2019年天津市南开区中考数学一模试卷及参考答案
2019年天津市部分区中考数学一模试卷-解析版
2019年天津市部分区中考数学一模试卷一、选择题(本大题共12小题,共36.0分) 1. 计算6×(−9)的结果等于( )A. −15B. 15C. 54D. −542. cos60°的值等于( )A. 12B. √22C. √32D. √333. 据《人民日报》报道,1月9日在京举行的2019年全国科技工作会议传来好消息,我国研发人员总量预计达到4 180 000人,居世界第一,将4 180 000用科学记数法( )A. 0.418×107B. 4.18×106C. 41.8×105D. 418×1044. 下列图形中,既可以看作是中心对称图形又可以看作是轴对称图形的是( )A. B. C. D.5. 如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A.B.C.D.6. 下列整数中,与√35最接近的是( )A. 4B. 5C. 6D. 77. 方程组{3x −2y =55x +4y =1的解是( )A. {x =1y =1B. {x =1y =−1C. {x =2y =12D. {x =13y =−28. 下列等式成立的是( )A. 1a +2b =3a+b B. 22a+b =1a+b C. a−a+b =−aa+bD. abab−b 2=aa−b9.如图,Rt△ABC中,∠B=90°,AB=6,BC=9,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N,则线段BN的长为()A. 3B. 4C. 5D. 610.已知反比例函数y=−8,下列结论错误的是()xA. y随x的增大而减小B. 图象位于二、四象限内C. 图象必过点(−2,4)D. 当−1<x<0时,y>811.如图,直线l表示一条河,点A,B表示两个村庄,想在直线l的某点P处修建一个向A,B供水的水站,现有如图所示的四种铺设管道的方案(图中实线表示铺设的管道),则铺设管道一定最短的是()A. B.C. D.12.已知抛物线y=ax2+bx+c(a,b,c为常数,a<0),其对称轴是x=1,与x轴的一个交点在(2,0),(3,0)之间,有下列结论:①abc<0;②a−b+c=0;③若此抛物线过(−2,y1)和(3,y2)两点,则y1<y2.其中,正确结论的个数为()A. 0B. 1C. 2D. 3二、填空题(本大题共6小题,共18.0分)13.计算(x+2)(x−2)的结果等于______.14.计算(4√2−√6)÷√2的结果等于______.15.不透明袋子中装有17个球,其中有8个红球、6个黄球,3个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率______.16.若一次函数的图象与直线y=−3x平行,且经过点(1,2),则一次函数的表达式为______.17.如图,△ABC是边长为9的等边三角形,AD为BC边上的高,以AD为边作等边三角形ADE,F为AC中点,则线段EF的长为______.18.如图,在每个小正方形边长为1的网格中,△ABC的顶点A,B,C均在格点上,D为AC边上的一点.(1)线段AC的值为______;(2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66.0分)19.解不等式组:{x−3≥−6 ①−(x−1)≥−1 ②请结合题意填空,完成本题的解答(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为______.20.为了解某校八年级体育科目训练情况,从八年级学生中随机抽取了部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)图1中∠α的度数是______,并把图2条形统计图补充完整.(2)抽取的这部分的学生的体育科目测试结果的中位数是在______级;(3)依次将优秀、良好、及格、不及格记为90分、80分、70分、50分,请计算抽取的这部分学生体育的平均成绩.21.已知四边形ABCD内接于⊙O,AB为⊙O的直径,∠BCD=148°.(1)如图①,若E为AB上一点,延长DE交⊙O于点P,连接AP,求∠AFD的大小;(2)如图②,过点A作⊙O的切线,与DO的延长线交于点P,求∠APD的大小.22.某数学小组在郊外水平空地上对无人机进行测高实验,以便与遥控器显示的高度数据进行对比.如图,在E处测得无人机C的仰角∠CAB=45°,在D处测得无人机C的仰角∠CBA=30°,已知测角仪的高AE=BD=1m,E,D两处相距50m,请根据数据计算无人机C的高(结果精确到0.1m,参考数据:√2≈1.41,√3≈1.73).23.一辆汽车油箱中有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,已知该汽车平均耗油量为0.1L/km.(1)计算并填写表:x(单位:km)10100300…y(单位:L)______ ______ ______ …(2)写出表示y与x的函数关系式,并指出自变量x的取值范围;(3)若A,B两地的路程约有230km,当油箱中油量少于5L时,汽车会自动报警,则这辆汽车在由A地到B地,再由B地返回A地的往返途中,汽车是否会报警请说明理由.24.如图①,在平面直角坐标系中,四边形AOBC是正方形,点P为正方形AOBC对角线的交点,点O(0,0),点A(2,0)点B(0,2)分别延长PC到D,PA到F,使PD=2PC,PF=2PA,再以PD,PF为邻边作平行四边形PDEF.(1)求点D的坐标;(2)如图②,将四边形PDEF绕点P逆时针旋转得四边形PD′E′F′,点D,E,F旋转后的对应点分别为D′,E′,F′,旋转角为(0°<α<360°);①在旋转过程中,当∠PBD=90°时,求点D′的坐标;②在旋转过程中,求BE′的取值范围(直接写出结果即可).25.函数y=−12x2+mx+1(x≥0,m>0)的图象记为C1,函数y=−12x2−mx−1(x<0,m>0)的图象记为C2,其中m为常数,C1与C2合起来的图象记为C.(1)若C1过点(1,1)时,求m的值;(2)若C2的顶点在直线y=1,求m的值;(3)设C在−4≤x≤2上最高点的纵坐标y0,当32≤y0≤9时,求m的取值范围.答案和解析1.【答案】D【解析】【分析】原式利用乘法法则计算即可求出值.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.【解答】解:原式=−6×9=−54,故选:D.2.【答案】A.【解析】解:cos60°=12故选:A.根据特殊角的三角函数值解题即可.本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.3.【答案】B【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 180 000用科学记数法表示成:4.18×106,故选B.4.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.考查了中心对称图形及轴对称图形的知识,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.5.【答案】D【解析】解:这个几何体的主视图为:.故选:D .画出从正面看到的图形即可得到它的主视图.本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6.【答案】C【解析】解:∵52=25,62=36,∴5<√35<6,25与35的距离大于36与35的距离, ∴与√35最接近的是6. 故选:C .根据5<√35<6,25与35的距离小于36与35的距离,可得答案.本题考查了估算无理数的大小,两个被开方数的差小,算术平方根的差也小是解题关键.7.