第6章马氏体

合集下载

第六章 热处理简答题

第六章  热处理简答题

第六章钢的热处理1、什么是钢的热处理?钢的热处理的特点和目的是什么?答:钢的热处理是将固态金属或合金采用适当的方式进行加热、保温和冷却,以获得所需的组织结构和性能的工艺。

钢的热处理的特点是在固态下,通过加热、保温和冷却,来改变零件或毛坯的内部组织,而不改变其形状和尺寸的热加工工艺.钢的热处理的目的是改善零件或毛坯的使用性能及工艺性能.2、从相图上看,怎样的合金才能通过热处理强化?答:通过热处理能强化的材料必须是加热和冷却过程中组织结构能够发生变化的材料,通常是指:(1)有固态相变的材料;(2)经受冷加工使组织结构处于热力学不稳定状态的材料;(3)表面能被活性介质的原子渗入.从而改变表面化学成分的材料.3、什么是退火?其目的是什么?答:退火是将金属或合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。

其目的可概括为“四化”,即软化(降低硬度适应切削加工和冷冲压要求);均匀化(消除偏析使成分和组织均匀化);稳定化(消除内应力、稳定组织保证零件的形状和尺寸);细化(细化晶粒、提高力学性能)。

4、亚共析钢热处理时,快速加热可显著提高屈服强度和冲击韧性,为什么?答:快速加热可获得较大的过热度,使奥氏体形核率增加,得到细小的奥氏体晶粒,冷却后的组织晶粒也细小。

细晶粒组织可显著提高钢的屈服强度和韧性。

5、热轧空冷的45钢在正常加热超过临界点A c3后再冷却下来,组织为什么能细化?答:热轧空冷的45钢室温组织为F+P,碳化物弥散度较大,重新加热超过临界点A c3后,奥氏体形核率大,起始晶粒细小,冷却后的组织可获得细化。

7、确定下列钢件的退火方法,并指出退火的目的及退火后的组织。

(1)经冷轧后的15钢钢板,要求降低硬度;(2)ZG35的铸造齿轮;(3)改善T12钢的切削加工性能; (4)锻造过热的60钢坯.答:(1)再结晶退火,消除加工硬化及内应力,退火组织为P+F.(2)去应力退火,消除铸造内应力,组织为P+F。

第六章第三节钢在冷却时的转变_工程材料

第六章第三节钢在冷却时的转变_工程材料

§6-3 钢在冷却时的转变一、过冷奥氏体等温冷却转变曲线1、过冷奥氏体等温冷却转变曲线建立以共析钢为例:取尺寸相同的T8钢试样,A化后,迅速冷却到A1以下不同温度保温,进行等温转变,测出转变的开始点与转变结束点。

将开始点与结束点分别连接起来,就得到奥氏体等温转变曲线。

该曲线称为TTT图(Time Temperature TransformationDiagram)或C曲线。

2、孕育期:转变开始线与纵坐标轴之间的距离。

孕育期越短,过冷奥氏体越不稳定,转变越快。

孕育期最短处称为鼻温3、影响C曲线的因素A的成分越均匀,晶粒越粗,其稳定性越高,C曲线右移;A含碳量越高,稳定性越高,C曲线右移,共析钢C曲线最靠右;合金元素,除Co外所有合金元素均使C曲线右移,并使C曲线改变形状。

二、共析钢过冷奥氏体的转变产物及性能、珠光体型转变(P)转变温度:A1~鼻温(550℃)之间(高温转变)转变规律:是通过碳、铁的扩散完成转变。

铁原子重新排列由fcc bcc,碳从铁中扩散出,形成转变产物:珠光体型组织铁素体和渗碳体的机械混合物产物形态:渗碳体呈层片状分布在铁素体基体上,转变温度越低,层间距越小。

珠光体型组织按层间距大小分为珠光体(P)、索氏体(S)和屈氏体(T)珠光体3800×索氏体8000×屈氏体8000×2、贝氏体型转变(B)转变温度:鼻温(550℃)~Ms之间(中温转变)转变规律:半扩散型转变,铁原子不扩散,只能做微小的位置调整,由fcc→bcc。

碳原子有一定扩散能力,部分碳原子从铁中扩散出来,形成碳化物。

转变产物:贝氏体型组织,渗碳体分布在过饱和的铁素体基体上的两相混合物。

上贝氏体(B上):550℃~350℃之间形成形态:呈羽毛状, 小片状的渗碳体分布在成排的铁素体片之间。

光学显微照片1300×电子显微照片5000×上贝氏体性能:铁素体片较宽,塑性变形抗力较低;渗碳体分布在铁素体片之间,容易引起脆断,因此强度和韧性都较差。

固态相变 第6章 分相

固态相变 第6章 分相

G0 G1 dG ( ) C C0 C0 C1 dC
(6-4)
于是式(6-3)可改写为:
G dG GV [(G2 G0 ) (C 2 C0 )( ) C C0 n2 dC
(6-5)
此式即为产生成分为C2的微小结构起伏在材料系统中引起的 化学吉布斯自由能变化。
2)成分涨落对应的系统吉布斯自由能变化图解 结合图6-5,对式(6-5) 进行图解。
图 6-5 成分起伏对应的吉布斯自由能变化图解
成分为C0的母相的任一成分C2的涨落所造成的自由能变化可 以这样确定:
在吉布斯自由能曲线上找到与C0对应的点,过该点作切线和水 平线; 在吉布斯自由能-成分曲线上找到与C2对应的点,从该点开始对 上述切线作竖直连线;
在该连线上
G2-G0=ae,
图 6-11 相界能使固溶界限发生变化
前面是α相中析出β相的情形,如果由β相中析出α相,则将B看 作溶剂,A看作溶质,也适用于亚稳相的溶解度定律。
图6-12 相中析出α相时相界能使平衡成分点发生的变化
图 6-13 β相中析出α相 时相界能使固溶界限发生变化
6.2.2 沉淀相长大 沉淀核长大受两个因素影响,一是界面过程(或称之为晶格 改组过程),一是扩散。它们的位垒(分别为⊿GIfe和⊿GDef)使长 大过程的吉布斯自由能变化的也发生变化(见下图),也会影响 两相平衡时的成分
分相时核胚没有临界成分,微小的成分涨落可自发涨落下去, 直至形成平衡相的成分。——Spinodal分解
而成分处在固溶线与化学拐点线之间的固溶体
分相时,核胚有临界成分,只有超过临界成分的成分涨落才 可以存在,并可自发涨落下去,直至形成平衡相的成分。——沉 淀 关于这些,前面已通过作图的方法定性说明了。还可以定量 证明如下:

