.下列实数中是无理数的是( ) A.9 B.227C .πD .(3)03.下列各式计算正确的是( )A.2+3= 5 B.43-33=1C.23×33=6 3 D.27÷3=34.已知a+2+|b-1|=0,那么(a+b)2018的值为()A.-1 B.1C.32018D.-320185.若m=30-3,则m的取值范围是()A.1<m<2 B.2<m<3C.3<m<4 D.4<m<56.实数a,b在数轴上的位置如图所示,且|a|>|b|,则化简a2-|a+b|的结果为()A.2a+b B.-2a+bC.b D.2a-b7.估计8×12+18的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7C.7和8 D.8和98.已知a=3+2,b=3-2,则a2+b2的值为()A.4 3 B.14C.14 D.14+439.若6-13的整数部分为x,小数部分为y,则(2x+13)y的值是()A.5-313 B.3C.313-5 D.-310.某等腰三角形的两条边长分别为23和52,那么这个三角形的周长为() A.43+5 2 B.23+102C.43+52或23+10 2 D.43+102二、填空题(每小题3分,共24分)11.-5的绝对值是________,116的算术平方根是________.12.在实数-2,0,-1,2,-2中,最小的是________.13.若代数式-x+3x有意义,则实数x的取值范围是____________.14.一个长方形的长和宽分别是62cm与2cm,则这个长方形的面积等于________cm2,周长等于________cm.15.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上在原点O处的点到达点O′,点P表示的数是2.6,那么PO′的长度是________.16.已知 3.456≈1.859,34.56≈5.879,则345600≈________.17.在下列式子或结论中:①a2+b2是最简二次根式;②(a+2b)2=a+2b;③x2-4=x+2·x-2;④若a=3-2,b=12+3,则a+b=0.其中正确的有________(填序号).18.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=14⎣⎡⎦⎤a2b2-⎝⎛⎭⎫a2+b2-c222.现已知△ABC的三边长分别为2,3,4,则△ABC的面积为________.三、解答题(共66分)19.(每小题3分,共6分)求下列各式中x的值:(1)(x-2)2+1=17; (2)(x+2)3+27=0.20.(每小题3分,共12分)计算下列各题:(1)8+32-2;(2)614+30.027-31-124125;(3)(6-215)×3-61 2;(4)(548-627+12)÷ 3.21.(6分)实数a,b在数轴上的位置如图所示,请化简:a-a2-b2+(a-b)2.22.(8分)如图,在四边形ABCD中,AB=AD,∠BAD=90°.若AB=22,CD=43,BC=8,求四边形ABCD的面积.23.(8分)已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.24.(8分)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)从50m高空抛物到落地所需时间t1是________s,从100m高空抛物到落地所需时间t2是________s;(2)t2是t1的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?25.(8分)已知实数a ,b 满足|2017-a |+a -2018=a .(1)a 的取值范围是________,化简:|2017-a |=________;(2)张敏同学求得a -20172的值为2019,你认为她的答案正确吗?为什么?.26.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a +2b =(m +2n )2(其中a ,b ,m ,n 均为整数),则有a +2b =m 2+2n 2+22mn ,∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把类似a +2b 的式子化为平方式的方法,请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +3b =(m +3n )2,用含m ,n 的式子分别表示a ,b ,得a =______________,b =________;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:________+________3=(________+________3)2;(3)若a +43=(m +3n )2,且a ,m ,n 均为正整数,求a 的值.答案1.A 2.C 3.D 4.B 5.B 6.C 7.B 8.B9.B 解析:∵3<13<4,∴6-13的整数部分x =2,小数部分y =6-13-2=4-13,则(2x +13)y =(4+13)(4-13)=16-13=3.10.B 解析:若腰长为23,则三边长分别为23,23,52,而23+23<52,不能构成三角形,不合题意,舍去;若腰长为52,则三边长分别为52,52,23,能构成三角形,符合题意,则三角形的周长为52×2+23=102+2 3.故选B. 11.5 1412.-2 13.x ≤3且x ≠0 14.12 142 15.π-2.6 16.587.917.①④ 18.315419.解:(1)(x -2)2=16,x -2=±4,∴x =6或-2.(3分)(2)(x +2)3=-27,x +2=-3,∴x =-5.(6分) 20.解:(1)原式=22+42-2=5 2.(3分)(2)原式=52+0.3-15=2.6.(6分) (3)原式=18-245-32=32-65-32=-6 5.(9分)(4)原式=(203-183+23)÷3=43÷3=4.(12分)21.解:从数轴可知a <0<b ,(2分) ∴a -a 2-b 2+(a -b )2=a -(-a )-b -(a -b )=a +a -b -a +b =a .(6分)22.解:∵AB =AD ,∠BAD =90°,AB =22,∴BD =AB 2+AD 2=4.(3分)∵BD 2+CD 2=42+(43)2=64,BC 2=64,∴BD 2+CD 2=BC 2,∴△BCD 为直角三角形,且∠BDC=90°.(6分)∴S 四边形ABCD =S △ABD +S △BCD =12×22×22+12×43×4=4+8 3.(8分) 23.解:原式=(1-2)2+(1+2)2-(1-2)(1+2)-2(1-2)+2(1+2)=3-22+3+22-(1-2)-2+22+2+22=6+1+42=7+4 2.(8分)24.解:(1)10 25(2分)(2)∵t 2t 1=2510=2,∴t 2是t 1的2倍.(5分) (3)由题意得h 5=1.5,即h 5=2.25,∴h =11.25m.(7分) 答:经过1.5s ,高空抛物下落的高度是11.25m.(8分)25.解:(1)a ≥2018 a -2017(3分) (2)她的答案不正确.(4分)理由如下:∵|2017-a |+a -2018=a ,∴a -2017+a -2018=a ,∴a -2018=2017,(6分)∴a -2018=20172,∴a -20172=2018.∴她的答案不正确.(8分)26.解:(1)m 2+3n 2 2mn (2分)(2)4 2 1 1(答案不唯一)(6分)(3)由题意得a =m 2+3n 2,b =2mn ,∴4=2mn ,且m ,n 为正整数,(8分)∴m =2,n =1或m =1,n =2,∴a =22+3×12=7或a =12+3×22=13.(10分)八年级数学上册《位置与坐标》单元测试卷(提高)一、选择题(每小题3分,共30分)1.(3分)点M 在x 轴的上侧,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(5,3)B .(﹣5,3)或(5,3)C .(3,5)D .(﹣3,5)或(3,5)2.(3分)若点A (m ,n )在第二象限,那么点B (﹣m ,|n |)在( )A .第一象限B .第二象限;C .第三象限D .第四象限3.(3分)若,则点P (x ,y )的位置是( )A .在数轴上B .在去掉原点的横轴上C .在纵轴上D .在去掉原点的纵轴上4.(3分)如果点P (m +3,m +1)在直角坐标系的x 轴上,P 点坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,﹣4)5.(3分)如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是( )A.点A B.点B C.点C D.点D6.(3分)如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等7.(3分)A(﹣3,2)关于y轴的对称点是B,B关于x轴的对称点是C,则点C的坐标是()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(3,2)8.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定9.(3分)如图,在直角梯形ABCD中,若AD=5,点A的坐标为(﹣2,7),则点D的坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)10.(3分)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)二、填空题(每小题3分,共24分)11.(3分)在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示.12.(3分)如图,用(0,0)表示点O的位置,用(3,2)表示点M的位置,则点N的位置可表示为.13.(3分)点P(a,b)与点Q(1,2)关于x轴对称,则a+b=.14.(3分)已知A在灯塔B的北偏东30°的方向上,则灯塔B在小岛A的的方向上.15.(3分)已知点A(x,2),B(﹣3,y),若AB∥y轴,则x=,y=.16.(3分)已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是.17.(3分)已知点P的坐标(3+x,﹣2x+6),且点P到两坐标轴的距离相等,则点P的坐标是.18.(3分)如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.三、解答题(共66分)19.(8分)写出如图中“小鱼”上所标各点的坐标并回答:(1)点B、E的位置有什么特点;(2)从点B与点E,点C与点D的位置看,它们的坐标有什么特点?20.(8分)如图所示,是聊城市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,画出直角坐标系,并用坐标表示出下列景点的位置.光岳楼、湖心岛、金凤广场、动物园.21.(8分)一缉私船队B在A的南偏东30°方向,A、B两处相距1km.接通知后,缉私队立刻通过全球定位系统测得走私地点C在B的北偏东60°方向,A的南偏东75°方向,如果你是一名光荣的缉私队员,根据上述信息,你能判断出走私地点C离B处多远吗?22.(8分)如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)如果该台阶有10级,你能得到该台阶的高度吗?23.(10分)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)24.(12分)如图,四边形ABCD各个顶点的坐标分别为A(6,4),B(3,7),C(0,4),D(3,1).(1)求四边形ABCD的面积;(2)如果四边形ABCD绕点C旋转180°,试确定旋转后四边形各个顶点的坐标;(3)请你重新设计适当的坐标系,使得四个顶点的纵坐标不变,横坐标乘以﹣1后,所的图形与原图形重合.25.(12分)已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法.计算三角形一边的长,并求出该边上的高.方法二:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法三:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标:A(2,﹣1),B(4,3),C(1,2),请你选择一种方法计算△ABC的面积.北师大新版八年级数学上册《第3章位置与坐标》单元测试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2013春•萍乡期末)点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,3)B.(﹣5,3)或(5,3)C.(3,5)D.(﹣3,5)或(3,5)【解答】解:∵点距离x轴5个单位长度,∴点M的纵坐标是±5,又∵这点在x轴上侧,∴点M的纵坐标是5;∵点距离y轴3个单位长度即横坐标是±3,∴M点的坐标为(﹣3,5)或(3,5).故选D.2.(3分)(2015春•武威校级期中)若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()A.第一象限B.第二象限;C.第三象限D.第四象限【解答】解:∵点A(m,n)在第二象限,∴m<0,n>0,∴﹣m>0,|n|>0,∴点B在第一象限.3.(3分)(2014秋•武威校级期中)若,则点P(x,y)的位置是()A.在数轴上B.在去掉原点的横轴上C.在纵轴上D.在去掉原点的纵轴上【解答】解:∵,x不能为0,∴y=0,∴点P(x,y)的位置是在去掉原点的横轴上.故选B.4.(3分)(2013秋•平川区期末)如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,∴m=﹣1,把m=﹣1代入横坐标得:m+3=2.则P点坐标为(2,0).故选B.5.(3分)(2008•双柏县)如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D【解答】解:根据如图所建的坐标系,易知(10,20)表示的位置是点B,故选:B.6.(3分)(2014秋•阜南县校级期末)如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【解答】解:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.7.(3分)(2014秋•武威校级期中)A(﹣3,2)关于y轴的对称点是B,B关于x轴的对称点是C,则点C的坐标是()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(3,2)【解答】解:由题意可得:A(﹣3,2)关于y轴的对称点是B(3,2),B关于x轴的对称点是C(3,﹣2).故选:C.8.(3分)(2016春•潮南区月考)已知点A(1,0),B(0,2),点P在x轴上,且△PAB 的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C.9.(3分)如图,在直角梯形ABCD中,若AD=5,点A的坐标为(﹣2,7),则点D的坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)【解答】解:如图,设AD与y轴的交点为E,在直角梯形ABCD中,∵点A的坐标为(﹣2,7),∴OB=2,OE=7,∵AD=5,∴DE=5﹣2=3,∴点D的坐标为(3,7).故选C.10.(3分)(2012•莆田)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,﹣1)B.(﹣1,1)C.(﹣1,﹣2)D.(1,﹣2)【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B的位置,点的坐标为(﹣1,1).故选B.二、填空题(每小题3分,共24分)11.(3分)(2013春•镇康县校级期末)在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示10排15号.【解答】解:∵“8排4号”记作(8,4),∴(10,15)表示10排15号.故答案为:10排15号.12.(3分)如图,用(0,0)表示点O的位置,用(3,2)表示点M的位置,则点N的位置可表示为(6,3).【解答】解:如图,点N的位置可表示为(6,3).故答案为(6,3).13.(3分)点P(a,b)与点Q(1,2)关于x轴对称,则a+b=﹣1.【解答】解:∵点P(a,b)与点Q(1,2)关于x轴对称,∴a=1,b=﹣2,即a+b=﹣1.14.(3分)(2014秋•雨城区校级期中)已知A在灯塔B的北偏东30°的方向上,则灯塔B 在小岛A的南偏西30°的方向上.【解答】解:由图可得,灯塔B在小岛A的南偏西30°的方向上.15.(3分)已知点A(x,2),B(﹣3,y),若AB∥y轴,则x=﹣3,y=不等于2的任意实数.【解答】解:∵点A(x,2),B(﹣3,y),AB∥y轴,∴x=﹣3,y不等于2的是任意实数.故答案为:﹣3,不等于2的任意实数.16.(3分)(2015春•赵县期末)已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是±4.【解答】解:由题意可得5×|OA|÷2=10,∴|OA|=,∴|OA|=4,∴点a的值是4或﹣4.故答案为:±4.17.(3分)已知点P的坐标(3+x,﹣2x+6),且点P到两坐标轴的距离相等,则点P的坐标是(4,4)或(12,﹣12).【解答】解:由点P到两坐标轴的距离相等,得3+x=﹣2x+6或3+x+(﹣2x+6)=0,解得x=1或x=9,点P的坐标(4,4)或(12,﹣12),故答案为:(4,4)或(12,﹣12).18.(3分)(2008•仙桃)如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).三、解答题(共66分)19.(8分)(2016春•潮南区月考)写出如图中“小鱼”上所标各点的坐标并回答:(1)点B、E的位置有什么特点;(2)从点B与点E,点C与点D的位置看,它们的坐标有什么特点?【解答】解:(1)点B(0,﹣2)和点E(0,2)关于x轴对称;(2)点B(0,﹣2)与点E(0,2),点C(2,﹣1)与点D(2,1),它们的横坐标相同纵坐标互为相反数.20.