【答案】B【解析】解:{3x −2y =5①5x +4y =1②,①×2+②,得 11x =11解得,x =1,将x =1代入①,得 y =−1,故原方程组的解是{x =1y =−1,故选:B .根据解二元一次方程组的方法可以解答本题.本题考查解二元一次方程组,解答本题的关键是明确解二元一次方程组的方法.8.【答案】D【解析】接:A 、两边不相等,故本选项不符合题意; B 、22a+2b =1a+b ,两边不相等,故本选项不符合题意;C 、a−a+b =a−(a−b)=−aa−b ,两边不相等,故本选项不符合题意; D 、abab−b 2=abb(a−b)=aa−b ,故本选项符合题意;故选:D .根据分式的基本性质逐个判断即可.本题考查了分式的基本性质,能灵活运用分式的基本性质进行变形是解此题的关键.9.【答案】B【解析】解:∵D是AB中点,AB=6,∴AD=BD=3,∵折叠∴DN=CN,∴BN=BC−CN=9−DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(9−DN)2+9,∴DN=5∴BN=4,故选:B.由折叠的性质可得DN=CN,根据勾股定理可求DN的长,即可求BN的长.本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.10.【答案】A中k=−8<0,【解析】解:反比例函数y=−8x在每个象限内y随着x的增大而增大,故A错误,符合题意,故选:A.利用反比例函数的性质判断后即可确定错误的选项.本题考查了反比例函数的性质,解题的关键是根据比例系数的符号确定其性质,难度不大.11.【答案】A【解析】解:如图,作A关于直线l的对称点A′,连接A′B交直线l于P点,则此时为所求,故选:A.先作点A关于直线l的对称点A,再连接A′B,即可得出答案.本题天考查了轴对称−最短路线问题,能正确画出图形是解此题的关键.12.【答案】C【解析】解:①由a<0,对称轴是x=1,可知b>0,由抛物线与x轴的一个交点在(2,0),(3,0)之间,可知另一交点位于(0,0)与(−1,0)之间,抛物线与y轴交于正半轴,c>0,所以abc<0,故①正确;当x=−1时,a−b+c<0,故②错误;③抛物线上点(−2,y1)关于对称轴x=1的对称点为(4,y1 ),在对称轴的右侧y随x的增大而减小,4>3,所以y1<y2,故③正确;正确的是①③,共2个,故选:C.由抛物线的对称轴x=1和a<0可判断b>0,由抛物线与x轴的一个交点在(2,0),(3,0)之间,可知另一交点位于(0,0)与(−1,0)之间,抛物线与y轴交于正半轴,c>0,由此判断结论①,然后根据对称轴及抛物线与x轴交点情况进行推理,求出当x=−1时,a−b+c<0,判断结论②;利用对称性先找到(−2,y1)关于对称轴x=1的对称点为(4,y1 ),再利用增减性判断.本题考查了二次函数图象与系数的关系,正确掌握二次函数图象的性质是解题的关键.13.【答案】x2−4【解析】解:(x+2)(x−2)=x2−4.故答案为:x2−4.平方差公式特点是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,计算结果是相同项的平方减去相反项的平方.本题考查了平方差公式,正确运用平方差公式是解题的关键.14.【答案】4−√3【解析】解:原式=4−√3.故答案为4−√3.利用二次根式的除法法则进行计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.【答案】317【解析】解:∵袋子中共有17个小球,其中绿球有3个,∴摸出一个球是绿球的概率是3,17故答案为:3.17根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,.其中事件A出现m种结果,那么事件A的概率P(A)=mn16.【答案】y=−3x+5【解析】【分析】设一次函数的表达式为:y=kx+b,根据两直线平行求出k,利用待定系数法计算即可.本题考查的是两条直线的平行问题,若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2.【解答】解:设一次函数的表达式为:y=kx+b,∵一次函数的图象与直线y=−3x平行,∴k=−3,∵一次函数经过点(1,2),∴−3+b=2,解得,b=5,则一次函数的表达式为y=−3x+5,故答案为y=−3x+5.17.【答案】92【解析】解:如图,连接CE,∵AD是等边△ABC的高∴∠BDA=90°∵△ABC,△ADE是等边三角形∴AB=AC,AD=AE,∠BAC=∠DAE=60°∴∠BAD=∠CAE,且AB=AC,AE=AD∴△ABD≌△ACE(SAS)∴∠ADB=∠AEC=90°,∵F为AC中点,∴EF=12AC=92故答案为:92由“SAS”可得△ABD≌△ACE,可得∠ADB=∠AEC=90°,由直角三角形的性质可求EF的长.本题考查了全等三角形的判定和性质,等边三角形的性质,直角三角形性质,证明∠AEC=90°是本题的关键.18.【答案】(1)5;(2)如图,取格点E,连接AE交BC于M,取格点F,连接DF交AM于点P,点P即为所求.【解析】解:(1)AC=√32+42=5,故答案为5.(2)见答案.【分析】(1)利用勾股定理即可解决问题.(2)如图,取格点E,连接AE交BC于M,取格点F,连接DF交AM于点P,点P即为所求.本题考查作图−复杂作图,轴对称−最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】(1)x≥−3(2)x≤2(3)见解析(4)−3≤x≤2【解析】解:(1)解不等式①,得x≥−3,(2)解不等式②,得:x≤2,(3)不等式①和②的解集在数轴上表示为:(4)原不等式组的解集为−3≤x≤2.故答案为:x≥−3;x≤2;−3≤x≤2.(1)根据不等式的性质求出即可;(2)根据不等式的性质求出即可;(3)把不等式的解集在数轴上表示出来即可;(4)根据数轴求出不等式组的解集即可.本题考查了解一元一次不等式组,在数轴上表示不等式组的解集,不等式组的整数解的应用,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.20.【答案】解:(1)54°;C级学生有:40−6−12−8=14(人),补全的条形统计图如图所示,(2)C;=72(分),(3)90×6+80×12+70×14+50×840答:抽取的这部分学生体育的平均成绩是72分.【解析】解:(1)本次抽查的学生有:12÷30%=40(人),=54°,∠α的度数是:360°×640C级学生有:40−6−12−8=14(人),补全的条形统计图如右图所示,故答案为:54°;(2)由统计图可得,抽取的这部分的学生的体育科目测试结果的中位数是在C级,故答案为:C;(3)见答案.【分析】(1)根据统计图中的数据可以计算出本次抽查的学生数,从而可以求得∠α的度数和C级的学生数,从而可以将条形统计图补充完整;(2)根据(1)中补充完整的条形统计图和中位数的定义可以解答本题;(3)根据题意和统计图中的数据可以计算出抽取的这部分学生体育的平均成绩.本题考查条形统计图、扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:(1)连接BD,∵四边形ABCD内接于⊙O,∴∠BCD+∠BAD=180°,∵∠BCD=148°,∴∠BAD=32°,∵AB为⊙O的直径,∴∠BDA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=58°,∴∠APD=∠ABD=58°;(2)连接AD,由(1)知∠BAD=32°,∵OA=OD,∴∠ADO=∠OAD=32°,∵DP切⊙O于A,∴OA⊥PA,∴∠PAO=90°,∴∠PAD=∠PAO+∠OAD=122°,∵∠PAD+∠ADO+∠APD=180°,∴∠APD=26°.