马氏体相变

马氏体相变
生产实际常见,这类马氏体降温形成,马氏体形成速度
极快,特点:马氏体降温瞬间形核,瞬间长大,可以认为 马氏体转变速度取决于形核率而与长大速度无关。 马氏体转变量取决于冷却所达到的温度,而与时间无关。
2、等温形成马氏体的动力学
特点:马氏体等温形核,瞬间长大,形核需要孕育期,形核率 随过冷度增大而先增后减,转变量随等温时间延长而增加。等 温转变动力学图呈C字形。
各种马氏体的晶体结构、惯习面、亚结构、位向关系汇总表
2、影响马氏体形态及亚结构的因素
化学成分 马氏体形成温度 奥氏体的层错能 奥氏体与马氏体的强度 主要是化学成分和马氏体形成温度
化学成分:片状马氏体的组织形态随合金成分的变化而改变。
对于碳钢: 1)C%<0.3%时, 板条马氏体; 2)0.3%~1.0%时,板条和透镜片状混合的马氏体; 3)C% >1.0%时, 全部为透镜片状马氏体。并且 随着C%增加,残余奥氏体的含量逐渐增加。 合金元素: 1)缩小γ相区,促进板条马氏体。 2)扩大γ相区,促进透镜片状马氏体。
特征5:转变的非恒温性和不完全性
1. 奥氏体以大于某一临界冷却速度的速度冷却到某一温度(马氏 体转变开始温度Ms),不需孕育,转变立即发生,并且以极大 速度进行,但很快停止,不能进行终了。为使转变继续进行, 必须继续降低温度,所以马氏体转变是在不断降温的条件下才 能进行。当温度降到某一温度之下时,马氏体转变已不能进行, 该温度称为马氏体转变终了点即Mf 。 2. 马氏体转变量是温度的函数,与等温时间无关。马氏体的降温 转变称为马氏体转变的非恒温性。由于多数钢的 Mf 在室温以下, 因此钢快冷到室温时仍有部分未转变奥氏体存在,称为残余奥氏 体,记为Ar。有残余奥氏体存在的现象,称为马氏体转变不完全 性。要使残余奥氏体继续转变为马氏体,可采用冷处理。

第06章碳素钢

第06章碳素钢
• 6.2.1.3 按钢的用途分类 • (1) 碳素结构钢: 用于制造工程构件和机器零件的钢。
工程用钢主要用于建筑、桥梁、船舶和车辆等;机器零 件用钢包括渗碳钢、调质钢、轴承钢和弹簧钢等。这类 钢一般属于低碳钢和中碳钢。 • (2) 碳素工具钢: 用于制造各种工具的钢。包括刃具钢 、量具钢、模具钢。这类钢一般属于高碳钢。 • (3) 特殊性能钢: 具有某种特殊性能的钢。包括不锈钢 、耐热钢和耐磨钢等。
• 工程用铸钢牌号首位冠以“ZG”(“铸钢”二字汉语拼音 字首)。根据GB/T5613—1995规定, 在“ZG”后面有两 组数字, 第一组数字表示该牌号钢屈服点的最低值, 第 二组数字表示其抗拉强度的最低值。
6.2.3 钢铁及合金统一数字代号体系
• 我国国家标准GB/T176156—1998对钢铁及合金产品牌号规定了统一 数字代号, 与现行的GB/T22—2000
• 6.1.6 氢的影响 • 氢在钢中能产生白点,使钢的脆性加大,其他力学性能也明显降低,因此,氢
是钢中的有害元素,必须控制在牌号规定的范围内。
• 钢中杂质除上述6种以外还有很多种,在此不再过多介绍。生产中常需检验的元 素有: 碳、硅、锰、硫、磷5种元素。
6.2 碳钢的分类、编号、性能和用 途
• 6.2.1 碳钢的分类
0.37%以内。由于含量不多, 在碳钢中仅作
为少量杂质存在时, 它对• 锰也是作为脱氧剂加入钢中的。锰有较强的脱氧能力, 消除氧对钢的不利影 响;锰和硫结合形成MnS, 可减轻硫在钢中的有害作用;锰大部分溶于铁素 体中, 形成置换固溶体, 并使铁素体强化, 从而提高钢的强度;一部分锰能溶 于渗碳体中形成合金渗碳体, 从而提高硬度和耐磨性。所以锰也是钢中的有 益元素。
• 氧与铁化合生成氧化铁, 氧化铁与硫化物结合可形成熔点为950℃的共晶体 (FeO+FeS), 使钢在950~1 100℃热加工时引起脆裂, 即“热脆”性。增加钢中 的含氧量, 还降低了钢的塑性、韧性、疲劳强度, 且使钢的冲压和切削等工艺 性能和磁性变坏。

工程材料与热处理 第6章作业题参考答案

工程材料与热处理 第6章作业题参考答案

1.从力学性能、热处理变形、耐磨性和热硬性几方面比较合金钢和碳钢的差异,并简单说明原因。

为提高钢的机械性能、工艺性能或物化性能,在冶炼时有意往钢中加入一些合金元素而形成新的合金,这种合金称为合金钢。

合金钢与碳钢比较,合金钢的力学性能好,热处理变形小,耐磨性好,热硬性好。

因为合金钢在化学成分上添加了合金元素,可形成合金铁素体、合金渗碳体和合金碳化物,产生固溶强化和弥散强化,提高材料性能;加入合金元素可提高钢的淬透性,降低临界冷却速度,可减少热处理变形;碳钢虽然价格低廉,容易加工,但是淬透性低、回火稳定性差、基本组成相强度低。

