单链表实现冒泡排序
数据结构能力测试集训题目
数据结构能力测试集训题目线性表1.实现顺序表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化顺序表L;(2)采用尾插法依次插入a,b,c,d,e;(3)输出顺序表L;(4)输出顺序表L的长度;(5)判断顺序表L是否为空;(6)输出顺序表L的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出顺序表L;(10)删除顺序表L的第3个元素;(11)输出顺序表L;(12)释放顺序表L。
2.实现单链表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化单链表h;(2)采用尾插法依次插入a,b,c,d,e;(3)输出单链表h;(4)输出单链表h的长度;(5)判断单链表h是否为空;(6)输出单链表h的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出单链表h;(10)删除单链表h的第3个元素;(11)输出单链表h;(12)释放单链表h;3.实现双链表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化双链表h;(2)采用尾插法依次插入a,b,c,d,e;(3)输出双链表h;(4)输出双链表h的长度;(5)判断双链表h是否为空;(6)输出双链表h的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出双链表h;(10)删除双链表h的第3个元素;(11)输出双链表h;(12)释放双链表h;4.实现循环单链表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化循环单链表h;(2)采用尾插法依次插入a,b,c,d,e;(3)输出循环单链表h;(4)输出循环单链表h的长度;(5)判断循环单链表h是否为空;(6)输出循环单链表h的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出循环单链表h;(10)删除循环单链表h的第3个元素;(11)输出循环单链表h;(12)释放循环单链表h;5.实现循环单链表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化循环双链表h;(2)采用尾插法依次插入a,b,c,d,e;(3)输出循环双链表h;(4)输出循环双链表h的长度;(5)判断循环双链表h是否为空;(6)输出循环双链表h的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出循环双链表h;(10)删除循环双链表h的第3个元素;(11)输出循环双链表h;(12)释放循环双链表h;6.求集合的并,交,差运算(用有序单链表表示)栈和队列7.实现顺序栈各种基本运算的算法,编写一个程序实现顺序栈的各种基本运算,并在此基础上设计一个主程序完成以下各种功能:(1)初始化栈s(2)判断栈s是否非空(3)依次进栈元素a,b,c,d,e(4)判断栈s是否非空(5)输出栈长度(6)输出从栈顶到栈底元素(7)输出出栈序列(8)判断栈s是否非空(9)释放栈8.实现链栈各种基本运算的算法,编写一个程序,实现链栈的各种基本算法,并在此基础上设计一个主程序完成如下功能:(1)初始化链栈s(2)判断链栈s是否非空(3)依次进栈元素a,b,c,d,e(4)判断链栈s是否非空(5)输出链栈长度(6)输出从栈顶到栈底元素(7)输出链栈序列(8)判断链栈s是否非空(9)释放链栈9.实现顺序队列各种基本运算的算法,编写一个程序,实现顺序循环队列各种基本运算,并在此基础上设计一个主程序完成如下功能:(1)初始化队列q(2)判断队列q是否非空(3)依次进队列元素a,b,c(4)出队一个元素,输出该元素(5)输出队列q的元素的个数(6)依次进队列元素d,e,f(7)输出队列q的元素的个数(8)输出出队序列(9)释放队列10.实现链队各种基本运算的算法,编写一个程序,实现链队的各种基本运算,在此基础上设计一个主程序完成如下功能:(1)初始化链队q(2)判断链队q是否非空(3)依次进链队元素a,b,c(4)出队一个元素,输出该元素(5)输出链队q的元素的个数(6)依次进链队元素d,e,f(7)输出链队q的元素的个数(8)输出出队序列(9)释放链队串11.实现顺序串各种基本运算的算法,编写一个程序实现顺序的基本运算的算法,比在此基础上设计一个主程序完成如下功能:(1)建立s=”abcdefghefghijklmn”和串s1=”xyz”(2)输出串s(3)输出串s的长度(4)在串s的第9个字符位置插入串s1而产生串s2(5)输出串s2(6)删除串s第2个字符开始的5个字符而产生的串s2(7)输出串s2(8)将串s第2个字符开始的5个字符替换成串s1而产生串s2(9)输出串s2(10)提取串s的第2个字符开始的10个字符而产生串s3(11)输出串s3(12)将串s1和串s2连接起来而产生的串s4(13)输出串s412.实现链串个各种基本运算的算法,编写一个程序实现链串的各种基本运算,并在此基础上设计一个主程序完成如下功能;(1)建立s=”abcdefghefghijklmn”和串s1=”xyz”(2)输出串s(3)输出串s的长度(4)在串s的第9个字符位置插入串s1而产生串s2(5)输出串s2(6)删除串s第2个字符开始的5个字符而产生的串s2(7)输出串s2(8)将串s第2个字符开始的5个字符替换成串s1而产生串s2(9)输出串s2(10)提取串s的第2个字符开始的10个字符而产生串s3(11)输出串s3(12)将串s1和串s2连接起来而产生的串s4(13)输出串s413.顺序串的各种模式匹配运算,编写一个程序实现顺序串的各种模式匹配运算,并在此基础上完成如下功能:(1)建立”abcabcdabcdeabcdefabcdefg”目标串s和”abcdeabcdefab”模式串t(2)采用简单匹配算法求t在s中的位置(3)由模式串t求出next值和nextval值(4)采用KMP算法求t在s中的位置(5)采用改进的KMP算法求t在s中的位置查找14.实现顺序查找的算法,编写一个程序输出在顺序表{3,6,2,10,1,8,5,7,4,9}中采用顺序方法查找关键字5的过程。
北京邮电大学 数据结构 实验一 带头结点的单链表构造
数据结构实验报告实验名称:实验1——单链表的构造学生姓名:XXXXNB班级:XXXX班内序号:学号:XXXX日期:XXXXX1.实验要求根据线性表的抽象数据类型的定义,完成带头结点的单链表的基本功能。
单链表的基本功能:1、构造:使用头插法、尾插法两种方法2、插入:要求建立的链表按照关键字从小到大有序3、删除4、查找5、获取链表长度6、销毁7、其他:可自行定义编写测试main()函数测试线性表的正确性。
2.程序分编程完成单链表的一般性功能如单链表的构造:使用头插法、尾插法两种方法插入:要求建立的链表按照关键字从小到大有序,删除,查找,获取链表长度,销毁用《数据结构》中的相关思想结合C++语言基本知识编写一个单链表结构。
本程序为使用方便,几乎不用特殊的命令,只需按提示输入即可,适合更多的用户使用。
2.1 存储结构单链表的存储结构:2.2 关键算法分析1.头插法自然语言描述:a.在堆中建立新结点b.将a[i]写入到新结点的数据域c.修改新结点的指针域d.修改头结点的指针域,将新结点加入链表中//在构建之初为了链表的美观性构造,进行了排序代码描述://头插法构造函数template<class T>LinkList<T>::LinkList(T a[], int n){for (int i = n - 1; i >= 1; i--)//冒泡排序,对数组进行从小到大排序{for (int j = 0; j < i; j++){if (a[j]>a[j + 1]){T t = a[j + 1];a[j + 1] = a[j];a[j] = t;}}}front = new Node < T >;//为头指针申请堆空间front->next = NULL;//构造空单链表for (int i = n - 1; i >= 0; i--){Node<T>*s = new Node < T >;//建立新结点s->data = a[i];//将a[i]写入新结点的数据域s->next = front->next;//修改新结点的指针域front->next = s;//修改头结点的指针域,将新结点加入到链表中}}2.尾插法自然语言描述:a.在堆中建立新结点b.将a[i]写入到新结点的数据域c.将新结点加入到链表中d.