【解析】(1)如图①,连接BD,根据圆内接四边形的性质得到∠BCD+∠BAD=180°,求得∠BAD=32°,根据圆周角定理得到∠BDA=90°,求得∠BAD+∠ABD=90°,于是得到结论;(2)由(1)知∠BAD=32°,根据等腰三角形的性质得到∠ADO=∠OAD=32°,根据切线的性质得到OA⊥PA,求得∠PAO=90°,根据三角形的内角和即可得到结论.本题考查了切线的性质,等腰三角形的性质,三角形的内角和,伊能静三角形的性质,正确的识别图形是解题的关键.22.【答案】解:如图,过点C作点CH⊥AB于H.∵∠CAB=45°,∴AH=CH,设CH=x,则AH=x,∵∠CBA=30°,∴BH=√3CH=√3x,由题意知:AB=ED=50,∴x+√3x=50,≈18.3.18.3+1=19.3,解得:x=502.73答:计算得到的无人机的高约为19.3m.【解析】如图,过点C作点CH⊥AB于H.设AH=CH=x,根据AB=50,构建方程即可解决问题.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.【答案】(1)49,40,20;(2)y与x的函数关系式:y=50−0.1x,根据题意,50−0.1x≥0,解得x≤500.故x的取值范围为:0≤x≤500,(3)当y=5时,50−0.1x=5,解得x=450.因此当汽车行驶450km就会报警,而往返路程为:230×2=460km.∵450<460,∴汽车会报警.【解析】解:(1)根据题意,当x=10时,y=50−0.1×10=49;当x=100时,y= 50−0.1×100=40;当x=300时,y=50−0.1×300=20;故答案为:49,40,20;(2)见答案;(3)见答案.【分析】本题主要考查了一次函数的实际应用,熟练一次函数的应用以及将一次函数与实际问题联系起来是解答此题的关键.(1)根据题意,分别把行驶10,100,300km的耗油量算出来,然后在用50减去耗油量,即可得到剩余油量;(2)剩余油量=50−耗油量;当x应当大于等于0,但行驶的路程小于50L所行驶的路程;(3)先算出45L所行驶的总路程,然后算出往反路程,进行比较.24.【答案】解:(1)过点D作DH⊥x轴于H,如图①所示:∵点O(0,0),点A(2,0),点B(0,2),∴OA=OB=2,∴正方形AOBC的边长为2,∴AC=2,AB⊥OC,PC=PA,∵PD=2PC,PF=2PA,∴PD=PF,∴平行四边形PDEF是正方形,∵四边形AOBC是正方形,点P为正方形AOBC对角线的交点,∴∠COA=45°,OP=PC=PB=PA,OC=√OA2+AC2=√22+22=2√2,∴OP=PC=PB=PA=√2,∵PD=2PC,∴OD=OP+PD=3PC=3√2,∵∠COA=45°,DH⊥x,∴△OHD是等腰直角三角形,∴OH=DH=√22OD=√22×3√2=3,∴点D的坐标为(3,3);(2)①过点B作PB⊥l,则点D落在直线l上,如图②所示:当α=30°时,在Rt△PBD′中,∵PD′=2PB,∴∠BD′P=30°,过D′作D′K⊥BC于K,∵∠PBD′=90°,∠PBC=45°,∴∠D′BK=45°,∴△BD′K是等腰直角三角形,∴BK=D′K=√22BD′,由勾股定理得:BD′=√PD′2−BP2=√(2√2)2−(√2)2=√6,∴BK=D′K=√22BD′=√3,∴点D′的坐标为(√3,2+√3);当α=150°时,在Rt△PBD′中,∵PD′=2PB,∴∠BD′P=30°,过D′作D′K⊥BC于K,∵∠PBD′=90°,∠PBC=45°,∴∠D′BK=45°,∴△BD′K是等腰直角三角形,∴BK=D′K=√22BD′,由勾股定理得:BD′=√PD′2−BP2=√(2√2)2−(√2)2=√6,∴BK=D′K=√22BD′=√3,∴点D′的坐标为(−√3,2−√3);综上所述,在旋转过程中,当∠PBD=90°时,点D′的坐标为(√3,2+√3)或(−√3,2−√3);②连接PE′,如图③所示:由勾股定理得:PE′=√2PD′=4,当PE′与PB重合时,BE′为最小值=PE′−PB=4−√2,当PE′与PA重合时,BE′为最大值=PE′+BPP=4+√2,∴BE′的取值范围是4−√2≤BE′≤4+√2.【解析】(1)过点D作DH⊥x轴于H,由题意得出OA=OB=2,AC=2,由正方形的性质得出∠COA=45°,OP=PC=PB=PA,由勾股定理得出OC=√OA2+AC2=2√2,得出OP=PC=PB=PA=√2,求出OD=OP+PD=3PC=3√2,证出△OHD是等腰直角三角形,得出OH=DH=3,即可得出答案;(2)①过点B作PB⊥l,则点D落在直线l上,当α=30°时,在Rt△PBD′中,证出∠BD′P=30°,过D′作D′K⊥BC于K,证出△BD′K是等腰直角三角形,得出BK=D′K=√22BD′,由勾股定理得:BD′=√6,得出BK=D′K=√22BD′=√3,即可得出答案;当α=150°时,在Rt△PBD′中,证出∠BD′P=30°,过D′作D′K⊥BC于K,证出△BD′K是等腰直角三角形,得出BK=D′K=√22BD′,由勾股定理得:BD′=√6,得出BK=D′K=√22BD′=√3,即可得出答案;②连接PE′,由勾股定理得:PE′=√2PD′=4,当PE′与PB重合时,BE′为最小值=PE′−PB=4−√2,当PE′与PA重合时,BE′为最大值=PE′+BPP=4+√2,即可得出答案.本题是四边形综合题目,考查了正方形的性质、等腰直角三角形的判定与性质、勾股定理、旋转变换的性质、直角三角形的性质、坐标与图形性质等知识;本题综合性强,通过作辅助线构造直角三角形是解题的关键.25.【答案】解:(1)将点(1,1)代入y=−12x2+mx+1,∴m=12;(2)C2的顶点为(−m,m22−1),∵顶点在直线y=1,∴m22−1=1,∴m=±2,∵m>0,∴m=2;(3)∵y=−12x2+mx+1的顶点为(m,m22+1),y=−12x2−mx−1的顶点为(−m,m22−1),当0<m≤2时,32≤y0=m22+1≤9,∴1≤m≤2;当2<m≤4时,当x=2时,y0=2m−1,∴32≤y0=2m−1≤9,∴2<m≤4;当m>4时,当x=−4时,y0=−9+4m,∴32≤y0=−9+4m≤9,∴4≤m≤92;综上所述:1≤m≤92;【解析】本题考查二次函数的图象及性质;掌握函数图象的特点,熟练在给定区间内求函数的最值,数形结合解题是关键.(1)将点(1,1)代入y=−12x2+mx+1,即可求解;(2)C2的顶点为(−m,m22−1),m22−1=1;(3)y=−12x2+mx+1的顶点为(m,m22+1),y=−12x2−mx−1的顶点为(−m,m22−1),分三种情况讨论:当0<m≤2时,32≤y0=m22+1≤9,当2<m≤4时,32≤y0=2m−1≤9,当m>4时,32≤y0=−9+4m≤9;。
【附5套中考模拟试卷】天津市南开区2019-2020学年中考数学模拟试题含解析
11.一元二次方程x2﹣5x﹣6=0的根是( )
A.x1=1,x2=6B.x1=2,x2=3C.x1=1,x2 =﹣6D.x1=﹣1,x2=6
12.下列方程中是一元二次方程的是()
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_______.
天津市南开区2019-2020学年中考数学模拟试题
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )
A. B. C. D.
2.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是( )
22.(8分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.
21.(6分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:
①当∠DAE=时,四边形ADFP是菱形;
②当∠DAE=时,四边形BFDP是正方形.
18.已知一组数据 , , , , 的平均数是 ,那么这组数据的方差等于________.