2.解释下列钢的牌号含义、类别及热处理方法:20CrMnTi,40Cr,16Mn,T10A,Cr12MoV,W6Mo5Cr4V2,38CrMoAlA,5CrMnMo,GCr15,55S i2Mn。

20CrMnTi的含碳量为0.17%-0.24%,Cr,Mn,Ti<1.5%,是渗碳钢,热处理方法是在渗碳之后进行淬火和低温回火。

40Cr的含碳量为0.37~0.45%,Cr <1.5%,是调质钢,热处理方法是淬火加高温回火。

16Mn中碳的含量在0.16%左右,锰的含量大约在1.20%-1.60%左右,属于低合金钢,热处理方法是:热轧退火(正火)。

T10A为含碳量在0.95~1.04的高级优质碳素工具钢,热处理方法是淬火和低温回火。

Cr12MoV碳 C :1.45~1.70,铬 Cr:11.00~12.50,Mo,V<1.5%,是冷作模具钢,热处理方法是淬火和低温回火。

W6Mo5Cr4V2碳 C :0.80~0.90,钼 Mo:4.50~5.50,铬 Cr:3.80~4.40,钒 V :1.75~2.20,是高速钢,热处理方法是淬火+高温回火。

38CrMoAlA碳 C :0.35~0.42,Cr,Mo,Al<1.5%,是高级优质合金渗氮钢,热处理方法是:调质处理+渗氮。

材料学习题第6章-钢的热处理

材料学习题第6章-钢的热处理

第四章钢的热处理一、名词概念解释1、再结晶、重结晶2、起始晶粒度、实际晶粒度、本质晶粒度3、奥氏体、过冷奥氏体、残余奥氏体4、珠光体、索氏体、屈氏体、贝氏体、马氏体5、临界冷却速度6、退火、正火、淬火、回火7、调质处理8、淬透性、淬硬性二、思考题1、何谓热处理? 热处理有哪些基本类型? 举例说明热处理与你所学专业有何联系?2、加热时, 共析钢奥氏体的形成经历哪几个基本过程? 而亚共析钢和过共析钢奥氏体形成有什么主要特点?3、奥氏体形成速度受哪些因素影响?4、如何控制奥氏体晶粒大小?5、珠光体、贝氏体、马氏体组织各有哪几种基本类型? 它们在形成条件、组织形态和性能方面有何特点?6、何谓淬火临界冷却速度VK ? VK的大小受什么因素影响? 它与钢的淬透性有何关系?7、试述退火、正火、淬火、回火的目的, 熟悉它们在零件加工工艺路线中的位置。

8、正火与退火的主要区别是什么?生产中应如何选择正火及退火?9、常用的淬火方法有哪几种? 说明它们的主要特点及应用范围。

10、常用的淬火冷却介质有哪些? 说明其冷却特性、优缺点及应用范围。

11、为什么工件经淬火后往往会产生变形, 有的甚至开裂? 减少变形及防止开裂有哪些途径?12、常用的回火操作有哪几种? 指出各种回火操作得到的组织、性能及其应用范围。

三、填空题1、钢的热处理是通过钢在固态下______、______和______的操作来改变其_______, 从而获得所需性能的一种工艺。

2、钢在加热时P A的转变过程伴随着铁原子的______, 因而是属于_____型相变。

3、加热时, 奥氏体的形成速度主要受到______、______、______和_________的影响。

4、在钢的奥氏体化过程中, 钢的含碳量越高, 奥氏体化的速度越_____, 钢中含有合金元素时, 奥氏体化的温度要_____一些, 时间要_____一些。

5、珠光体、索氏体、屈氏体均属层片状的_____和____的机械混合物, 其差别仅在于_________________。

金属工艺第5-7章答案

金属工艺第5-7章答案

作业第六章钢的热处理一、名词解释1、钢的热处理—是采用适当的方式对金属材料或工件进行加热、保温和冷却,以获得预期的组织结构与性能的工艺。

2、等温冷却转变—工件奥氏体化后,冷却到临界点以下的某一温度区间等温保持时,过冷奥氏体发生的相变。

3、连续冷却转变—工件奥氏体化后,以不同冷速连续冷却时过冷奥氏体发生的相变。

4、马氏体—碳或合金元素在α—Fe中的过饱和固溶体。

5、退火—将工件加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。

6、正火—工件加热奥氏体化后在空气中冷却的热处理工艺。

7、淬火—工件加热奥氏体化后,以适当方式冷却获得马氏体或(和)贝氏体组织的热处理工艺。

8、回火—工件淬硬后,加热到Ac1以下的某一温度,保持一定时间,然后冷却到室温的热处理工艺。

9、表面热处理—为了改变工件表面的组织和性能,仅对其表面进行热处理的工艺。

10、真空热处理—在低于一个大气压(10-1~10-3Pa)的环境中加热的热处理工艺。

11、渗碳—为了提高工件表面碳的质量分数,并在其中形成一定的碳含量梯度,将工件在渗碳介质中加热、保温,使碳原子渗入的化学热处理工艺。

12、渗氮—在一定温度下,与一定介质中,使氮原子渗入工件表面的化学热处理工艺。

二、填空题1、整体热处理分为退火、正火、淬火和回火等。

2、表面淬火的方法有感应加热表面淬火、火焰加热表面淬火、接触电阻加热表面淬火、电解液表面淬火等。

3、化学热处理包括渗碳、渗氮、碳氮共渗和渗硼等。

4、热处理工艺过程由加热、保温和冷却三个阶段组成。

5、共析钢在等温转变过程中,其高温转变产物有: P(珠光体) 、 S(索氏体) 和 T(托氏体) 。

6、贝氏体分上贝氏体和下贝氏体两种。

7、淬火方法有:单液淬火、双液淬火、马氏体分级淬火和贝氏体等温淬火等。

8、常用的退火方法有:完全退火、球化退火和去应力退火等。

9、常用的冷却介质有油、水、空气等。

10、常见的淬火缺陷有过热与过烧、氧化与脱碳、硬度不足与软点、变形与开裂等11、感应加热表面淬火,按电流频率的不同,可分为高频感应加热、中频感应加热和工频感应加热三种。

