人教版初中数学第1课时 运用直接列举或列表法求概率教案
《25.2 第1课时 运用直接列举或列表法求概率》教案、导学案、同步练习
25.2 用列举法求概率《第1课时运用直接列举或列表法求概率》教案【教学目标】1.用列举法求较复杂事件的概率.2.理解“包含两步并且每一步的结果为有限多个情形”的意义.3.用列表法求概率.【教学过程】一、情境导入希罗多德在他的巨著《历史》中记录,早在公元前1500年,埃及人为了忘却饥饿,经常聚集在一起掷骰子,游戏发展到后来,到了公元前1200年,有了立方体的骰子.二、合作探究探究点一:用列表法求概率【类型一】摸球问题一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.34解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之积为偶数共有3种:(1,2),(1,2),(2, 2),∴P=34,故选D.【类型二】学科内综合题从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为________.解析:用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:共有6种等可能结果,其中点P落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P落在抛物线上的概率是36=12,故答案为12.方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.【类型三】学科间综合题如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )A.0.25 B.0.5C.0.75 D.0.95解析:先用列表法表示出所有可能的结果,再根据概率计算公式计算.列表表示所有可能的结果如下:根据上表可知共有4种等可能的结果,其中至少有一个灯泡发光的结果有3种,∴P(至少有一个灯泡发光)=34,故选择C.方法总结:求事件A的概率,首先列举出所有可能的结果,并从中找出事件A包含的可能结果,再根据概率公式计算.【类型四】判断游戏是否公平甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球然后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏是否公平?请说明理由.解析:(1)直接利用概率定义求解;(2)先用列表法求出概率,再利用概率判断游戏的公平性.解:(1)P(标号是1)=1 3.(2)这个游戏不公平,理由如下:把游戏可能出现标号的所有可能性(两次标号之和)列表如下:∴P(和为偶数)=59,P(和为奇数)=49,二者不相等,说明游戏不公平.方法总结:用列举法解概率问题中,可以采用列表法.对于一次实验需要分两个步骤完成的,用两种方法都可以,以列表法为主.判断游戏是否公平,只需求出双方获胜的概率.三、板书设计【教学反思】教学过程中,强调在生活、学习中的很多方面均用到概率的知识,学习概率要从身边的现象开始.《第1课时用直接列举法或列表法求概率》导学案【学习目标】:知识与技能掌握用列表法求事件的概率.过程与方法通过对“应用一般的列举法求概率”的探究,体会获得事件发生的概率的方法,培养分析、判断的能力。
人教版九年级上册第25章第二节第一课时《25.2.1用列举法求概率》赛课教案
第二十五章概率初步25.2用列举法求概率第1课时运用直接列举或列表法求概率教学内容:人教版九年级上册第25章第二节第一课时运用直接列举或列表法求概率学习目标:1.2. 学会正确“列表”表示出所有可能出现的结果.3. 知道如何利用“列表法”求随机事件的概率.会用“直接列举法”和“列表法”列举所有可能出现的结果.教学重难点重点:知道如何利用“列表法”求随机事件的概率.难点:会正确“列表”表示出所有可能出现的结果.教学方法教法:创设情景提问法、演示法、启发式教学.学法:小组合作、讨论交流.教学过程:一、情境导入1、12.4 H国家宪法日(PPT出示志愿者图片)(设计意图:通过宪法的导入, 让学生们了解宪法,增强法律意识)2、再由我校也将开展进社区宣传宪法的活动,向每班招募一名志愿者,但是小辛玉和安琪都想去,引出抛硬币活动,正面向上小车玉去,反面向上安琪去,学生判断公平的依据。
学生说概率公式P (A)=-n(设计意图:增强学生对社会的服务意识,复习旧知)3、当小车玉抛出硬币是正面,决定小车玉去参加活动时,安琪提出一人抛一枚硬币更公平。
老师提问:同时抛两枚硬币,怎么制定规则比较公平呢?(设计意图:引出本节课的主题:用列举法求概率)4、确定本节课的学习目标。
二、探索新知(一)用直接列举法求概率问题1:同时掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面朝上,一枚硬币反面朝上。
学生抛硬币,得出结论:抛掷两枚硬币的所有可能为:正正,正反,反正,反反请学生分别回答上面三个问题。
(学生做出判断,老师评价,及时表扬)(设计意图:由学生自己动手操作,得出结论,吸引学生的兴趣)问题2:如何制定规则,让小车玉和安琪都觉得公平呢?学生回答:落地后一正一反,小车玉赢;如果落地后两面一样,安琪赢.其他学生判断公平性。
(设计意图:使学生理解公平与概率之间的关系)问题3:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?学生以小组为单位讨论,并由小组汇报讨论结果。
25.2 第1课时 用列举法求概率 数学人教版九上同步课堂教案
25.2 用列举法求概率第1课时用直接列举法或列表法求概率一、教学目标1.知道什么时候采用“直接列举法”和“列表法”.2.会正确“列表”表示出所有可能出现的结果.3.知道如何利用“列表法”求随机事件的概率.随机事件.(难点)二、教学重难点重点:会正确“列表”表示出所有可能出现的结果.难点:知道如何利用“列表法”求随机事件的概率.三、教学过程【新课导入】[复习导入](1)掷一枚硬币,正面向上的概率是12.(2)袋子中装有5个红球、3个绿球,这些球除了颜色都相同,从袋中随机摸出一个球,它是红色的概率为58.(3)掷一个骰子,观察向上一面的点数,点数大于4的概率是13.【新知探究】(一)用直接列举法求概率[课件展示]例1 同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上.解:列举抛掷两枚硬币所能产生的全部结果,分别是(正,正)、(正,反)、(反,正)、(反,反).所有可能的结果共有4种,并且这4种结果出现的可能性相等.(1)全部正面朝上的结果(正,正)只有1种,所以P(两次正面朝上)=14;(2)全部反面朝上的结果(反,反)这只有1种,所以P(两次反面朝上)=14;(3)一枚正面朝上、一枚反面朝上的结果有(正,反)与(反,正)两种,所以,P(一正一反)=24=12.[思考]“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?第一掷第二掷所有可能出现的结果正正(正,正)正反(正,反)反正(反,正)反正(反,反)[归纳总结]随机事件“同时”与“先后”的关系:“两个相同的随机事件同时发生”与“一个随机事件先后两次发生”的结果是一样的.上述这种求概率的方法我们称为直接列举法,即把事件可能出现的结果一一列出.注意:直接列举法比较适合用于最多涉及两个试验因素或分两步进行的试验,且事件总结果的种数比较少的等可能性事件.(二)用列表法求概率当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用列表法.例2 同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子的点数和是9;(3)至少有一枚骰子的点数为2.解:两枚骰子分别记为第1枚和第2枚,可用下表列举出所有可能的结果.第1枚第2枚123456 1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)由上表可以看出,同时掷两枚骰子,可能出现36种结果,并且它们出现的可能性相等. (1)两枚骰子的点数相同(记为事件A)的结果有6种,分别是(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(6,6),所以P(A)= 636=16;(2)两枚骰子的点数之和为9(记为事件B)的结果有4种,分别是(3,6)、(4,5)、(5,4)、(6,3),所以P(B)= 436=19;(3)至少有一枚点数为2(记为事件C)的结果有11种,所以P(C)= 1136.例3在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少?1.前提条件:可能出现的结果只有有限个且试验中每种结果出现的可能性大小相等2.基本步骤:(1)列表;(2)确定m、n值代入概率公式计算.∴P(2次摸出红球)=4.94.有一枚均匀的正四面体,四个面上分别标有数字1、2、3、地一面的数字记为x,另有三张背面完全相同,正面分别写着。
数学人教版九年级上册用列举法求概率(第一课时)教案
25.2用列举法求概率(第一课时)教案(新授课)学校:东川区第二中学教师:周宇俊一、教学目标:1、知识与技能:(1)会用列举法和列表法求简单随机事件的概率。
(2)会利用概率知识解决计算涉及两个因素的一个随机事件概率的简单实际问题。
2、过程与方法:经历实验、列表、统计、运算等活动,渗透数形结合、分类讨论、特殊到一般的思想,培养学生在具体情境中分析问题和解决问题的能力。
3、情感态度与价值观:体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思考的学习习惯。
增强学生学习数学的兴趣。
二、教学重难点教学重点:正确理解和区分一次实验中涉及两个因素与所包含的两步实验。
教学难点:当出现的结果很多时,会用列表法列出所有可能的结果。
三、教学过程(一)复习引入练习1.(2015.天津中考)不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别。
从袋子中随机取出1个球,则它是红球的概率是。
2.(2015.南充中考)从分别标有数-3,-2,-1,0, 1, 2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值小于2的概率是。
(二)创设情境活动 1.我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这就是一个双方获胜概率大小问题。
下面我们来做一个小游戏,规则如下:(1)老师向空中抛掷一枚硬币,如果落地后正面向上,老师赢;反面向上,你们赢。
请问:你们觉得这个游戏公平吗?(2)那么老师向空中抛掷两枚同样硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢。
请问:你们觉得这个游戏公平吗?(引出课题)学生思考:把其所能产生的结果全部列出来:正正、正反、反正、反反,共有4种结果,并且每种结果出现的可能性相同。
P (一正一反)=2142P (两面一样)=2142所以,双方获胜的概率一样,游戏公平。
活动2.A 、B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同)。
25.2 第1课时 用列举法求概率课件-2024-2025学年人教版数学九年级上册
3.C [解析] 列表如下:
甲盒
和
1
2
3
乙盒
4
5
6
7
5
6
7
8
6
7
8
9
由表可知,共有9种等可能的结果,其中编号之和大于6的结
果有6种,所以P(编号之和大于6)=69 = 23.