2019年天津市南开区中考数学一模试卷(解析版)
2019年天津市南开区中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.计算(-6)÷(-2)的结果是()A.3B.−3C.42.3tan60°的值为()D.−4A.√36B.√3 C.3√32D.3√33.下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.4.2018年10月23日,港珠澳大桥正式开通,它是中国乃至当今世界规模最大、标准最高、最具挑战性的跨海桥梁工程,被誉为桥梁界的“珠穆朗玛峰”,仅主体工程的主梁钢板用量就达42000万千克,相当于60座埃菲尔铁塔的重量.这里的数据42000万可用科学记数法表示为()A.42×107B.4.2×108C.4.2×109D.0.42×1095.如图是由6个相同的小立方块搭成的几何体,那么这个几何体的左视图是()A. B. C.D.6.如果实数a=√29-3,那么a的值在()A.5和6之间B.4和5之间C.3和4之间7.化简a2−1−2a的结果为()a−11−aD.2和3之间A.a1a−1B.a−1C.aD.18.方程x2-4x=0的解是()A.x=4B.x1=1,x2=4 C.x1=0,x2=4 D.x=09.如图,反比例函数y=k的图象经过点A(4,1),x当y<1时,x的取值范围是()A.x<0或x>4B.0<x<4C.x<4D.x>4O ,10. 如图 1,点 P △从 ABC 的顶点 A 出发,沿 A-B-C 匀速运动,到点 C 停止运动.点 P运动时,线段 AP 的长度 y 与运动时间 x 的函数关系如图 2 所示,其中 D 为曲线部 分的最低点,则△ABC 的面积是( )A. 10B. 12C. 20D. 2411. 如图,已知正方形 ABCD 的顶点 A 、B 在⊙O 上,顶点 C 、D 在⊙O 内,将正方形 ABCD 绕点 A 逆时针旋转,使点 D 落在⊙O 上,若正方形 ABCD 的边长和⊙O 的半径均为 6cm , 则点 D 运动的路径长为( )A. 2πcmB. 3 πcm2C. πcmD. 1 πcm212. 如图,抛物线 y =ax 2+b x +c 与 x 轴相交于 A 、B 两点,点 A 在点 B 左侧,顶点在折线 M -P-N 上移动,它们的坐标分别为 M (-1,4)、P (3,4)、N (3,1).若在抛物线移动过程 中,点 A 横坐标的最小值为-3.则 a-b +c 的最小值是( )A. −15B. −12C. −4D. −2二、填空题(本大题共 6 小题,共 18.0 分)13. 计算a 9的结果等于______.a 314. 将 3x 3-6x 2+3x 分解因式,其结果为______.15. 有一个反比例函数的图象,在第二象限内函数值随着自变量的值增大而增大,这个函数的表达式可能是(写出一个即可):______.16. 箱子里放有 2 个黑球和 2 个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为 1 个黑球和 1 个红球的概率是______. 17. 如图, 为矩形 ABCD 对角线 AC BD 的交点,AB =6,M ,N 是直线 BC 上的动点,且 MN =2,则 OM +ON的最小值是______.18. 如图,是大小相等的边长为 1 的正方形构成的网格,A ,C ,M ,N 均为格点,AN 与 CM 交于点 P . (1)MP :CP 的值为______;(2)现只有无刻度的直尺,请在给定的网格中作出一个格点第 2 页,共 22 页2三角形,要求:①三角形中含有与∠CPN大小相等的角;②可借助该三角形求得∠CPN的三角函数值,请并在横线上简单说明你的作图方法.三、解答题(本大题共7小题,共66.0分)1−1x≥−x①19.解不等式组{请结合题意填空,完成本题的解答.3(x1)<2x5②(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为______.20.某校九年级有900名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个统计图.请根据相关信息,解答下列问题:(1)本次参加跳绳测试的学生人数为______,图①中m的值为______;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校九年级跳绳测试中,成绩超过3分的学生有多少人?21.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为______;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.22.如图,建筑物的高CD为10√3m.在其楼顶C,测得旗杆底部B的俯角α为60°,旗杆顶部A的仰角β为20°,请你计算:(1)建筑物与旗杆的水平距离BD;(2)旗杆的高度.(sin20°≈0.342,tan20°≈0.364,cos20°≈0.940,√3≈1.732,结果精确到0.1米)23.某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优恵凭证不能顶替货款),花300元买这种卡后,卡可在这家商场按标价的8折购物.若不够卡购物和使用优惠卡购物分别视为方式一购物和方式二购物,且设顾客购买商品的金额为x元.(1)根据题意,填写下表:商品金额(元)3006001000 (x)方式一的总费用(元)方式二的总费用(元)300540600______1000______……____________(2)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?(3)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(4)小张按合算的方案,把这台冰箱买下,如果该商场还能盈利25%,那么这台冰箱的进价是多少元?第4页,共22页24.已知在平面直角坐标系中,△Rt AOB的两个顶点A、B分别在x轴和y轴的正半轴上,且∠OBA=30°,AB=4.将△Rt AOB绕点A顺时针方向旋转得△ADC.(1)如图1所示,若旋转过程中,O点的对应点(点D)恰好落在斜边AB上时,求点C的坐标;(2)在(1)的条件下,连接BC.点M,N同时从点A出发,在△ABC边上运动,点M以每秒3个单位的速度沿A-C-B路径匀速运动,点N以每秒1个单位的速度沿2ABC路径匀速运动,当两点相遇时运动停止.①设运动过程中点M的坐标为(x,y),写出y与x的关系式,M在AC边上时,写出自变量x的取值范围;②设运动的时间为t秒,设△AMN的面积为S,求当t为何值时S取得最大值?最大值为多少?25.在平面直角坐标系xOy中,抛物线y=1x2+bx经过点9A(-3,4).(1)求b的值;(2)过点A作x轴的平行线交抛物线于另一点B,在直线AB上任取一点P,作点A关于直线OP的对称点C;①当点C恰巧落在x轴时,求直线OP的表达式;②连结BC,求BC的最小值.第6页,共22页答案和解析1.【答案】A【解析】解:(-6)÷(-2)=3,故选:A.根据有理数的除法计算即可.此题考查有理数的除法,注意同号得正,异号得负.2.【答案】D【解析】解:3tan60°=3×=3.故选:D.把tan60的数值代入即可求解.本题考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是关键.3.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】B【解析】解:这里的数据42000万可用科学记数法表示为4.2×108,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】A【解析】解:从左边看第一层是三个小正方形,第二层中间一个小正方形.故选:A.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.【答案】D【解析】解:∵∴,,故选:D.估算即可得到结果.此题考查了估算无理数的大小,熟练掌握估算无理数的法则是解本题的关键.7.【答案】B【解析】解:原式=+==a-1故选:B.根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.第8页,共22页8.【答案】C【解析】解:∵x2-4x=0,∴x(x-4)=0,∴方程的解:x1=0,x2=4.故选:C.由题已知的方程进行因式分解,将原式化为两式相乘的形式,再根据两式相乘值为0,这两式中至少有一式值为0,求出方程的解.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.9.【答案】A【解析】解:∵反比例函数的图象经过点A(4,1),∴当y<1时,x<0或x>4.故选:A.直接根据反比例函数的图象即可得出结论.本题考查的是反比例函数图象上点的坐标特点,能利用函数图象直接得出不等式的解集是解答此题的关键.10.【答案】B【解析】解:根据图象可知,点P在AB上运动时,此时AP不断增大,由图象可知:点P从A向B运动时,AP的最大值为5,即AB=5,点P从B向C运动时,AP的最小值为4,即BC边上的高为4,∴当AP⊥BC,AP=4,此时,由勾股定理可知:BP=3,.由于图象的曲线部分是轴对称图形,∴PC=3, ∴BC=6,∴△ABC 的面积为: ×4×6=12,故选:B .根据图象可知点 P 在 AB 上运动时,此时 AP 不断增大,而从 B 向 C 运动时,AP 先变小后变大,从而可求出 BC 与 BC 上的高.本题考查动点问题的函数图象,解题的关键是注意结合图象求出 BC 与 AB 的长度.11.【答案】C【解析】解:设圆心为 O ,连接 AO ,BO ,AC ,AE ,OF ,∵AB=6,AO=BO=6, ∴AB=AO=BO ,∴三角形 AOB 是等边三角形,∴∠AOB=∠OAB=60°同理:△FAO 是等边三角形,∠FAB=2∠OAB=120°,∴∠EAC=120°-90°=30, ∵AD=AB=6,∴点 D 运动的路径长为: =π故选:C .