第6章 耐热钢和耐热合金

第6章 耐热钢和耐热合金

因此,欲得到抗氧化钢,就要形成具有致密晶格、连续、牢固附着的氧化物 层。
2. 提高钢抗氧化性的途径
主要采取合金化的方法。一般加Cr、Al、Si,它们与O亲和力比Fe大,选择 性氧化形成 结构致密、稳定、与基体结合牢固的 Cr2O3、 A12O3、 SiO2 氧化膜。 抑制或避免疏松FeO生成和长大,起保护作用,使钢不发生继续氧化。 铬:提高钢抗氧化性的主要元素。在600-650℃ Cr5%、800℃ Crl2%、 950℃ Cr20%、1100℃ Cr28%才满足抗氧化性。 Al、 Si:也是提高抗氧化性 有效 元素,但增加钢的脆性,因此很少单独加入, 常常和Cr一起加入。 Ni、Mn:对钢的抗氧化性能影响较弱。 C、N:固溶时对钢的抗氧化性影响不大;形成化合物时防碍钢表面氧化膜连 续性,因而↓钢的抗氧化性。 Mo、V:生成氧化物熔点较低,使抗氧化性变坏。 稀土元素:↑钢的抗氧化性。主要是由于稀土元素可消除高温下晶界优先氧化 现象。 除了加入合金元素外,还采用渗金属方法,如渗铝、渗铬或渗硅等以提高 钢的抗氧化能。
四、耐热钢及耐热合金的分类
P耐热钢 Fe 为基的耐热钢 M耐热钢 F抗氧化钢 A耐热钢 Fe为基的耐热钢 A抗氧化钢 镍基耐热合金:以Cr 20 Ni80合金为基础发展起来的,类似的还有钴基合金 Mo基 Ta基 难熔金属耐热合金 Nb基 金属陶瓷
化学成分及热处理:
C高于低碳珠光体热强钢。为↑淬透性和回火稳定性,以Cr、Mo为主适量加 Ti、Nb、V、B等,含量稍高。如25Cr2MoVA、20Cr1Mo1VNbTiB等。
淬火+高温回火
叶片钢:汽轮机叶片,工作温度450~620℃ 二、马氏体耐热钢 阀门钢:汽车、内燃机排气阀,工作温度700~850℃

材料科学基础_第6章_固态相变的基本原理

材料科学基础_第6章_固态相变的基本原理
材料科学基础
第6章 固态相变的基本原理
1
概述
固态相变:固态物质内部的组织结构的变化称为固态相变。 相是成分相同、结构相同、有界面同其他部分分隔的物质均 匀组成部分,相变是从已存的相中生成新的相。 新相,生成部分与原有部分存在着或成分不同、或相结构不 同、或有序度不同、或兼而有之,并且和原来部分有界面分隔。 原来的部分称为母相或反应相,在转变过程中数量减少,生 成部分称为新相或生成相,在转变过程中数量增加。
4
6.1 固态相变的分类与特征 6.1.1 固态相变的分类
1.按热力学分类 按照自由能对温度和压力的偏导函数在相
变点的数学特征——连续或非连续,将相变分 为一级相变和高级相变(二级或二级以上的相 变)。
n级相变:在相变点系统的化学势的第(n1)阶导数保持连续,而其n阶导数不连续。
5
一级相变的特点是,相变发生时,两平衡相的 化学势相等,但化学势的一阶偏导数不相等。
的中间转变称为过渡型。 a. 块状转变,更接近于扩散型相变,相界面是非共格的,
相界面移动通过原子扩散进行,相变时成分不变。 b.贝氏体相变,扩散性长大和非扩散性长大相互制约。
11
3. 按长大方式分类 形核长大型相变 连续型相变
4.按相变过程分类 近平衡相变 远平衡相变
12
6.1.2 固态相变的特征
1)原子的扩散速度 ➢ 由于新旧两相的化学成分不同,相变时必须有原子的扩散 ➢ 原子扩散速度成为相变的控制因素。 ➢ 当相变温度较高时,即扩散不是决定性因素的温度范围内
,随着温度的降低,即过冷度的增大,相变驱动力增大, 相变速度加快;但是当过冷度增大到一定程度,扩散称为 决定性因素,进一步增大过冷度,反而使得相变速度减小 。
13

第六章钢的回火转变

第六章钢的回火转变

一、合金元素对马氏体分解的影响
• 在马氏体分解阶段要发生马氏体中过饱和 碳的脱溶和碳化物粒子的析出与聚集长大, 同时基体α相中的碳含量下降。
• 合金元素的作用主要在于通过影响碳的扩 散而影响马氏体的分解过程以及碳化物粒 子的聚集长大速度,从而影响α相中碳浓度 的下降速度。这种作用的大小因合金元素 与碳的结合力的大小不同而异。
一、马氏体中C 原子偏聚(<100℃)
• 当碳含量超过0.2%时,偏聚于位错等晶体缺陷处 的碳原子已经达到饱和状态,多余的碳原子只能 处于无缺陷晶格的扁八面体间隙位置,即处于非 偏聚状态,从而导致对电阻率有较大贡献。
• 用碳原子在晶体缺陷处偏聚的观点能够较圆满地 解释碳含量小于0.2%时,马氏体不呈现正方度, 为立方点阵结构,而当碳含量高于0.2%时,才可 能测出正方度的现象。
• (1)马氏体的双相分解
125-150℃以下,随碳化物的析出,出现两 种正方度不同的α相,即具有高正方度的保持原 始碳含量的未分解的马氏体以及具有低正方度的 碳已部分析出的α相。
随着回火时间的延长,即随着碳化物析出, 两种α相的碳含量均不发生改变,只是高碳区愈 来愈少,低碳区愈来愈多。
(1)马氏体的单相分解
(2)再结晶: 回火温度高于600℃发生再结晶,板条马氏体形成
位错密度很低的等轴α相取代板条α晶粒——再结晶;
片状马氏体回火温度高于400℃孪晶全部消失,出 现胞块组织,温度高于600℃发生再结晶。这一过程也 是形核(亚晶界为核心)、长大过程。
(3)碳化物长大: 温度高于400℃,碳化物已与α相脱离共格关系而
• 板条状马氏体
• 低碳(<0.2%C)板条马氏体在100-200℃回 火,C原子仍偏聚在位错线附近处于稳定状 态,不析出ε-FexC。