修改修改尾指针代码描述://尾插法构造函数template<class T>LinkList<T>::LinkList(T a[], int n){front = new Node < T > ;Node<T>*r = front;//命名一个新变量进行转换for (int i = 0; i < n; i++){Node<T>*s = new Node < T > ;s->data = a[i];r->next = s;r = s;}r->next = NULL;}时间复杂度:O(n)3.析构函数自然语言描述:a.新建立一个指针,指向头结点b.移动a中建立的指针c.逐个释放指针代码描述:template<class T>LinkList<T>::~LinkList()//析构函数,销毁链表{Node<T> * p = front;while(p){front = p;p = p->next;delete front;}}4.按位查找函数自然语言描述: a.初始化工作指针p和计数器j,p指向第一个结点,j=1b.循环以下操作,直到p为空或者j等于1b1:p指向下一个结点b2:j加1c.若p为空,说明第i个元素不存在,抛出异常d.否则,说明p指向的元素就是所查找的元素,返回元素地址代码描述:template<class T>Node<T>* LinkList<T>::Get(int i)//按位查找{Node<T> * p = front;int j=0;while(p){if(j<i){p = p->next;j++;}else break;}if(!p) throw"查找位置非法";else return p;}时间复杂度:O(n)5.按值查找函数自然语言描述:a.初始化工作指针p和计数器j,p指向第一个结点,j=1b.循环以下操作,找到这个元素或者p指向最后一个结点b1.判断p指向的结点是不是要查找的值,如果是,返回j;b2.否则p指向下一个结点,并且j的值加一c.如果找到最后一个结点还没有找到要查找的元素,返回查找失败信息代码描述:template<class T>int LinkList<T>::Locate(T x)//按值查找{Node<T> * p = front->next;int j = 1;while(p){if(p->data == x) return j;else{p = p->next;j++;}}return -1;}时间复杂度:O(n)6.插入函数自然语言描述:a.在堆中建立新结点b.将要插入的结点的数据写入到新结点的数据域c.修改新结点的指针域d.修改前一个指针的指针域,使其指向新插入的结点的位置代码描述:template<class T>void LinkList<T>::Insert(int i,T x)//插入函数{Node<T> * p = Get(i-1);if(p){Node<T> * s = new Node<T>;s->data = x;s->next = p->next;p->next = s;}else throw"插入位置非法";}时间复杂度:O(n)7.按位删除函数自然语言描述:a.从第一个结点开始,查找要删除的位数i前一个位置i-1的结点b.设q指向第i个元素c.将q元素从链表中删除d.保存q元素的数据e.释放q元素代码描述:template<class T>T LinkList<T>::Delete(int i)//删除函数{Node<T> *p = Get(i-1);Node<T> *q = p->next;T x=q->data;p->next = q->next;delete q;return x;}8.遍历打印函数自然语言描述: a.判断该链表是否为空链表,如果是,报错b.如果不是空链表,新建立一个temp指针c.将temp指针指向头结点d.打印temp指针的data域e.逐个往后移动temp指针,直到temp指针的指向的指针的next域为空代码描述:template<class T>void LinkList<T>::PrintList()//打印链表{Node<T> * p = front->next;while(p){cout<<p->data<<' ';p = p->next;}cout<<endl;}9.获取链表长度函数自然语言描述:a.判断该链表是否为空链表,如果是,输出长度0b.如果不是空链表,新建立一个temp指针,初始化整形数n为0c.将temp指针指向头结点d.判断temp指针指向的结点的next域是否为空,如果不是,n加一,否则return ne.使temp指针逐个后移,重复d操作,直到temp指针指向的结点的next 域为0,返回n代码描述:template<class T>int LinkList<T>::GetLength()//分析链表长度{Node<T> * p = front;int i=0;while(p){p = p->next;i++;}return i-1;}2.3 其他异常处理采用try catch 函数处理异常如在插入时的异常处理:template<class T>void LinkList<T>::Insert(int i, T x){Node<T>*p = front;if (i != 1) p = Get(i - 1);try{if (p){Node<T>*s = new Node < T > ;s->data = x;s->next = p->next;p->next = s;}else throw i;}catch (int i){cout << "插入到位置 " << i << " 处" << "为错误位置"<<endl;}}3. 程序运行结果主函数流程图:测试截图:初始化链表,菜单创建执行功能:4. 总结.调试时出现了一些问题如:异常抛出的处理,书中并未很好的提及异常处理,通过查阅资料,选择用try catch 函数对解决。
排序的实验报告范文
排序的实验报告范文数据结构实验报告实验名称:实验四排序学生姓名:班级:班内序号:学号:日期:2022年12月21日实验要求题目2使用链表实现下面各种排序算法,并进行比较。
排序算法:1、插入排序2、冒泡排序3、快速排序4、简单选择排序5、其他要求:1、测试数据分成三类:正序、逆序、随机数据。
2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换计为3次移动)。
3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒(选作)。
4、对2和3的结果进行分析,验证上述各种算法的时间复杂度。
编写测试main()函数测试线性表的正确性。
2、程序分析2.1存储结构说明:本程序排序序列的存储由链表来完成。
其存储结构如下图所示。
(1)单链表存储结构:结点地址:1000HA[2]结点地址:1000H1080H……头指针地址:1020HA[0]头指针地址:1020H10C0H……地址:1080HA[3]地址:1080HNULL……地址:10C0HA[1]地址:10C0H1000H……(2)结点结构tructNode{intdata;Node某ne某t;};示意图:intdataNode某ne某tintdataNode某ne某t2.2关键算法分析一:关键算法(一)直接插入排序voidLinkSort::InertSort()直接插入排序是插入排序中最简单的排序方法,其基本思想是:依次将待排序序列中的每一个记录插入到一个已排好的序列中,直到全部记录都排好序。
(1)算法自然语言1.将整个待排序的记录序列划分成有序区和无序区,初始时有序区为待排序记录序列中的第一个记录,无序区包括所有剩余待排序的记录;2.将无须去的第一个记录插入到有序区的合适位置中,从而使无序区减少一个记录,有序区增加一个记录;3.重复执行2,直到无序区中没有记录为止。
(2)源代码voidLinkSort::InertSort()//从第二个元素开始,寻找前面那个比它大的{Node某P=front->ne某t;//要插入的节点的前驱while(P->ne某t){Node某S=front;//用来比较的节点的前驱while(1){if(P->ne某t->data<S->ne某t->data)//P的后继比S的后继小则插入{inert(P,S);break;}S=S->ne某t;if(S==P)//若一趟比较结束,且不需要插入{P=P->ne某t;break;}}}}(3)时间和空间复杂度最好情况下,待排序序列为正序,时间复杂度为O(n)。
基于链表的冒泡排序算法研究
冒泡排序是一种较简单 的交 换类排序算法 . 在文献【一 】 l4 中讨论 了其在顺序表上 的实现过程. 它通过对相邻元素 的交 换, 逐步将待排序列变 成有序序列. 法的主要思想是 : 其算 反
复扫描待排序记录序列 , 在扫描过程中顺 次 比较相邻的两个
{
l ki * n , * ;ed用来 记录排好序 的最后一个结 i lt ed n s q/ n /
ee y e e ; lmt p tmp p h a 一 n x ;= 一 n x ; = ed > et p > et q
点的地址,q保持前驱与后继 的关系 P ,
元素的大小 , 若逆序就交换位置 .