设圆心为 O ,连接 AO ,BO ,AC ,AE ,易证三角形 AOB 是等边三角形,确定∠EAC=30°,再利用弧长公式计算即可.本题考查了正方形的性质、旋转的性质、等边三角形的判定和性质、勾股定理的运用以及弧长公式的运用,题目的综合性较强,解题的关键是正确的求出旋转角的度数.12.【答案】A【解析】第 10 页,共 22 页解:由题意得:当顶点在M处,点A横坐标为-3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c,顶点在N处时,y=a-b+c取得最小值,顶点在N处,抛物线的表达式为:y=-(x-3)2+1,当x=-1时,y=a-b+c=-(-1-3)2+1=-15,故选:A.由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,y=a-b+c取得最小值,即可求解.本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变.13.【答案】a6【解析】解:原式==a6,故答案为:a6.将分子、分母约去公因式a3即可得.本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.14.【答案】3x(x-1)2【解析】解:3x3-6x2+3x=3x(x2-2x+1)=3x(x-1)2.故答案为:3x(x-1)2.直接提取公因式3x,再利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.15.【答案】y=-2x【解析】解:∵反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,∴k<0,∴y=-.故答案为:y=-.首先根据反比例函数的性质可得k<0,再写一个符合条件的数即可.此题主要考查了反比例函数的性质,关键是掌握对于反比例函数y=(k是常数,k≠0),当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.16.【答案】23【解析】解:由题意可得,故恰好为1个黑球和1个红球的概率是:,故答案为;.根据题意可以列出相应的树状图,从而可以得到恰好为1个黑球和1个红球的概率.本题考查列表法和树状图法,解题的关键是明确题意,列出相应的树状图,求出相应的概率.第12页,共22页17.【答案】2√10【解析】解:如图所示,作点O关于BC的对称点P,连接PM,将MP沿着MN的方向平移MN长的距离,得到NQ,连接PQ,则四边形MNQP是平行四边形,∴MN=PQ=2,PM=NQ=MO,∴O M+O N=Q N+O N,当O,N,Q在同一直线上时,OM+ON的最小值等于OQ长,连接PO,交BC于E,由轴对称的性质,可得BC垂直平分OP,又∵矩形ABCD中,OB=OC,∴E是BC的中点,∴OE△是ABC的中位线,∴OE=AB=3,∴O P=2×3=6,又∵PQ∥MN,∴PQ⊥OP,∴Rt△OPQ中,OQ===2,∴OM+ON的最小值是2,故答案为:2.利用轴对称变换以及平移变换,作辅助线构造平行四边形,依据平行四边形的性质以及轴对称的性质,可得当O,N,Q在同一直线上时,OM+ON的最小值等于OQ长,利用勾股定理进行计算,即可得到OQ的长,进而得出OM+ON的最小值.本题主要考查了矩形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.18.【答案】2:3【解析】解:(1)如图,延长AN到H,使得NH=NA,连接CH.则CH∥AM,可得:MP:PC=AM:CH=2:3,故答案为2:3.(2△)MCD如图所示.易知:CD∥AN,可得∠DCM=∠CPN,∵△CDM是等腰直角三角形,∴∠DCM=45°,∴△DCM符合条件.(1)如图,延长AN到H,使得NH=NA,连接CH.利用平行线分线段成比例定理解决问题即可.(2)构造特殊三角形解决问题即可.本题考查作图-应用与设计,平行线的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.19.【答案】x≥-1x<2-1≤x<2【解析】解:解不等式①,得x≥-1;解不等式②,得x<2;把不等式①和②的解集在数轴上表示出来为:第14页,共22页原不等式组的解集为-1≤x<2,故答案为:x≥-1;x<2;-1≤x<2.分别解两个不等式,然后根据公共部分找确定不等式组的解集,再利用数轴表示解集;本题考查了解一元一次不等式组:一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.【答案】5010【解析】解:(1)本次参加跳绳的学生人数是10+5+25+10=50(人),m=100×=10.故答案是:50,10;(2)平均数是:(10×2+5×3+25×4+10×5)=3.7(分),众数是:4分;中位数是:4分;(3)该校九年级跳绳测试中成绩超过3分的学生有900×(50%+20%)=630(人).(1)求得直方图中各组人数的和即可求得跳绳的学生人数,利用百分比的意义求得m;(2)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;(3)利用总人数乘以对应的百分比即可求解.此题考查了条形统计图、扇形统计图、平均数,众数,中位数,掌握平均数的计算公式以及二元一次方程组的解法,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【答案】600【解析】解:(1)如图1,连结OD,OC,BD,∵OD=OC=CD=2∴△DOC为等边三角形,∴∠DOC=60°∴∠DBC=30°∴∠EBD=30°∵AB为直径,∴∠ADB=90°∴∠E=90°-300=600∠E的度数为600;(2)①如图2,直线AD,CB交于点E,连结OD,OC,AC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=30°,∴∠EBD=30°,∵AB为直径,∴∠ACB=90°,∴∠E=90°-30°=60°,(3)如图3,连结OD,OC,第16页,共22页∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠CBD=30°,∴∠ADB=90°,∴∠BED=60°,∴∠AEC=60°.(1)连结OD,OC,BD,根据已知得到△DOC为等边三角形,根据直径所对的圆周角是直角,求出∠E的度数;(2)同理解答(2)(3).本题考查的是圆周角定理及其推论、等边三角形的性质,解题的关键是正确作出辅助线,构造直角三角形,利用直径所对的圆周角是直角进行解答.22.【答案】解:(1)由题意四边形CDBE是矩形,∴CE=BD,BE=CD=10√3m,在△Rt BCE中,∠BEC=90°,tanα=BE,CE∴CE=10√3=10(m),√3∴BD=CE=10(m).(2)在△Rt ACE中,∠AEC=90°,tanβ=AE,EC∴AE=10•tan20°,∴AB=AE+BE=10×0.364+10×1.732≈21.0(m)【解析】(1)在Rt△BCE中,根据tanα=,计算即可解决问题.(2)在Rt△AEC中,求出AE即可,在Rt△BCE中,求出BE即可解决问题.本题考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【答案】x7801100300+0.8x【解析】解:(1)方式一购物:当商品金额为x元时,方式一的总费用为:x(元),方式二购物:当商品金额为600元时,总费用为:600×0.8+300=780(元),当商品金额为1000元时,总费用为:1000×0.8+300=1100(元),当商品金额为x元时,总费用为:300+0.8x(元),故答案为:x,780,1100,300+0.8x,(2)根据题意得:300+0.8x=x,解得:x=1500,答:顾客购买1500元金额的商品时,买卡与不买卡花钱相等,(3)根据题意得:方式一购物的总费用为:y1=x,方式二购物的总费用为:y2=300+0.8x,当x=3500时,y1=x=3500(元),y2=300+0.8x=300+3500×0.8=3100(元),∴y1-y2=3500-3100=400(元),答:小张买卡(方式二购物)合算,能节省400元钱,(4)设这台冰箱的进价为a元,根据题意得:3100-a=25%a,解得:a=2480,答:这台冰箱的进价是2480元.(1)根据“出售一种优惠购物卡(注:此卡只作为购物优恵凭证不能顶替货款),花300元买这种卡后,卡可在这家商场按标价的8折购物.若不够卡购物和使用优惠卡购物分别视为方式一购物和方式二购物”,即可得到:当商品金额为x元时,方式一的总费用为:x(元),当商品金额为x元时,方式二购物:总费用为:300+0.8x(元),把x=300和x=600分别代入,计算求值即可,(2)根据(1)的结果,列出关于x的一元一次方程,解之即可,第18页,共22页(3)根据(1)的结果,分别计算出方式一购物和方式二购物的总费用,二者相减,即可得到答案,(4)设这台冰箱的进价为a元,根据“小张按合算的方案,把这台冰箱买下,如果该商场还能盈利25%”,列出关于a的一元一次方程,解之即可.本题考查了一元一次方程的应用,有理数的混合运算,列代数式和代数式求值,解题的关键:(1)根据题意,列出方式一购物和方式二购物的总费用关于x 的代数式,(2)正确找出等量关系,列出一元一次方程,(3)正确掌握有理数的混合运算和代数式求值,(4)正确找出等量关系,列出一元一次方程.解得:{,△S AMN=1AM•NE=1×3t×√3t=3√3t2,当t=3时,△S AMN最大3√3×(8)2=8√3;过M作MH⊥AB于H,则BM=8-3t,MH=BM•sin60°=√(8-3t),∴S△AMN=1AN•MH=1t×√3(8-3t)=-3√3t2+2√3t,当t=8时,△S AMN取得最大值,∴当8<t≤4时,△SAMN <8√3;224.