马氏体转变原理讲解

马氏体转变原理讲解

高碳轴承钢马氏体的等温形成1.4%C,1.4%Cr, 浮凸,直接淬至100℃等温10小时 800×
下图是三种不变平面应变,图中的C)既有膨胀 又有切变,钢中马氏体转变即属于这一种。
显然,界面上的原子排列规律既同于马氏体,也同 于奥氏体,这种界面称为共格界面。但不变平面可以是 相界面,也可以不是相界面。
五、马氏体转变的可逆性:
在某些合金中A冷却时A→M,而重新加热时马氏 体又能M→A,这种特点称为马氏体转变的可逆性。
逆转变开始的温度称为As,结束的温度称为Af 。 M进→行A。的逆转变也是在一定的温度范围内(As-Af) 形状记忆合金的热弹性马氏体就是利用了这个特
点。
二、 马氏体转变的晶体学
钢中常见的惯习面有三种,即 C%<0.6%为 (111)γ 0.6-1.4%为(225)γ C%>1.4%为(259)γ
随马氏体的形成温度降低惯习面指数增大。
(2)位向关系
马氏体转变的晶体学特征是马氏体与母相之间存 在着一定的位向关系。在钢中已观察到到的有K—S关 系、西山关系和G—T关系。 (1)K—S关系
二、马氏体转变的切变共格性和表面浮凸现 象
(1) 马氏体转变时在预先磨光的表面上产 生有规则的表面浮凸 ;
(2) 马氏体形成有惯习面,马氏体转变时 马氏体与奥氏体之间保持共格关系 ;
表面浮凸:预先磨光表面的试样,在马氏体相变后 表面产生突起,这种现象称之为表面浮凸现象。
马氏体转变时产生表面浮凸示意图
1、位向关系
相变时,整体相互移动一段距离,相邻原子的相对位置无变化。 作小于一个原子间距位置的位移,因此奥氏体与马氏体保持一定的严 格的晶体学位向关系。主要有:K-S关系、西山(N)关系、G-T关系、

第6章 金属热处理及表面处理技术

第6章 金属热处理及表面处理技术

• (1)奥氏体形核 奥氏体晶核首先在铁素体相界面处形成。 • (2)奥氏体长大 形成的奥氏体晶核依靠铁、碳原子的扩散,
同时向铁素体和渗碳体两个方向长大,直至铁素体消失。 • (3)残余渗碳体溶解 在奥氏体形成过程中,铁素体首先消失,
残余的渗碳体随着加热和保温时间的延长,不断溶入奥氏体, 直到全部消失。 • (4)奥氏体成分的均匀化 刚形成的奥氏体,其中的碳浓度是 不均匀的,在原渗碳体处含碳量较高,而原铁素体处含碳量较 低,只有在继续加热保温过程中,通过碳原子的扩散,才能使 奥氏体中的含碳量趋于均匀,形成成分较为均匀的奥氏体。
第6章 金属热处理及 表面处理技术
6.1概述
• 随着科学技术和生产技术的发展,对钢铁材料的性能也提 出了越来越高的要求,改善钢材的性能,有两个主要途径:
一个是加入合金元素,调整钢的化学成分,即合金化的方 法;另一个则通过钢的热处理,调整钢材内部组织的方法。
• 所谓钢的热处理,就是通过加热、保温和冷却,使钢材内 部的组织结构发生变化,从而获得所需性能的一种工艺方 法。
• 从上述分析可以看出,零件加热后进行适当的保温是很有 必要的。其目的是:能使零件在保温过程中彻底完成相变; 为了得到成分较为均匀的奥氏体组织。
• 亚共析钢和共析钢的奥氏体化过程与共析钢相似,不同的 是,在室温下它们的平衡组织中除珠光体外,还有先共析 相存在,当它们被加热到Ac1以上时,首先是其中的珠光 体转变为奥氏体(这一过程与共析钢相同),而此时还有 先共析相(铁素体或渗碳体)存在,要得到单一的奥氏体, 必须提高加热温度,对亚共析钢来说,加热温度超过Ac3 后,先共析铁素体才逐渐转变为奥氏体;对过共析钢来说, 加热温度超过Arcm后,先共析渗碳体才会全部溶解到奥 氏体中去。因此,亚共析钢和过共析钢在上、下临界点之 间加热时,其组织应该是奥氏体和先共析相组成的两相组 织,这种加热方法称为两相区加热或“不完全奥氏体化”, 它常在过共析钢的加热中使用。

第六章 钢的热处理

第六章  钢的热处理

第六章钢的热处理一、解释下列名词1、奥氏体、过冷奥氏体、残余奥氏体2、珠光体、索氏体、屈氏体、贝氏体、马氏体3、临界冷却速度4、退火、正火、淬火、回火、冷处理、时效5、调质处理6、淬透性、淬硬性7、回火马氏体、回火索氏体、回火屈氏体8、第一类回火脆性、第二类回火脆性10、表面淬火、化学热处理二、填空题1、钢的热处理是通过钢在固态下、和的操作来改变其,从而获得所需性能的一种工艺。