(8分)如图所示,是聊城市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,画出直角坐标系,并用坐标表示出下列景点的位置.光岳楼(0,0)、湖心岛(﹣1.5,1)、金凤广场(﹣2,﹣1.5)、动物园(7,3).【解答】解:以光月楼为坐标原点建立直角坐标系,如图,所以光岳楼的坐标为(0,0)、湖心岛的坐标为(﹣1.5,1)、金凤广场的坐标为(﹣2,﹣1.5)、动物园的坐标为(7,3).故答案为(0,0),(﹣1.5,1),(﹣2,﹣1.5),(7,3).21.(8分)一缉私船队B在A的南偏东30°方向,A、B两处相距1km.接通知后,缉私队立刻通过全球定位系统测得走私地点C在B的北偏东60°方向,A的南偏东75°方向,如果你是一名光荣的缉私队员,根据上述信息,你能判断出走私地点C离B处多远吗?【解答】解:如右图所示,∠BAC=75°﹣30°=45°,∠ABC=30°+60°=90°,∴∠C=90°﹣45°=45°,∴∠BAC=∠C,∴△ABC是等腰直角三角形,∴BC=AB=1km,答:走私地点C离B处是1km.22.(8分)(2012春•昌江县校级月考)如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)如果该台阶有10级,你能得到该台阶的高度吗?【解答】解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5).(2)B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;(3)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.23.(10分)(2011秋•汉川市期中)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)【解答】解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.24.(12分)如图,四边形ABCD各个顶点的坐标分别为A(6,4),B(3,7),C(0,4),D(3,1).(1)求四边形ABCD的面积;(2)如果四边形ABCD绕点C旋转180°,试确定旋转后四边形各个顶点的坐标;(3)请你重新设计适当的坐标系,使得四个顶点的纵坐标不变,横坐标乘以﹣1后,所的图形与原图形重合.【解答】解:(1)由图可知四边形ABCD的对角线互相垂直,并且长都是6,所以面积=×6×6=18平方单位;(2)A′(﹣6,4),B′(﹣3,1),C(0,4),D′(﹣3,7);(3)以原坐标轴的(3,0)点为原点,以原坐标轴x轴为横轴,以四边形垂直x轴对角线为y轴建立坐标系.25.(12分)(2013秋•重庆校级期中)已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法.计算三角形一边的长,并求出该边上的高.方法二:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法三:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标:A(2,﹣1),B(4,3),C(1,2),请你选择一种方法计算△ABC的面积.【解答】解:本题宜用补形法.如图,过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F,∵A(2,﹣1),B(4,3),C(1,2),∴EF=BD=3,CD=1,CE=3,AE=1,AF=2,BF=4,∴S△ABC=S矩形BDEF﹣S△BDC﹣S△CEA﹣S△BFA=BD•DE﹣•DC•DB﹣•CE•AE﹣AF•BF,=12﹣1.5﹣1.5﹣4=5.(本题也可先由勾股定理的逆定理,判别出△ABC为直角三角形,再求面积).第四章检测卷时间:120分钟满分:120分题号,一,二,三,总分得分一、选择题(每小题3分,共30分)1.下列图象中,表示y 是x 的函数的个数有( )A .1个B .2个C .3个D .4个2.直线y =2x -4与y 轴的交点坐标是( )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)3.直线y =-2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x -b =0的解是( )A .x =2B .x =4C .x =8D .x =104.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对5.若直线y =kx +b 经过A (0,2)和B (3,0)两点,则这个一次函数的关系式是( )A .y =2x +3B .y =-23x +2 C .y =3x +2 D .y =x -16.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂物体质量x (kg)间有如下关系(其中x ≤12).下列说法不正确的是( )x,0,1,2,3,4,5y,10,10.5,11,11.5,12,12.5A.x 与y 都是变量,且x 是自变量B .弹簧不挂重物时的长度为10cmC .物体质量每增加1kg ,弹簧长度y 增加0.5cmD .所挂物体质量为7kg 时,弹簧长度为14.5cm7.正比例函数y =kx (k ≠0)的图象在第二、四象限,则一次函数y =x +k 的图象大致是( )8.为了鼓励节约用水,按以下规定收取水费:(1)若每户每月用水量不超过20立方米,则每立方米水费1.8元;(2)若每户每月用水量超过20立方米,则超过部分每立方米水费3元.设某户一个月所交水费为y (元),用水量为x (立方米),则y 与x 的函数关系用图象表示为( )9.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(min)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500min时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0个B.1个C.2个D.3个10.如图,把直线y=-2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n =6,则直线AB的解析式是()A.y=-2x-3 B.y=-2x-6C.y=-2x+3 D.y=-2x+6二、填空题(每小题3分,共24分)11.若直线y=2x+1经过点(0,a),则a=________.12.已知一次函数y=(1-m)x+m-2,当m________时,y随x的增大而增大.13.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.14.如图,射线OA,BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s,t分别表示行驶距离和时间,则这两人骑自行车的速度相差________km/h.15.已知关于x 的方程ax -5=7的解为x =1,则一次函数y =ax -12与x 轴交点的坐标为________.16.甲和乙同时加工一种产品,如图所示,图①、图②分别表示甲和乙的工作量与工作时间的关系.如果甲已经加工了75kg ,那么乙加工了________kg.17.过点(-1,7)的一条直线与x 轴、y 轴分别相交于点A ,B ,且与直线y =-32x +1平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是______________.18.如图,已知点A 和点B 是直线y =34x 上的两点,A 点坐标是⎝⎛⎭⎫2,32.若AB =5,则点B 的坐标是________________.三、解答题(共66分)19.(8分)某市长途电话按时分段收费,3分钟内收费1.8元,以后每超过1分钟加收0.8元.若通话t 分钟(t ≥3).(1)求需付电话费y (元)与t (分钟)之间的函数关系式; (2)画出函数图象.20.(8分)已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数y=kx+b的图象与x轴的交点为A(a,0),求a的值.21.(9分)已知一次函数y=mx+3-m,当m为何值时,(1)y随x值的增大而减小;(2)一次函数的图象与直线y=-2x平行;(3)一次函数的图象与x轴交于点(2,0).22.(9分)已知一次函数y=kx+b的图象经过点A(0,2)和点B(-a,3),且点B在正比例函数y=-3x的图象上.(1)求a的值;(2)求一次函数的解析式并画出它的图象;(3)若P(m,y1),Q(m-1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.23.(10分)某销售公司推销一种产品,设x(件)是推销产品的数量,y(元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:(1)求每种付酬方案y关于x的函数表达式;(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x的取值范围.。
最新北师大版八年级数学上册单元测试题全套及答案
最新北师大版八年级数学上册单元测试题全套及答案第一章勾股定理综合测评时间:_______ 满分:120分班级:_______ : ________ 得分: _____一、精心选一选(每小题4分,共32分)1.在AABC 中,ZB二90°,若BC二3, AC二5,则AB 等于()A. 3B.4C. 5D.62.下列几组数中,能组成宜角三角形的是()1 1 1A.—♦—,—B. 3, 4, 6C. 12, 13D. 0. 8» 1. 2, 1. 53 4 53•如图1,正方形ABCD的而积为100 cm=, AABP为直角三角形,ZP二90°,且PB二6 cm,则AP的长为()A. 10 cmB. 6 cmC. 8 cmD.无法确定4•两只小嚴鼠在地下打洞,一只朝前方挖,每分钟挖8 cm,另一只朝左挖,每分钟挖6 cm, 10分钟后,两只小嚴鼠相距()A. 50 cmB. 80 cmC. 100 cjnD. 140 cm5•已知a, b, c为的三边,且满足(/_,)(/+//一疋)=0.则它的形状为()A•直角三角形B”等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.图2中的小方格都是边长为1的正方形,试判断AABC的形状为()A.钝角三角形B.锐角三角形C.直角三角形D.以上都有可能7•如图3,—圆柱髙8 cm,底而半径为2 cm, 一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(兀取3)是()A. 20 cmB. 10 cmC. 14 cmD.无法确定8•已知RtAABC中,ZC=90°,若BC+AC=l e4 cm, AB=10 cm,则该三角形的而积是()A. 24 cm:B. 36 cm:C. 48 cm'D. 60 cm:二、耐心填一填(每小题4分,共32分)9.________________________________________ 写岀两组勾股数:10•在ZXABC 中,ZC=90° , 若BC : AC=3 : 4, AB = 10,则BC= ___ ・ AC= ___ ・11 •如图纭等腰三角形ABC的底边长为16.底边上的髙AD长为6,则腰AB的长度为_______ ・12•如图5, ZO^B= ZOBC= Z0CD=90° , AB=BC=CD=1, 0A=2,则O£)2= ________ ・13.-个三角形的三边长之比为5 : 12 : 13.它的周长为60,则它的而积是________ .14.图6是一个三级台阶,它的每一级长、宽、髙分别是2米,0.3米,0.2米,A, B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面「爬行到B点的最短路程是 ___ 米.15.-天,小明买了一底而是边长为260 cm的正方形,厚30 cm的床垫回家,到了家门口,才「发现屋门只有242 cm高,100 cm宽.你认为小明能把床垫拿进屋吗?_________ .(填"能"或"不能")5 416•图7是一束太线从仓库窗戸射入的平而示意图,小强同学测得BN=二米和NC=-米,BC = 1米,3 3 AC=4.5米,MC=6米,则太线MA的长度为____ 米.三.细心做一做(共56分)17.(10分)如图8,甲漁船以8海里/时的速度离开港口0向东北方向航行,乙渔船以6海里/时的速度离开港口0向四北方向航行,它们同时出发•一个半小时后,甲、乙两渔船相距多少海里?18.(10 分)如图9,已知在△ABC 中,AB=13, AD二12, AC二15, CD二9,求AABC 的而积.19.(12分)如图10,任一棵树的10米高处有两只猴子,一只猴子爬下树后走到离树20米处的池塘A处.另一只爬到树顶D后直接跃到A处,距离以直线汁算,若两只猴子所经过的距离相等,试求该树的高度.20.(12分)如图11, 一块草坪的形状为四边形ABCD…其中ZB二90。
北师大版八年级数学上册单元测试题全套含答案
北师大版八年级数学上册单元测试题全套含答案(含期中期末试题,共12套)第一章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,则以AB 为边的正方形的面积为( A )A .10B .9C .100D .25,第3题图)2.在△ABC 中,AB =15,BC =12,AC =9,则△ABC 的面积为( C ) A .180 B .90 C .54 D .1083.如图,AB ⊥CD 于点B ,△ABD 和△BCE 都是等腰三角形,如果CD =17,BE =5,那么AC 的长为( D )A .12B .7C .5D .134.(荆门中考)如图,在△ABC 中,AB =AC ,AD 是∠BAC 的角平分线,已知AB =5,AD =3,则BC 的长为( C )A .5B .6C .8D .105.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离为( A ) A .365 B .1225 C .94 D .3346.若一个三角形的三边长为a ,b ,c 且满足(a +b +c)(a 2-b 2-c 2)=0,则这个三角形是( B ) A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形7.一架2.5米长的梯子,斜立在一竖直的墙上,这时梯子的底端离墙0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子底端在水平方向上滑动( B )A .0.9米B .0.8米C .0.5米D .0.4米8.如图,圆柱高8 cm ,底面圆的半径为6πcm ,一只蚂蚁从点A 爬到点B 处吃蜂蜜,则要爬行的最短路程是( B )A .20 cmB .10 cmC .14 cmD .无法确定,第8题图) ,第10题图)9.在△ABC 中,AB =13,AC =15,高AD =12,则BC 的长为( B ) A .14 B .14或4 C .8 D .4或810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D′处,若AB =3,AD =4,则ED 的长为( A )A .32B .3C .1D .43二、填空题(每小题3分,共18分)11.请写出两组你所熟悉的勾股数:__3,4,5__或__6,8,10__等.12.如图,两个正方形的面积分别为9和16,则直角三角形的斜边长为__5__.,第12题图) ,第13题图)13.如图,由四个全等的直角三角形拼成的“赵爽弦图”,在Rt △ABF 中,∠AFB =90°,AF =3,AB =5,则四边形EFGH 的面积是__1__.14.如图有一个棱长为9 cm 的正方体,一只蜜蜂要沿正方体的表面从顶点A 爬到C 点(C 点在一条棱上,距离顶点B 3 cm 处),则需爬行的最短路程是__15__cm .,第14题图) ,第15题图)15.(漳州中考)如图,在△ABC 中,AB =AC =5,BC =8.点D 是底边BC 上的一个动点,若线段AD 的长为整数,则满足条件的点D 共有__5__个.16.定义:如图,点M ,N 将线段AB 分割成线段AM ,MN ,NB ,且以AM ,MN ,NB 为边可组成一个直角三角形,点M ,N 是线段AB 的勾股分割点.若M ,N 是线段AB 的勾股分割点,且AM =3,BN =5,则MN 2的值为__16或34__.三、解答题(本大题9小题,共72分)17.(6分)如图,正方形网格中有△ABC ,若小方格边长为1,请你根据所学的知识解答下列问题: (1)求△ABC 的面积;(2)判断△ABC 是什么形状,并说明理由.解:(1)用正方形的面积减去三个小三角形的面积即可求出△ABC 的面积.S △ABC =4×4-1×2×12-4×3×12-2×4×12=16-1-6-4=5,所以△ABC 的面积为5(2)△ABC 是直角三角形.理由如下:因为AB 2=12+22=5,AC 2=22+42=20,BC 2=32+42=25,所以AC2+AB2=BC2,所以△ABC是直角三角形18.(6分)如图,AF⊥DE于F,且DF=15 cm,EF=6 cm,AE=10 cm.求正方形ABCD的面积.解:在Rt△AEF中,AF2=AE2-EF2=64,在Rt△AFD中,AD2=AF2+DF2=289,所以正方形ABCD的面积是289 cm219.(7分)有一只喜鹊在一棵高(AB)3米的小树的树梢上觅食,它的巢筑在距离该树24米(BC),高(EC)为14米的一棵大树上,且巢D离大树顶部E为1米,这时,它听到巢中幼鸟求助的叫声,立刻赶过去,如果它的飞行速度为每秒5米,那么它几秒能赶回巢中?解:由题意知AB=3,BC=24,CD=13,作AG⊥CD于点G,则在Rt△ADG中,AG=24,DG=10,∴AD=102+242=26(米),t=265=5.2(秒).答:它5.2秒能赶回巢中20.(7分)(达州期末)如图,甲轮船以16海里/小时的速度离开港口O向东南方向航行,乙轮船同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B,A两点,且知AB=30海里,问乙轮船每小时航行多少海里?