【答案】解:(1)如图∵△Rt AOB中∠OBA=30°,∴∠OAB=60°,OA=1AB=2,2恰好落在斜边AB上,AC=AB=4,1,过C作CE⊥x轴于E,AB=4,∵旋转后O点的对应点(点D)∴∠BAO=60°,在△Rt AEC中,∠CAE=180°-∠OAB-∠BAC=60°,∴AE=AC•cos∠CAE=4×1=2,2CE=AC•sin∠CAE=4×√3=2√3,2∴OE=OA+AE=4,∴C(4,2√3);(2)①当点M在AC边上时,设直线AC的解析式为y=kx+b,∵点A(2,0)和点C(4,2√3)在直线AC上,∴{2√3=4k+b,0=2k+bk=√3b=−2√3∴y与x的关系式为y=√3x-2√3(2≤x≤4);②(Ⅰ)如图2,当0<t<8时,点M在AC边上运动,点N3在AB边上运动,过N作N,E⊥AC于E,则NE=AN•sin60°=√3t,222228=8833(Ⅱ)如图3,点8<t≤4时,点M在BC边上运动,点N在3AB边上运动,3222 2228333(Ⅲ)如图4,当4<t≤4.8时,点M,N都在BC边上运动,过A作AG⊥BC于G,则MN=12-5t,AG=CE=2√3,2第20页,共22页△S AMN=1MN•AG=1(12-5t)×2√3=12√3-5√3t,当t=4时,△S AMN最大=12√3-5√3×4=2√3,综上所述,当t=8时,S取得最大值,S最大=8√3.22222∴当4<t≤4.8时,△S AMN<2√3<8√3,33【解析】(1)如图1,过C作CE⊥x轴于E,解直角三角形即可得到结论;(2)①当点M在AC边上时,设直线AC的解析式为y=kx+b,列方程组即可得到结论;②分三种情形讨论求解即可解决问题:(Ⅰ)当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.(Ⅱ)当<x≤4时,M在BC上运动,N在OB上运动.(Ⅲ)当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.25.【答案】解:(1)∵抛物线y=1x2+bx经过点A(-3,4)9令x=-3,代入y=1x2+bx,则4=1×9+b×(−3),99∴b=-1;(2)①如图:由对称性可知OA=OC,AP=CP,∵AP∥OC,∴∠1=∠2,又∵∠AOP=∠2,∴∠AOP=∠1,∴AP=AO,∵A(-3,4),∴AO=5,∴AP=5,∴P(2,4),1同理可得P2(-8,4),∴OP的表达式为y=2x或y=−1x.2②如图:以O为圆心,OA长为半径作⊙O,连接BO,交⊙O于点C∵B(12,4),∴OB=4√10,∴BC的最小值为4√10−5.【解析】(1)将点A的坐标代入二次函数解析式求得b的值;(2)①根据对称的性质,结合点A的坐标求得点P的坐标,然后利用待定系数法求得直线解析式;③以O为圆心,OA长为半径作⊙O,连接BO,交⊙O于点C,结合点与坐标的性质,点与圆的位置关系求BC的最小值.考查了二次函数综合题.掌握待定系数法求二次函数、一次函数解析式,对称是性质的应用,点的坐标与图形的性质以及点与圆的位置关系等知识点,综合性比较强,难度较大.第22页,共22页。
天津市南开区2019-2020学年中考数学一模试卷含解析
天津市南开区2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,▱ABCD 对角线AC 与BD 交于点O ,且AD =3,AB =5,在AB 延长线上取一点E ,使BE =25AB ,连接OE 交BC 于F ,则BF 的长为( )A .23B .34C .56D .12.如图所示,某公司有三个住宅区,A 、B 、C 各区分别住有职工30人,15人,10人,且这三点在一条大道上(A ,B ,C 三点共线),已知AB =100米,BC =200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A .点AB .点BC .A ,B 之间D .B ,C 之间3.下列各数中,无理数是( ) A .0B .227C .4D .π4.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当AB 2=,B 60o ∠=时,AC 等于( )A .2B .2C .6D .225.若正六边形的半径长为4,则它的边长等于( ) A .4B .2C .23D .436.河堤横断面如图所示,堤高BC=6米,迎水坡AB 的坡比为1:3,则AB 的长为A .12米B .43米 C .53米 D .63米7.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP +BP 的最小值为A .1B .22C .2D .31-8.如图,两个转盘A ,B 都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A ,B ,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:转盘总次数1020305010150180240330 450 “和为7”出现频数 2710163046 59 8111150 “和为7”出现频率0.200.350.330.320.300.300.330.340.330.33如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( ) A .0.33 B .0.34C .0.20D .0.359.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是 A .B .C .D .10.一次函数21y x =-的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限11.计算6m 6÷(-2m 2)3的结果为( ) A .m -B .1-C .34D .34-12.如图,将一副三角板如此摆放,使得BO 和CD 平行,则∠AOD 的度数为( )A .10°B .15°C .20°D .25°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.一个凸多边形的内角和与外角和相等,它是______边形. 14.如果x +y =5,那么代数式221y xx y x y⎛⎫+÷ ⎪--⎝⎭的值是______.15.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为____.16.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.17.如图, ⊙O 是△ABC 的外接圆,∠AOB=70°,AB=AC,则∠ABC=__.18.已知点A(x 1,y 1),B(x 2,y 2)在直线y =kx +b 上,且直线经过第一、三、四象限,当x 1<x 2时,y 1与y 2的大小关系为______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案) 20.(6分) (1)计算:(a -b)2-a(a -2b);(2)解方程:23x -=3x. 21.(6分)先化简,再求值:22111211a a a a a a ---÷----,其中21a =.22.(8分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元) 1 2 2.5 3 5y A(万元) 0.4 0.8 1 1.2 2信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?23.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.24.(10分)解分式方程:33x-1=13-x25.(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.26.(12分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A 逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”(特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD=;②若∠BAC=90°(如图3),BC=6,AD=;(猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;(拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.27.(12分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.【详解】取AB的中点M,连接OM,∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=12AD=12×3=32,∴△EFB∽△EOM,∴BF BE OM EM,∵AB=5,BE=25 AB,∴BE=2,BM=52,∴EM=52+2=92,∴2 39 22 BF=,∴BF=23,故选A.【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.2.A【解析】【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=1(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>1.∴该停靠点的位置应设在点A;故选A.【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短.3.D【解析】【分析】利用无理数定义判断即可.【详解】解:π是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.4.B【解析】【分析】首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,B60o∠=,易得△ABC是等边三角形,即可得到答案.