在排 序的研究 上近几年来也 有一些新 的方法 和结果产
ed N L ; ̄序前 ed指 向链尾 N L n = U L/ / n UL
员为 ed 则结束循环 n,
f p h a一 nx;p 点 总 是 从 链 表 的 头结 点 开 始 = ed > et/ 结 / q p > et/ = 一 n x/q总 是 指 向 ” 指 结 点 ” ; P所 的下 一 结 点
算法时间复杂度和空间复杂度 . 和顺序表上实现的不同之处 是需要标记链尾结点的地址 . 中未提及的概 念及 术语参 见 文
}
p ; =q
趟扫描过程 中最大 的元素 已经沉 到链尾并记 住了该元 素 的 地址 , 以这次扫描最大 的元素不再参加排序, 所 将剩下的元素 进行排序 , 排序 的过程中保证使得后一结点元素 的数据域大 于前一结点元素的数据域. 这样反复 的扫描, 并不断缩小排序
空间, 直到整个序列有序位置为止 . 这样看来 , 在排序 中 , 只需
意两个相邻元素的顺序,保证前一结 点元素 的数据域小 于后
单链表上容易实现的排序方法
单链表上容易实现的排序方法嘿,朋友们!今天咱来聊聊单链表上那些容易实现的排序方法。
你想想啊,单链表就像是一串珠子,每个珠子都有它自己的位置和信息。
那怎么把这些珠子排得整整齐齐呢?咱先说冒泡排序吧!这就好像是在一群小朋友里,让矮个子一个一个地慢慢往前站,把高个子往后挤。
每次都把最大的那个“珠子”给浮到最上面去。
虽然它比较简单直接,但有时候可能会有点慢悠悠的哦!就像你着急出门,却发现钥匙找半天,是不是有点让人着急呀?再来看看插入排序。
这就像是玩扑克牌的时候整理手牌,拿到一张牌,就看看该把它插到哪里合适。
嘿,这多形象呀!它可以一点点地把链表变得有序,虽然可能步骤多了点,但效果还是不错的哟!还有选择排序呢!这就好像是在一群选手中挑出最厉害的那个,然后把其他的依次排好。
是不是挺有意思的?它也能完成排序的任务呢!那咱为啥要用这些排序方法呀?这还用问吗?就像你收拾房间,总不能让东西乱七八糟地堆着吧!把链表排好序,才能更方便我们查找和使用其中的数据呀!不然找个数据都得费半天劲,那多麻烦呀!这些排序方法各有各的特点和用处。
就像不同的工具,有的适合干这个,有的适合干那个。
我们得根据具体情况来选择合适的排序方法,可不能瞎用哦!不然可能会事倍功半呢!比如说,如果链表的数据量不是特别大,那冒泡排序或者插入排序可能就挺合适的。
但要是数据量大得吓人,那可能就得考虑更高效的方法啦!总之呢,单链表上的排序方法就像是我们生活中的各种小技巧,学会了它们,就能让我们的编程之路更加顺畅。
所以呀,大家可得好好掌握这些方法哦!可别小瞧了它们,它们能帮我们解决大问题呢!现在,你是不是对单链表上的排序方法有了更清楚的认识啦?。
算法练习题
算法练习题一、基础算法1. 编写一个程序,实现一个冒泡排序算法。
2. 实现一个选择排序算法。
3. 实现一个插入排序算法。
4. 编写一个函数,计算一个整数数组中的最大值和最小值。
5. 编写一个函数,实现二分查找算法。
6. 编写一个函数,实现快速排序算法。
7. 编写一个函数,判断一个整数是否为素数。
8. 编写一个函数,实现反转一个整数数组。
9. 编写一个函数,计算两个整数数组的交集。
10. 编写一个函数,判断一个字符串是否为回文。
二、数据结构11. 实现一个单链表的基本操作,包括插入、删除、查找。
12. 实现一个双向链表的基本操作,包括插入、删除、查找。
13. 实现一个栈的基本操作,包括压栈、出栈、查看栈顶元素。
14. 实现一个队列的基本操作,包括入队、出队、查看队首元素。
15. 实现一个二叉树的基本操作,包括插入、删除、查找。
16. 实现一个二叉搜索树的基本操作,包括插入、删除、查找。
17. 实现一个哈希表的基本操作,包括插入、删除、查找。
三、搜索与图论18. 编写一个程序,实现深度优先搜索(DFS)算法。
19. 编写一个程序,实现广度优先搜索(BFS)算法。
20. 编写一个程序,求解迷宫问题。
21. 编写一个程序,计算一个有向图的拓扑排序。
22. 编写一个程序,计算一个无向图的欧拉回路。
23. 编写一个程序,计算一个加权无向图的最小树(Prim算法)。
24. 编写一个程序,计算一个加权有向图的最短路径(Dijkstra算法)。
25. 编写一个程序,计算一个加权有向图的所有顶点对的最短路径(Floyd算法)。
四、动态规划26. 编写一个程序,实现背包问题。
27. 编写一个程序,计算最长公共子序列(LCS)。
28. 编写一个程序,计算最长递增子序列(LIS)。
29. 编写一个程序,实现编辑距离(Levenshtein距离)。
30. 编写一个程序,实现硬币找零问题。
31. 编写一个程序,实现矩阵链乘问题。
北京师范大学数据结构教学资料第九章排序
第九章排序(基础知识)8.1 【答案】以关键字序列(265,301,751,129,937,863,742,694,076,438)为例,分别写出执行以下排序算法的各趟排序结束时,关键字序列的状态。
(1) 直接插入排序(2)希尔排序(3)冒泡排序(4)快速排序(5) 直接选择排序(6) 堆排序(7) 归并排序(8)基数排序上述方法中,哪些是稳定的排序?哪些是非稳定的排序?对不稳定的排序试举出一个不稳定的实例。
8.2 【答案】上题的排序方法中,哪些易于在链表(包括各种单、双、循环链表)上实现?8.3 【答案】当R[low..high]中的关键字均相同时,Partion返回值是什么?此时快速排序的的运行时间是多少?能否修改Partion,使得划分结果是平衡的(即划分后左右区间的长度大致相等)?8.4 【答案】若文件初态是反序的,则直接插入,直接选择和冒泡排序哪一个更好?8.5 【答案】若文件初态是反序的,且要求输入稳定,则在直接插入、直接选择、冒泡和快速排序中就选选哪种方法为宜?6. 用快速排序算法,对下列数组排序60 56 65 99 22 16 88 100a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]取a[0]为支点(pivot),列出第一轮升序排序后的元素顺序。
8.6 【答案】有序数组是堆吗?8.7 【答案】高度为h的堆中,最多有多少个元素?最少有多少个元素?在大根堆中,关键字最小的元素可能存放在堆的哪些地方?8.8 【答案】判别下列序列是否为堆(小根堆或大根堆),若不是,则将其调整为堆:(1) (100,86,73,35,39,42,57,66,21);(2) (12,70,33,65,24,56,48,92,86,33);(3) (103,97,56,38,66,23,42,12,30,52,06,20);(4) (05,56,20,23,40,38,29,61,35,76,28,100).8.9 【答案】将两个长度为n的有序表归并为一个长度为2n的有序表,最小需要比较n次,最多需要比较2n-1次,请说明这两种情况发生时,两个被归并的表有何特征?7. 将序列101 45 21 532 22 5 232 14 存放在一静态链表中(见下图),并对其按照链式基数排序法进行升序排序。
计算机编程实验报告
实验名称:计算机编程实践实验时间:2023年X月X日实验地点:计算机实验室实验教师:XXX实验目的:1. 熟悉编程环境,掌握基本的编程技巧。
2. 通过实际编程,加深对数据结构和算法的理解。
3. 培养团队协作能力,提高编程实践能力。
实验内容:本次实验主要围绕以下内容展开:1. 简单的C语言编程练习。
2. 数据结构(链表)的应用。
3. 算法(排序算法)的设计与实现。
实验步骤:一、简单C语言编程练习1. 创建一个C语言程序,实现以下功能:- 输入两个整数,输出它们的和、差、积、商。