2、钢在加热时P→A 的转变过程伴随着铁原子的,因而是属于型相变。

3、钢加热时的各临界温度分别用、和表示;冷却时的各临界温度分别用、和表示。

4、加热时,奥氏体的形成速度主要受到、、和的影响。

5、在钢的奥氏体化过程中,钢的含碳量越高,奥氏体化的速度越,钢中含有合金元素时,奥氏体化的温度要一些,时间要一些。

6、一般结构钢的A晶粒度分为级, 级最粗,级最细。

按930℃加热保温 3~8h 后,晶粒度在级的钢称为本质粗晶粒钢,级的钢称为本质细晶粒钢。

7、珠光体、索氏体、屈氏体均属层片状的和的机械混合物,其差别仅在于。

8、对于成分相同的钢,粒状珠光体的硬度、强度比片状珠光体,但塑性、韧性较。

9、影响C曲线的因素主要是和。

10、根据共析钢相变过程中原子的扩散情况,珠光体转变属转变,贝氏体转变属转变,马氏体转变属转变。

11、马氏体的组织形态主要有两种基本类型,一种为马氏体,是由含碳量的母相奥氏体形成,其亚结构是;另一种为马氏体,是由含碳量的母相奥氏体形成,其亚结构是。

12、上贝氏体的渗碳体分布在,而下贝氏体的渗碳体较细小,且分布在,所以就强韧性而言,B下比B上。

13、钢的 C 曲线图实际上是图,也称图,而CCT曲线则为。

14、过冷奥氏体转变成马氏体,仅仅是的改变,而没有改变,所以马氏体是碳在α-Fe 中的。

15、其他条件相同时,A中的C% 愈高,A→M的Ms温度愈,A 量也愈。

16、马氏体晶格的正方度( c/a )表示了,c/a的值随而增大。

第五章 马氏体

第五章 马氏体
第五章 马氏体
92
马氏体:碳在α-Fe中过饱和 的固溶体,用符号“M”表示。 马氏体的形态特点:其组织形态分为板 条状和针状两大类: 板条马氏体:显微组织如图所示。形态 呈细长的扁棒状,显微组织为细条状。
马氏体板条内的亚结构是高密度的位错,
板条马氏体
因而又称为位错马氏体。
针状马氏体:显微组织如图所示。形态 呈双凸透镜的片状,显微组织为针状。其亚 结构主要是孪晶,因此又称为孪晶马氏体。
动画39 碳含量对马氏体转变温度的影响
4
马氏体转变特点
过冷A转变为马氏体是低温转变过程, 转变温 度在Ms~Mf之间, 该温区称马氏体转变区。 ①过冷A转变为马氏体是一种非扩散型转变
②马氏体的形成速度很快
③马氏体转变是不彻底的 ④马氏体形成时体积膨胀, 在钢中造成很大的 内应力
低碳马氏体的组织形态
高碳马氏体的组织形态
5
低碳板条状马氏体组 织金相图
高碳针片状马氏体 组织金相图
6
的形态取决于碳含量。当wC<0.2%时,为板条M;当wC >1.0%时,为针状M;当wC =0.2 %~1.0%时,为板条和针状的 混合组织。 马氏体的性能: 马氏体的硬度、韧性与碳 含量的关系如动画所示。 碳含量:如碳含量增加, 其硬度就增加。所以马氏体是 钢的主要强化手段之一。 塑性和韧性:主要取决于 亚结构形式和碳在马氏体中的 过饱和度。
动画 碳含量对马氏体性能的影响
3
94
马氏点概念及马氏体转变归纳(见39): 上马氏体点:发生马氏体转变的开始温度称为上马氏体点,用 “Ms”表示。 下马氏体点:马氏体转变的终 了温度称为下马氏体点, 用“Mf” 表示。 因此马氏体转变可归纳为: 高速长大; 马氏体转变的不完全性; 存在残余奥氏体用“A残”表示; Ms 、Mf取决于奥氏体的碳含量。

第六章 答 案 1.用 45 钢制造机床齿轮,其工艺

第六章 答 案 1.用 45 钢制造机床齿轮,其工艺

第六章 答 案1.用 45 钢制造机床齿轮,其工艺路线为:锻造—正火—粗加工一调 质一精加工—高频感应加热表面淬火一低温回火—磨加工。

说明各热处理 工序的目的及使用状态下的组织。

答:锻造后的 45 钢硬度较高,不利于切削加工,正火后将其硬度控制 在 160-230HBS 范围内, 提高切削加工性能。

组织状态是索氏体。

粗加工后, 调质处理整个提高了 45 钢强度、硬度、塑性和韧性,组织状态是回火索氏 体。

高频感应加热表面淬火是要提高 45 钢表面硬度的同时,保持心部良好 的塑性和韧性。

低温回火的组织状态是回火马氏体,回火马氏体既保持了 45 钢的高硬度、高强度和良好的耐磨性,又适当提高了韧性。

2.常用的合金元素有哪些?其中非碳化物形成元素有一一一:碳化物 形成元素有一一一;扩大 A区元素有——;缩小 A区元素在一一。

答:常用的合金元素有:锰、铬、钼、钨、钒、铌、锆、钛、镍、硅、 铝、钴、镍、氮等。

其中非碳化物形成元素有:镍、硅、铝、钴等;化物 形成元素有:锰、铬、钼、钨、钒、铌、锆、钛等;扩大 A 区元素有:镍、 锰、碳、氮等;小 A 区元素有:铬、铝、硅、钨等。

3.用 W18Cr4V 钢制作盘形铣刀,试安排其加工工艺路线,说明各热 加工工序的目的,使用状态下的显微组织是什么?为什么淬火温度高达 1280℃?淬火后为什么要经过三次 560℃回火?能否用一次长时间回火代 替?答:工艺路线:锻造十球化退火 → 切削加工→淬火+多次 560℃回火→喷砂→磨削加工→成品热处理工艺:球化退火:高速钢在锻后进行球化退火,以降低硬度,消除锻造应力, 便于切削加工,并为淬火做好组织准备。