【详解】连接AC,∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,∴AB=BC,∵B60o∠=,∴△ABC是等边三角形,∴AC=AB=1.故选:B.【点睛】本题考点:菱形的性质.5.A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.考点:正多边形和圆.6.A【解析】【分析】试题分析:在Rt△ABC中,BC=6米,BCAC3=,∴AC=BC×33(米).∴()2222AB AC BC 63612=+=+=(米).故选A.【详解】请在此输入详解! 7.C 【解析】作点A 关于MN 的对称点A′,连接A′B ,交MN 于点P ,则PA+PB 最小,连接OA′,AA′.∵点A 与A′关于MN 对称,点A 是半圆上的一个三等分点, ∴∠A′ON=∠AON=60°,PA=PA′, ∵点B 是弧AN ∧的中点, ∴∠BON=30 °,∴∠A′OB=∠A′ON+∠BON=90°, 又∵OA=OA′=1, ∴2∴2 故选:C. 8.A 【解析】 【分析】根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可. 【详解】由表中数据可知,出现“和为7”的概率为0.33. 故选A. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 9.D【解析】 【分析】本题主要考查二次函数的解析式 【详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.故选D. 【点睛】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式. 10.B 【解析】 【分析】由二次函数k 20b 10=>=-<,,可得函数图像经过一、三、四象限,所以不经过第二象限 【详解】解:∵k 20=>,∴函数图象一定经过一、三象限;又∵b 10=-<,函数与y 轴交于y 轴负半轴, ∴函数经过一、三、四象限,不经过第二象限 故选B 【点睛】此题考查一次函数的性质,要熟记一次函数的k 、b 对函数图象位置的影响 11.D 【解析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案. 详解:原式=()663684m m÷-=-, 故选D . 点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键. 12.B 【解析】 【分析】根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答 【详解】根据题意可知∠AOB=∠ABO=45°,∠DOC=30° ∵BO ∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15° 故选B 【点睛】此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.四 【解析】 【分析】任何多边形的外角和是360度,因而这个多边形的内角和是360度.n 边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数. 【详解】解:设边数为n ,根据题意,得 (n-2)•180=360, 解得n=4,则它是四边形. 故填:四. 【点睛】此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决. 14.1 【解析】 【分析】先将分式化简,然后将x+y=1代入即可求出答案 【详解】 当x +y =1时,原式()()x y y xx y x y x y x y ⎛⎫-=+÷ ⎪--+-⎝⎭()()x y x y x x y x+-=⋅- =x +y =1, 故答案为:1. 【点睛】本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.15.5. 【解析】 【详解】 解:连接CE ,∵根据图形可知DC=1,AD=3,AC=223110+=,BE=CE=22112+=,∠EBC=∠ECB=45°, ∴CE ⊥AB ,∴sinA=25510CE AC ==, 故答案为5.考点:勾股定理;三角形的面积;锐角三角函数的定义.16.1.【解析】【分析】直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.【详解】如图所示:∵坡度i=1:0.75,∴AC :BC=1:0.75=4:3,∴设AC=4x ,则BC=3x ,∴()()2234x x +,∵AB=20m ,∴5x=20,解得:x=4,故3x=1,故这个物体在水平方向上前进了1m .故答案为:1.【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h 和水平宽l 的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是tan h i l α==. 17.35°【解析】试题分析:∵∠AOB=70°,∴∠C=12∠AOB=35°.∵AB=AC ,∴∠ABC=∠C=35°.故答案为35°. 考点:圆周角定理.18.y 1<y 1【解析】【分析】直接利用一次函数的性质分析得出答案.【详解】解:∵直线经过第一、三、四象限,∴y 随x 的增大而增大,∵x 1<x 1,∴y 1与y 1的大小关系为:y 1<y 1.故答案为:y 1<y 1.【点睛】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)13;(2)19;(3)第一题. 【解析】【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.【详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=13; 故答案为13; (2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为19; (3)建议小明在第一题使用“求助”.理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=18, 因为18>19, 所以建议小明在第一题使用“求助”.【点睛】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.20. (1) b 2 (2)1【解析】分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根.详解:(1) 解:原式=a 2-2ab +b 2-a 2+2ab =b 2 ;(2) 解:()233x x =-, 解得:x =1,经检验 x =1为原方程的根, 所以原方程的解为x =1.点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型.理解计算法则是解题的关键.分式方程最后必须要进行验根.21.1a-12【解析】【分析】先根据完全平方公式进行约分化简,再代入求值即可.【详解】原式=2a 1--2a-11a-1⋅()=21-a-1a-1=1a-1,将a +1=2,故答. 【点睛】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.22. (1)y B =-0.2x 2+1.6x (2)一次函数,y A =0.4x (3)该企业投资A 产品12万元,投资B 产品3万元,可获得最大利润7.8万元【解析】【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B =ax 2+bx 求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A 产品所获利润+投资B 产品所获利润”列出函数关系式求得最大值【详解】解:(1)y B =-0.2x 2+1.6x,(2)一次函数,y A =0.4x,(3)设投资B 产品x 万元,投资A 产品(15-x )万元,投资两种产品共获利W 万元, 则W=(-0.2x 2+1.6x )+0.4(15-x )=-0.2x 2+1.2x+6=-0.2(x -3)2+7.8,∴当x=3时,W 最大值=7.8,答:该企业投资A 产品12万元,投资B 产品3万元,可获得最大利润7.8万元.23.(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD =∠DEO =60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO =∠CDO =90°,于是得到结论;(3)先判断出△ABO ≌△CDE 得出AB =CD ,即可判断出四边形ABCD 是平行四边形,最后判断出CD =AD 即可.【详解】(1)如图,连接OD ,∵CD 是⊙O 的切线,∴OD ⊥CD ,∴∠2+∠3=∠1+∠COD =90°,∵DE =EC ,∴∠1=∠2,∴∠3=∠COD ,∴DE =OE ;(2)∵OD =OE ,∴OD =DE =OE ,∴∠3=∠COD =∠DEO =60°,∴∠2=∠1=30°,∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°,∴∠BOC =∠DOC =60°,在△CDO 与△CBO 中,{OD OBDOC BOC OC OC=∠=∠=,∴△CDO ≌△CBO (SAS ),∴∠CBO =∠CDO =90°,∴OB ⊥BC ,∴BC 是⊙O 的切线;(3)∵OA =OB =OE ,OE =DE =EC ,∴OA =OB =DE =EC ,∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°,∴△ABO ≌△CDE (AAS ),∴AB =CD ,∴四边形ABCD是平行四边形,∴∠DAE=12∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.