- 输入一个字符串,统计其中字母、数字和空格的数量。
2. 编写一个函数,用于计算一个整数的阶乘。
二、数据结构(链表)的应用1. 设计一个单向链表,实现以下功能:- 创建链表。
- 在链表的指定位置插入一个节点。
- 删除链表中的指定节点。
- 遍历链表,打印链表中的所有元素。
2. 实现一个循环链表,实现以下功能:- 创建循环链表。
- 在循环链表的指定位置插入一个节点。
- 删除循环链表中的指定节点。
- 遍历循环链表,打印链表中的所有元素。
三、算法(排序算法)的设计与实现1. 实现冒泡排序算法,对一组整数进行排序。
2. 实现选择排序算法,对一组整数进行排序。
实验结果:一、简单C语言编程练习1. 编写程序,实现输入两个整数,输出它们的和、差、积、商。
2. 编写程序,实现输入一个字符串,统计其中字母、数字和空格的数量。
3. 编写函数,计算一个整数的阶乘。
二、数据结构(链表)的应用1. 创建单向链表,实现插入、删除和遍历功能。
2. 创建循环链表,实现插入、删除和遍历功能。
三、算法(排序算法)的设计与实现1. 实现冒泡排序算法,对一组整数进行排序。
2. 实现选择排序算法,对一组整数进行排序。
实验心得:通过本次实验,我深刻体会到以下几方面:1. 编程是一项实践性很强的技能,只有通过不断练习,才能提高编程能力。
2. 数据结构和算法是计算机科学的基础,掌握了它们,才能更好地理解和解决实际问题。
《C语言程序设计课程设计》题目
1 一元稀疏多项式的运算问题描述:设有两个带头指针的单链表表示两个一元稀疏多项式A、B,实现两个一元稀疏多项式的处理。
实现要求:⑴输入并建立多项式;⑵输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……c n,e n,其中n是多项式的项数,c i,e i分别为第i项的系数和指数。
序列按指数降序排列;⑶多项式A和B相加,建立多项式A+B,输出相加的多项式;⑷多项式A和B相减,建立多项式A-B,输出相减的多项式;⑸多项式A和B相乘,建立多项式A×B,输出相乘的多项式;⑹设计一个菜单,至少具有上述操作要求的基本功能。
测试数据:(1) (2x+5x8-3.1x11)+(7-5x8+11x9)(2) (6x-3-x+4.4x2-1.2x9)-(-6x-3+5.4x2+7.8x15)(3)(x+x2+x3)+0(4)(x+x3)-(-x-x-3)2 成绩排序假设某年级有4个班,每班有45名同学。
本学期有5门课程考试,每门课程成绩是百分制。
假定每个同学的成绩记录包含:学号、姓名各门课程的成绩共7项,其中学号是一个10位的字符串,每个学生都有唯一的学号,并且这4个班的成绩分别放在4个数组中,完成以下操作要求:⑴编写一个成绩生成函数,使用随机数方法,利用随机函数生成学生的各门课程的成绩(每门课程的成绩都是0∽100之间的整数),通过调用该函数生成全部学生的成绩;⑵编写一个平均成绩计算函数,计算每个同学的平均成绩并保存在成绩数组中;⑶用冒泡排序法对4个班的成绩按每个同学的平均成绩的以非递增方式进行班内排序;⑷ 用选择排序法对4个班的成绩按每个同学的平均成绩的以非递增方式进行班内排序;⑸ 对已按平均成绩排好序的4个班的同学的构造一个所有按平均成绩的以非递增方式排列的新的单链表;⑹ 设计一个菜单,至少具有上述操作要求的基本功能。
3 栈及其操作问题描述:栈(Stack):是限制在表的一端进行插入和删除操作的线性表。
数据结构c语言版课后习题答案
数据结构c语言版课后习题答案数据结构是计算机科学中的一个重要概念,它涉及到组织、管理和存储数据的方式,以便可以有效地访问和修改数据。
C语言是一种广泛使用的编程语言,它提供了丰富的数据结构实现方式。
对于学习数据结构的C语言版课程,课后习题是巩固理论知识和提高实践能力的重要手段。
数据结构C语言版课后习题答案1. 单链表的实现在C语言中,单链表是一种常见的线性数据结构。
它由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。
实现单链表的基本操作通常包括创建链表、插入节点、删除节点、遍历链表等。
答案:- 创建链表:定义一个链表结构体,然后使用动态内存分配为每个节点分配内存。
- 插入节点:根据插入位置,调整前后节点的指针,并将新节点插入到链表中。
- 删除节点:找到要删除的节点,调整其前后节点的指针,然后释放该节点的内存。
- 遍历链表:从头节点开始,使用指针遍历链表,直到达到链表尾部。
2. 二叉树的遍历二叉树是一种特殊的树形数据结构,其中每个节点最多有两个子节点。
二叉树的遍历是数据结构中的一个重要概念,常见的遍历方式有前序遍历、中序遍历、后序遍历和层序遍历。
答案:- 前序遍历:先访问根节点,然后递归遍历左子树,最后递归遍历右子树。
- 中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
- 后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
- 层序遍历:使用队列,按照从上到下,从左到右的顺序访问每个节点。
3. 哈希表的实现哈希表是一种通过哈希函数将键映射到表中一个位置来访问记录的数据结构。
它提供了快速的数据访问能力,但需要处理哈希冲突。
答案:- 哈希函数:设计一个哈希函数,将键映射到哈希表的索引。
- 哈希冲突:使用链地址法、开放地址法或双重哈希法等解决冲突。
- 插入操作:计算键的哈希值,将其插入到对应的哈希桶中。
- 删除操作:找到键对应的哈希桶,删除相应的键值对。
4. 图的表示和遍历图是一种复杂的非线性数据结构,由顶点(节点)和边组成。
使用单链表来实现集合的交并差运算数据结构
使⽤单链表来实现集合的交并差运算数据结构使⽤单链表来实现集合的交并差运算数据结构问题描述该算法的设计,要求运⾏结果如下所⽰:集合的运算如下:原集合A: c a e h原集合B: f h b g d a有序集合A: a c e h有序集合B: a b d f g h集合的并C: a b c d e f g h集合的交C: a h集合的差C: c e代码实现⾸先这⾥交并差的实现是基于链表中的元素已经从⼩到⼤排完序的链表。
这⾥排序使⽤的是冒泡排序。
//链表的冒泡排序算法bool BubbleSort(LinkList &L) //链表的冒泡排序{LinkList p, q, tail;tail=NULL;while((L->next->next)!=tail){p=L;q=L->next;while(q->next!=tail){if((q->data) > (q->next->data)){p->next=q->next;q->next=q->next->next;p->next->next=q;q=p->next;}q=q->next;p=p->next;}tail=q;}return true;}//集合的并bool merge(LinkList &L1, LinkList &L2, LinkList &L3)//集合的并这⾥的集合已经排序{LinkList p1=L1->next, p2=L2->next, p3=L3, s;while(p1!=NULL && p2!=NULL){if(p1->data!=p2->data){if(p1->data > p2->data)swap(p1, p2);while(p1!=NULL && p1->data < p2->data){s=(LinkList)malloc(sizeof(LNode));s->data=p1->data;s->next=NULL;p3->next=s;p3=s;p1=p1->next;}}elses->data=p1->data;s->next=NULL;p3->next=s;p3=s;p1=p1->next;p2=p2->next;}}if(p2!