谢 谢 观 看!
数学 九年级上册 人教版
第 二
概率初步
十
五
25.2 第1课时 用列举用列举法求概率
探究与应用
课堂小结与检测
探
活动1 能用直接列举法求概率
究 与
例1 (教材典题)同时抛掷两枚质地均匀的硬币,求下列事件
应 的概率:
用
(1)两枚硬币全部正面向上;
解:列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,
B.13
C.14
D.15
测
课 3.甲盒中有编号分别为1,2,3的3个完全相同的乒乓球,乙盒
堂
小 中有编号分别为4,5,6的3个完全相同的乒乓球.现分别从每
结
与 个盒子中随机地取出1个乒乓球,则取出的乒乓球的编号之
检 测
和大于6的概率为
(C)
A.49
B.59
C.23
D.79
相关解析
2.C [解析] 从四条线段中任选三条,有4种结果,即(1,3,5), (1,3,7),(1,5,7),(3,5,7),这些结果出现的可能性相等,其中能构 成三角形的结果只有1种,即(3,5,7),所以能构成三角形的概 率P=14.故选C.
堂
小 1.假如每枚鸟卵都可以成功孵化小鸟,且孵化出的小鸟是雄
结 与
鸟和雌鸟的可能性相等.现有2枚鸟卵,孵化出的小鸟恰有一
人教版数学九年级上册《用列表法求概率》教学设计1
人教版数学九年级上册《用列表法求概率》教学设计1一. 教材分析人教版数学九年级上册《用列表法求概率》是学生在学习了概率的基本知识后,进一步学习如何利用列表法求解概率的一节课。
通过本节课的学习,学生能够掌握列表法求概率的基本步骤,并能应用于实际问题中。
本节课的内容与生活实际紧密相连,有助于培养学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的概率知识,对概率的基本概念和求法有所了解。
但是,学生在运用列表法求概率方面还存在一定的困难,需要通过本节课的学习来进一步掌握。
此外,学生对于实际问题的解决能力有待提高,需要通过实例来培养。
三. 教学目标1.知识与技能:使学生掌握列表法求概率的基本步骤,能够运用列表法解决实际问题。
2.过程与方法:通过实例分析,培养学生运用列表法解决概率问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的精神。
四. 教学重难点1.重点:列表法求概率的基本步骤。
2.难点:如何将实际问题转化为列表法求概率的问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考;通过案例分析,让学生学会运用列表法求概率;通过小组合作学习,培养学生解决问题的能力。
六. 教学准备1.教具:黑板、粉笔、多媒体设备。
2.学具:笔记本、练习题。
七. 教学过程1.导入(5分钟)教师通过一个简单的实例,如抛硬币实验,引导学生回顾概率的基本知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体展示教材中的案例,让学生观察和分析案例中的问题,引导学生思考如何利用列表法求解概率。
3.操练(10分钟)教师给出一个实际问题,让学生分组讨论,运用列表法求解概率。
学生在小组内分工合作,共同完成任务。
4.巩固(10分钟)教师挑选几组学生的成果,进行点评和讲解。
同时,给出一些类似的题目,让学生独立完成,巩固所学知识。
5.拓展(10分钟)教师引导学生思考:列表法求概率的应用范围有哪些?让学生举例说明,进一步拓展学生的知识面。
初中数学《用列举法求概率》教案范文
初中数学《用列举法求概率》教案范文一、教学目标:1. 让学生理解概率的概念,掌握列举法求概率的方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学内容:1. 概率的概念及其表示方法。
2. 列举法求概率的基本步骤。
3. 实际例子中的应用。
三、教学重点与难点:1. 重点:概率的概念,列举法求概率的方法。
2. 难点:如何运用列举法求解复杂事件的概率。
四、教学方法:1. 采用问题驱动法,引导学生主动探究概率的求法。
2. 运用小组合作交流,培养学生的团队协作能力。
3. 通过实例分析,让学生学会将理论应用于实际问题。
五、教学过程:1. 导入新课:通过抛硬币、抽签等实例,引导学生了解概率的概念。
2. 讲解概率的基本表示方法,如古典概率、几何概率等。
3. 介绍列举法求概率的步骤:明确事件、列出所有可能的结果、计算事件发生的次数、得出概率。
4. 针对具体实例,如抛硬币两次,求正反面朝上的概率,引导学生运用列举法求解。
5. 练习:让学生独立完成一些简单的概率问题,巩固列举法求概率的方法。
6. 总结:引导学生归纳总结列举法求概率的步骤及注意事项。
7. 拓展:介绍概率在现实生活中的应用,激发学生的学习兴趣。
8. 布置作业:布置一些有关概率的练习题,巩固所学知识。
9. 课后反思:教师针对本节课的教学效果进行反思,为下一步教学提供改进方向。
10. 教学评价:通过课堂表现、作业完成情况等评价学生的学习效果。
六、教学评价设计:1. 课堂参与度:观察学生在课堂上的积极参与程度,包括提问、回答问题、小组讨论等。
2. 理解与应用:通过提问和作业,评估学生对概率概念和列举法求概率的理解,以及能否将所学知识应用于解决实际问题。
3. 作业完成情况:评估学生完成作业的质量,包括答案的准确性、解题过程的完整性等。
4. 小组合作:评估学生在小组合作中的表现,包括沟通、协作、共同解决问题的能力。
七、教学拓展与延伸:1. 概率与统计:介绍概率与统计学的关系,引导学生了解如何使用统计方法对大量数据进行分析。
2024年人教版九年级上册教学设计第25章 25.2 用列举法求概率
第1课时用列表法求概率课时目标1.用列举法求较复杂事件的概率,发展学生抽象思维能力的核心素养.2.理解“包含两步并且每一步的结果为有限多个情形”的意义.3.能够运用列表法计算简单随机试验中事件发生的概率,并能解决一些简单的实际问题.学习重点正确理解事件的有限等可能性.能用列表法求事件的概率.学习难点正确分析和准确计算概率.课时活动设计必然事件:在一定条件下,必然发生的事件,必然事件的概率是1.不可能事件:在一定条件下,不可能发生的事件,不可能事件的概率是0.随机事件:在一定条件下,可能发生也可能不发生的事件,随机事件的概率大于0小于1.古典概型概率:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=mn求概率的步骤:(1)列举出一次试验中的所有结果(n个);(2)找出其中事件A发生的结果(m个);.(3)运用公式求事件A的概率P(A)=mn设计意图:复习概率的意义,为探究列举法作铺垫,从而引出课题..问题1:掷一枚硬币,朝上的面有2种可能,P(反面朝上)=12.问题2:抛掷一个骰子,它落地时向上的数有6种可能,P(点数为2)=16问题3:从标有1,2,3,4,5号的纸签中随意地抽取一个,抽出的签上的号码有5.种可能,P(标有3号)=15以上三个试验有两个共同的特点:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.列举法:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.用列举法满足的两个条件:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.设计意图:通过这样的设计点出列举法,为列表法作铺垫,使学生带着浓厚的兴趣和数学思考走进课堂,进而引出课题.典例精讲例1同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上.(学生思考交流有的同学认为有“正正”“正反”“反反”三种可能;有的同学认为“正反”“反正”各算一种可能,强调列举法的关键是“机会均等”)解:列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,反正,反反.所有可能的结果共有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足两枚硬币全部正面向上(记为事件A)的结果只有1.种,即“正正”,所以P(A)=14(2)两枚硬币全部反面向上(记为事件B)的结果也只有1种,即“反反”,所以P (B )=14.(3)一枚硬币正面向上、一枚硬币反面向上(记为事件C )的结果共有2种,即“反正”“正反”,所以P (C )=24=12.教师通过例题总结,若对所有的结果进行单纯的列举,发现容易出现遗漏,故可引入列表法.如本题中将两枚硬币分别记作A ,B ,可以用下表列举出所有可能的结果.设计意图:突出列举法求概率的使用条件,即结果只有有限种,且各种结果出现的可能性大小相等.从实际情况出发,引导学生思考事件的可能情况,让学生对列表法形成初步认知,突出列举法求概率的使用条件.当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法.一个因素所包含的可能情况在表格中横向列出,另一个因素所包含的可能情况在表格中纵向列出,在所有可能情况n 中,再找到满足条件的事件的个数m ,最后代入公式计算.设计意图:让学生更明确“列表法”求随机事件概率的注意事项,通过把列表法具象化,使学生更明确运用列表法求随机事件概率的注意事项,进而加深对列表法的认识.典例精讲例2 同时掷两枚质地均匀的骰子,计算下列事件的概率: (1)两枚骰子的点数相同; (2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.分析:当一次试验是掷两枚骰子时,为了不重不漏地列出所有可能的结果,通常采用列表法.解:两枚骰子分别记为第1枚和第2枚,可用下表列举出所有可能出现的结果.