安徽省马鞍山二中实验学校2021届九年级中考一模数学试题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.4
5.如图,已知AB∥CD,DE⊥AF,垂足为E,若∠CAB=50°,则∠D的度数为( )
A.30°B.40°C.50°D.60°
6.等腰 中, ,D是AC的中点, 于E,交BA的延长线于F,若 ,则 的面积为( )
A.40B.46C.48D.50
7.某市2021年国内生产总值(GDP)比2021年增长了12%,由于受到国际金融危机的影响,预计2018比2021年增长7%,这两年GDP年平均增长率为 %,则 %满足的关系是
3.2021年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资约334亿元人民币.把334亿用科学记数法可表示为( )
A. B. C. D.
4.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )
月份(月)
1
2
成本(万元/件)
11
12
需求量(件/月)
120
100
(1)求与满足的关系式,请说明一件产品的利润能否是12万元;
(2)求,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第个月和第 个月的利润相差最大,求.
23.如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.
A.10B.9C.8D.6
10.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )
A. B. C. D.1
二、填空题
11.因式分解: ____________________.
安徽省马鞍山二中实验学校2018届九年级中考一模数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若a与5互为倒数,则a=( )
A. B.5C.-5D.
2.下列各式中计算正确的是( )
A.x3•x3=2x6B.(xy2)3=xy6C.(a3)2=a5D.t10÷t9=t
将三角形、正方形、五边形都整齐的由左到右填在所示表格里:
三角形数
1
3
6
10
15
21
a
…
正方形数
1
4
9
16
25
b
49
…
五边形数
1
5
12
22
c
51
70
…
(1)按照规律,表格中a=,b=,c=.
(2)观察表中规律,第n个“正方形数”是;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是.
19.如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)
20.如图, 是⊙ 的直径,点 在⊙ 上, 于 , 平分 ,交过点 的射线于 ,交 于 ,且 .
(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;
(2)求扇形统计图B等级所对应扇形的圆心角度数;
(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.
22.某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数, )符合关系式 (为常数),且得到了表中的数据.
( )求证: 是⊙ 的切线.
( )若 , ,求 的长.
21.为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.
12.分式 有意义时,x的取值范围是_____.
13.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为 ,则a的值是_____.
14.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
18.如图,一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把数1,3,6,10,15,21,…,称为“三角形数”;把1、4、9、16,25,…称为“正方形数”.同样的,可以把数1,5,12,22,…,等数称为“五边形数”.
三、解答题
15.先化简,再求值:( ) ,其中 =
16.M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?
17.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
A. B.
C. D.
8.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2021年度文明刨建工作进行认真评分,结果如下表:
人数
2
3
4
1
分数
80
85
90
95
则得分的众数和中位数分别是( )
A.90和87.5B.95和85C.90和85D.85和87.5
9.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数 在第一象限内的图象经过点A,与BC交于点F,删△AOF的面积等于( )
5.如图,已知AB∥CD,DE⊥AF,垂足为E,若∠CAB=50°,则∠D的度数为( )
A.30°B.40°C.50°D.60°
6.等腰 中, ,D是AC的中点, 于E,交BA的延长线于F,若 ,则 的面积为( )
A.40B.46C.48D.50
7.某市2021年国内生产总值(GDP)比2021年增长了12%,由于受到国际金融危机的影响,预计2018比2021年增长7%,这两年GDP年平均增长率为 %,则 %满足的关系是
3.2021年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资约334亿元人民币.把334亿用科学记数法可表示为( )
A. B. C. D.
4.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )
月份(月)
1
2
成本(万元/件)
11
12
需求量(件/月)
120
100
(1)求与满足的关系式,请说明一件产品的利润能否是12万元;
(2)求,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第个月和第 个月的利润相差最大,求.
23.如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.
A.10B.9C.8D.6
10.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )
A. B. C. D.1
二、填空题
11.因式分解: ____________________.
安徽省马鞍山二中实验学校2018届九年级中考一模数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若a与5互为倒数,则a=( )
A. B.5C.-5D.
2.下列各式中计算正确的是( )
A.x3•x3=2x6B.(xy2)3=xy6C.(a3)2=a5D.t10÷t9=t
将三角形、正方形、五边形都整齐的由左到右填在所示表格里:
三角形数
1
3
6
10
15
21
a
…
正方形数
1
4
9
16
25
b
49
…
五边形数
1
5
12
22
c
51
70
…
(1)按照规律,表格中a=,b=,c=.
(2)观察表中规律,第n个“正方形数”是;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是.
19.如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)
20.如图, 是⊙ 的直径,点 在⊙ 上, 于 , 平分 ,交过点 的射线于 ,交 于 ,且 .
(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;
(2)求扇形统计图B等级所对应扇形的圆心角度数;
(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.
22.某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数, )符合关系式 (为常数),且得到了表中的数据.
( )求证: 是⊙ 的切线.
( )若 , ,求 的长.
21.为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.
12.分式 有意义时,x的取值范围是_____.
13.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为 ,则a的值是_____.
14.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
18.如图,一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把数1,3,6,10,15,21,…,称为“三角形数”;把1、4、9、16,25,…称为“正方形数”.同样的,可以把数1,5,12,22,…,等数称为“五边形数”.
三、解答题
15.先化简,再求值:( ) ,其中 =
16.M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?
17.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
A. B.
C. D.
8.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2021年度文明刨建工作进行认真评分,结果如下表:
人数
2
3
4
1
分数
80
85
90
95
则得分的众数和中位数分别是( )
A.90和87.5B.95和85C.90和85D.85和87.5
9.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数 在第一象限内的图象经过点A,与BC交于点F,删△AOF的面积等于( )