=NULL) //这⾥统⼀让p1代表链表中还有剩余元素的那条链p1=p2;while(p1!=NULL){s=(LinkList)malloc(sizeof(LNode));s->data=p1->data;s->next=NULL;p3->next=s;p3=s;p1=p1->next;}return true;}//集合的交bool intersect(LinkList &L1, LinkList &L2, LinkList &L3)//集合的交这⾥的集合已经排序{LinkList p1=L1->next, p2=L2->next, p3=L3, s;if(p1==NULL || p2==NULL)//两者中有⼀个是空链表return false;while(p1!=NULL){while(p2!=NULL){if(p2->data==p1->data){s=(LinkList)malloc(sizeof(LNode));s->data=p1->data;s->next=NULL;p3->next=s;p3=s;}if(p2->data > p1->data)break;p2=p2->next;}p1=p1->next;}return true;}//集合的差bool differ(LinkList &L1, LinkList &L2, LinkList &L3) //集合的差这⾥的集合已经排序{LinkList p1=L1->next, p2=L2->next, p3=L3, s;if(p1->next==NULL)return false;while(p1!=NULL && p2!=NULL){if(p1->data!=p2->data){if(p1->data > p2->data){while(p1->data > p2->data ) //这⾥要保证p2后⾯的值也要不能⼤于p1当前的值{p2=p2->next;}if(p1->data==p2->data)continue;}s=(LinkList)malloc(sizeof(LNode));s->data=p1->data;s->next=NULL;p3->next=s;p3=s;p1=p1->next;}else{p1=p1->next;p2=p2->next;}}while(p1!=NULL)s=(LinkList)malloc(sizeof(LNode));s->data=p1->data;s->next=NULL;p3->next=s;p3=s;p1=p1->next;}return true;}//完整的代码实现#include<bits/stdc++.h>using namespace std;typedef struct LNode{int data;struct LNode *next;}LNode, *LinkList;bool init(LinkList &L){L=(LinkList)malloc(sizeof(LNode));if(L==NULL)return false;L->next=NULL;return true;}bool search(LinkList &L, int x){LinkList p=L->next;while(p){if(p->data==x)return false;p=p->next;}return true;}bool creat_list(LinkList &L, char a[], int n) //采⽤尾插法建⽴单链表{LinkList p=L, s;for(int i=0; i<n; i++){if(search(L, a[i])==false)continue;s=(LinkList)malloc(sizeof(LNode));if(s==NULL)return false;s->data=a[i];s->next=NULL;p->next=s;p=s;}return true;}bool display(LinkList &L){LinkList p=L->next;if(p==NULL)return false;while(p){printf("%c ", p->data);p=p->next;}printf("\n");return true;}bool clear(LinkList &L){LinkList p;while(L){p=L->next;free(L);L=p;}L=NULL;return true;}bool BubbleSort(LinkList &L) //链表的冒泡排序{LinkList p, q, tail;tail=NULL;p=L;q=L->next;while(q->next!=tail){if((q->data) > (q->next->data)){p->next=q->next;q->next=q->next->next;p->next->next=q;q=p->next;}q=q->next;p=p->next;}tail=q;}return true;}bool merge(LinkList &L1, LinkList &L2, LinkList &L3)//集合的并这⾥的集合已经排序{LinkList p1=L1->next, p2=L2->next, p3=L3, s;while(p1!=NULL && p2!=NULL){if(p1->data!=p2->data){if(p1->data > p2->data)swap(p1, p2);while(p1!=NULL && p1->data < p2->data){s=(LinkList)malloc(sizeof(LNode));s->data=p1->data;s->next=NULL;p3->next=s;p3=s;p1=p1->next;}}else{s=(LinkList)malloc(sizeof(LNode));s->data=p1->data;s->next=NULL;p3->next=s;p3=s;p1=p1->next;p2=p2->next;}}if(p2!=NULL) //这⾥统⼀让p1代表链表中还有剩余元素的那条链p1=p2;while(p1!=NULL){s=(LinkList)malloc(sizeof(LNode));s->data=p1->data;s->next=NULL;p3->next=s;p3=s;p1=p1->next;}return true;}bool intersect(LinkList &L1, LinkList &L2, LinkList &L3)//集合的交这⾥的集合已经排序{LinkList p1=L1->next, p2=L2->next, p3=L3, s;if(p1==NULL || p2==NULL)//两者中有⼀个是空链表return false;while(p1!=NULL){while(p2!=NULL){if(p2->data==p1->data){s=(LinkList)malloc(sizeof(LNode));s->data=p1->data;s->next=NULL;p3->next=s;p3=s;}if(p2->data > p1->data)break;p2=p2->next;}return true;}bool differ(LinkList &L1, LinkList &L2, LinkList &L3) //集合的差这⾥的集合已经排序{LinkList p1=L1->next, p2=L2->next, p3=L3, s;if(p1->next==NULL)return false;while(p1!