解:甲轮船向东南方向航行,乙轮船向西南方向航行,所以AO⊥BO,因为甲轮船以16海里/小时的速度航行了一个半小时,所以OB=16×1.5=24(海里),又AB=30海里,所以在Rt△AOB中,AO=AB2-OB2=302-242=18,所以乙轮船每小时航行18÷1.5=12(海里)21.(8分)如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上的中点,过D点作DE ⊥DF,交AB于点E,交BC于点F,若AE=4,FC=3,求EF的长.解:连接BD,证△BDE≌△CDF,得BE=FC,所以AB=7,BF=4,在Rt△BEF中,EF2=BE2+BF2=25,即EF=522.(8分)如图,∠AOB=90°,OA=45 cm,OB=15 cm,一智能机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,智能机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与智能机器人行走的速度相等,那么智能机器人行走的路程BC是多少?解:小球滚动的速度与智能机器人行走的速度相同,时间相同,即BC=CA,设AC=x,则OC=45-x,在Rt△BOC中,OB2+OC2=BC2,即152+(45-x)2=x2,解得x=25.所以机器人行走的路程BC是25 cm23.(8分)如图,已知∠MBN=60°,在BM,BN上分别截取BA=BC,P是∠MBN内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA∶PB∶PC=3∶4∶5,连接PQ,求证:∠PQC=90°.解:(1)AP=CQ.因为∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,所以∠ABP=∠QBC,又因为AB=BC,BP=BQ,所以△ABP≌△CBQ,AP=CQ(2)设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中,因为PB=BQ=4a,且∠PBQ=60°,所以△PBQ为等边三角形,所以PQ=4a,在△PQC中,因为PQ2+QC2=16a2+9a2=25a2=PC2,所以△PQC 为直角三角形,即∠PQC =90°24.(10分)如图,在长方形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE =OD.(1)试证明DG =EP ; (2)求AP 的长.解:(1)因为四边形ABCD 是长方形,所以∠D =∠A =∠C =90°,AD =BC =6,CD =AB =8.由折叠的性质可知EP =AP ,BE =AB =8,∠E =∠A =90°,所以∠E =∠D.在△ODP 和△OEG 中,⎩⎨⎧∠D =∠E ,OD =OE ,∠DOP =∠EOG ,所以△ODP ≌△OEG ,所以OP =OG ,PD =GE ,所以DO +OG =PO +OE ,所以DG =EP(2)设AP =EP =DG =x ,则GE =PD =AD -AP =6-x ,所以CG =DC -DG =8-x ,BG =BE -GE =8-(6-x)=2+x.在Rt △CGB 中,由勾股定理得BC 2+CG 2=BG 2,即62+(8-x)2=(x +2)2,解得x =4.8,所以AP =4.825. (12分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D ,E 是线段AB 上两点.∠DCE =45°.(1)当CE ⊥AB 时,点D 与点A 重合,求证:DE 2=AD 2+BE 2; (2)当点D 不与点A 重合时,求证:DE 2=AD 2+BE 2;(3)当点D 在BA 的延长线上时,(2)中的结论是否成立?画出图形,说明理由.解:(1)因为CE ⊥AB ,所以AE =BE ,因为点D 与点A 重合,所以AD =0,所以DE 2=AD 2+BE 2 (2)如图①,过点A 作AF ⊥AB ,使AF =BE ,连接DF ,CF ,因为在△ABC 中,AC =BC ,∠ACB =90°,所以∠CAB =∠B =45°,所以∠FAC =45°,所以△CAF ≌△CBE(SAS ),所以CF =CE ,∠ACF =∠BCE ,因为∠ACB =90°,∠DCE =45°,所以∠ACD +∠BCE =∠ACB -∠DCE =90°-45°=45°,因为∠ACF =∠BCE ,所以∠ACD +∠ACF =45°,即∠DCF =45°,所以∠DCF =∠DCE ,又因为CD =CD ,所以△CDF ≌△CDE(SAS ),所以DF =DE ,因为AD 2+AF 2=DF 2,所以AD 2+BE 2=DE 2(3)结论仍然成立.理由:如图②,过点A 作AF ⊥AB ,使AF =BE ,连接DF ,CF ,因为在△ABC 中,AC =BC ,∠ACB =90°,所以∠CAB =∠B =45°,所以∠FAC =45°,所以△CAF ≌△CBE(SAS ),所以CF =CE ,∠ACF =∠BCE ,因为∠BCE +∠ACE =90°,所以∠ACF +∠ACE =90°,即∠FCE=90°,因为∠DCE =45°,所以∠DCF =45°,所以∠DCF =∠DCE ,又因为CD =CD ,所以△CDF ≌△CDE(SAS ),所以DF =DE ,因为AD 2+AF 2=DF 2,所以AD 2+BE 2=DE 2第二章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列四个实数中,不是无理数的是( B )A . 2B .38C .1.01001000100001……D .π22.121的平方根是( C )A .11B .-11C .±11D .±113.(铁岭中考)二次根式x -4有意义,则实数x 的取值范围是( D ) A .x>4 B .x<4 C .x =4 D .x ≥4 4.(达州期中)下面计算正确的是( B ) A .3+3=3 3 B .27÷3=3C .2·3= 5D .4=±25.实数a ,b 在数轴上的位置如图所示,且|a|>|b|,则化简a 2-|a +b|的结果为( C )A .2a +bB .-2a +bC .bD .2a -b6.已知k ,m ,n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系正确的是( D )A .k<m =nB .m =n<kC .m<n<kD .m<k<n7.下列说法:①5是25的算术平方根;②56是2536的一个平方根;③(-4)2的平方根是-4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有( C )A .1个B .2个C .3个D .4个8.如图,下列各数中,数轴上点A 表示的可能是( C )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 9.下列各式中,正确的是( C ) A .22+32=2+3B .32+53=(3+5)2+3C .152-122=15+12·15-12D .412=21210.(泸州中考)已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c2;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S =12a 2b 2-(a 2+b 2-c 22)2,若一个三角形的三边长分别为2,3,4,则其面积是( B )A .3158B .3154C .3152D .152二、填空题(每小题3分,共18分) 11.(南京中考)计算:(-3)2=__3__.12.(陕西中考)在实数-5,-3,0,π,6中,最大的一个数是__π__. 13.(荆门中考)已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为__3__. 14.(鄂州中考)若y =x -12+12-x -6,则xy =__-3__. 15.15-x 是有理数,则x 的最大整数值是__15__.16.若两个代数式M 与N ,满足M ·N =-1,则称这两个代数式为“互为友好因式”,则3+5的“互为友好因式”是2三、解答题(本大题9小题,共72分) 17.(8分)计算:(1)(达州中考)20170-|1-2|+(13)-1+2×22;解:5(2)1+(-12)-1-(3-2)2÷(13-3)0.解:-3+318.(8分)先化简,再求值:(1)(a -2b)(a +2b)+ab 3÷(-ab),其中a =2,b =3; 解:原式=a 2-5b 2=-13(2)(2x +3)(2x -3)-4x(x -1)+(x -2)2,其中x =- 3. 解:原式=x 2-5=-219.(9分)计算:(1)32+50+1345-18;解:62+5 (2)22÷52×1234; 解:35 (3)(6-412+38)÷2 2. 解:123+220.(6分)若31-2x 与33y -2互为相反数,求1+2x y的值.解:由题意得(1-2x)+(3y -2)=0,整理得1+2x =3y ,所以1+2x y =3yy=321.(8分)甲同学用如下图所示的方法作出了C 点,表示数13,在△OAB 中,∠OAB =90°,OA =2,AB =3,且点O ,A ,C 在同一数轴上,OB =OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.解:(1)在Rt △OAB 中,由勾股定理得OB 2=OA 2+AB 2,所以OC =OB =OA 2+AB 2=22+32=13,即点C表示数13(2)画图略.在△ODE中,∠EDO=90°,OD=5,DE=2,则OF=OE=29,即F点为-2922.(8分)如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,5,2 2.解:(1)AB=4,AC=32+32=32,BC=12+32=10,所以AB的长度是有理数,AC和BC的长度是无理数(2)图略23.(6分)已知实数x,y满足x+y=-7,xy=12,求y xy+xyx的值.解:因为x+y=-7,xy=12,所以x<0,y<0,所以y xy+xyx=-xy-xy=-2xy=-212=-4324.(8分)小丽想用一块面积为400 cm2的正方形纸片沿着边的方向剪出一块面积为300 cm2的长方形,并使长方形纸片的长宽之比为3∶2,请问小丽能否剪出符合要求的长方形纸片,请说明理由.解:小丽不能剪出符合要求的长方形纸片.理由为:设长方形纸片的长为3x cm,宽为2x cm,由题意则有:3x·2x=300,6x2=300,x2=50,所以x=50,所以长方形纸片的长为3x=350,又因为50>49=7,所以3x=350>21(cm),而原正方形纸片的边长为20 cm,故小丽不能剪出符合要求的长方形纸片25.(11分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,23+1这样的式子,其实我们还可以将其进一步化简:(一)53=5×33×3=533;(二)23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-1=3-1;(三)23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=;②参照(三)式化简25+3=(2)化简:13+1+15+3+17+5+…+199+97.解:(1)①2×(5-3)(5+3)(5-3)=2(5-3)(5)2-(3)2=5-3②5-35+3=(5)2-(3)25+3=(5+3)(5-3)5+3=5-3(2)原式=3-12+5-32+7-52+…+99-972=99-12=311-12第三章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(聊城中考)在平面直角坐标系中,点M(-3,4)在( B )A.第一象限B.第二象限C.第三象限D.第四象限2.八(2)班有45人参加学校运动会的入场式,队伍共9排5列,如果用(2,4)表示第2排从左到右第4列站着的同学,那么站在队伍最中间的点表示为( D )A.(15,4) B.(2,3) C.(3,0) D.(5,3)3.若点A(m,n)在第三象限,则点B(-m,n)在( D )A.第一象限B.第二象限C.第三象限D.第四象限4.如果M(m+3,2m+4)在y轴上,那么点M的坐标是( B )A.(-2,0) B.(0,-2) C.(1,0) D.(0,1)5.如果P 点的坐标为(a ,b),它关于y 轴的对称点为P 1,P 1关于x 轴的对称点为P 2,已知P 2的坐标为(-2,3),则点P 的坐标为( B )A .(-2,-3)B .(2,-3)C .(-2,3)D .(2,3)6.(资阳期末)如图,小明从点O 出发,先向西走40米,再向南走30米到达点E ,如果点E 的位置用(-40,-30)表示,那么(10,20)表示的位置是( B )A .点AB .点BC .点CD .点D,第6题图) ,第7题图)7.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P.若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( B )A .a =bB .2a +b =-1C .2a -b =1D .2a +b =18.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,-5),(-2,-2),以这三点为平行四边形的三个顶点,则第四个顶点不可能在( A )A .第一象限B .第二象限C .第三象限D .第四象限9. 已知A(a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( D ) A .2 B .4C .0或4D .4或-410.如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标不可能是( B )A .(4,0)B .(1,0)C .(-22,0)D .(2,0) 二、填空题(每小题3分,共18分)11.点P(1,2)关于x 轴的对称点P 1的坐标是__(1,-2)__,点P(1,2)关于y 轴的对称点P 2的坐标是__(-1,2)__.12.如图,如果所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在的位置坐标为__(-3,3)__.,第12题图) ,第14题图)13.已知点A(4,3),AB ∥y 轴,且AB =3,则B 点的坐标为__(4,0)或(4,6)__.14.如图,正方形A 1A 2A 3A 4,A 5A 6A 7A 8,A 9A 10A 11A 12,…(每个正方形从第三象限的顶点开始,按顺时针方向,依次记为A 1,A 2,A 3,A 4;A 5,A 6,A 7,A 8;A 9,A 10,A 11,A 12;…)的中心均在坐标原点O ,各边均与x 轴或y 轴平行,若它们的边长依次是2,4,6…,则顶点A 20的坐标为__(5,-5)__.15.(湘潭中考)阅读材料:设a →=(x 1,y 1),b →=(x 2,y 2),如果a →※b →,则x 1·y 2=x 2·y 1.根据该材料填空:已知a →=(2,3),b →=(4,m),且a →※b →,则m =__6__.16.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,3),则点B 的坐标为3)__.三、解答题(本大题9小题,共72分)17.(6分)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可见,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中建筑C 的位置.解:如图:18.(6分)图中标明了小强家附近的一些地方.(1)写出公园、游艺场和学校的坐标;(2)早晨,小强从家里出发,沿(-3,-1),(-1,-2),(0,-1),(2,-2),(1,0),(1,3),(-1,2)路线转了一下,又回到家里,写出他路上经过的地方.解:(1)公园(3,-1),游艺场(3,2),学校(1,3)(2)邮局——移动通讯——幼儿园——消防队——火车站——学校——糖果店19.(6分)一位老人制作的仿真郑和宝船尺寸如图,已知在某一直角坐标系中,点A坐标为(9,0).(1)请你直接在图中画出该坐标系;(2)写出其余5点的坐标.解:(1)画图略(2)B(5,2),C(-5,2),D(-9,0),E(-5,-2),F(5,-2)20.(6分)如图,分别说明:△ABC从(1)→(2),再从(2)→(3)…一直到(5),它的横、纵坐标依次是如何变化的?解:(1)→(2)纵坐标不变,横坐标都加1(2)→(3)横坐标不变,纵坐标都加1(3)→(4)横、纵坐标都乘以-1(4)→(5)横坐标不变,纵坐标都乘以-121.(9分)已知点A(a-3,a2-4),求分别满足下列条件的a及点A的坐标:(1)当点A在x轴上;(2)当点A在y轴上;(3)已知点B(2,5),且AB∥x轴.解:(1)因为点A(a-3,a2-4)在x轴上,所以a2-4=0,所以a=±2.点A的坐标为(-1,0)或(-5,0)(2)因为点A在y轴上,所以a-3=0,所以a=3,点A的坐标为(0,5)(3)因为AB∥x轴,所以a2-4=5,所以a=±3.当a=±3时,a-3≠2,故a=±3,点A的坐标为(0,5)或(-6,5)22.(10分)如图所示,在平面直角坐标系中有A,B,C三点.(1)写出A,B,C三点坐标;(2)画出△ABC关于x轴对称图形△A1B1C1,并写出A1,B1,C1的坐标;(3)在图中描出D(2,4),E(3,1),F(1,3),观察△DEF与△ABC有什么关系?(4)如果三角形ABC中任意一点M的坐标为(x,y),那么它关于y轴对称的点N的坐标是什么?解:(1)A(-2,4),B(-3,1),C(-1,3)(2)图略,A1(-2,-4),B1(-3,-1),C1(-1,-3)(3)△DEF与△ABC关于y轴对称(4)N(-x,y)23.(8分)如图所示,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.解:由题意可知,折痕AD是四边形OAED的对称轴,在Rt△ABE中,AE=AO=10,AB=8,BE=AE2-AB2=102-82=6,所以CE=4,所以E(4,8).在Rt△DCE中,DC2+CE2=DE2,又因为DE=OD,所以(8-OD)2+42=OD2,解得OD=5,所以D(0,5)24.(9分)如图,在平面直角坐标系中有三点A(-2,1),B(3,1),C(2,3).