球化退火后的组织为球状珠光体。

淬火和回火:高速钢的优越性能需要经正确的淬火回火处理后才能获 得。

淬火温度高(1220-1280℃)的原因是:合金元素只有溶入钢中才能有 效提高红硬性,高速钢中大量的 W、MO、Cr、V 的是难熔碳化物,它们只有 在 1200℃以上才能大量地溶于奥氏体中,使奥氏体中固溶碳和合金元素含 量高,淬透性才会非常好;淬火后的马氏体才会强度高,且较稳定,所以 淬火加热温度一般为 1220-1280℃。

机械工程材料_第三版_王运炎_编写__部分课后练习__考试重点习题和答案

机械工程材料_第三版_王运炎_编写__部分课后练习__考试重点习题和答案

第五章1.定义:马氏体:碳在α-Fe中的过饱和固溶体,是单相的亚稳组织。

淬透性:钢在淬火时能获得淬硬深度的能力,它是刚才本身固有的属性。

淬硬性:钢在淬火后能达到最高硬度的能力,它主要取决于马氏体的含碳量。

2.热处理加热的目的是什么:消除毛胚中的缺陷,改善其工艺性能,为后续工艺做组织准备;更重要的是热处理能显着提高钢的力学性能,从而充分发挥刚才的潜能,提高工件的使用性能和使用寿命。

(得到奥氏体)3.马氏体有几种类型性能特点如何含碳量分别为%,%,%,%,%的钢淬火后分别得到何种马氏体:马氏体组织形态主要有片状和板条状两种基本类型;片状马氏体(高碳马氏体)硬度大,塑性,韧性差。

板条状马氏体(低碳马氏体)有良好的塑性和韧性,有较高的断裂韧度和较低的韧脆转变温度等特点;%,%为板条状马氏体,%,%为两种马氏体的混合组织,%为片状马氏体。

(%以下为板条状马氏体,%以上为片状马氏体)4.生产中常用的退火方法有哪些退火的目的,加热温度,获得的组织及应用含碳%,%,%的钢,具有晶内偏析的铸件或铸锭,存在内应力的铸件或铸锭分别应该采用哪种退火加热温度是多少得到何组织退火分为完全退火,均匀退火,球化退火,去应力退火;1。