=NULL && p2!=NULL){if(p1->data!=p2->data){if(p1->data > p2->data){while(p1->data > p2->data ) //这⾥要保证p2后⾯的值也要不能⼤于p1当前的值{p2=p2->next;}if(p1->data==p2->data)continue;}s=(LinkList)malloc(sizeof(LNode));s->data=p1->data;s->next=NULL;p3->next=s;p3=s;p1=p1->next;}else{p1=p1->next;p2=p2->next;}}while(p1!=NULL){s=(LinkList)malloc(sizeof(LNode));s->data=p1->data;s->next=NULL;p3->next=s;p3=s;p1=p1->next;}return true;}/*产⽣n个[min, max]的随机数。
冒泡排序链表c语言
冒泡排序链表c语言冒泡排序是一种简单而常用的排序算法,它可以用于对链表进行排序。
在本文中,我们将介绍如何使用C语言实现冒泡排序链表,并解释算法的原理和步骤。
让我们来了解一下冒泡排序的基本原理。
冒泡排序通过多次遍历待排序的元素,比较相邻的两个元素的大小,并根据需要交换它们的位置。
通过这样的比较和交换,最大(或最小)的元素会逐渐“冒泡”到列表的末尾(或开头),从而实现排序。
在链表中实现冒泡排序的思路与数组类似,但需要注意的是,我们无法像数组那样通过下标直接访问链表中的元素。
因此,在链表中进行元素比较和交换时,我们需要修改节点之间的连接关系。
下面是使用C语言实现冒泡排序链表的步骤:1. 遍历链表,确定链表的长度。
这一步是为了确定需要进行多少次排序遍历。
2. 写一个循环,循环次数为链表的长度减1。
每次循环都进行一次完整的遍历和排序。
3. 在每次遍历中,从链表的头部开始,比较相邻节点的值。
如果前一个节点的值大于后一个节点的值,则交换它们的位置。
4. 重复步骤3,直到遍历到链表的倒数第二个节点。
这样可以确保在每次遍历后,链表的最后一个节点都是当前遍历范围内的最大(或最小)值。
5. 重复步骤2和步骤3,直到完成所有的排序遍历。
此时,链表中的元素已经按照从小到大(或从大到小)的顺序排列好了。
以下是冒泡排序链表的C语言代码实现:```c#include <stdio.h>// 定义链表节点的结构体typedef struct Node {int data;struct Node* next;} Node;// 冒泡排序链表的函数void bubbleSortList(Node* head) {if (head == NULL || head->next == NULL) {return;}int len = 0;Node* cur = head;while (cur != NULL) {len++;cur = cur->next;}for (int i = 0; i < len - 1; i++) {cur = head;for (int j = 0; j < len - i - 1; j++) {if (cur->data > cur->next->data) { int temp = cur->data;cur->data = cur->next->data; cur->next->data = temp;}cur = cur->next;}}}// 打印链表的函数void printList(Node* head) {Node* cur = head;while (cur != NULL) {printf("%d ", cur->data);cur = cur->next;}printf("\n");}int main() {// 创建链表Node* head = (Node*)malloc(sizeof(Node)); Node* node1 = (Node*)malloc(sizeof(Node)); Node* node2 = (Node*)malloc(sizeof(Node)); Node* node3 = (Node*)malloc(sizeof(Node)); head->data = 3;node1->data = 2;node2->data = 4;node3->data = 1;head->next = node1;node1->next = node2;node2->next = node3;node3->next = NULL;// 打印排序前的链表printf("排序前的链表:");printList(head);// 对链表进行冒泡排序bubbleSortList(head);// 打印排序后的链表printf("排序后的链表:");printList(head);return 0;}```在上面的代码中,我们首先定义了一个链表节点的结构体,其中包含一个整型数据成员和一个指向下一个节点的指针成员。
中国铁道出版社数据结构(第二版)单元10练习参考答案
单元测验10一.判断题(下列各题,正确的请在前面的括号内打√;错误的打╳)(ㄨ)(1)如果某种排序算法不稳定,则该排序方法就没有实用价值。
(√)(2)希尔排序是不稳定的排序。
(ㄨ)(3)冒泡排序是不稳定的排序。
(√)(4)对n个记录的进行快速排序,所需要的平均时间是O(nlog2n)。
(ㄨ)(5)堆排序所需的时间与待排序的记录个数无关。
(√)(6)当待排序的元素个数很多时,为了交换元素的位置要占用较多的时间,这是影响时间复杂度的主要因素。
(ㄨ)(7)快速排序在任何情况下都比其它排序方法速度快。
(√)(8)对快速排序来说,初始序列为正序或反序都是最坏情况。
(√)(9)采用归并排序可以实现外排序。
(√)(10)采用希尔方法排序时,若关键字的排列杂乱无序,则效率最高。
(√)(11)快速排序算法在每一趟排序中都能找到一个元素放在其最终位置上。
(√)(12)冒泡排序的时间复杂度是O(n2)。
二.填空题(1)大多数排序算法都有两个基本的操作:比较和移动。
(2)评价排序算法优劣的主要标准是时间复杂度和算法所需的附加空间。
(3)根据被处理的数据在计算机中使用不同的存储设备,排序可分为:内排序和外排序。
(4)外排序是指在排序过程中,数据的主要部分存放在计算机的外存中。
(5)对n个关键字进行冒泡排序,其可能的最小比较次数为: n-1 次。
(6)在最坏情况下,在第i趟直接插入排序中,要进行 i-1 次关键字的比较。
(7)对n个关键字进行冒泡排序,时间复杂度为 O(n2) 。
(8)快速排序在最坏情况下的时间复杂度是 O(n2) 。
(9)对于n个记录的集合进行归并排序,所需要的平均时间为: O(log2n) 。
(10)对于n个记录的集合进行归并排序,所需要的附加空间是 O(n) 。
(11)若原始数据接近无序,则选用快速排序最好。
(12)在排序前,关键字值相等的不同记录,排序后相对位置保持不变的排序方法,称为稳定排序方法。
数据结构c++顺序表、单链表的基本操作,查找、排序代码
} return 0; }
实验三 查找