(1)在平面直角坐标系内描出点A,B,C的位置,并将点A,B,C,A用线段依次连接起来;(2)求出以A,B,C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)图略(2)依题意,得AB∥x轴,且AB=3-(-2)=5,所以S△ABC=12×5×2=5(3)存在.因为AB=5,S△ABP=10,所以P点到AB的距离为4.又因为点P在y轴上,所以点P的坐标为(0,5)或(0,-3)25.(12分)如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察可知点A(0,2)与点A1(2,0)关于直线l对称,请你在图中标明点B(3,5),C(3,-5),D(-3,-5),E(-5,0)关于直线l的对称点B1,C1,D1,E1的位置,并写出它们的坐标;归纳与发现:(2)结合图形并观察以上五组点的坐标,你会发现:坐标平面内任意一点P(a,b)关于直线l的对称点P1的坐标为__(b,a)__;拓展与应用:(3)若点M(4,2+5y)与点N(-3,3x+1)关于第一、三象限的角平分线对称,求点(x,y)的坐标.解:(1)B1(5,3),C1(-5,3),D1(-5,-3),E1(0,-5)(3)根据任意一点P(a,b)关于直线y=x的对称点P1的坐标为(b,a)可知,2+5y=-3,3x+1=4,解得x=1,y=-1,所以点(x,y)的坐标为(1,-1)第四章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列图象中,表示y是x的函数的个数有( B )A.1个B.2个C.3个D.4个2.(宜宾期末)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为( A )A.y=10x+30 B.y=40xC.y=10+30x D.y=20x3.(白银中考)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得( A ) A.k>0,b>0 B.k>0,b<0C.k<0,b>0 D.k<0,b<0,第3题图),第9题图),第10题图) 4.下列四个点中,不在同一个正比例函数上的点是( D )A.(-4,-8) B.(1,2)C.(-3,-6) D.(2,-4)5.P1(x1,y1),P2(x2,y2)是一次函数y=-2x+5图象上的两点,且x1<x2,则y1与y2的大小关系是( C )A.y1<y2B.y1=y2C.y1>y2D.y1>y2>06.对于函数y=-12x+3,下列说法错误的是( C )A.图象经过点(2,2)B.y随着x的增大而减小C.图象与y轴的交点是(6,0)D.图象与坐标轴围成的三角形面积是97.已知一次函数y=32x+m和y=-12x+n的图象都经过点A(-2,0),且与y轴分别交于B,C两点,那么△ABC的面积是( C )A.2 B.3C.4 D.68.已知一次函数y=kx+b的图象与y=x平行,且过点(1,2),那么它必过点( A )A.(-1,0) B.(2,-1)C.(2,1) D.(0,-1)9.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( C )A.4 B.8C.16 D.8210.(成都期末)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500 m,先到终点的人原地休息.已知甲先出发2 s.在跑步过程中,甲、乙两人的距离(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( A )A.①②③B.①②C.①③D.②③二、填空题(每小题3分,共18分)11.将直线y=2x向上平移1个单位长度后得到的直线是__y=2x+1__.12.(盐城中考)函数y=x-2x-4自变量x的取值范围是__x≥2且x≠4__.13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是__m>-2__.14.已知某一次函数的图象经过点A(0,2),B(1,3),C(a ,1)三点,则a 的值是__-1__.15.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务.播种亩数与天数之间的函数关系如图,那么乙播种机参与播种的天数是__4__.16.一次函数y =kx +b ,当0≤x ≤4时,-7≤y ≤-3,则k =__1或-1__. 三、解答题(本大题9小题,共72分)17.(7分)已知一次函数y =kx +b 的图象经过M(0,2),N(1,3)两点. (1)求k ,b 的值;(2)若一次函数y =kx +b 的图象与x 轴的交点为A(a ,0),求a 的值.解:(1)由题意得b =2,把⎩⎪⎨⎪⎧x =1,y =3代入y =kx +2中得k =1(2)由(1)得y =x +2,当y =0时,x =-2,即a =-218.(6分)一次函数y =-4x +b 与x 轴交于点A ,与y 轴交于点B ,△OAB 的面积是2,求一次函数的表达式.解:令y =0得-4x +b =0,x =b 4,所以S △AOB =12×|b4|×|b|=2,所以b =±4,所以一次函数的表达式为y =-4x +4或y =-4x -419.(8分)联通公司手机话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式; (2)月通话时间多长时,A ,B 两种套餐收费一样?(3)什么情况下A 套餐更省钱? 解:(1)y 1=0.1x +15,y 2=0.15x(2)由y 1=y 2得0.1x +15=0.15x ,解得x =300 (3)当通话时间多于300分钟时,A 套餐省钱20.(7分)设函数y =x +n 的图象与y 轴交于点A ,函数y =-3x -m 的图象与y 轴交于点B ,两个函数的图象交于点C(-3,1),D 为AB 的中点.(1)求m ,n 的值;(2)求直线DC 的一次函数表达式. 解:(1)m =8,n =4(2)由(1)得A(0,4),B(0,-8).因为D 是AB 的中点,所以D(0,-2),设直线CD 的表达式为y=kx +b ,则⎩⎨⎧b =-2,-3k +b =1,解得⎩⎨⎧k =-1,b =-2,即y =-x -221.(7分)某生物小组观察一植物生长,得到植物的高度(单位:厘米)与观察时间(单位:天)的关系,并画出如下的图象(AC 是线段,直线CD 平行于x 轴.)(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC 的表达式,并求该植物最高长多少厘米?解:(1)50天后(2)设直线AC 的表达式为y =kx +6,将(30,12)代入,得12=30k +6,解得k =15,表达式为y =15x +6,最高长16厘米22.(8分)1号探测气球从海拔5 m 处出发,以1 m /min 的速度上升.与此同时,2号探测气球从海拔15 m 处出发,以0.5 m /min 的速度上升,两个气球都匀速上升了50 min .设气球上升时间为 x min (0≤x ≤50)(1)根据题意,填写下表:果不能,请说明理由;(3)当30≤x ≤50时,两个气球所在位置的海拔最多相差多少米?解:(2)能.由x +5=0.5x +15得x =20,所以x +5=25,即气球上升20 min 时位于海拔25 m 处 (3)当30≤x ≤50时,1号气球始终在2号气球上方,设两气球的海拔差为y ,则y =(x +5)-(0.5x +15)=0.5x -10,由函数的性质知y 随x 的增大而增大,所以当x =50时,y 的值最大,为15米23.(9分)如图,直线y =kx +6与x 轴、y 轴分别相交于点E ,F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0),点P(x ,y)是第二象限内的直线上的一个动点.(1)求k 的值;(2)在点P 的运动过程中,写出△OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围;(3)探究:当P 运动到什么位置(求P 的坐标)时,△OPA 的面积为278解:(1)k =34(2)由(1)得y =34x +6,所以S =12×6×(34x +6),所以S =94x +18(-8<x<0)(3)由S =94x +18=278得x =-132,y =34×(-132)+6=98,所以P(-132,98),即P 运动到点(-132,98)时,△OPA 的面积为27824.(9分)(长春中考)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件),甲车间加工的时间为x(时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装件数为__80__件;这批服装的总件数为__1140__件; (2)求乙车间维修设备后,乙车间加工服装数量y 与x 之间的函数关系式; (3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.解:(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9-(420-120)÷60=4(时),所以乙车间维修设备后,乙车间加工服装数量y 与x 之间的函数关系式为y =120+60(x -4)=60x -120(4≤x ≤9)(3)甲车间加工服装数量y 与x 之间的函数关系式为y =80x ,当80x +60x -120=1000时,x =8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时25.(11分)双11购物节期间,某电器商城推出了两种促销方式,且每次购买电器时只能使用其中一种方式:第一种是打折优惠,凡是在该商城购买家用电器的客户均可享受八折优惠;第二种方式是:赠送优惠券,凡在商城三天内购买家用电器的金额满400元且少于600元的,赠优惠券100元;不少于600元的,所赠优惠券是购买电器金额的14,另再送50元现金.(1)以上两种促销方式中第二种方式,可用如下形式表达:设购买电器的金额为x(x ≥400)元,优惠券金额为y 元,则:①当x =500时,y =__100__;②当x ≥600时,y =__14x__;(2)如果小张想一次性购买原价为x(400≤x <600)元的电器,可以使用优惠券,在上面 的两种促销方式中,试通过计算帮他确定一种比较合算的方式?(3)如果小张在促销期间内在此商城先后两次购买电器时都得到了优惠券(两次购买均未 使用优惠券),第一次购买金额在600元以内,第二次购买金额超过600元,所得优惠 券金额累计达800元,设他购买电器的金额为W 元,W 至少应为多少?(W =支付金额-所送现金金额)解:(2)设y 1=0.8x ,y 2=x -100,因为由0.8x =x -100得x =500,此时y 1=y 2;当400≤x <500时y 1>y 2;当500<x <600时y 1<y 2,所以当x =500时,两种方式一样合算;当400≤x <500时,选第二种方式合算;当500<x <600时,选第一种方式合算(3)设第一次购买花了m 元,第二次花了n 元,当400≤m <600,n ≥600时,100+14n =800,得n=2800,W =m +n -50=m +2750,因为400≤m <600,所以3150≤W <3350,即W 至少为3150元第五章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( D ) A .⎩⎪⎨⎪⎧x +13=1y =x 2 B .⎩⎪⎨⎪⎧3x -y =52y -z =6C .⎩⎪⎨⎪⎧x 5+y 2=1xy =1D .⎩⎪⎨⎪⎧x 2=3y -2x =42.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m可得出x 与y 的关系是( A )A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-43.已知3a 2x -1b 2y 与-3a -3y b 3x +6是同类项,则x +y 的值为( D ) A .113 B .3113 C .1513 D .-1134.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( C )A .⎩⎪⎨⎪⎧3x -4y =63x -2y =0 B .⎩⎪⎨⎪⎧3x -4y =63x +2y =0 C .⎩⎪⎨⎪⎧3x -4y =-63x -2y =0 D .⎩⎪⎨⎪⎧-3x +4y =63x +2y =05.(眉山中考)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2ax +by =3,ax -by =1的解为⎩⎨⎧x =1,y =-1,则a -2b 的值是( B )A .-2B .2C .3D .-36.(随州中考)小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x 元,每本笔记本y 元,则可列方程组( B )A .⎩⎪⎨⎪⎧20x +30y =11010x +5y =85B .⎩⎪⎨⎪⎧20x +10y =11030x +5y =85C .⎩⎪⎨⎪⎧20x +5y =11030x +10y =85D .⎩⎪⎨⎪⎧5x +20y =11010x +30y =85 7.一个两位数,个位上的数字与十位上的数字之和为7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调后组成的新两位数,则原来的两位数是( B )A .61B .16C .52D .258.已知等腰三角形的两边长为x ,y 满足方程组⎩⎪⎨⎪⎧2x -y =3,3x +2y =8.则此等腰三角形的周长为( A )A .5B .4C .3D .5或49.由方程组⎩⎨⎧2x +y =7,2y +z =8,2z +x =9,可得到x +y +z 的值为( A )A .8B .9C .10D .11.710.有一根长40 cm 的金属棒,欲将其截成x 根7 cm 长的小段和y 根的9 cm 长的小段,剩余部分作废料处理.若使废料最少,则正整数x ,y 应分别为( B )A .x =1,y =3B .x =3,y =2C .x =4,y =1D .x =2,y =3 二、填空题(每小题3分,共18分)11.写出一个解为⎩⎪⎨⎪⎧x =1,y =2的二元一次方程组是__⎩⎪⎨⎪⎧x +y =3x -y =-1__.12.(包头中考)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3,2x -ay =5的解是⎩⎨⎧x =b ,y =1,则a b的值为__1__.13.如果直线y =2x +3与直线y =3x -2b 的交点在x 轴上,那么b 的值为__-94__.14.八年级(1)班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花35元,则有__2__种购买方案.15.(乐山中考)二元一次方程组x +y 2=2x -y3=x +2的解是__⎩⎪⎨⎪⎧x =-5y =-1__.16.在同一直角坐标系内分别作出一次函数y =12x +1和y =2x -2的图象,则下面的说法:①函数⎪⎧2y -x =2,⎪⎧x =2,1=2x -2的图象交点的坐标为(-2,2);④两直线与y 轴所围成的三角形的面积为 3.其中正确的有__②④__.(填序号)三、解答题(本大题9小题,共72分) 17.(12分)解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;解:⎩⎪⎨⎪⎧x =2y =-1 解:⎩⎪⎨⎪⎧x =9y =6(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎪⎨⎪⎧x =1y =1 解:⎩⎪⎨⎪⎧x =1y =-2z =-118.(6分)直线a 与直线y =2x +1的交点的横坐标是2,与直线y =-x +2的交点的纵坐标是1,求直线a 对应的表达式.解:将x =2代入y =2x +1得y =5,将y =1代入y =-x +2得x =1,设直线a 的表达式为y =kx+b ,即⎩⎨⎧5=2k +b ,1=k +b ,解得⎩⎨⎧k =4,b =-3,所以直线a 的表达式为y =4x -319.(6分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧ax +2by =4,x +y =1与⎩⎪⎨⎪⎧x -y =3,bx +(a -1)y =3的解相同,求a ,b 的值.解:解方程组⎩⎪⎨⎪⎧x +y =1,x -y =3得⎩⎨⎧x =2,y =-1,将⎩⎪⎨⎪⎧x =2,y =-1代入方程组⎩⎪⎨⎪⎧ax +2by =4,bx +(a -1)y =3得⎩⎪⎨⎪⎧a -b =2,2b -a =2解得⎩⎪⎨⎪⎧a =6b =420.(6分)如图,8块相同的长方形地砖拼成了一个长方形图形(地砖间的缝隙忽略不计),求每块地砖的长和宽.解:设每块地砖的长为x 厘米,宽为y 厘米,由题意得⎩⎨⎧x +y =60,3y +x =2x ,解得⎩⎪⎨⎪⎧x =45,y =15.答:每块地砖的长和宽分别为45厘米,15厘米21.(7分)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28 cm ,演员踩在高跷上时,头顶距离地面的高度为224 cm .设演员的身高为x cm ,高跷的长度为y cm ,求x ,y 的值.解:依题意得⎩⎨⎧x =2y ,x +y -28=224,解得⎩⎪⎨⎪⎧x =168y =8422.(7分)学校组织学生乘汽车去自然保护区野营,前13路段为平路,其余路段为坡路,已知汽车在平路上行驶的速度为60 km /h ,在坡路上行驶的速度为30 km /h .汽车从学校到自然保护区一共行驶了6.5 h ,求汽车在平路和坡路上各行驶多少时间?解:设汽车在平路上行驶x h ,在坡路上行驶y h ,则依题意得⎩⎨⎧x +y =6.5,60x ×2=30y ,解得⎩⎪⎨⎪⎧x =1.3y =5.2。
全新北师大版八年级数学上册各单元测试卷(全册 共61页 附答案)