由表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子的点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)=636=16.(2)两枚骰子的点数之和是9(记为事件B)的结果有4种,即(3,6),(4,5),(5,4),(6,3),所以P(B)=436=19.(3)至少有一枚骰子的点数为2(记为事件C)的结果有11种,即(1,2),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,2),(4,2),(5,2),(6,2),所以P(C)=1136.设计意图:明确列表法,巩固“分步”分析问题的意识;为了规范学生的解题格式,将解题的步骤展示出来.巩固训练一个不透明的布袋子里装有4个大小、质地均相同的乒乓球,球面上分别标有1,2,3,4.王撼和李秋达按照以下方式抽取乒乓球:先从布袋中随机抽取一个乒乓球,记下标号后放回袋内搅匀,再从布袋内随机抽取第二个乒乓球,记下标号,求出两次取的小球的标号之和.若标号之和为4,王撼赢;若标号之和为5,李秋达赢.请判断这个游戏是否公平,并说明理由.学生独立思考并完成.解:两个乒乓球分别记为第1个和第2个,用下表列举出所有可能出现的结果.从表中可知,所有可能的情况共16种,和为4的情况有3种,即(1,3),(2,2)(3,1);和为5的情况有4种,即(1,4),(2,3),(3,2),(4,1).∴王撼赢的概率为316,李秋达赢的概率为416=14. ∴14>316,∴这个游戏不公平,对李秋达有利.设计意图:复习巩固用列表法求概率,培养学生应用概率知识解决问题的意识,渗透随机观念,可将题中两名学生姓名改成本班学生的姓名,提高学生学习的积极性高.课堂小结1.这节课我们学到了什么?2.用列举法求概率需要满足什么条件?3.列表法适用于解决哪类概率问题? 回顾梳理本节知识,巩固,提高,发展.让学生归纳、总结所学知识,进行自我评价,自我总结.设计意图:这样可以让不同的学生有不同的体会,尊重了学生的个体差异,激发了学生主动参与的意识,为每个学生创造在数学活动中获得活动经验的机会.课堂8分钟.1.教材第138页练习第1,2题.2.七彩作业.教学反思第2课时用画树状图法求概率课时目标1.掌握用画树状图法计算概率,并通过比较概率大小做出合理的决策,发展学生抽象思维能力的核心素养.2.能够根据问题,判断何时选用列表法和画树状图法求概率更方便,培养学生观察、操作、归纳、猜想的能力.3.经历试验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.学习重点掌握用画树状图法计算概率,并通过比较概率大小做出合理的决策.学习难点能够根据问题,判断何时选用列表法和画树状图法求概率更方便.课时活动设计问题1抛掷一枚硬币,硬币正面朝上的概率是多少?解:正面朝上的概率是12.问题2抛掷两枚硬币,一枚正面朝上、一枚反面朝上的概率是多少?解:列表如下:由表可知,同时抛掷两枚硬币,共有4种等可能的结果.其中一枚正面朝上、一枚反面朝上的概率是P=24=12.问题3抛掷三枚硬币,两枚正面朝上、一枚反面朝上的概率是多少?可以用列表法解决这个问题吗?解:概率是38,不可以.理由如下:当一次试验涉及3个因素或更多的因素时,列表法就不方便了,为不重不漏地列出所有可能的结果,通常采用画树状图法.设计意图:通过问答的方式,帮助学生回忆上节课所学的知识,引导学生回忆列表法求概率,为后续学习树状图法做铺垫.抛掷三枚硬币,两枚正面朝上、一枚反面朝上的概率是多少?解:画树状图如下:由树状图可以看出,所有可能出现的结果共有8种,即且这些结果出现的可能性相等.两枚正面朝上、一枚反面朝上的结果有3种,所以P(两枚硬币正面朝上而一.枚硬币反面朝上)=38设计意图:让学生经历合作探究的过程,通过讨论交流,培养学生解决问题和互相合作的能力.1.列表法和树状图法的优点是什么?分析:利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果,从而较方便地求出某些事件发生的概率.2.什么时候使用“列表法”方便?什么时候使用“树状图法”方便?分析:当试验包含两步或涉及两个因素时,列表法比较方便(此时也可以用树状图法);当试验在三步或三步以上(或涉及三个或三个以上因素)时,用树状图法更方便.注意:用列表法或树状图法求概率的前提.(1)可能出现的结果只有有限个;(2)各种结果出现的可能性大小相等.设计意图:通过让学生及时总结回顾,帮助学生梳理所学知识,巩固学生对列表法和树状图法的理解和认识.典例精讲例甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C,D 和E;丙口袋中装有2个相同的小球,它们分别写有字母H 和I.从三个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少? (2)取出的3个小球上全是辅音字母的概率是多少? 解:根据题意,可以画出如下树状图:由树状图可以看出,可能出现的结果共有12种,即且这些结果出现的可能性相等.(1)只有1个元音字母的结果有5种,即ACH,ADH,BCI,BDI,BEH,所以P (1个元音)=512.有2个元音字母的结果有4种,即ACI,ADI,AEH,BEI,所以P (2个元音)=412=13. 全部为元音字母的结果只有1种,即AEI,所以P (3个元音)=112. (2)全是辅音字母的结果共有2种,即BCH,BDH,所以P (3个辅音)=212=16. 设计意图:通过解决实际问题,示范树状图解法,加深学生对此种解法的理解,使学生初步掌握用树状图法解决概率问题的技能.巩固训练1.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为( C ) A.19 B.16C.13D.122.小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.(1)用列表法或画树状图法,求小丽参赛的概率;(2)你认为这个游戏公平吗?请说明理由.解:(1)法一:根据题意列表,得由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字和为偶数的结果有4种,分别是(2,4),(3,5),(4,2),(5,3).所以小丽参赛的概率为412=13.法二:根据题意,画树状图如下:由树状图可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字和为偶数的结果有4种,分别是(2,4),(3,5),(4,2),(5,3).所以小丽参赛的概率为412=13.(2)游戏不公平,理由为:∴小丽参赛的概率为13,∴小华参赛的概率为1-13=23.∴13≠23,∴这个游戏不公平.设计意图:通过巩固练习,巩固新知,复习本节课内容.使学生能够从实际需要出发,判断何时选用列表法和画树状图法求概率更方便,提升学生使用列表法和树状图法求概率的技能.以思维导图的形式呈现本节课所讲解的内容.设计意图:通过小结让学生熟悉巩固本节课所学的知识,回顾反思不同方法求概率的优势和弊端,进一步提升学生解决问题的能力.课堂8分钟.1.教材第139页练习,教材第140页习题25.2第3,4,5题.2.七彩作业.教学反思。
初中数学九年级上册《用列举法求概率》第一课时教案
《用列举法求概率》教案第一课时一.教学目标1. 用列举法(列表法)求简单随机事件的概率,进一步培养随机概念.2. 经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.3. 通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.二.学情分析我班学生活泼好动、有一定的自学能力,好奇心、求知欲、表现欲都非常强;在初一,初二学习基础上,他们具有一定的观察能力、分析能力、归纳能力,学习新知识速度快模仿能力强,具备一定的探索知识自主创新的能力,但课后复习巩固的效果较差。
为了加强他们的自学能力,提高课堂学习效率,根据他们的特点,本节课以学生自主探究方式完成学习,选择联系生活中的实际问题,适合学生的习题,由浅入深的引导,注重培养学生的自学能力,通过一定练习,激发学生的求知欲和提高学生的自信心。
三.重点难点1.重点: 运用列表法求事件的概率。
2.难点与关键:如何使用列表法。
四.教学过程4.1.1教学活动活动1【导入】复习引入(老师口问.学生口答)请同学们回答下列问题.1.什么是必然事件?什么是不可能事件?什么是随机事件?2.概率是什么?3. P(A)的取值范围是什么?(板书)0≤P≤1.活动2【活动】探索新知不管求什么事件的概率,我们都可以做大量的试脸.求频率得概率,这是上一节课也是刚才复习的内容,它具有普遍性,但求起来确实很麻烦,是否有比较简单的方法,这种方法就是我们今天要介绍的方法—列举法,问题1.掷一枚硬币,落地后会出现几种结果?正面、反面向上2种,可能性相等问题2.抛掷一个骰子,它落地时向上的数有几种可能?6种等可能的结果问题3.从分别标有1.2.3.4.5.的5根纸签中随机抽取一根,抽出的签上的标号有几种可能?5种等可能的结果。