实验名称: 实验3 查找 实验目的:掌握顺序表和有序表的查找方法及算法实现;掌握二叉排序 树和哈希表的构造和查找方法。通过上机操作,理解如何科学地组织信 息存储,并选择高效的查找算法。 实验内容:(2选1)内容1: 基本查找算法;内容2: 哈希表设计。 实验要求:1)在C++系统中编程实现;2)选择合适的数据结构实现查 找算法;3)写出算法设计的基本原理或画出流程图;4)算法实现代码 简洁明了;关键语句要有注释;5)给出调试和测试结果;6)完成实验 报告。 实验步骤: (1)算法设计 a.构造哈希函数的方法很多,常用的有(1)直接定址法(2)数字分析法;(3) 平方取中法;(4)折叠法;( 5)除留余数法;(6)随机数法;本实验采用的是除 留余数法:取关键字被某个不大于哈希表表长m的数p除后所得余数为哈 希地址 (2)算法实现 hash hashlist[n]; void listname(){ char *f; int s0,r,i; NameList[0].py="baojie"; NameList[1].py="chengቤተ መጻሕፍቲ ባይዱoyang"; ……………………………… NameList[29].py="wurenke"; for(i=0;i<q;i++){s0=0;f=NameList[i].py; for(r=0;*(f+r)!='\0';r++) s0+=*(f+r);NameList[i].k=s0; }} void creathash(){int i;
v[k-1]=v[k]; nn=nn-1; return ; } int main() {sq_LList<double>s1(100); cout<<"第一次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.ins_sq_LList(0,1.5); s1.ins_sq_LList(1,2.5); s1.ins_sq_LList(4,3.5); cout<<"第二次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.del_sq_LList(0); s1.del_sq_LList(2); cout<<"第三次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); return 0; } 运行及结果:
可对链式存储排序的方法
可对链式存储排序的方法链式存储是一种常见的数据结构,它通过指针将数据元素按照一定的顺序链接在一起。
在某些情况下,我们需要对链式存储中的数据进行排序,以便更好地利用和管理这些数据。
本文将介绍几种可对链式存储排序的方法。
方法一:冒泡排序冒泡排序是一种简单直观的排序方法,它通过相邻元素之间的比较和交换来实现排序。
对于链式存储,可以使用两个指针分别指向当前节点和下一个节点,通过比较节点的值来确定是否需要交换位置。
重复这个过程直到链表中所有节点都按照指定的顺序排列。
方法二:插入排序插入排序是一种稳定的排序方法,它通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
对于链式存储,可以使用一个指针指向当前节点,另一个指针指向已排序的序列。
通过比较节点的值来确定插入位置,然后将节点插入到相应位置。
方法三:选择排序选择排序是一种简单直观的排序方法,它通过每次从未排序的序列中选择最小(或最大)的元素,放到已排序序列的末尾。
对于链式存储,可以使用两个指针分别指向当前节点和最小节点,通过比较节点的值来确定最小节点,然后将最小节点与当前节点交换位置。
方法四:归并排序归并排序是一种稳定的排序方法,它通过将两个有序序列合并成一个有序序列来实现排序。
对于链式存储,可以使用递归的方式将链表分成两个子链表,然后分别对两个子链表进行排序,最后将两个有序子链表合并成一个有序链表。
方法五:快速排序快速排序是一种常用的排序方法,它通过选择一个基准元素,将序列分成左右两个子序列,然后分别对左右两个子序列进行排序。
对于链式存储,可以使用两个指针分别指向当前节点和基准节点,通过比较节点的值来确定节点的位置,然后递归地对左右两个子链表进行排序。
方法六:堆排序堆排序是一种基于二叉堆的排序方法,它通过构建最大堆或最小堆来实现排序。
对于链式存储,可以使用一个指针指向当前节点,另一个指针指向堆的根节点。
通过比较节点的值和堆的根节点的值来确定是否需要交换位置,然后递归地对剩余的节点进行堆调整,最后得到有序的链表。
单链表实验总结
单链表实验总结单链表是一种常见的数据结构,用于存储有序的数据元素。
在这个实验中,我通过实现单链表的基本操作,如插入、删除和查找等,加深了对单链表的理解。
在实验中,我首先创建了一个单链表的类,并实现了构造函数。
然后,我实现了向链表中插入节点的操作。
插入节点时,我需要将新的节点的指针指向当前节点的下一个节点,然后将前一个节点的指针指向新的节点,从而完成节点的插入。
在实现删除节点的操作时,我需要找到要删除的节点的前一个节点,然后将前一个节点的指针指向要删除节点的下一个节点,从而将要删除的节点排除在链表之外。
我还实现了通过索引查找节点的操作。
在这个操作中,我需要从链表的头节点开始迭代,直到找到要查找的索引位置的节点。
通过实践,我发现单链表的插入和删除操作的时间复杂度都是O(n),其中n表示链表的长度。
在查找操作中,时间复杂度是O(n)。
总之,通过这个实验,我对单链表的原理和基本操作有了更深的理解。
我也学到了如何使用单链表来解决实际问题。
这个实验让我更加熟悉了链表的概念和操作,为我进一步深入学习数据结构和算法打下了基础。
除了实现基本的插入、删除和查找操作,我还尝试了一些其他的操作来进一步加深对单链表的理解。
首先,我实现了获取链表长度的操作。
通过遍历整个链表,我可以统计节点的数量来得到链表的长度。
这个操作的时间复杂度是O(n)。
接下来,我尝试实现了链表的反转操作。
通过调整节点的指针指向,我可以将链表的顺序颠倒过来。
这个操作的时间复杂度是O(n)。
另外,我实现了链表的判空和清空操作。
判空操作可以判断链表是否为空,即链表的头节点是否为空。
清空操作可以将链表中的所有节点都删除,使链表变为空链表。
最后,我尝试了一些高级操作,如链表的排序和链表的合并。
排序操作可以将链表中的节点按照一定的顺序重新排列,通常使用冒泡排序、选择排序或插入排序等算法实现。
合并操作可以将两个有序链表合并成一个更大的有序链表,通常使用归并排序的思想实现。
数据结构填空题题库
数据结构填空题题库一、栈和队列1. 栈是一种_______数据结构,它遵循先进后出(LIFO)的原则。
栈可以通过数组或者链表来实现。
2. 队列是一种_______数据结构,它遵循先进先出(FIFO)的原则。
队列可以通过数组或者链表来实现。
3. 栈的常用操作包括:_______(将元素压入栈顶)、_______(将栈顶元素弹出)、_______(返回栈顶元素但不弹出)、_______(判断栈是否为空)。
4. 队列的常用操作包括:_______(将元素插入队尾)、_______(将队头元素移除)、_______(返回队头元素但不移除)、_______(判断队列是否为空)。
5. 栈的应用场景包括:_______(函数调用栈)、_______(括号匹配)、_______(浏览器的前进后退功能)等。
6. 队列的应用场景包括:_______(任务调度)、_______(消息队列)、_______(打印队列)等。
二、链表1. 链表是一种_______数据结构,它由一系列节点组成,每一个节点包含数据和指向下一个节点的指针。
2. 单链表的每一个节点包含两个部份:_______(存储数据的变量)和_______(指向下一个节点的指针)。
3. 双向链表的每一个节点包含三个部份:_______(存储数据的变量)、_______(指向前一个节点的指针)和_______(指向下一个节点的指针)。
4. 循环链表是一种特殊的链表,它的尾节点指向头节点,形成一个_______。