全新北师大版八年级数学上册各单元测试卷(全册共61页附答案)目录第一章达标测试卷一、选择题(每题3分,共30分)1.把一个直角三角形的两直角边长同时扩大到原来的3倍,则斜边长扩大到原来的( ) A.2倍B.3倍C.4倍D.5倍2.下列各组线段能构成直角三角形的一组是( )A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,63.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是( ) A.169 B.119 C.13 D.1444.如图,阴影部分是一个长方形,则长方形的面积是( )A.3 cm2B.4 cm2C.5 cm2D.6 cm2(第4题) (第7题) (第10题)5.满足下列条件的△ABC,不是直角三角形的为( )A.∠A=∠B-∠C B.∠A∶∠B∶∠C=1∶1∶2C.b2=a2-c2D.a∶b∶c=2∶3∶46.已知一轮船以18 n mile/h的速度从港口A出发向西南方向航行,另一轮船以24 n mile/h 的速度同时从港口A出发向东南方向航行,离开港口1.5 h后,两轮船相距( ) A.30 n mile B.35 n mile C.40 n mile D.45 n mile7.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于( )A.1013B.1513C.6013D.75138.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是( ) A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形9.已知直角三角形的斜边长为5 cm,周长为12 cm,则这个三角形的面积是( ) A.12 cm2B.6 cm2C.8 cm2D.10 cm210.如图,分别以直角三角形的三条边为边向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是( )A.S1+S2>S3B.S1+S2=S3C.S1+S2<S3D.无法确定二、填空题(每题3分,共24分)11.如图,在等腰三角形ABC中,AB=AC,AD是底边上的高,若AB=5 cm,BC=6 cm,则AD=__________.(第11题) (第12题) (第13题)12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 300 m,结果他在水中实际游了500 m,则该河流的宽度为________.13.如图,在Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与点A 重合,得折痕DE,则△ABE的周长等于________.14.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+||c-b=0,则△ABC的形状为_________________________________________.15.如图是一个长方体,则AB=________,阴影部分的面积为________.(第15题) (第16题)16.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,且AH∶AE=3∶4.那么AH等于________.17.红方侦察员小马的正前方400 m处有一条东西走向的公路,突然发现一辆蓝方汽车在公路上行驶,他拿出红外线测距仪测得汽车与他相距400 m,10 s后又测得汽车与他相距500 m,则蓝方汽车的速度是________m/s.18.在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看成圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈(如图为灯管的部分示意图),则彩色丝带的总长度为__________.(第18题)三、解答题(19~22题每题9分,其余每题10分,共66分)19.某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12 m,如图,即AD=BC=12 m,此时建筑物中距地面12.8 m高的P处有一被困人员需要救援.已知消防云梯车的车身高AB是3.8 m,问此消防车的云梯至少应伸长多少米?20.如图,在4³4的正方形网格中,每个小正方形的边长都是1.线段AB,AE分别是图中两个1³3的长方形的对角线,请你说明:AB⊥AE.21.如图,四边形ABCD是边长为a的正方形,点E在CD上,DE=b,AE=c,延长CB至点F,使BF=b,连接AF,试利用此图说明勾股定理.22.如图,一根12 m的电线杆AB用铁丝AC,AD固定,现已知用去的铁丝AC=15 m,AD=13 m,又测得地面上B,C两点之间的距离是9 m,B,D两点之间的距离是5 m,则电线杆和地面是否垂直,为什么?23.如图,∠AOB=90°,OA=9 cm,OB=3 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?24.如图,在长方形ABCD中,DC=5 cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设落点为F,若△ABF的面积为30 cm2,求△ADE的面积.25.有一个如图所示的长方体透明玻璃水缸,其长AD=8 cm,高AB=6 cm,水深为AE=4 cm,在水面线EF上紧贴内壁G处有一粒食物,且EG=6 cm,一只小虫想从水缸外的A处沿水缸壁爬进水缸内的G处吃掉食物.(1)小虫应该沿怎样的路线爬才能使爬的路线最短呢?请你画出它爬行的最短路线,并用箭头标注.(2)求小虫爬行的最短路线长(不计缸壁厚度).答案一、1.B 2.A 3.A 4.C 5.D 6.D 7.C 8.D 9.B 10.B二、11.4 cm 12.400 m 13.7 cm 14.等腰直角三角形 15.13;30 16.6 17.3018.150 cm 点拨:因为灯管可近似看成圆柱,而圆柱的侧面展开图是一个长方形,所以假设把灯管的侧面展开后,得到一个由30个完全相同的小长方形组成的大长方形,且每个小长方形的长等于灯管的底面周长,小长方形的高等于灯管长度的130,则丝带的长度等于小长方形对角线长的30倍. 三、19.解:因为CD =AB =3.8 m ,所以PD =PC -CD =9 m. 在Rt △ADP 中,AP 2=AD 2+PD 2, 得AP =15 m.所以此消防车的云梯至少应伸长15 m.20.解:如图,连接BE .(第20题)因为AE 2=12+32=10,AB 2=12+32=10,BE 2=22+42=20,所以AE 2+AB 2=BE 2.所以△ABE 是直角三角形,且∠BAE =90°,即AB ⊥AE .21.解:在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB =a ,∠D =∠ABF ,DE =BF =b ,所以△ADE ≌△ABF .所以AE =AF =c ,∠DAE =∠BAF ,S △ADE =S △ABF .所以∠EAF =∠EAB +∠BAF =∠EAB +∠DAE =∠DAB =90°,S 正方形ABCD =S 四边形AECF .连接EF ,易知S 四边形AECF =S △AEF +S △ECF =12[c 2+(a -b )(a +b )]=12(a 2+c 2-b 2),S 正方形ABCD=a 2,所以12(a 2+c 2-b 2)=a 2.所以a 2+b 2=c 2. 22.解:垂直.理由如下:因为AB =12 m ,AC =15 m ,BC =9 m , 所以AC 2=BC 2+AB 2. 所以∠CBA =90°. 又因为AD =13 m ,AB =12 m ,BD =5 m ,所以AD 2=BD 2+AB 2. 所以∠ABD =90°, 因此电线杆和地面垂直.点拨:要判定电线杆和地面垂直,只需说明AB ⊥BD 且AB ⊥BC 即可,利用勾股定理的逆定理即可判定△ABD 和△ABC 为直角三角形,从而得出电线杆和地面垂直. 23.解:根据题意,BC =AC =OA -OC =9-OC .因为∠AOB =90°,所以在Rt △BOC 中,根据勾股定理,得OB 2+OC 2=BC 2, 所以32+OC 2=(9-OC )2, 解得OC =4 cm. 所以BC =5 cm.24.解:由折叠可知AD =AF ,DE =EF .由S △ABF =12BF ²AB =30 cm 2,AB =DC =5 cm ,得BF =12 cm.在Rt △ABF 中,由勾股定理,得AF =13 cm ,所以BC =AD =AF =13 cm. 设DE =x cm ,则EC =(5-x )cm ,EF =x cm ,FC =13-12=1(cm).在Rt △ECF 中,由勾股定理,得EC 2+FC 2=EF 2,即(5-x )2+12=x 2,解得x =135.所以S △ADE =12AD ²DE =12³13³135=16.9 (cm 2).25.解:(1)如图,作点A 关于BC 的对称点A ′,连接A ′G 与BC 交于点Q ,则AQ +QG 为最短路线.(第25题)(2)因为AE =4 cm ,AA ′=12 cm ,所以A ′E =8 cm.在Rt △A ′EG 中,EG =6 cm ,A ′E =8 cm ,A ′G 2=A ′E 2+EG 2=102, 所以A ′G =10 cm ,所以AQ +QG =A ′Q +QG =A ′G =10 cm. 所以最短路线长为10 cm.第二章达标测试卷一、选择题(每题3分,共30分) 1.8的平方根是( )A .4B .±4C .2 2D .±2 2的立方根是( )A .-1B .0C .1D .±13.有下列各数:0.456,3π2,(-π)0,3.14,0.801 08,0.101 001 000 1…(相邻两个1之间0的个数逐次加1),4,12.其中是无理数的有( ) A .1个B .2个C .3个D .4个4.有下列各式:①2;②13;③8x >0).其中,最简二次根式有( )A .1个B .2个C .3个D .4个5.下列语句不正确的是( )A .数轴上的点表示的数,如果不是有理数,那么一定是无理数B .大小介于两个有理数之间的无理数有无数个C .-1的立方是-1,立方根也是-1D .两个实数,较大者的平方也较大 6.下列计算正确的是( )A.12=2 3B.32=32==x7.设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .88.如图,在数轴上表示-5和19的两点之间表示整数的点有( )A .7个B .8个C .9个D .6个(第8题)(第10题)9(y +3)2=0,则x -y 的值为( )A .-1B .1C .-7D .710.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是( )A .14B .16C .8+52D .14+2二、填空题(每题3分,共24分)11 ________ 5 (填“>”或“<”).12.利用计算器计算12³3-5时,正确的按键顺序是________________,显示器上显示的数是________.13.如图,数轴上表示数3的是点________.。
北师大八年级数学上册单元测试题全套及答案
最新北师大版八年级数学上册单元测试题全套及答案第一章勾股定理综合测评时间: 满分:120分、精心选一选(每小题4分,共32 分)1. 在厶 ABC 中,/ B=90° ,若 BC=3 AC=5,贝U AB 等于( )A.3B.4C.5D.62. 下列几组数中,能组成直角三角形的是()4.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8 cm,另一只朝左挖,每分钟挖 6 cm,10分钟后,两只小鼹鼠相距( )6.图2中的小方格都是边长为 1的正方形,试判断厶 ABC 的形状为()、耐心填一填(每小题4分,共32 分)9. 写出两组勾股数: ________________ . _______________10. 在厶ABC 中,ZC = 90° , 若 BC : AC = 3 :4 , AB= 10,则 BC= ___ , AC = _____ .班级: ________ 姓名: _______ 得分: _______1 1 1A.—,B.3 ,4, 6C.5 ,12, 13D.0.8 , 1.2 , 1.53 4 ,53.如图 1, 正方形 ABCD 的面积为 100 cm 2, △ ABP 为直角三角形, / P=90 ° ,且PB=6 cm ,则AP 的长为 ( )A.10 cmB.6 cmC.8 cmD.无法确定A.50 cmB.80 cmC.100 cm D.140 cm5.已知a , b , cABC 的三边,且满足 a 2 b 2 a 2 b 2 c 2 = 0,则它的形状为( A.直角三角形C.等腰直角三角形B.等腰三角形D. 等腰三角形或直角三角形A .钝角三角形 B. 锐角三角形 C.直角三角形 D.以上都有可能[来源:学科网7. 如图3, 一圆柱高8 cm,底面半径为2 cm, —只蚂蚁从点 A 爬到点B 处吃食,要爬行的最短路程( 取3 )是()A. 20 cmB.10 cmC.14 cmD.无法确定8.已知 Rt △ ABC 中,/ C=90°, 若 BC + AC = 14 cm , AB= 10 cm ,则该三角形的面积是( 2A.24 cm2B.36 cmC.48 cm2D.60 cm11. 如图4,等腰三角形ABC的底边长为16,底边上的高AD长为6,则腰AB的长度为___________13. 一个三角形的三边长之比为 5 : 12 : 13,它的周长为60,则它的面积是 _______ . 14. 图6是一个三级台阶,它的每一级长、宽、高分别是2米,0.3米,0.2米,A ,B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面 爬行到B 点的最短路程是 米.屋门只有242 cm 高,100 cm 宽.你认为小明能把床垫拿进屋吗?________________________________________________________________________ .(填"能”或"不能”)16.图7是一束太阳光线从仓库窗户射入的平面示意图,小强同学测得 米,AC = 4.5米,MC= 6米,则太阳光线 MA 的长度为 _______ 米.17. (10分)如图8,甲渔船以8海里/时的速度离开港口 O 向东北方向航行,乙渔船以5 4 BN ^ —米,NC=—米,BC = 133三、细心做一做(共56分)12.如图 5,/ OAB =Z OBC=Z OCD= 90°, AB= BC = CD= 1, OA= 2,贝U OD 2 = _____15. 一天,小明买了一张底面是边长为 260 cm 的正方形,厚30 cm 的床垫回家,至U 了家门口,才 发现6海里/时的10,在一棵树的10米高处有两只猴子,一只猴子爬下树后走到离树 20米处的池塘D 后直接跃到A 处,距离以直线计算,若两只猴子所经过的距离相等,试求该树的19. (12分)如图 A 处.另一只爬到树顶速度离开港口 O 向西北方向航行,它们同时出发 .一个半小时后,甲、乙两渔船相距多少海里?9,已知在厶 ABC 中,AB=13, AD=12 AC=15, CD=9 求厶 ABC 的面积.18. (10分)如图高度.20. (12分)如图11, 一块草坪的形状为四边形 ABCDr 其中/ B=90 , AB=8 m BC=6 m CD=24 mAD=26 m.求这块草坪的面积.来源:Z#xx#]21. (12分)对任意符合条件的直角三角形保持其锐角顶点 A 不动,改变BC 的位置,使 E , D ,且/ BAE = 90°,/ CAD = 90° (如图 12).【分析】所给数据如图中所示,且四边形 ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等.第一章勾股定理综合测评一、 1.B 2.C 3.C 4.C 5.D 6.C 7.B 8.A二、 9.答案不唯一,如 3,4,5 ; 60,80,100 10.6 8 11.10 12.7 13.120 14.2.5 15.台匕冃匕16.7.533三、 17.解:由题意得 OA — 812 (海里),OB — 69 (海里), AOB 90,所以△ AOB22是直角三角形.由勾股定理,得 OA 2 OB 2 AB 2,即AB 2 =92+122=225,所以AB= 15 (海里).答略.18. 解:因为 AD=12 AC=15 CD=9所以AD+cD=144+8仁225= AC 2,所以△ ADC 为直角三角形,且/ ADC=90 .在 Rt △ ABD 中,AB=13, AD=12 由勾股定理得 BD 2 =AB 2 - AD 2 = 25,所以ED =5,所以 BC = BD+DC=5+9=1411所以 S AABC =• BC• AD=— X 14X 12=84 .2 219. 解:由题意知 AD+DB=BC+CA 且 CA=20米,BC=10米,设 BD=x 贝U AD=30-x .【解答】结合上面的分析过程验证勾股定理[来源:学科网]在Rt △ ACD中,CD+CA^AE2,即(30-x ) 2= ( 10+x) 2+202,解得x=5,故树高CD=10+x=15 (米).20. 解:如图,连接AC,因为/ B=90,所以在Rt△ ABC中,由勾股定理得AC2=AB2+BC2=82+62=100, 所以AC=10.又因为CD=24, AD=26所以在△ ACD中, AC+CD^A E J,所以△ ACD是直角三角形.1 1 1 1” *所以S 四边形ABC=S^ACD-S△ AB(= — AC?CD ——AB?BC —X 10X 24 -——X 8X6 =120-24=96 (m)."22 2 2 2/故该草坪的面积为96 m. '-一/21解:由分析可得S 正方形ACFD= S 四边形ABFE=S^ BAE+ S^ BFE・1 1即b2= c2+ (b+a) (b-a).2 2整理,得2b2= c2+ (b+ a) (b-a) .*源学一科网心所以a2+ b2= c2.第二章实数检测题【本检测题满分:100分,时间:90分钟】、选择题(每小题3分,共30分)1 .下列无理数中,在一2与1之间的是()A. —LB.—:;C.D .2. (2014 •南京中考)8的平方根是()A . 4B . ±4C .2 .刁D . ±皿3.若a,b为实数,且满足|a—2|+ . b2 =0, 则b —a的值为()A . 2B . 0C.—2 D . 以上都不对4.卜列说法错误的是()A. 5是25的算术平方根B.1是1的一个平方根C . (—4)2的平方根是一4D.0的平方根与算术平方根都是5.要使式子- x有意义,则x的取值范围是()A . x> 0 B. x>- 2 C. x> 2 D. x< 26.若a, b均为正整数,且a> .7 , b> 3 2,则a + b的最小值是( )A. 3B.4C.57.在实数-,。