以上三个试验有两个共同的特点:1.一次试验中,可能出现的结果只有有限多个.2.一次试验中,各种结果发生的可能性相等.对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.因此,一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=例1 同时向空中抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上.解:将两枚硬币分别记做 A、B,于是可以直接列举得到:(A正,B正),(A正,B 反),(A反,B正),(A反,B反)四种等可能的结果.P(两枚正面向上)=P(两枚反面向上)=P(一枚正面向上,一枚反面向上)=思考:如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形).游戏规则是:如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.解:每次游戏时,所有可能出现的结果如下:(1,1) ,(1,2)(1,3)(2,1)(2,2)(2,3)总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为1/6.活动3【讲授】例题讲解例2、同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同(2)两个骰子点数之和是9(3)至少有一个骰子的点数为2活动4【活动】边玩边学活动一:小明和小亮做扑克游戏,桌面上放有两堆牌,分别是红桃和黑桃的1,2,3,4,5,6,小明建议:我从红桃中抽取一张牌,你从黑桃中取一张,当两张牌数字之积为奇数时,你得1分,为偶数我得1分,先得到10分的获胜”。
九年级数学人教版上册25.2用列举法求概率第1课时用列表法求概率教学设计
2.在列出列表后,如何统计各种结果的数量,以及如何根据数量计算概率。
3.列表法适用于哪些类型的概率问题,以及在实际应用中需要注意的问题。
(三)学生小组讨论
在讲授新知之后,我会组织学生们进行小组讨论。我会给出几个不同难度的实际问题,让学生们分组讨论如何使用列表法求概率。在这个过程中,我会鼓励学生们积极发言,分享自己的观点和解决问题的方法。
8.教学反思:教师在本节课结束后,进行教学反思,不断提高教学水平。
-分析教学过程中的优点和不足,调整教学方法,以满足学生的学习需求。
四、教学内容与过程
(一)导入新课
在本节课开始时,我将通过一个生动的例子来导入新课。我会问学生们:“同学们,你们在生活中遇到过抽奖的活动吗?当你们参加这样的活动时,是否想过自己中奖的概率是多少?”通过这个问题,让学生们思考概率在生活中的应用。然后,我会拿出一个提前准备好的抽奖箱,里面装有一些彩球,每个球上写有不同的数字。
1.学生对列表法概念的理解:部分学生可能对列表法的概念理解不够深入,需要通过具体实例和讲解,帮助他们理解和掌握列表法的内涵。
2.学生在解决问题时的思维定势:学生在解决概率问题时,容易受到思维定势的影响,局限于某一种解法。教师应引导学生尝试不同的方法,培养其灵活运用列表法的能力。
3.学生的合作交流能力:在小组讨论中,部分学生可能表现出不积极参与、沟通不畅等问题。教师应关注学生的合作交流能力,引导他们积极参与讨论,提高团队协作能力。
(二)过程与方法
1.引导学生通过观察、分析、总结,发现列表法求概率的方法。
2.通过小组合作,培养学生的团队协作能力和沟通能力。
3.设计具有挑战性的问题,激发学生的探究欲望,培养其解决问题的能力。
九年级数学上册《用列举法求概率》教案
九年级数学上册《用列举法求概率》第1课时教学设计课题第1课时运用直接列举或列表法求概率单元第二十五章学科数学年级九年级上学习目标情感态度和价值观目标通过分析,探究事件的概率,体会数学的应用价值,培养学生良好的动脑习惯。
能力目标经历实验、列举等活动,学习在具体情境中分析事件,计算其发生的概率,提高分析问题和解决问题的能力。
知识目标1.用列举法求较复杂事件的概率.2.理解“包含两步并且每一步的结果为有限多个情形〞的意义.3.用列表法求概率.重点正确理解事件的有限等可能性。
能用列举法求事件的概率。
难点正确分析和准确计算概率。
教法学法以学生为主体、活动为主线的学习方法。
把教学过程转化为观察、猜测、实验、论证、表述、归纳的过程,让学生在教师引导下轻松愉快的气氛习新知。
教学环节教师活动学生活动设计意图导入新课一、温故知新答复以下问题,并说明理由.(1)掷一枚硬币,正面向上的概率是_______;(2)袋子中装有 5 个红球,3 个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,它是红色的概率为________;(3)掷一个骰子,观察向上一面的点数,点数大于 4 的概率为______.做游戏:向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢请问,你们觉得这个游戏公平吗?回忆旧知引导学生回忆复习上节课概率的含义和计算概率的内容。
老师操作游戏,由评判小组判别输赢,最后学生试看看问通过回忆上节课的有关知识,复习稳固概率的含义及算法,同时也把概率的计算方法做以比拟。
通过游戏吸引学生注意力,在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法. 题:你们觉得这个游戏公平吗?引导学生思考,用概率的知识解决生活中的实际问题。
讲授新课二、探究新知1.用直接列举法求概率活动1:请同学们同时掷两枚硬币,试求以下事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上;“掷两枚硬币〞所有结果如下:总结归纳:把事件可能出现的结果一一列出,这种列举法我们称为直接列举法。
《用列举法求概率(第1课时)》教案 人教数学九年级上册
25.2 用列举法求概率(第1课时)一、教学目标【知识与技能】初步掌握直接列举法计算一些简单事件的概率的方法.【过程与方法】通过用列举法求简单事件的概率的学习,使学生在具体情境中分析事件.计算其发生的概率,解决实际问题.【情感态度与价值观】体会概率在生活实践中的应用,激发学习数学的兴趣,提高分析问题的能力.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】熟练掌握直接列举法计算简单事件的概率.【教学难点】能不重不漏而又简洁地列出所有可能的结果.五、课前准备课件等.六、教学过程(一)导入新课出示课件2,3:小颖为一节活动课设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。
问:游戏者获胜的概率是多少?老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问,你们觉得这个游戏公平吗?上边的问题有几种可能呢?怎样才能不重不漏地列举所有可能出现的结果呢?.(板书课题)(二)探索新知探究一用直接列举法求概率出示课件5-7:同时掷两枚硬币,试求下列事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上.师生共同分析:“掷两枚硬币”所有结果如下:⑴两正;⑵一正一反;⑶一反一正;⑷两反.师生共同解决如下:解:(1)两枚硬币两面一样包括两面都是正面、两面都是反面,共两种情形,其概率为21;=42(2)一枚硬币正面朝上,一枚硬币反面朝上,共有反正、正反两种情形,其概率为21=.42出示课件8:教师归纳:上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.教师强调:直接列举法比较适合用于最多涉及两个试验因素或分两步进行的试验,且事件总结果的种数比较少的等可能性事件.想一想:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?(出示课件13)师生共同分析:结论:一样.出示课件10:教师归纳:随机事件“同时”与“先后”的关系:“两个相同的随机事件同时发生”与“一个随机事件先后两次发生”的结果是一样的.探究二用列表法求概率出示课件11:同时掷两枚硬币,试求下列事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上.还有别的方法求上述事件的概率吗?教师分析:还可以用列表法求概率:出示课件13:教师分析列表法中表格构造特点,学生思考并认定.出示课件14-16:例1 同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同.(2)两个骰子的点数之和是9.(3)至少有一个骰子的点数为2.教师分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷出1、2、···6中的每一种情况,第2枚骰子也可能掷出1,2,···,6中的每一种情况.可以用“列表法”列出所有可能的结果如下:解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等.(1)满足两个骰子的点数相同(记为事件A)的结果有6个,则P(A)=61.=366(2)满足两个骰子的点数之和是9(记为事件B)的结果有4个,则P(B)=41.=369(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个,则P(C)=11.36出示课件17:教师归纳:当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用列表法.巩固练习:(出示课件18-20)同时抛掷2枚均匀的骰子一次,骰子各面上的点数分别是1、2、3···6.试分别计算如下各随机事件的概率.(1)抛出的点数之和等于8;(2)抛出的点数之和等于12.教师分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷出1、2、···6中的每一种情况,第2枚骰子也可能掷出1、2、···6中的每一种情况.可以用“列表法”列出所有可能的结果.学生板演:解:从上表可以看出,同时抛掷两枚骰子一次,所有可能出现的结果有36种.由于骰子是均匀的,所以每个结果出现的可能性相等.