完全退火:主要运用于亚共析成分的碳钢和合金钢的铸件,锻件,热轧型材和焊接结构件。

目的是细化晶粒,消除内应力和组织缺陷,降低硬度,为随后的切削加工和淬火做好组织准备。

加热到Ac3以上30-50℃,保温一段时间,随炉缓慢冷却到600℃以下,在出炉在空气中冷却。

2。

球化退火:主要运用于共析或过共析成分的碳钢和合金钢。

目的是使钢中的碳化物球化,以降低硬度,改善切削加工性,并为淬火做好组织准备。

加热到Ac1以上10-20℃,保温一段时间,随炉缓慢冷却到600℃以下,在出炉在空气中冷却。

3。

均匀化退火:主要运用于合金钢铸锭和铸件,目的是为了消除铸造中产生的枝晶偏析,使成分均匀化。

加热到Ac3以上150-200℃,保温10-15h,随炉缓冷到350℃,在出炉冷却。

马氏体与钢在冷却时的低温转变

马氏体与钢在冷却时的低温转变
第六章
马氏体与钢在冷却时的 低温转变
本章主要内容
• M转变的晶体学 • M的组织形态* • M转变的特点* • M转变热力学、动力学* • M转变机制 • M的性能与影响因素*
概述
• 马氏体转变是钢件热处理强化的主要手段, 是通过淬火实现
• 化学成分不同,性能有极大差异 低碳钢:马氏体有较高强度和韧性 高碳钢:硬度很高,塑性韧性差
6.1.2 马氏体的晶体结构
1、马氏体的晶体结构:
Fe-C合金M是C在-Fe中的过饱和固溶体。 具有体心正方或体心立方点阵。
-Fe点阵结构
马氏体的点阵结构
6.1.2 马氏体的晶体结构
2、马氏体的点阵常数:
与钢中含C量有关:
其中:
c=a0+ [%C] a=a0− [%C] c/a=1+ [%C]
a0= 2.861Å
= 0.116±0.002
β= 0.113±0.002
= 0.046±0.001
6.1.2 马氏体的晶体结构
3、马氏体的正方度c/a:
--正方结构中c轴与a的比值 例:体心立方:
c/a=1
马氏体的正方度与碳含 量有关,总是大于1
6.1.3 马氏体的位向关系
与珠光体转变类似,马氏体与母相也存在位向关系, 并且与合金成分有关:
• 钢中马氏体根据成分(含碳量)和冷却条件呈现不 同的形态
• 按照亚结构分为位错型马氏体、孪晶马氏体 • 根据形态分为板条马氏体、针片状马氏体、蝶状马
氏体、薄板状马氏体、薄片状马氏体
6.2.1 钢中马氏体的组织形态
各 种 马 氏 体 形 态
6.2.1 钢中马氏体的组织形态 1、板条状(Lath)马氏体
1)K-S关系 (Fe-1.4C) {110}’ ∥{111} ,﹤111﹥ ’ ∥ ﹤110﹥
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试验表明,奥氏体晶粒越大,板条群越大, 而一个原奥氏体晶粒内板条群个数基本不变,奥氏 体晶粒大小对板条宽度几乎没影响。
(6)与冷却速度的关系
冷却速度越大,板条群和块宽同时减小,组织变
细,因此提高冷却速度有利于细化马氏体晶粒。
2、片状马氏体
常见于淬火高、中碳钢及高Ni的Fe-Ni合金 中,是铁系合金中出现的另一种典型的马氏体 组织。
Martensite
M—马氏体
十九世纪未到二十世纪初主要局限于研究钢 中的马氏体转变及转变所得产物—马氏体。
二十世纪三十年代,人们用X射线结构分析 的方法测得钢中马氏体是碳溶于α-Fe而形成的过 饱和固溶体,因此,曾一度认为“所谓马氏体即 碳在α—Fe中的过饱和固溶体”。
四十年代前后,在Fe—Ni、Fe—Mn合金以及 许多有色金属及合金中也发现了马氏体转变。由 于这些发现,人们不得不把马氏体的定义修定为: “ 在冷却过程中所发生马氏体转变所得产物统称 为马氏体 ”。
十九世纪未期,人们才知道钢在“加热和冷却” 过程中内部相组成发生了变化,从而引起了钢的性能 的变化。为了纪念在这一发展过程中做出杰出贡献的 德国冶金学家Adolph Martens,法国著名的冶金学家 Osmond建议将钢经淬火所得高硬度相称为“马氏体”, 并因此将得到马氏体相的转变过程称为马氏体转变。
板条单晶→板条块 →板条群→马氏体 晶粒
图 18Ni马氏体时效钢的板条马氏体组织
(2)亚结构
主要是高密度的位错缠结构成的位错胞, 位错密度可高达0.3~0.9×1012/cm2,板条边 缘有少量孪晶。
(3)位向关系
在一个板条束内,马氏体惯习面接近 {111}γ;马氏体和奥氏体符合G-T关系最多; 符合K-S关系和西山关系的较少,在一个板条 束内,存在几种位向关系的原因尚不清楚。
。其显微组织是由许多成群的板条组成,称板条 马氏体。也称位错马氏体。
(1)显微结构
由平行排列的板条 组成的较大区域称为板 条群。在一个原奥氏体 晶 粒 内 可 以 包 含 3—5 个 这样的板条群.
一个板条群又可分 成几个平行的区域,称 为同位向束(板条块)
同位向束之间大角度晶 界
每个同位向束 由若干个平行板条 所组成,每个板条为 一个马氏体单晶体
碳原子在马氏体点阵中位置及分布
C在α-Fe中可能存在的位置是Fe原子构成的体心 立方点阵的八面体间隙位置
3、M位向关系
马氏体与母相之间存在着一定的位向关系。在钢中已观 察到的有K—S关系、西山关系和G—T关系。
(1)K—S关系 1930年,库尔鸠莫夫与Sachs在1.4%C的碳钢中发
现,M与A有下述关系:
第6章 马氏体与钢在冷却时的低 温转变
本章重点:
马氏体相变的主要特点、马氏体的组 织形态及性能、Ms点定义及影响因素。
本章难点:
马氏体相变的K-S模型
马氏体转变的发展过程
早在战国时代人们已经知道可以用淬火(即将钢加 热到高温后淬入水或油中急冷)的方法可以提高钢的硬 度,经过淬火的钢制宝剑可以“削铁如泥”。
C%<0.6%为 (111)γ, 0.6-1.4%为(225)γ, C%>1.4%为(259)γ 惯习面也可因马氏体形成温度而变化。随着温度的 降低,惯习面为(111)γ→(225)γ→(259)γ。
§6一2 马氏体的组织形态
(一)马氏体的类型 1、板条状马氏体
板条马氏体是低、中碳钢,马氏体时效钢,不 锈钢等铁系合金中形成的一种典型的马氏体组织
2.马氏体点晶体结构
体心立方或体心正方 c/a称为正方度。 随钢中碳含量升高,马氏体的点阵常数c增
大,a减小,正方度c/a增大.
图奥氏体和马氏体的点阵常数与碳含量的关系
可用下列公式表示
c a0 a a0 c / a 1
式中,a0=2.861Å(α-Fe点阵常数);α=0.116; β=0.013;γ=0.046;ρ为马氏体碳含量(重量 百分数)。α和β的数值表示碳在α-Fe点阵中引 起局部畸变的程度。
§6一1 马氏体的晶体学
1.马氏体相变与M的定义
M相变: 替换原子经无扩散位移,由此产生形 状改变和表面浮突,呈不变平面应变特征 的一级、形核长大型的相变。
马氏体定义
钢中的马氏体是C在α-Fe中的过饱和 间隙固溶体。
刘宗昌:马氏体是原子经无需扩散切 变的不变平面应变的晶格改组过程,得 到与母相具有严格晶体学关系和惯习面 的含有极高密度的晶体缺陷的组织。
{110} αˊ∥{111}γ; <111> αˊ∥<110>γ
[ill]
(110)
[i01]
(111)
(2)西山关系 1934年,西山在铁镍合金中发现,在-70℃以
下形成的M与A呈下列关系: {110} αˊ∥{111}γ ; <110> αˊ∥<112>γ
马氏体共有12种可能的取向
(3)G—T关系
(1)显微组织
空间形态呈凸透镜片形状,称透镜片状马氏 体或片状马氏体,试样磨面相截在显微镜下呈 针状或竹叶状,又称针状或竹叶状马氏体,亚 结构为孪晶,也称孪晶马氏体。
(4)与C%的关系
马氏体的显微组织随合金成分的变化而改变。 对于碳钢:
C%<0.3%时,板条群和板条块比较清楚;
0.3%<<C%<0.8 %时,无法辨认板条群和板条块, 板条混杂生长,板条组织逐渐消失并向片状
马氏体组织过渡。
(5)与奥氏体晶粒的关系
近年来,由于实验 技术的进一步发展,使 人们对马氏体的结构以 及马氏体的转变的特征 又有了进一步的了解, 对许多现象的认识也有 了很大的进步,并因而 推动了热处理新工艺及 新材料的发展。(Ni-Ti 合金 )
形状记忆效应:某些具有热弹性马氏体相变合金材料,在马氏 体状态,进行一定限度的变形或变形诱发马氏体后,则在随后 的加热过程中,当温度超过马氏体相消失的温度时,材料能完 全恢复到变形前的形状和体积。
1994年,Grenigen与Troiano 在Fe-Ni-C合金中发现, M与A的位向接近K-S关系,但略有偏差,其中晶面差 1度,晶向差2度,称为G-T关系。
{110}αˊ∥{111}γ 差 1° <111>αˊ∥<110>γ 差 2°
4、M惯习面
钢中马氏体转变常见的惯习面有三种,随A中含碳量 及马氏体形成温度而变化。
相关文档
最新文档