最新北师大版八年级数学(上册)单元测试题(卷)带答案全套7全
一、选择题(每小题3分,共30分)1.下列各组线段中,能够组成直角三角形的一组是( )A.3,4,4 B.3,4,6C.3,4,7 D.3,4,52.如图,在Rt△ABC中,∠A=90°,BC=2.5cm,AC=1.5cm,则AB的长为( ) A.3.5cm B.2cm C.3cm D.4cm第2题图第3题图3.如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG 的面积和为( )A.150cm2 B.200cm2 C.225cm2 D.无法计算4.适合下列条件的△ABC中,直角三角形的个数为( )①a=6,b=8,c=10;②a∶b∶c=1∶2∶2;③∠A=32°,∠B=58°;④a=7,b=24,c=25.A.2个 B.3个 C.4个 D.1个5.在△ABC中,AB=12,BC=16,AC=20,则△ABC的面积为( )A.96 B.120 C.160 D.2006.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是( )A.等腰三角形 B.直角三角形C.等边三角形 D.等腰三角形或直角三角形7.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的( )A.北偏东75°的方向上 B.北偏东65°的方向上C.北偏东55°的方向上 D.无法确定第7题图第8题图8.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )A.32B.3 C.1 D.439.图①是我国古代著名的“赵爽弦图”,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是( )A.51 B.49 C.76 D.无法确定第9题图第10题图10.如图,长方体的高为9m,底面是边长为6m的正方形,一只蚂蚁从如图的顶点A 开始,爬向顶点B.那么它爬行的最短路程为( )A.10m B.12m C.15m D.20m二、填空题(每小题3分,共24分)11.如图,一架长为4m的梯子,一端放在离墙脚2.4m处,另一端靠墙,则梯子顶端离墙脚________m.第11题图第12题图第13题图12.如图,△ABC中,AB=5cm,BC=6cm,BC边上的中线AD=4cm,则∠ADB的度数是________.13.如图是某地的长方形广场的示意图,如果小明要从A角走到C角,那么至少要走________.14.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=________.15.如图是一个三级台阶,每一级的长,宽和高分别是50cm,30cm,10cm,A和B 是这个台阶的两个相对的端点,若一只壁虎从A点出发沿着台阶面爬到B点,则壁虎爬行的最短路线的长是________.第14题图第15题图第17题图16.已知长方形的两邻边的差为2,对角线长为4,则长方形的面积是________.17.如图,是一种饮料的包装盒,长、宽、高分别为4cm,3cm,12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外部分的长度h的取值范围为____________.18.在△ABC中,若AC=15,BC=13,AB边上的高CD=12,则△ABC的周长为________.三、解答题(共66分)19.(8分)如图,正方形网格中有△ABC,若小方格边长为1,请你根据所学的知识,判断△ABC是什么三角形,并说明理由.20.(8分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=16cm,正方形BCEF的面积为144cm2,BD⊥AC于点D,求BD的长.22.(10分)如图,一座城墙高13m,墙外有一条宽为9m的护城河,那么一架长为15m的云梯能否到达墙的顶端?23.(10分)如图,铁路上A,B两点相距25km,C,D为两村庄,AD⊥AB于点A,BC⊥AB 于点B,已知AD=15km,BC=10km,现在要在铁路AB旁建一个货运站E,使得C,D两村到E站距离相等,问E站应建在离A地多远的地方?24.(10分)如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A 到公路MN的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音的影响,试问该校受影响的时间为多长?25.(12分)图甲是任意一个直角三角形ABC,它的两条直角边的长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b 的正方形内.(1)图乙、图丙中①②③都是正方形.由图可知:①是以________为边长的正方形,②是以________为边长的正方形,③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为__________;(4)图乙中①②的面积之和与图丙中正方形③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?参考答案与解析1.D 2.B 3.C 4.B 5.A 6.D 7.B 8.A9.C 解析:依题意,设“数学风车”中的四个直角三角形的斜边长为x ,则x 2=(6×2)2+52=169,所以x =13,所以“数学风车”的周长是(13+6)×4=76.10.C 解析:如图①,AB 2=62+152=261;如图②,AB 2=122+92=225.∵261>225,∴蚂蚁爬行的最短路程为15m.11.3.2 12.90° 13.100m 14.4 15.130cm 16.6 17.3cm ≤h ≤4cm18.32或42 解析:∵AC =15,BC =13,AB 边上的高CD =12,∴AD 2=AC 2-CD 2,即AD =9,BD 2=BC 2-CD 2,即BD =5.如图①,CD 在△ABC 内部时,AB =AD +BD =9+5=14,此时,△ABC 的周长为14+13+15=42;如图②,CD 在△ABC 外部时,AB =AD -BD =9-5=4,此时,△ABC 的周长为4+13+15=32.综上所述,△ABC 的周长为32或42.19.解:△ABC 是直角三角形.(3分)理由如下:∵AC 2=22+42=20,AB 2=12+22=5,BC 2=32+42=25,∴AB 2+AC 2=BC 2,(6分)∴△ABC 是直角三角形.(8分)20.解:在△ADC 中,∵AD =15,AC =12,DC =9,∴AC 2+DC 2=122+92=152=AD 2,∴△ADC 是直角三角形.(3分)在Rt △ABC 中,AC 2+BC 2=AB 2,∵AB =20,∴BC =16,∴BD =BC -DC =16-9=7,(6分)∴S △ABD =12BD ×AC =12×7×12=42.(8分)21.解:∵正方形BCEF 的面积为144cm 2,∴BC =12cm.(2分)∵∠ABC =90°,AB =16cm ,∴AC =20cm.(4分)∵BD ⊥AC ,∴S △ABC =12AB ·BC =12BD ·AC ,∴BD =485cm.(8分)22.解:不能.(4分)理由如下:设这架云梯能够到达的墙的最大高度是h ,则根据勾股定理得h 2=152-92=144,解得h =12m.(8分)∵12<13,∴这架长为15米的云梯不能够到达墙的顶端.(10分)23.解:设AE =x km ,则BE =(25-x )km.(3分)根据题意列方程,得152+x 2=(25-x )2+102,解得x =10.(8分)故E 站应建立在离A 地10km 处.(10分)24.解:设拖拉机开到C 处学校刚好开始受到影响,行驶到D 处时,结束了噪声的影响,则有CA =DA =100m.(3分)在Rt △ABC 中,CB 2=1002-802=602,∴CB =60m ,(5分)∴CD =2CB =120m.(7分)∵18km/h =5m/s ,∴该校受影响的时间为120÷5=24(s).(9分)答:该校受影响的时间为24s.(10分) 25.解:(1)a b c (3分)(2)a 2 b 2 c 2(6分)(3)a 2+b 2(7分)(4)S ①+S ②=S ③.(8分)由图乙和图丙可知大正方形的边长为a +b ,则面积为(a +b )2,图乙中把大正方形的面积分为了四部分,分别是:边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形,(10分)根据面积相等得(a +b )2=a 2+b 2+2ab ,由图丙可得(a +b )2=c 2+4×12ab .所以a 2+b 2=c 2.(12分)第二章 实数 检测卷分 题号 一 二 三 总分 得分一、选择题(每小题3分,共30分) 1.9的平方根是( )A .±3 B.±13 C .3 D .-32.下列实数中是无理数的是( ) A.9 B.227 C .π D.(3)03.下列各式计算正确的是( )A.2+3= 5 B .43-33=1 C .23×33=6 3 D.27÷3=34.已知a +2+|b -1|=0,那么(a +b )2017的值为( )A .-1B .1C .32017D .-320175.若m =30-3,则m 的范围是( )A .1<m <2B .2<m <3C .3<m <4D .4<m <56.实数a ,b 在数轴上的位置如图所示,且|a |>|b |,则化简a 2-|a +b |的结果为( )A .2a +bB .-2a +bC .bD .2a -b 7.估计8×12+18的运算结果应在哪两个连续自然数之间( ) A .5和6 B .6和7 C .7和8 D .8和9 8.已知a =3+2,b =3-2,则a 2+b 2的值为( ) A .4 3 B .14 C.14 D .14+4 39.化简二次根式-a 3的正确结果是( )A .a -aB .a aC .-a -aD .-a a10.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是( ) A .5-313 B .3 C .313-5 D .-3 二、填空题(每小题3分,共24分)11.-5的绝对值是________,116的算术平方根是________.12.在实数-2,0,-1,2,-2中,最小的是________.13.若代数式x -3有意义,则实数x 的取值范围是______________.14.一个长方形的长和宽分别是62cm 与2cm ,则这个长方形的面积等于________cm 2,周长等于________cm.15.若最简二次根式5m -4与2m +5可以合并,则m 的值可以为________.16.已知x ,y 都是实数,且y =x -3+3-x +4,则y x=________. 17.已知 3.456≈1.859,34.56≈5.879,则345600≈________.18.任何实数a ,可用[a ]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72――→第一次[72]=8――→第二次[8]=2――→第三次[2]=1,这样对72进行3次操作后变为1,类似地,①对81进行________次操作后变为1;②进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(共66分)19.(每小题3分,共6分)求下列各式中x 的值:(1)(x -2)2+1=17; (2)(x +2)3+27=0.20.(每小题3分,共12分)计算下列各题:(1)8+32-2;(2)614+30.027-31-124125;(3)(6-215)×3-612;(4)(548-627+12)÷ 3.21.(6分)一个数的算术平方根为2M-6,平方根为±(M-2),求这个数.22.(8分)如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=22,CD=43,BC=8,求四边形ABCD的面积.23.(8分)用48米长的篱笆在空地上围一个绿化场地,现有两种设计方案:一种是围成正方形场地,另一种是围成圆形场地.选用哪一种方案围成的场地的面积较大?并说明理由.24.(8分)已知a-17+217-a=b+8.(1)求a的值;(2)求a2-b2的平方根.25.(8分)已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.26.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a ,b ,m ,n 均为整数),则有a +b 2=m 2+2n 2+2mn 2.∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把类似a +b 2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a 、b ,得a =______________,b =________;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:________+________3=(________+________3)2;(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.参考答案与解析第二章检测卷1.A 2.C 3.D 4.A 5.B 6.C 7.B 8.B 9.C10.B 解析:∵3<13<4,∴6-13的整数部分x =2,则小数部分y =6-13-2=4-13,则(2x +13)y =(4+13)(4-13)=16-13=3.11. 5 14 12.-2 13.x ≥314.12 14 2 15.3 16.64 17.587.918.3 255 解析:①[81]=9,[9]=3,[3]=1,故答案为3;②最大的是255,[255]=15,[15]=3,[3]=1,而[256]=16,[16]=4,[4]=2,[2]=1,即进行3次操作后变为1的所有正整数中,最大的正整数是255.19.解:(1)(x -2)2=16,x -2=±4,∴x =6或-2;(3分)(2)(x +2)3=-27,x +2=-3,x =-5.(6分)20.解:(1)原式=22+42-2=52;(3分)(2)原式=52+0.3-15=2.6;(6分)(3)原式=18-245-32=32-65-32=-65;(9分)(4)原式=(203-183+23)÷3=43÷3=4.(12分)21.解:应分两种情况:①2M -6=M -2,解得M =4,∴2M -6=8-6=2,22=4;(3分)②2M -6=-(M -2),解得M =83,∴2M -6=163-6=-23(不合题意,舍去).故这个数是4.(6分)22.解:∵AB =AD ,∠BAD =90°,AB =22,∴BD =AB 2+AD 2=4.(3分)∵BD 2+CD 2=42+(43)2=64,BC 2=64,∴BD 2+CD 2=BC 2,∴△BCD 为直角三角形.(6分)∴S 四边形ABCD=S △ABD +S △BCD =12×22×22+12×43×4=4+8 3.(8分)23.解:选用围成圆形场地的方案围成的面积较大.(2分)理由如下:设S 1,S 2分别表示围成的正方形场地、圆形场地的面积,则S 1=⎝ ⎛⎭⎪⎫4842=5764(平方米),(4分)S 2=π·⎝ ⎛⎭⎪⎫482π2=576π(平方米).(6分)∵π<4,∴1π>14,∴5764<576π,即S 1<S 2,因此围成圆形场地的面积较大.(8分)24.解:(1)由题意知a -17≥0,17-a ≥0,(2分)∴a -17=0,∴a =17;(4分)(2)由(1)可知a =17,∴b +8=0,∴b =-8.(6分)∴a 2-b 2=172-(-8)2=225,∴a 2-b 2的平方根为±a 2-b 2=±15.(8分)25.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2)(1+2)=-1,(4分)∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-22)2-2×(-22)+(-1)=7+4 2.(8分)26.解:(1)m 2+3n 22mn (2分) (2)4 2 1 1(答案不唯一)(6分)(3)由题意,得a =m 2+3n 2,b =2mn ,∴4=2mn ,且m ,n 为正整数,(8分)∴m =2,n =1或m =1,n =2,∴a =22+3×12=7或a =12+3×22=13.(10分)第三章 位置与坐标 检测卷分题号 一 二 三 总分 得分一、选择题(每小题3分,共30分)1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示( )A .3列5行B .5列3行C .4列3行D .3列4行 2.如图,在直角坐标系中卡片盖住的数可能是( )A .(2,3)B .(-2,1)C .(-2,-2.5)D .(3,-2)3.点M (2,1)关于x 轴对称的点的坐标是( )A .(1,-2)B .(-2,1)C .(2,-1)D .(-1,2) 4.点P (-m +2,m -1)在y 轴上,则点P 的坐标为( )A .(0,-2)B .(1,0)C .(0,1)D .(0,2)5.如图是中国象棋的一盘残局,如果用(2,-3)表示“帅”的位置,用(1,6)表示“将”的位置,那么“炮”的位置应表示为( )A .(6,4)B .(4,6)C .(8,7)D .(7,8)6.已知点A (-1,-4),B (-1,3),则( )A .A ,B 关于x 轴对称 B .A ,B 关于y 轴对称C .直线AB 平行于y 轴D .直线AB 垂直于y 轴 7.如果点P (a ,2)在第二象限,那么点Q (-3,a )在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.从车站向东走400m ,再向北走500m 到小红家;从车站向北走500m ,再向西走200m 到小强家,若以车站为原点,以正东、正北方向为正方向建立平面直角坐标系,则小红家、小强家的坐标分别为( )A .(400,500),(500,200)B .(400,500),(200,500)C .(400,500),(-200,500)D .(500,400),(500,-200)9.如图,直线BC 经过原点O ,点A 在x 轴上,AD ⊥BC 于D ,若B (m ,2),C (n ,-3),A (2,0),则AD ·BC 的值为( )A .