(1)抛出点数之和等于8的结果(2,6),(3,5),(4,4),(5,3)和(6,2)这5种,所以抛出的点数之和等于8的这个事件发生的概率为5;36(2)抛出点数之和等于12的结果仅有(6,6)这1种,所以抛出的点数之和等于12的这个事件发生的概率为1.36出示课件21:例2 一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,再从中任意摸出一个球,两次都摸出红球的概率是多少?师生共同解决如下:(出示课件22)解:利用表格列出所有可能的结果:次摸出红球4(2)=.9P ∴拓展延伸:一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后不再放回袋中,再从中任意摸出一个球,两次都摸出红球的概率是多少?(出示课件23)师生共同解决如下:解:利用表格列出所有可能的结果:次摸出红球21(2)=.63P ∴=出示课件24:教师强调:通过例2及拓展延伸的讲解,放回与不放回列举的过程是不同的,解答问题时,注意明确,若无明确,具体问题具体分析.巩固练习:(出示课件25,26)如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形).游戏规则是:如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.学生思考交流后自主解决,一生板演.解:每次游戏时,所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为1.6出示课件27,28:例3 甲乙两人要去风景区游玩,仅知道每天开往风景区有3辆汽车,并且舒适程度分别为上等、中等、下等3种,当不知道怎样区分这些车,也不知道它们会以怎样的顺序开来.于是他们分别采用了不同的乘车办法:甲乘第1辆开来的车.乙不乘第1辆车,并且仔细观察第2辆车的情况,如果比第1辆车好就乘坐,比第1辆车差就乘第3辆车.试问甲、乙两人的乘车办法,哪一种更有利于乘上舒适程度上等的车?学生独立思考后师生共同解决.解:容易知道3辆汽车开来的先后顺序有如下6种可能情况:(上中下),(上下中),(中上下),(中下上),(下上中),(下中上).假定6种顺序出现的可能性相等,在各种可能顺序之下,甲乙两人分别会乘坐的汽车列表如下:甲乘到上等、中等、下等3种汽车的概率都是13;乙乘坐到上等汽车的概率是31=62,乘坐到下等汽车的概率只有16.答:乙的乘车办法有有利于乘上舒适度较好的车.巩固练习:(出示课件29-31)小明和小亮做扑克游戏,桌面上放有两堆牌,分别是红桃和黑桃的1、2、3、4、5、6,小明建议:“我从红桃中抽取一张牌,你从黑桃中取一张,当两张牌数字之积为奇数时,你得1分,为偶数我得1分,先得到10分的获胜.”如果你是小亮,你愿意接受这个游戏的规则吗?你能求出小亮得分的概率吗?师生共同分析:用表格表示解:由表中可以看出,在两堆牌中分别取一张,它可能出现的结果有36个,它们出现的可能性相等.满足两张牌的数字之积为奇数(记为事件A)的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)这9种情况,所以P(A)=936=1. 4(三)课堂练习(出示课件32-39)1.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用列表的方法,求该同学两次摸出的小球所标字母相同的概率.2.小明与小红玩一次“石头、剪刀、布”游戏,则小明赢的概率是()A.49B.13C.12D.193.某次考试中,每道单项选择题一般有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全对的概率是()A.14B.12C.18D.1164.如果有两组牌,它们的牌面数字分别是1、2、3,那么从每组牌中各摸出一张牌.(1)摸出两张牌的数字之和为4的概念为多少?(2)摸出为两张牌的数字相等的概率为多少?5.在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少?参考答案:1.解:列表得:由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种.所以该同学两次摸出的小球所标字母相同的概率=31.932.B3.D4.解:列表,得(1)P(数字之和为4)=1.3(2)P(数字相等)=1.35.解:列表,得由列表得,两次抽取卡片后,可能出现的结果有36个,它们出现的可能性相等.满足第一次取出的数字能够整除第二次取出的数字(记为事件A)的结果有14个,则P(A)=147.3618(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(25.2第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.本节课通过以学生喜闻乐见的掷硬币等游戏为载体,充分调动了学生的学习欲望,将学生摆在了真正的主体位置上,充分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多有关概率的问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.2.本节课还通过普通列举法与列表法,对找出包含两个因素的试验结果的对比,让学生感受到列表法的作用与长处,使学生易于接受知识.3.教师引导学生交流归纳知识点,看学生能否会不重不漏地列举出事件发生的所有可能,能否找出事件A中包含几种可能的结果,并能求P(A),教学时要重点突出方法.。
25.2 用列举法求概率(第一课时)(教学设计)九年级数学上册同步备课系列(人教版)
25.2 用列举法求概率(第一课时)一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十五章“概率初步”25.2 用列举法求概率(第一课时列表法求概率),内容包括:用列举法(列表法)求简单随机事件的概率.2.内容解析在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法. 当每次试验涉及两个因素时,为了更清晰、不重不漏地列举出试验的所有结果,教科书给出了以表格形式呈现的列举法——列表法.这种方法适合列举每次试验涉及两个因素,且每个因素的取值个数较多的情形.相对于直接列举法,用表格列举体现了分步分析对思考较复杂问题时起到的作用.将试验涉及的一个因素所有可能的结果写在表头的横行中,另一个因素所有可能的结果写在表头的竖列中,就形成了不重不漏地列举出这两个因素所有可能结果的表格.这种分步分析问题的方法,将在下节课树状图法中进一步运用.基于以上分析,确定本节课的教学重点是:用列表法求简单随机事件的概率.二、目标和目标解析1.目标1)会用直接列举法、列表法列举所有可能出现的结果.2)用列举法(列表法)计算简单事件发生的概率.2.目标解析达成目标1)的标志是:对于结果种数有限且每种结果等可能的随机事件,可以用列举法求概率;当每次试验涉及两个因素,且每个因素的取值个数较多时,相对于直接列举,采用表格的方式更有利于将试验的所有结果不重不漏地表示出来.达成目标2)的标志是:掌握列表法求概率的步骤:1)列表;2)通过表格计数,确定所有等可能的结果数n和符合条件的结果数m的值;,计算出事件的概率.3)利用概率公式P(A)=mn三、教学问题诊断分析学生已经理解了列举法求概率的含义,但对于涉及两个因素的试验,如何不重不漏地列举出试验所有可能的结果这对学生而言是一种考验,如何设计出一种办法解决这个较复杂问题,“分步”分析起到了重要作用.基于以上分析,本节课的教学难点是:掌握列表法求概率的步骤.四、教学过程设计(一)复习巩固【提问】简述概率计算公式?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾上节课所学内容,为接下来学习利用列表法求概率打好基础.(二)探究新知【问题一】老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,学生赢. 你们觉得这个游戏公平吗?师生活动:教师提出问题,学生尝试思考.【设计意图】通过现实生活中的实际问题,激发学生学习数学的兴趣.【问题二】同时掷两枚硬币,求下列事件的概率:1)两枚硬币两面一样.2)一枚硬币正面朝上,一枚硬币反面朝上.3)问题一中的游戏公平吗?师生活动:教师提出问题,先要求学生说出可能出现的情况.部分学生认为:上述三个事件恰好代表了抛掷两枚硬币的所有可能的结果,故概率分别为13;另一位学生认为:出现结果为:正正、正反、反正、反反,其中“正反”与“反正”应分别算作两种可能的结果,故上述事件的概率分别为14,14和12.教师强调:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法.师:你觉得问题一中的游戏公平吗?师生活动:学生通过刚才的结论得出:学生赢的概率与教师赢的概率相等,所以该游戏是公平的. 教师补充说明:上述这种列举法我们称为直接列举法(枚举法)并给出使用直接列举法的注意事项.【设计意图】让学生掌握用列举法求概率的使用条件:①所有可能出现的结果是有限个.②每个结果出现的可能性相等.【问题三】“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?由此你发现了什么?师生活动:教师共同作答,得出:同时掷两枚硬币,会出现:两正、两反,一正一反和一反一正;先后两次掷一枚硬币,也会出现:两正、两反,一正一反和一反一正.所以这两种实验的所有可能的结果一样.教师指出:“两个相同的随机事件同时发生”与“一个随机事件先后两次发生”的结果是一样的,因此作此改动对所得结果没有影响.