5. 链表的插入操作包括:_______(在链表头部插入节点)、_______(在链表尾部插入节点)、_______(在指定位置插入节点)。
6. 链表的删除操作包括:_______(删除链表头部节点)、_______(删除链表尾部节点)、_______(删除指定位置节点)。
7. 链表的查找操作包括:_______(根据索引查找节点)、_______(根据值查找节点)。
大学数据结构实验报告模板
大学数据结构实验报告模板一、实验目的数据结构实验是计算机相关专业课程中的重要实践环节,通过实验可以加深对数据结构理论知识的理解,提高编程能力和解决实际问题的能力。
本次实验的主要目的包括:1、掌握常见数据结构(如数组、链表、栈、队列、树、图等)的基本操作和实现方法。
2、学会运用数据结构解决实际问题,培养算法设计和分析能力。
3、提高程序设计的规范性和代码质量,培养良好的编程习惯。
4、熟悉编程语言(如C、C++、Java 等)的开发环境和调试技巧。
二、实验环境1、操作系统:_____2、编程语言:_____3、开发工具:_____三、实验内容(一)线性表的实现与操作1、顺序表的实现定义顺序表的数据结构。
实现顺序表的初始化、插入、删除、查找等基本操作。
2、链表的实现定义链表的数据结构(单链表、双向链表或循环链表)。
实现链表的创建、遍历、插入、删除等操作。
(二)栈和队列的实现与应用1、栈的实现定义栈的数据结构。
实现栈的入栈、出栈、栈顶元素获取等操作。
利用栈解决括号匹配、表达式求值等问题。
2、队列的实现定义队列的数据结构。
实现队列的入队、出队、队头元素获取等操作。
利用队列实现广度优先搜索、任务调度等应用。
(三)树的实现与遍历1、二叉树的实现定义二叉树的数据结构(二叉链表或顺序存储)。
实现二叉树的创建、前序遍历、中序遍历、后序遍历。
2、二叉搜索树的实现实现二叉搜索树的插入、删除、查找操作。
3、平衡二叉树(如 AVL 树)的实现(选做)理解平衡二叉树的平衡调整算法。
实现平衡二叉树的插入和删除操作,并保持树的平衡。
(四)图的表示与遍历1、图的邻接矩阵和邻接表表示定义图的数据结构(邻接矩阵或邻接表)。
实现图的创建和初始化。
2、图的深度优先遍历和广度优先遍历实现图的深度优先遍历和广度优先遍历算法。
应用图的遍历解决最短路径、连通性等问题。
(五)排序算法的实现与性能比较1、常见排序算法的实现实现冒泡排序、插入排序、选择排序、快速排序、归并排序等算法。
数据结构作业答案
1:41.如果待排序序列中两个数据元素具有相同的值,在排序后它们的位置发生颠倒,则称该排序是不稳定的。
()就是不稳定的排序方法。
1.起泡排序2.归并排序3.直接插入法排序4.简单选择排序2:8 带头结点的单链表head为空的判断条件是( )。
1.head==NULL2.head->next==NULL3. head->next==head4. head!=NULL3:9 在单链表中增加头结点的目的是为了( )。
1.方便运算的实现2.用于标识单链表3.使单链表中至少有一个结点4.用于标识起始结点的位置4:46 下列四个关键字序列中,( )不是堆。
1. {05,23,16,68,94,72,71,73}2.{05,16,23,68,94,72,71,73}3. {05,23,16,73,94,72,71,68}4.{05,23,16,68,73,71,72,94}5:20.设输入序列为1,2,3,4,5,借助一个栈可以得到的输出序列是( )。
1.2,4,1,3,52.3,4,1,5,23.3,2,4,1,54.4,1,3,2,56:50 对有n个记录的表按记录键值有序建立二叉排序树,在这种情况下,其平均查找长度的量级为()。
1.O(n)2.O(nlog2n)3.O(1)4. O(log2n)7:37.用分划交换排序方法对包含有n个关键的序列进行排序,最坏情况下执行的时间杂度为( )。
1.O(n)2. O(log2n)3.O(nlog2n)4. O(n2)8:38.邻接表的存储结构下图的深度优先遍历类似于二叉树(树)的( )。
1.先序遍历2.中序遍历3.后序遍历4.按层遍历9:48 对有n个记录的有序表采用二分查找,其平均查找长度的量级为()。
1. O(log2n)2.O(nlog2n)3.O(n)4. O(n2)10:2 线性表是具有n个( )的有限序列。
1.表元素2.字符3.数据元素4.信息项11:15 在一个单链表中,若删除(*p)结点的后继结点,则执行( )。
c语言结构体链表冒泡排序
c语言结构体链表冒泡排序在C 语言中,如果你有一个包含结构体的链表,并且希望对链表中的元素进行冒泡排序,下面是一个简单的例子代码:```c#include <stdio.h>#include <stdlib.h>// 定义结构体struct Node {int data;struct Node* next;};// 创建新节点struct Node* createNode(int data) {struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = data;newNode->next = NULL;return newNode;}// 向链表尾部添加节点void appendNode(struct Node head, int data) {struct Node* newNode = createNode(data);if (*head == NULL) {*head = newNode;return;}struct Node* last = *head;while (last->next != NULL) {last = last->next;}last->next = newNode;}// 打印链表void printList(struct Node* head) {struct Node* current = head;while (current != NULL) {printf("%d -> ", current->data);current = current->next;}printf("NULL\n");}// 冒泡排序函数void bubbleSort(struct Node* head) {int swapped, i;struct Node *ptr1, *lptr = NULL;// 如果链表为空或只有一个节点,无需排序if (head == NULL)return;do {swapped = 0;ptr1 = head;while (ptr1->next != lptr) {if (ptr1->data > ptr1->next->data) {// 交换节点数据int temp = ptr1->data;ptr1->data = ptr1->next->data;ptr1->next->data = temp;swapped = 1;}ptr1 = ptr1->next;}lptr = ptr1;} while (swapped);}int main() {struct Node* head = NULL;// 向链表中添加节点appendNode(&head, 4);appendNode(&head, 2);appendNode(&head, 7);appendNode(&head, 1);appendNode(&head, 9);printf("原始链表: ");printList(head);// 对链表进行冒泡排序bubbleSort(head);printf("排序后的链表: ");printList(head);return 0;}```在这个例子中,`bubbleSort` 函数用于对链表进行冒泡排序。