不能确定B .5C .10D .710.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2017秒时点P 的坐标是( )A .(2016,0)B .(2017,1)C .(2017,-1)D .(2018,0)二、填空题(每小题3分,共24分)11.写出平面直角坐标系中一个第三象限内点的坐标:________.12.若点P(x,y)满足xy<0,则点P在第________象限.13.如图,用(0,0)表示点O的位置,用(3,2)表示点M的位置,则点N的位置可表示为________.14.若点P在第四象限,且到x轴、y轴的距离分别为3和4,则点P的坐标为________.15.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为________.16.如果将点(-b,-a)称为点(a,b)的“反称点”,那么点(a,b)也是点(-b,-a)的“反称点”,此时称点(a,b)和点(-b,-a)互为“反称点”.容易发现,互为“反称点”的两点有时是重合的,例如(0,0)的“反称点”还是(0,0).请再写出一个这样的点:____________.17.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为________.第17题图第18题图18.如图,A,B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.三、解答题(共66分)19.(8分)(1)在坐标平面内画出点P(2,3);(2)分别作出点P关于x轴、y轴的对称点P1,P2,并写出P1,P2的坐标.20.(8分)图中标明了小英家附近的一些地方,已知游乐场的坐标为(3,2).(1)在图中建立平面直角坐标系,并写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2),(3,-1),(1,-1),(-1,-2),(-3,-1)的路线转了一下,又回到家里,写出路上她经过的地方.21.(10分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,建立平面直角坐标系后△ABC的顶点均在格点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)分别写出△A1B1C1的顶点A1,B1,C1的坐标.22.(8分)在平面直角坐标系中,已知点A(-5,0),B(3,0),C点在y轴上,△ABC 的面积为12,试求点C的坐标.23.(10分)在平面直角坐标系中,点A关于y轴的对称点为点B,点B关于x轴的对称点为点C.(1)若A点的坐标为(1,2),请在给出的坐标系中画出△ABC,设AB与y轴的交点为D,则S△ADO∶S△ABC=________;(2)若点A的坐标为(a,b)(ab≠0),试判断△ABC的形状.24.(10分)如图,平面直角坐标系中,过点A(0,2)的直线a垂直于y轴,M(9,2)为直线a上一点.若点P从点M出发,以2cm/s的速度沿直线a向左移动;点Q从原点同时出发,以1cm/s的速度沿x轴向右移动,多久后线段PQ平行于y轴?25.(12分)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫作整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.(1)当m=3时,求点B的坐标的所有可能值;(2)当点B的横坐标为4n(n为正整数)时,用含n的代数式表示m.参考答案与解析1.C 2.D 3.C 4.C 5.A 6.C 7.C 8.C9.C 解析:据三角形面积公式得到S △ABC =12AD ·BC ,而S △ABC =S △ABO +S △ACO =12×2×2+12×2×3=5,因此得到12AD ·BC =5,∴AD ·BC =10. 10.B 解析:当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),运动时间为2秒时,点P 的坐标为(2,0),运动时间为3秒时,点P 的坐标为(3,-1),运动时间为4秒时,点P 的坐标为(4,0).根据图象可得第n 秒时,点P 的横坐标为n ,纵坐标每4秒一个循环.∵2017÷4=504……1,∴第2017秒时,点P 的坐标是(2017,1).11.(-1,-1)(答案不唯一) 12.二或四 13.(6,3) 14.(4,-3) 15.-1016.(-2,2)(答案不唯一) 17.(3,5)18.(3,0)或(9,0) 解析:设点P 的坐标为(x ,0),根据题意得12×4×|6-x |=6,解得x =3或9,所以点P 的坐标为(3,0)或(9,0).19.解:(1)点P (2,3)如图所示;(4分)(2)点P 1,P 2如图所示,(6分)P 1(2,-3),P 2(-2,3).(8分)20.解:(1)建立平面直角坐标系如图所示;(2分)汽车站的坐标为(1,1),消防站的坐标为(2,-2);(4分)(2)家→游乐场→公园→姥姥家→宠物店→邮局→家.(8分) 21.解:(1)作图略;(4分)(2)A 1(-1,-4),B 1(-2,-2),C 1(0,-1).(10分)22.解:设C 点坐标为(0,b ),那么S △ABC =12AB ·OC .(2分)又A (-5,0),B (3,0),所以AB =8,OC =|b |.(4分)所以12×8×|b |=12,|b |=3,所以b =3或-3.(6分)故点C 的坐标为(0,3)或(0,-3).(8分)23.解:(1)图略(3分) 1∶4(5分)(2)△ABC为直角三角形.(10分)24.解:设经过t s后PQ∥y轴,则AP=9-2t,OQ=t.(3分)∵PQ∥y轴,∴点P 与点Q的横坐标相等,即AP=OQ,(6分)∴9-2t=t,解得t=3.(9分)故3s后线段PQ 平行于y轴.(10分)25.解:(1)如图①,当点B的横坐标分别为3或4时,m=3,(3分)即当m=3时,点B的坐标的所有可能值是(3,0),(4,0);(5分)(2)如图②,当点B的横坐标为4n=4时,n=1,此时m=0+1+2=3;当点B的横坐标为4n=8时,n=2,m=1+3+5=9;当点B的横坐标为4n=12时,n=3,m=2+5+8=15;…,(10分)当点B的横坐标为4n时,m=(n-1)+(2n-1)+(3n-1)=6n-3.(12分)第四章一次函数检测卷分题号一二三总分得分一、选择题(每小题3分,共30分)1.下列图象中,表示y是x的函数的个数有( )A.1个 B.2个 C.3个 D.4个2.直线y=2x-4与y轴的交点坐标是( )A.(4,0) B.(0,4) C.(-4,0) D.(0,-4)3.直线y=-2x+b与x轴的交点坐标是(2,0),则关于x的方程2x-b=0的解是( )A.x=2 B.x=4 C.x=8 D.x=104.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b 的大小关系是( )A.a>b B.a=b C.a<b D.以上都不对5.若直线y=kx+b经过A(0,2)和B(3,0)两点,那么这个一次函数的关系式是( )A.y=2x+3 B.y=-23x+2 C.y=3x+2 D.y=x-16.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体重量x(kg)间有如下关系(其中x≤12).下列说法不正确的是( )x 01234 5y 1010.51111.51212.5A.x与y都是变量,且是自变量B.弹簧不挂重物时的长度为10cmC.物体重量每增加1kg,弹簧长度y增加0.5cmD.所挂物体重量为7kg时,弹簧长度为14.5cm7.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是( )8.为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费1.8元;(2)若每户每月用水量超过20立方米,则超过部分每立方米水费3元.设某户一个月所交水费为y(元),用水量为x(立方米),则y与x的函数关系用图象表示为( )9.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(min)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500min时,选择有月租费的收费方式省钱.其中,正确结论的个数是( )A.0 B.1 C.2 D.3第9题图第10题图10.如图,把直线y=-2x向上平移后得到直线AB,直线AB经过点(m,n),且2m +n=6,则直线AB的解析式是( )A .y =-2x -3B .y =-2x -6C .y =-2x +3D .y =-2x +6二、填空题(每小题3分,共24分)11.直线y =2x +1经过点(0,a ),则a =________.12.已知一次函数y =(1-m )x +m -2,当m ________时,y 随x 的增大而增大.13.已知函数y =(k -1)x +k 2-1,当k ________时,它是一次函数,当k ________时,它是正比例函数.14.如图,射线OA ,BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s ,t 分别表示行驶距离和时间,则这两人骑自行车的速度相差________km/h.第14题图 第16题图15.已知关于x 的方程ax -5=7的解为x =1,则一次函数y =ax -12与x 轴交点的坐标为________.16.甲和乙同时加工一种产品,如图所示,图①、图②分别表示甲和乙的工作量与工作时间的关系,如果甲已经加工了75kg ,则乙加工了________kg.17.过点(-1,7)的一条直线与x 轴,y 轴分别相交于点A ,B ,且与直线y =-32x+1平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是______________.18.如图,已知点A 和点B 是直线y =34x 上的两点,A 点坐标是⎝ ⎛⎭⎪⎫2,32.若AB =5,则点B 的坐标是________________.三、解答题(共66分)19.(8分)某市长途电话按时分段收费,3分钟内收费1.8元,以后每超过1分钟加收0.8元.若通话t 分钟(t ≥3).(1)求需付电话费y (元)与t (分钟)之间的函数关系式; (2)画出函数图象.20.(8分)已知一次函数y =kx +b 的图象经过M (0,2),N (1,3)两点.(1)求k,b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.21.(9分)已知一次函数y=kx+b的图象经过点A(0,2)和点B(-a,3),且点B 在正比例函数y=-3x的图象上.(1)求a的值;(2)求一次函数的解析式并画出它的图象;(3)若P(m,y1),Q(m-1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.22.(9分)已知一次函数y=mx+3-m,当m为何值时,(1)y随x值的增大而减小;(2)一次函数的图象与直线y=-2x平行;(3)一次函数的图象与x轴交于点(2,0).23.(10分)某销售公司推销一种产品,设x(件)是推销产品的数量,y(元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:(1)求每种付酬方案y关于x的函数表达式;(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x的取值范围.24.(10分)一次函数y=kx+b(k≠0)的图象由直线y=3x向下平移得到,且过点A (1,2).(1)求一次函数的解析式;(2)求直线y =kx +b 与x 轴的交点B 的坐标;(3)设坐标原点为O ,一条直线过点B ,且与两条坐标轴围成的三角形的面积是12,这条直线与y 轴交于点C ,求直线AC 对应的一次函数的解析式.25.(12分)甲、乙两车分别从A ,B 两地同时出发相向而行,并以各自的速度匀速行驶,甲车途经C 地时休息一小时,然后按原速度继续前进到达B 地;乙车从B 地直接到达A 地,如图是甲、乙两车和B 地的距离y (km)与甲车出发时间x (h)的函数图象.(1)直接写出a ,m ,n 的值;(2)求出甲车与B 地的距离y (km)与甲车出发时间x (h)的函数关系式(写出自变量x 的取值范围);(3)当两车相距120km 时,乙车行驶了多长时间?参考答案与解析1.B 2.D 3.A 4.A 5.B 6.D 7.B 8.D 9.D10.D 解析:原直线的k =-2,向上平移后得到了新直线,那么新直线的k =-2. ∵直线AB 经过点(m ,n ),且2m +n =6,∴直线AB 经过点(m ,6-2m ).可设新直线的解析式为y =-2x +b 1,把点(m ,6-2m )代到y =-2x +b 1中,可得b 1=6.∴直线AB 的解析式是y =-2x +6.11.1 12.<1 13.≠1 =-114.4515.(1,0) 16.360 17.(1,4),(3,1) 解析:依据与直线y =-32x +1平行设出直线AB 的解析式y=-32x +b ,代入点(-1,7)即可求得b ,然后求出与x 轴交点的横坐标,列举符合条件的x 的取值,依次代入即可.18.⎝ ⎛⎭⎪⎫6,92或⎝ ⎛⎭⎪⎫-2,-32 解析:由题意可得|A ,B 两点的纵坐标之差||A ,B 两点的横坐标之差|=34,再由AB2=|A ,B 两点的纵坐标之差|2+|A ,B 两点的横坐标之差|2,求得|A ,B 两点的横坐标之差|=4,|A ,B 两点的纵坐标之差|=3.再分两种情况讨论求解即可.19.解:(1)依题意,得y =1.8+0.8(t -3)=0.8t -0.6(t ≥3);(4分) (2)画图略.(8分)20.解:(1)将M ,N 的坐标代入一次函数y =kx +b ,得b =2,k +b =3,解得k =1,故k ,b 的值分别是1和2;(4分)(2)将k =1,b =2代入y =kx +b 中得y =x +2.(6分)∵点A (a ,0)在y =x +2的图象上,∴0=a +2,∴a =-2.(8分)21.解:(1)∵点B (-a ,3)在正比例函数y =-3x 的图象上,∴3=-3×(-a ),∴a =1;(2分)(2)由(1)可得点B 的坐标为(-1,3),将(-1,3)和(0,2)代入y =kx +b 中,得b =2,-k +b =3,解得k =-1,∴一次函数的解析式为y =-x +2.(5分)画图象略;(7分)(3)∵-1<0,∴y 随x 的增大而减小.又∵m >m -1,∴y 1<y 2.(9分) 22.解:(1)由题意,得m <0;(3分)(2)由题意,得m =-2,3-m ≠0,解得m =-2;(6分)(3)把点(2,0)代入y =mx +3-m ,得2m +3-m =0,解得m =-3.(9分)23.解:(1)设方案一的解析式为y =kx ,把(40,1600)代入解析式,可得k =40,故解析式为y =40x ;(3分)设方案二的解析式为y =ax +b ,把(40,1400)和(0,600)代入解析式,可得a =20,b =600,故解析式为y =20x +600;(6分)(2)根据两直线相交可得方程40x =20x +600,解得x =30.(8分)根据两函数图象可知,当x >30时,选择方案一所得报酬高于选择方案二所得报酬.(10分)24.解:(1)根据题意,得k =3,k +b =2,解得b =-1.∴y =3x -1;(3分)(2)在y =3x -1中,当y =0时,x =13,∴点B 的坐标为⎝ ⎛⎭⎪⎫13,0;(5分) (3)设直线AC 的解析式为y =mx +n (其中m ≠0),则点C 的坐标为(0,n ),根据题意得S △BOC =12×13|n |=12,∴|n |=3,∴n =±3.(7分)当n =3时,m +n =2,解得m =-1,∴y =-x +3;当n =-3时,m +n =2,解得m =5,∴y =5x -3.∴直线AC 的解析式为y =-x +3或y =5x -3.(10分)25.解:(1)a =90,m =1.5,n =3.5;(3分) 解析:∵甲车途经C 地时休息一小时,∴2.5-m =1,∴m =1.5.乙车的速度为a m =1202,即a1.5=60,解得a =90.甲车的速度为300n -1=300-1201.5,解得n =3.5; (2)设甲车的y 与x 的函数关系式为y =kx +b .①休息前,0≤x ≤1.5,函数图象经过点(0,300)和(1.5,120),所以b =300,1.5k +b =120,所以k =-120,所以y =-120x +300;②休息时,1.5<x <2.5,y =120;③休息后,2.5≤x ≤3.5,函数图象经过点(3.5,0),又由题意可知k=-120,故b=420,所以y=-120x+420.(6分)综上,y与x的函数关系式为y=⎩⎪⎨⎪⎧-120x+300(0≤x≤1.5),120(1.5<x<2.5),-120x+420(2.5≤x≤3.5);(7分)(3)设当两车相距120km时,乙车行驶了x h.甲车的速度为(300-120)÷1.5=120(km/h),乙车的速度为120÷2=60(km/h).(8分)①若相遇前,则120x+60x=300-120,解得x=1;②若相遇后,则120(x-1)+60x=300+120,解得x=3.(11分) 答:当两车相距120km时,乙车行驶了1h或3h.(12分)第五章二元一次方程组检测卷分题号一二三总分得分一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )2.若方程mx+ny=6有两个解1,1xy=-⎧⎨=-⎩2,1xy=-⎧⎨=⎩,则m,n的值为( ) A.4,2 B.2,4 C.-4,-2 D.-2,-43.用加减法解方程组下列解法错误的是( )A.①×3-②×2,消去xB.①×2-②×3,消去yC.①×(-3)+②×2,消去xD.①×2-②×(-3),消去y4.实验课上,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案( )A.4种 B.3种 C.2种 D.1种5.若方程组的解满足x+y=0,则a的取值是( )A.-1 B.1 C.0 D.不能确定6.若|a+b-1|+(a-b+3)2=0,则a b的值( )A.1 B.2 C.3 D.-17.一个两位数,十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到的新数比原数小9,求这个两位数列出的方程组正确的是( )8.