当试验涉及两个因素时,可以“分步”对问题进行分析.【设计意图】让学生理解当试验涉及两个因素时,可以“分步”对问题进行分析.(三)典例分析与针对训练例1 小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是_________【针对训练】1. 从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为____________2. 如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为______________3.(2020·江苏南通·统考中考真题)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:1)写出这三辆车按先后顺序出发的所有可能结果;2)两人中,谁乘坐到甲车的可能性大?请说明理由.4.(2022·江苏南京·统考中考真题)甲城市有2个景点A、B,乙城市由3个景点C、D、E,从中随机选取景点游览,求下列事件的概率:(1)选取1个景点,恰好在甲城市;(2)选取2个景点,恰好在同一个城市.【设计意图】巩固用列举法求概率.(四)探究新知【问题三】同时投掷两个质地均匀的骰子,观察向上一面的点数,求下列事件的概率.1)两个骰子的点数相同.2)两个骰子点数的和是9.3)至少有一个骰子的点数为2.师生活动:师生分析得出,与问题二类似,问题三的试验也涉及两个因素(第一枚骰子和第二枚骰子),但这里每个因素的取值个数要比问题二多(抛一枚硬币有2种可能的结果,但掷一枚骰子有6种可能的结果),因此试验的结果数也就相应要多很多.因此,直接列举会比较繁杂,可以使用列表法.列表法适合列举每次试验涉及两个因素,并且每个因素的取值个数较多的情形.师:如何列表?师生活动:学生分析,因为试验涉及两个因素(两枚骰子),可以分两步进行思考,将第1枚骰子的所有可能结果作为表头的横行,将第2枚骰子的所有可能结果作为表头的竖列,列出如下表格:由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相同.1)两枚骰子的点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)= 636= 16 2)两枚骰子的点数相同(记为事件B)的结果有4种,即(3,6),(6,3),(5,4),(4,5) 所以P(B)= 436= 193)至少有一个骰子的点数为2(记为事件C)的结果有11种,即(1,2),(2,2),(3,2),(4,2),(5,2),(6,2) (2,1),(2,3),(2,4),(2,5),(2,6)所以P(B)= 1136【设计意图】明确列表法.【问题四】简述列表法求概率的步骤?师生活动:教师提出问题,学生尝试回答.教师引导与归纳得出:1)列表;2)通过表格计数,确定所有等可能的结果数n 和符合条件的结果数m 的值;3)利用概率公式P (A )=mn ,计算出事件的概率.【设计意图】让学生掌握列表法求概率的方法.(五)典例分析与针对训练例2 一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是_______________【针对训练】1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行调查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是______________2.从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛.(1)若甲一定被选中参加比赛,再从其余3名学生中任意选取1名,恰好选中乙的概率是___________;(2)任意选取2名学生参加比赛,求一定有丁的概率.3.在一个不透明的口袋中装有大小材质完全相同的三个小球,分别标有数字3,4,5, 另有四张背面完全一样的卡片,卡片正面分别标有数字2,3,4,5,四张卡片背面朝上放在桌面上.小明先从口袋中随机摸出一个小球,记下小球上的数字为x,小红再从桌面上随机抽出一张卡片,记下卡片上的数字为y.(1)从口袋中摸出一个小球恰好标有数字3的概率是___________;(2)求点P(x,y)在直线y=x−1上的概率.【设计意图】巩固列表法求概率的方法.(六)直击中考1.(2023·安徽中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59 B.12C.13D.292.(2023·湖南中考真题)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是()A.16 B.14C.13D.123.(2023·黑龙江齐齐哈尔中考真题)某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是()A.12 B.13C.14D.16【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点. (七)归纳小结1. 通过本节课的学习,你学会了哪些知识?2. 用列举法求概率应该注意哪些问题?3. 列表法适用于解决哪类概率求解问题?使用列表法有哪些注意事项?(八)布置作业P138:练习五、教学反思。
人教版数学九年级上册25.2 列举法求概率 教案
25.2用列举法求概率第1课时用列表法求概率教学目标1.会用列举法(直接列举、列表法)求简单事件的概率,进一步培养随机观念.2.感受分步分析对思考较复杂问题时起到的作用.教学重点用列表法求简单随机事件的概率.教学难点如何使用列表法.教学设计教学过程设计一、创设情景明确目标1.掷一枚质地均匀的硬币有几种可能的结果?它们的可能性相等吗?正面向上的概率是多少?2.“把掷一枚质地均匀的硬币〞改为“同时掷两枚质地均匀的硬币〞有几种可能的结果?它们的可能性相等吗?两个硬币全部正面向上的概率是多少?问题2与问题1相比,条件发生了哪些变化?如何解答?二、自主学习指向目标1.自读教材第136至137页.2.学习至此:请完成学生用书“课前预习〞局部.三、合作探究达成目标探究点一用列举法求概率活动一:出示教材第136页例1,思考以下问题:(1)使用两枚硬币作抛掷硬币试验,理解“所有可能的结果共有4种,并且这4种结果出现的可能性相等〞;(2)“正反〞与“反正〞是一样的结果吗?(3)随机事件“一枚硬币正面朝上,一枚硬币反面朝上〞包含哪几种结果?【展示点评】当第一枚硬币正面向上,第二枚硬币有正、反两种情况;同理,第一枚硬币为反面的情况下,第二枚有正、反两种情况,所有的结果共有4个,并且这4个结果的可能性相等.【小组讨论】两枚硬币可以编上序号以示区分,再完成例2中的3个问题,看与例2解答有何区别?【反思小结】“同时掷两枚硬币〞与“先掷一枚硬币再掷一枚硬币〞这两种试验所出现的结果是一样的.有的随机事件发生的概率可以转化成与之发生概率一样的随机事件进展研究.【针对训练】见学生用书“当堂练习〞知识点一探究点二用列表法求概率活动二:出示教材第136页例2,思考以下问题:(1)当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重复不遗漏地列举出所有可能的结果,通常用什么方法?(2)例2中的表左边的一列表示第二个骰子的点数共有几种等可能的结果?上边一行表示第一个骰子的点数共有几种等可能的结果?其他局部像(1,6)这样的单元格共有多少种情况?【展示点评】由表可以得到:两个骰子点数一样的结果有:____________________________;两个骰子点数和是9的结果有:_____________________________;至少有一个骰子点数为2的结果有:_____________________________.【小组讨论】如果把例2中的“同时掷两个骰子〞改为“把一个骰子掷两次〞,所得到的结果共有多少种?试用列表法分析.【反思小结】用列表法求概率的前提是一次试验涉及的因素只有两个,并且各种结果出现的可能性都相等.求符合列表法求概率的等可能随机事件的概率的几个根本步骤:一列表;二描述表中可能出现的结果的总数n及各种结果出现的可能性相等;三统计满足某种随机事件发生的结果的数目m,并列举出来;四用公式P=m,n计算概率.【针对训练】见学生用书“当堂练习〞知识点二四、总结梳理内化目标1.在一次试验中,当可能出现的结果只有________个,且各种结果出现的可能性大小________时,我们可以用________试验结果的方法,求出随机事件发生的概率.2.列举法求概率目前学到两种方法:一是直接列举法;二是通过表格列举法.3.用表格列举法求概率的步骤:(1)列表;(2)分析表中的结果的特征:有多少种可能出现的结果,并且各种结果出现的可能性一样;(3)计算概率:用公式P=m,n计算.五、达标检测反思目标1.李进有红、黄、白3件运动上衣和白、黑2条运动短裤,假设任意组合穿着,那么穿着“衣裤同色〞的概率是__1,6__.2.(2021 ·衡阳)某校学生会正筹备一个“庆毕业〞文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,求选出的两名主持人“恰好为一男一女〞的概率__2,3__.3.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,那么这个两位数能被3整除的概率是( A )A.1,3 B.1,4 C.1,6 D.2,12六、布置作业稳固目标1.上交作业:教材第140页第3,5,7题.2.课后作业:见学生用书的“课后作业〞局部.教学反思第2课时用树状图法求概率教学目标理解并掌握树形图法求概率的方法.教学重点理解树形图的应用方法及条件,用画树形图的方法求概率.教学难点用树形图列举出各种可能,求实际问题中的概率.教学设计教学过程设计一、创设情景明确目标国庆长假期间,小军跟爸爸开车到A地游玩,途中要经过两个十字路口(每个路口都有红、绿、黄三种灯各种灯亮的时间一样).(1)请列举出小军和爸爸经过两个路口时的红绿灯的所有情况;(2)他们的车一路绿灯的概率是多少?【思考】1.用列表法能解决吗?为什么?二、自主学习指向目标1.自读教材第138至139页.2.学习至此:请完成学生用书“课前预习〞局部.三、合作探究达成目标探究点用树状图法求简单事件的概率出示教材第138页例3,思考以下问题:(1)取出3个小球,可以看作需要几步来完成?每一步里有哪几种结果?(2)怎样引导学生画出树状图表示所有等可能出现的结果?(3)你知道元音字母有哪些?此题中涉及的元音字母是________;辅音字母有哪些?此题中涉及的辅音字母是________.【展示点评】画树形图要分清一次试验的几个因素.此题中第一个因素是:从甲口袋中抽取一个小球上面写的字母;第二个因素是从乙口袋中抽取一个小球上面写的字母;第三个因素是从丙口袋中抽取一个小球上面写的字母.树形图可以从上面向下倒着画,也可以从左边向右方画.【小组讨论】如何根据题目的特点,选择适宜的列举法?【反思小结】当一次试验涉及两因素或包含两步时,列表法比拟方便,当然也可以用画树形图法;当试验存在三步或三步以上时,只能用画树形图法解决概率问题.【针对训练】见学生用书“当堂练习〞.四、总结梳理内化目标1.本节课学习后我们共学会了三种列举方法求概率:一是直接列举法;二是表格列举法;三是画树形图法.2.用列表法和树状图法求随机事件的概率各有什么特点?五、达标检测反思目标1.连续抛掷一枚均匀的硬币三次,每次都正面向上的概率是__1,8__.2.甲、乙、丙三人坐在一排照相留念,那么甲、乙两人坐在相邻的位置上的概率是__2,3__.3.(2021 ·兰州)为了参加中考体育测试,甲、乙、丙三位同学进展足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的时机是均等的,由甲开场传球,共传三次.那么三次传球后,球回到甲脚下的概率是( C )A.1,2B.1,3C.1,4D.3,8六、布置作业稳固目标1.上交作业:教材第140,第4,6,8题;2.课后作业:见学生用书的“课后作业〞局部.教学反思。
人教版九年级数学上册教案 25.2 第1课时 用直接列举法和列表法求概率
25.2用列举法求概率第1课时用直接列举法和列表法求概率一、基本目标【知识与技能】1.掌握用直接列举法和列表法求简单事件的概率的方法.2.运用概率知识解决计算涉及两个因素的一个事件概率的实际问题.【过程与方法】经历试验操作、观察、记录的过程,探究如何画出适当的表格,列举出事件的所有等可能结果,并总结出用列表法求事件概率的方法.【情感态度与价值观】合作探究如何画出适当的表格列举事件的所有等可能的结果,养成合作意识,形成缜密的思维习惯.二、重难点目标【教学重点】利用直接列举法和列表法求随机事件的概率.【教学难点】画出适当的表格列举事件的所有等可能的结果.环节1自学提纲,生成问题【5 min阅读】阅读教材P136~P138的内容,完成下面练习.【3 min反馈】1.在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小__相等__,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.2.同时抛掷两枚质地均匀的硬币,所有可能出现的结果有__正正__、__正反__、__反正__、__反反__,先后两次抛掷一枚质地均匀的硬币,所有可能出现的结果有__正正__、__正反__、__反正__、__反反__,故这两种试验的所有可能结果__一样__.环节2合作探究,解决问题【活动1】小组讨论(师生互学)【例1】先后两次抛掷一枚质地均匀的硬币. (1)求硬币两次都正面向上的概率; (2)求硬币两次向上的面相反的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列举先后两次抛掷一枚质地均匀的硬币的全部结果,它们是:正正、正反、反正、反反.所有的结果有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足硬币两次都正面向上的结果只有1种,即“正正”,所以P (硬币两次都正面向上)=14.(2)硬币两次向上的面相反的结果共有2种,即“正反”“反正”,所以P (硬币两次向上的面相反)=24=12.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较少,且各种结果出现的可能性大小相等,那么我们可以直接列举出试验结果,从而求出随机事件发生的概率.【例2】有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取1张,记下数字后放回洗匀,再从中随机抽取1张.(1)求两次抽到的数都是偶数的概率;(2)求第一次抽到的数比第二次抽到的数大的概率; (3)求两次抽到的数相等的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列表如下:(1)两次抽到的数都是偶数的结果有4种,即(2,2),(2,4),(4,2),(4,4),所以P (两次抽到的数都是偶数)=425.(2)第一次抽到的数比第二次抽到的数大的结果有10种,即(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),所以P (第一次抽到的数比第二次抽到的数大)=1025=25. (3)两次抽到的数相等的结果有5种,即(1,1),(2,2),(3,3),(4,4),(5,5),所以P (两次抽到的数相等)=525=15.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性大小相等,那么我们可以列表列举出试验结果,从而求出随机事件发生的概率.【活动2】 巩固练习(学生独学)1.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是( B ) A.12 B .13C.14D .152.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( C )A.18 B .16C .14D .123.李玲有红色、黄色、白色的三件运动短袖上衣和白色、黄色两条运动短裤.若任意组合穿着,则李玲穿着“衣裤同色”的概率是__13__.4.同时掷两枚质地均匀的六面体骰子,计算下列事件的概率: (1)两枚骰子点数的和是6; (2)两枚骰子点数都大于4; (3)其中一枚骰子的点数是3. 解:列表如下:们出现的可能性相等.(1)两枚骰子点数的和是6的结果有5种,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P (两枚骰子点数的和是6)=536.(2)两枚骰子点数都大于4的结果有4种,即(5,5),(5,6),(6,5),(6,6),所以P (两枚骰子点数都大于4)=436=19.(3)其中一枚骰子的点数是3的结果有11种,即(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(3,1),(3,2),(3,4),(3,5),(3,6),所以P (其中一枚骰子的点数是3)=1136.【活动3】 拓展延伸(学生对学)【例3】如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色).小明转动的A 盘被等分成4个扇形,小亮转动的B 盘被等分成3个扇形,两人分别转动转盘一次.两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?【互动探索】(引发学生思考)结合概率的相关知识,要使游戏对双方公平,则两人获胜的概率之间有什么关系?【解答】列表如下:性相同.其中能配成紫色的结果有3种,所以P (小明获胜)=312=14,P (小亮获胜)=1-14=34.因为14≠34,所以这个游戏对双方不公平.【互动总结】(学生总结,老师点评)判断一个游戏对双方是否公平,就看双方获胜的概率是否相等.若相等,则公平.否则,不公平.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。
人教版数学九年级上册25.2.1 用列表法求概率教案