如图,以两条直线l1,l2的交点坐标为解的方程组是( )第8题图第9题图9.为增强居民的节水意识,某市自2016年实施“阶梯水价”.按照“阶梯水价”的收费标准,居民家庭每年应缴水费y(元)与用水量x(m3)的函数关系的图象如图所示.如果某个家庭2016年全年上缴水费1180元,那么该家庭2016年用水的总量是( ) A.240m3 B.236m3 C.220m3 D.200m310.若方程组有无穷多组解,则2k+b2的值为( )A.4 B.5 C.8 D.10二、填空题(每小题3分,共24分)11.方程组的解是________.12.如图,直线l1的解析式是y=2x-1,直线l2的解析式是y=x+1,则方程组的解是________.13.已知关于x,y的二元一次方程2x+□y=7中,y的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是____________.14.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量比国画作品数量的2倍多7幅,则展出的油画作品有________幅.15.对于实数x,y,定义新运算x*y=ax+by+1,其中a,b为常数,等式右边为通常的加法和乘法运算,若3*5=14,4*7=19,则5*9=________.16.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价20%,乙商品提价60%,调整后两种商品的单价和比原来的单价和提高了50%,则购买调价后的3件甲商品和2件乙商品共需________元.17.如图①,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图②.这个拼成的长方形的长为30,宽为20.则图②中Ⅱ部分的面积是________.第17题图第18题图18.甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A,B两地之间的距离为________千米.三、解答题(共66分)19.(9分)解下列方程组:20.(8分)若方程组的解是求(a+b)2-(a-b)(a+b)的值.21.(8分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组请你直接写出它的解.22.(10分)根据要求,解答下列问题:(1)解下列方程组(直接写出方程组的解即可):①的解为__________;②的解为__________;③的解为__________;(2)以上每个方程组的解中,x与y的大小关系为________;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.23.(10分)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元,购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?24.(9分)为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,下表中是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元.请问表中二档电价、三档电价各是多少?阶梯电量电价一档0~180度0.6元/度二档181~400度二档电价三档401度及以上三档电价25.(12分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A 骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:(1)A比B后出发几个小时?B的速度是多少?(2)在B出发几小时后两人相遇?。
北师大版八年级数学上册各章测试题带答案(全册)
第一章勾股定理测试题一.填空题(每题3分,共24分)1. 如图, 在△ABC 中,∠C=︒90,已知两直角边 A b Ca 和b ,求斜边c 的关系式是__________________;已知斜边c 和一条直角边b (或a ),求另一直角边 a a (或b )的关系式是________________ 或_______________. B 2.在△ABC 中,若222BC AB AC =+,则∠B+∠C=_____°. 第1题图 3.在Rt △ABC 中,∠C=︒90,若a=40,b=9,则c=__________; A 4.如图,△ABC 中,AB=AC ,BC=16,高AD=6,则腰长AB=________________.B D C 第4题图5.木工师傅做一个宽60cm ,高80cm 的矩形木柜,为稳固起见,制作时需在对角顶点间加一根木条,则木条长为___________________cm . 6.一艘轮船以16Km /h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12Km /h 的速度向东南方向航行,它们离开港口1小时后相距_________________Km .7.如图,已知△ABC 中,∠ACB=︒90,以△ABC 各边为边向三角形外作三个正方形, A 3S1S 、2S 、3S 分别表示这三个正方形的面积, 1S1S =81,3S =225,则2S =__________________. C 2S B8.等腰三角形的腰长为13cm ,底边上的高为5cm ,则它的面积为_____________.二.选择题(每题3分,共21分)9. 在△ABC 中,已知AB=12cm ,AC=9cm ,BC=15,cm 则△ABC 的面积等于 ( )A.1082cm B.542cm C.1802cm D.902cm10.以下列各组数为三边的三角形中不是直角三角形的是 ( ) A .9、12、15 B .41、40、9 C .25、7、24 D .6、5、411.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食, 要爬行的最短路程(π取3)是( )A.20cm;B.10cm;C.14cm;D.无法确定.12.一个三角形三边之比为3∶4∶5,则这个三角形三边上的高之比为 ( )A.3:4:5B.5:4:3C.20:15:12D.10:8:2 13. 一个三角形的三边长为a 、b 、c,且满足等式ab c b a 2)(22=-+,则此三角形是 ( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形 14. 如图,为求出湖两岸的A 、B 两点之间的距离,一个观测者在点C 设桩,使△ABC 恰好为直角三角形,且∠B=︒90,测得AC=160米,BC=128米,则A 、B 两点间的距离为 ( )B A .96米 B .100米C .86米D .90米C A 15.一直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为 ( ) (A )4 (B )8 (C )10 (D )12三.解答题16.已知:如图,⊿ABC 中,∠ACB =︒90,AB = 5cm ,BC = 3 cm ,CD ⊥AB 于D , 求CD 的长及三角形的面积.(16分)17.在图中所示的长方形零件示意图中,根据所给的部分尺寸,求两孔中心A和B的距离(单位:mm )(10分)B C A D18.小强到某海岛上去探宝,登陆后先往东走10千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到4千米处往东拐,仅走1千米便找到宝藏,问登陆点到宝藏埋藏点的直线距离是多少千米?(10分)19.八(2)班数学课外活动小组的同学测量学校旗杆的高度时,发现升旗的绳子垂到地面要多1米,当他们把绳子的下端拉开5米后,发现下端刚好接触地面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新北师大版八年级数学上册单元测试题全套及答案第一章 勾股定理综合测评时间: 满分:120分班级: 姓名: 得分:一、精心选一选(每小题4分,共32分)1. 在△ABC 中,∠B=90°,若BC=3,AC=5,则AB 等于( ) A.3 B.4 C.5 D.62.下列几组数中,能组成直角三角形的是( )A.13,14,15B.3,4,6C.5,12,13D.0.8,1.2,1.5 3.如图1,正方形ABCD 的面积为100 cm 2,△ABP 为直角三角形,∠P=90°,且PB=6 cm ,则AP 的长为( )A.10 cmB.6 cmC.8 cmD.无法确定4.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8 cm ,另一只朝左挖,每分钟挖6 cm ,10分钟后,两只小鼹鼠相距( )A.50 cmB.80 cmC.100 c mD.140 cm 5.已知a ,b ,c 为△ABC 的三边,且满足()()22222a b a b c -+-=0,则它的形状为( ) A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6. 图2中的小方格都是边长为1的正方形,试判断△ABC 的形状为( )A .钝角三角形 B. 锐角三角形 C. 直角三角形 D.以上都有可能PC BD A7.如图3,一圆柱高8 cm,底面半径为2 cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是()A.20 cmB.10 cmC.14 cmD.无法确定8.已知Rt△ABC中,∠C=90°,若BC+AC=14 cm,AB=10 cm,则该三角形的面积是()A.24 cm2B.36 cm2C.48 cm2D.60 cm2二、耐心填一填(每小题4分,共32分)9.写出两组勾股数: .10.在△ABC中,∠C=90°,若BC∶AC=3∶4,AB=10,则BC=_____,AC=_____.11.如图4,等腰三角形ABC的底边长为16,底边上的高AD长为6,则腰AB的长度为_____.12.如图5,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则2OD=____.13.一个三角形的三边长之比为5∶12∶13,它的周长为60,则它的面积是______.14.图6是一个三级台阶,它的每一级长、宽、高分别是2米,0.3米,0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点的最短路程是_____米.15.一天,小明买了一张底面是边长为260 cm 的正方形,厚30 cm 的床垫回家,到了家门口,才发现屋门只有242 cm 高,100 cm 宽.你认为小明能把床垫拿进屋吗? .(填“能”或“不能”)16.图7是一束太阳光线从仓库窗户射入的平面示意图,小强同学测得BN =35米,NC =34米,BC=1米,AC =4.5米,MC =6米,则太阳光线MA 的长度为_____米.三、细心做一做(共56分)17.(10分)如图8,甲渔船以8海里/时的速度离开港口O 向东北方向航行,乙渔船以6海里/时的速度离开港口O 向西北方向航行,它们同时出发.一个半小时后,甲、乙两渔船相距多少海里?18.(10分)如图9,已知在△ABC 中,AB=13,AD=12,AC=15,CD=9,求△ABC 的面积.19.(12分)如图10,在一棵树的10米高处有两只猴子,一只猴子爬下树后走到离树20米处的池塘A 处.另一只爬到树顶D 后直接跃到A 处,距离以直线计算,若两只猴子所经过的距离相等,试求该树的高度.20.(12分)如图11,一块草坪的形状为四边形ABCD ,其中∠B=90°,AB=8 m ,BC=6 m ,CD=24 m ,AD=26 m .求这块草坪的面积.21. (12分)对任意符合条件的直角三角形保持其锐角顶点A 不动,改变BC 的位置,使B →E ,C →D ,且∠BAE =90°,∠CAD =90°(如图12).【分析】所给数据如图中所示,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等.【解答】结合上面的分析过程验证勾股定理.第一章 勾股定理综合测评一、1.B 2.C 3.C 4.C 5.D 6.C 7.B 8.A二、9. 答案不唯一,如3,4,5;60,80,100 10.6 8 11.10 12.7 13.120 14.2.5 15.能16.7.5三、17.解:由题意得38122OA =⨯=(海里),3692OB =⨯=(海里),90AOB ∠=︒,所以△AOB 是直角三角形.由勾股定理,得222OA OB AB +=,即2AB =92+122=225,所以AB =15(海里).答略.18.解:因为AD=12,AC=15,CD=9,所以AD 2+CD 2=144+81=225= AC 2,所以△ADC 为直角三角形,且∠ADC=90°.在Rt △ABD 中,AB=13,AD=12,由勾股定理得BD 2=AB2-AD2=25,所以BD=5,所以BC =BD+DC=5+9=14.所以S △ABC =21·BC ·AD=21×14×12=84.19.解:由题意知AD+DB=BC+CA ,且CA=20米,BC=10米,设BD=x ,则AD=30-x . 在Rt △ACD 中,CD 2+CA 2=AD 2,即(30-x )2=(10+x )2+202,解得x=5,故树高CD=10+x=15(米).20.解:如图,连接AC ,因为∠B=90°,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=82+62=100,所以AC=10.又因为CD=24,AD=26,所以在△ACD 中,AC 2+CD 2=AD 2,所以△ACD 是直角三角形.所以S 四边形ABCD =S △ACD -S △ABC =21AC •CD-21AB •BC=21×10×24-21×8×6=120-24=96(m 2).故该草坪的面积为96 m 2.21.解:由分析可得S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE . 即b 2=12c 2+12(b +a )(b -a ). 整理,得2b 2=c 2+(b +a )(b -a ). 所以a 2+b 2=c 2.第二章 实数检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共30分)1.下列无理数中,在-2与1之间的是( ) A .-B .-C .D .2.(2014·南京中考)8的平方根是( )A .4B .±4C . 2D .3. 若a ,b 为实数,且满足|a -2|+2b -=0,则b -a 的值为( )A .2B .0C .-2D .以上都不对 4. 下列说法错误的是( )A .5是25的算术平方根B .1是1的一个平方根C .(-4)2的平方根是-4D .0的平方根与算术平方根都是0 5. 要使式子 错误!未找到引用源。
有意义,则x 的取值范围是( ) A .x >0 B .x ≥-2 C .x ≥2 D .x ≤2 6. 若a ,b 均为正整数,且a >7,b >32,则a +b 的最小值是( ) A.3 B.4 C.5 D.67. 在实数错误!未找到引用源。
,,错误!未找到引用源。
,-3.14,错误!未找到引用源。
中,无理数有( )A.1个B.2个C.3个D.4个 8. 已知3a =-1,b =1,212c ⎛⎫- ⎪⎝⎭=0,则abc 的值为( )A.0 B .-1 C.-12错误!未找到引用源。
D.错误!未找到引用源。
9.若(m -1)2+2n +=0,则m +n 的值是( ) A .-1 B .0 C .1 D .210. 有一个数值转换器,原理如图所示:当输入的x 错误!未找到引用源。
=64时,输出的y 等于( )A .2B .8C .32错误!未找到引用源。
D .22 二、填空题(每小题3分,共24分)11. 已知:若 3.65≈1.910,36.5≈6.042,则365000错误!未找到引用源。
≈ ,±0.000365错误!未找到引用源。
≈ . 12. 绝对值小于π的整数有 .13. 0.003 6的平方根是 ,81错误!未找到引用源。
的算术平方根是 . 14. 已知|a -5|+3b +=0,那么a -b = .15. 已知a ,b 为两个连续的整数,且a >28>b ,则a +b = . 16.计算:(2+1)(2-1)=________.17.使式子1+x 有意义的x 的取值范围是________. 18.)计算:﹣=_________.三、解答题(共46分)19.(6分)已知错误!未找到引用源。
,求错误!未找到引用源。
的值.20.(6分)若5+7的小数部分是a ,5-7的小数部分是b ,求ab 错误!未找到引用源。
+5b 的值. 21.(6分)先阅读下面的解题过程,然后再解答:形如n m 2±的化简,只要我们找到两个数a ,b ,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+,这里7=m ,12=n , 因为错误!未找到引用源。
,错误!未找到引用源。
, 即7)3()4(22=+,1234=⨯, 所以347+1227+32)34(2+=+.根据上述方法化简:42213-.22.(6分)比较大小,并说明理由:(1)与6; (2)与.23.(6分)大家知道错误!未找到引用源。
是无理数,而无理数是无限不循环小数,因此错误!未找到引用源。
的小数部分我们不能全部写出来,于是小平用错误!未找到引用源。
-1来表示错误!未找到引用源。
的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为错误!未找到引用源。
的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答:已知:5+错误!未找到引用源。
的小数部分是错误!未找到引用源。
,5-错误!未找到引用源。
的整数部分是b ,求错误!未找到引用源。
+b 的值. 24.(8分)计算:(1)862⨯-82734⨯+;(2))62)(31(-+-2)132(-. 25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值.(3⋅⋅⋅+.第二章 实数检测题参考答案一、选择题1.B 3<-2,即-2<-1即1223,所以选B.2.D 解析:8=±点拨:注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 3.C 解析:∵ |a -2|0, ∴ 错误!未找到引用源。