25.2 用列举法求概率 第1课时 用列表法求概率●类比导入 (1)小明、小亮和小凡做“石头、剪刀、布”的游戏,游戏规则如下:由小明和小亮玩“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人的手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小亮中的获胜者.假设小明和小亮每次出这三种手势的可能性相同,你认为这个游戏对三个人公平吗?(2)小颖、小明和小凡都想去看周末的电影,但只有一张电影票,三人通过做游戏来决定谁去看电影.游戏规则如下:连续掷两枚质地均匀的硬币.若两枚硬币均正面朝上,则小明获胜;若两枚硬币均反面朝上,则小颖获胜;若一枚硬币正面朝上一枚硬币反面朝上,则小凡获胜.你认为这个游戏公平吗?【教学与建议】教学:通过两种游戏激发学生学习的兴趣,类比导入(1)游戏公平;(2)游戏不公平是取决于游戏各方获胜的概率.建议:小组内讨论,从概率的角度解释游戏的公平性.●复习导入 (1)什么是概率?概率的计算公式是什么? (2)掷一个质地均匀的正方体骰子,观察向上一面的点数. ①求掷得点数为奇数朝上的概率;②小明在做掷骰子的试验时,前五次都没掷得点数2,求他第六次掷得点数2的概率. (3)如果同时掷两枚质地均匀的正方体骰子. ①共有多少种可能的结果?②两枚骰子点数相同的概率是多少? ③两枚骰子点数和为9的概率是多少?【教学与建议】教学:通过对概率和概率计算公式的回顾,为本节列表法求概率提供知识准备.建议:引导用列表法求概率.命题角度1 直接列举法求概率在等可能试验中,当可能出现的结果种数少时,用直接列举法求概率.【例1】(1)从-1,0,1,2,3这五个数中,随机取出一个数,记为a ,使关于x 的一元二次方程x 2-3x +a =0有两个不相等的实数根的概率是(C)A .13B .34C .45D .35(2)从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为__16__.命题角度2 用列表法求概率在列表时,用行、列分别列出两个因素所有可能出现的情况,再计算概率.【例2】(1)一个布袋里装有4个只有颜色不同的球,其中3个红球、1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是(D)A .116B .12C .38D .916(2)九年级(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是__16__.命题角度3 判断游戏的公平性判断游戏是否公平,就是比较游戏双方获胜的概率.【例3】小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?解:根据题意,可列表如下:乙转盘 积甲转盘1231 123 2 24 6由表可知,所有等可能的结果共有6种情况,数字之积为奇数的有2种,为偶数的有4种,所以P (积为奇数)=13 ,P (积为偶数)=23.小明的积分为13 ×2=23 ,小刚的积分为23 ×1=23,∴这个游戏对双方是公平的.命题角度4 概率与代数、几何问题的结合综合运用代数、几何、物理等知识解决概率问题.【例4】(1)在3张反面无差别的卡片上,其正面分别印有等边三角形、平行四边形和正六边形.现将3张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为(A)A .13B .12C .23D .56(2)从2,3,4,6中随机选取两个数记作a 和b (a <b ),那么点(a ,b )在直线y =2x 上的概率是__13__.(3)如图,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡发光的概率是__23__.高效课堂 教学设计1.会用直接列举法求简单事件的概率. 2.能利用列表法求简单事件的概率.▲重点学习运用列表法计算事件发生的概率. ▲难点能根据不同的情况,选择恰当的方法列举,解决实际问题中概率的计算问题.◆活动1 新课导入1.你知道什么是概率吗?答:概率是随机事件发生的可能性大小的量的刻画和反映.2.P (A )的取值范围是什么?__0≤P (A )≤1__.特别地,当A 为必然事件时,P (A )=__1__;当A 为不可能事件时,P (A )=__0__.3.怎么求一个结果为有限个的随机事件的概率?方法:(1)列举出所有可能的全部结果即求出n ;(2)列举出事件A 中包含有几种可能即求出m ;(3)代入公式P (A )=m n.◆活动2 探究新知 1.教材P 136 例1. 提出问题:(1)如果先后两次抛掷一枚硬币,求下列事件的概率:①先后两次掷一枚硬币产生的可能性有几种?它们分别是什么? ②两次硬币全部正面向上记为事件A ,则P (A )等于多少? ③两次硬币全部反面向上记为事件B ,则P (B )等于多少?④一次硬币正面向上、一次硬币反面向上记为事件C ,则P (C )等于多少?(2)“同时抛掷两枚质地均匀的硬币”与“先后两次抛掷一枚质地均匀的硬币”,这两种试验的所有可能结果一样吗?学生完成并交流展示.2.教材P 136 例2. 提出问题:如果把“同时掷两枚质地均匀的骰子”改为“把一枚质地均匀的骰子掷两次”,得到的结果有变化吗?为什么?学生完成并交流展示. ◆活动3 知识归纳1.在一次试验中,如果可能出现的结果只有__有限个__,且各种结果出现的可能性__大小相等__,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.2.当一次试验要涉及两个因素并且可能出现的结果数较多时,为不重不漏地列出所有可能的结果,通常采用__列表法__.◆活动4 例题与练习例 小明、小林是三河中学九年级的同班同学.在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A ,B ,C 三个班,他俩希望能再次成为同班同学.(1)请你用列表法列出所有可能的结果; (2)求两人再次成为同班同学的概率. 解:(1)列表如下:小明结果 小林A B C A AA AB AC B BA BB BC C CA CB CC(2)由表可知共有种等可能的情况,其中两人分到同一个班的可能情况有AA ,BB ,CC 三种.∴P =39 =13 .练习1.教材P 138 练习第1,2题.2.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取一张后,放回并混在一起.再随机抽取一张,两次抽取的数字的积为奇数的概率是( B )A .12B .14C .310D .163.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__56__.◆活动5 课堂小结1.用列表法求概率时要注意不重不漏地列出所有可能结果.2.列表法可以清晰地表示出某个事件发生的所有可能出现的结果,从而较方便地求出某些事件发生的概率.当试验包含两步时,列表法比较方便.1.作业布置(1)教材P 140 习题25.2第2,3题; (2)对应课时练习.2.教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.2 用列举法求概率
第1课时运用直接列举或列表法求概率
1.用列举法求较复杂事件的概率.
2.理解“包含两步并且每一步的结果为有限多个情形”的意义.
3.用列表法求概率.
一、情境导入
希罗多德在他的巨著《历史》中记录,早在公元前1500年,埃及人为了忘却饥饿,经常聚集在一起掷骰子,游戏发展到后来,到了公元前1200年,有了立方体的骰子.
二、合作探究
探究点一:用列表法求概率
【类型一】摸球问题
一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )
A.1
4
B.
1
3
C.
1
2
D.
3
4
解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:
1 2
1 (1,1) (1,2)
2 (1,2) (2,2)
由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之
积为偶数共有3种:(1,2),(1,2),(2, 2),∴P=3
4
,故选D.
【类型二】学科内综合题
从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为________.
解析:用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:
0 1 2
0 ——(0,1) (0,2)
1 (1,0) ——(1,2)
2 (2,0) (2,1) ——
共有6种等可能结果,其中点P落在抛物线上的有(2,0),(0,2),(1,
2)三种,故点P落在抛物线上的概率是3
6
=
1
2
,故答案为
1
2
.
方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.
【类型三】学科间综合题
如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )
A.0.25 B.0.5
C.0.75 D.0.95
解析:先用列表法表示出所有可能的结果,再根据概率计算公式计算.列表表示所有可能的结果如下:
灯泡1发光灯泡1不发光
灯泡2发
光
(发光,发光) (不发光,发光)
灯泡2不发光(发光,不发
光)
(不发光,不发
光)
根据上表可知共有4种等可能的结果,其中至少有一个灯泡发光的
结果有3种,∴P(至少有一个灯泡发光)=3
4
,故选择C.
方法总结:求事件A的概率,首先列举出所有可能的结果,并从中找出事件A包含的可能结果,再根据概率公式计算.
【类型四】判断游戏是否公平
甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.
(1)求从袋中随机摸出一球,标号是1的概率;
(2)从袋中随机摸出一球然后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏是否公平?请说明理由.
解析:(1)直接利用概率定义求解;(2)先用列表法求出概率,再利用概率判断游戏的公平性.
解:(1)P
(标号是1)=
1 3
.
(2)这个游戏不公平,理由如下:
把游戏可能出现标号的所有可能性(两次标号之和)列表如下:
第一次和第
二次
1 2 3
1 2 3 4
2 3 4 5
3 4 5 6
∴P
(和为偶数)=
5
9
,P
(和为奇数)
=
4
9
,二者不相等,说明游戏不公平.
方法总结:用列举法解概率问题中,可以采用列表法.对于一次实验需要分两个步骤完成的,用两种方法都可以,以列表法为主.判断游戏是否公平,只需求出双方获胜的概率.
三、板书设计
教学过程中,强调在生活、学习中的很多方面均用到概率的知识,学习概率要从身边的现象开始.。