【点睛】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.24.7【解析】【分析】根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.【详解】33 x--1=13x-3-(x-3)=-13-x+3=-1x=7【点睛】此题主要考查分式方程的求解,解题的关键是正确去掉分母.25.(1)13;(2)13.【解析】【分析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.【详解】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=13;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是31 93 .26.(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;【解析】【分析】(1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.【详解】(1)①∵△ABC是等边三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD为等腰△AB′C′的中线,∴AD⊥B′C′,∠C′=30°,∴∠ADC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=AC′=2.②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,,∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=B′C′=3.故答案为:①2;②3.(2)AD=BC.证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,∴∠BAC=∠AB′E.在△BAC和△AB′E中,,∴△BAC≌△AB′E(SAS),∴BC=AE.∵AD=AE,∴AD=BC.(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P 作PF⊥BC于点F.∵PB=PC,PF⊥BC,∴PF为△PBC的中位线,∴PF=AD=3.在Rt△BPF中,∠BFP=90°,PB=5,PF=3,∴BF==1,∴BC=2BF=4.【点睛】本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.27.120【解析】【分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【详解】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.。
天津市南开区2019-2020学年中考一诊数学试题含解析
天津市南开区2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)2.如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点ED在AC同侧,若∠CAE=118°,则∠B的大小为()A.31°B.32°C.59°D.62°3.在同一平面直角坐标系中,函数y=x+k与kyx=(k为常数,k≠0)的图象大致是()A.B.C.D.4.下表是某校合唱团成员的年龄分布.年龄/岁13 14 15 16频数 5 15 x 10x-对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.平均数、中位数C.平均数、方差D.中位数、方差5.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为A.(1)19802x x-=B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=1980 6.对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C .图象经过点(1,﹣2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 27.如图,四边形ABCD 中,AC ⊥BC ,AD ∥BC ,BC =3,AC =4,AD =1.M 是BD 的中点,则CM 的长为( )A .32B .2C .52D .38.一个多边形的边数由原来的3增加到n 时(n >3,且n 为正整数),它的外角和( ) A .增加(n ﹣2)×180° B .减小(n ﹣2)×180° C .增加(n ﹣1)×180°D .没有改变9.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα10.全球芯片制造已经进入10纳米到7纳米器件的量产时代. 中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米. 数据0.000000007用科学计数法表示为( ) A .9710-⨯B .10710-⨯C .11710-⨯D .12710-⨯11.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x 辆,则根据题意可列方程为( )A .1600x+4000(120%)x +=18B .1600x40001600(120%)x -++=18 C .1600x +4000160020%x -=18D .4000x40001600(120%)x -++=1812.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,经过点B (-2,0)的直线y kx b =+与直线y 4x 2=+相交于点A (-1,-2),则不等式4x 2<kx b<0++的解集为 .14.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为_____.15.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A 、B 两题中任选一题作答,我选择__________.A 、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.B 、按照小明的要求,小亮所搭几何体的表面积最小为__________.16.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67ABBC=,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm17.若代数式211x--的值为零,则x=_____.18.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况每人植树棵数7 8 9 10人数 3 6 15 6表2:乙调查三个年级各10位同学植树情况每人植树棵数6 7 8 9 10人数 3 6 3 12 6根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是棵;表2中的众数是棵;(2)你认为同学(填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?20.(6分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
2019年天津市南开区中考数学一模试卷〔精品解析版〕
A.﹣15
B.﹣12
C.﹣4
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)
D.﹣2
13.(3 分)计算 的结果等于
.
14.(3 分)将 3x3﹣6x2+3x 分解因式,其结果为
.
15.(3 分)有一个反比例函数的图象,在第二象限内函数值随着自变量的值增大而增大,
这个函数的表达式可能是(写出一个即可):
第 2 页(共 25 页)
A.2πcm
B.
C.πcm
D. cm
12.(3 分)如图,抛物线 y=ax2+bx+c 与 x 轴相交于 A、B 两点,点 A 在点 B 左侧,顶点在 折线 M﹣P﹣N 上移动,它们的坐标分别为 M(﹣1,4)、P(3,4)、N(3,1).若在抛 物线移动过程中,点 A 横坐标的最小值为﹣3.则 a﹣b+c 的最小值是( )
A.10
B.12
C.20
D.24
11.(3 分)如图,已知正方形 ABCD 的顶点 A、B 在⊙O 上,顶点 C、D 在⊙O 内,将正方
形 ABCD 绕点 A 逆时针旋转,使点 D 落在⊙O 上,若正方形 ABCD 的边长和⊙O 的半径均
为 6cm , 则 点 D 运 动 的 路 径 长 为 (
)
大家拿到 考卷后 ,先看 是不是 本科考 试的试 卷,再 清点试 卷页码 是否齐 全,检 查试卷 有无破 损或漏 印、重 印、字 迹模糊 不清等 情况。 如果发 现问题 ,要及 时报告 监考老 师处理 。:1. 从前向 后,先 易后难 。通常 试题的 难易分 布是按 每一类 题型从 前向后 ,由易 到难。 因此, 解题顺 序 也宜按试 卷题号 从小到 大,从 前至后 依次解 答。当 然,有 时但也 不能机 械地按 部就班 。中间 有难题 出现时 ,可先 跳过去 ,到最 后攻它 或放弃 它。先 把容易 得到的 分数拿 到手, 不要“ 一条胡 同走到 黑”, 总的原 则是先 易后难 ,先选 择、填 空题, 后解答 题。2. 规范答 题,分 分计较 。 数学分 I 、II 卷, 第 I 卷 客观性 试题, 用计算 机阅读 ,一要 严格按 规定涂 卡,二 要认真 选择答 案。 第 II 卷为 主观性 试题, 一般情 况下, 除填空 题外, 大多解 答题一 题设若 干小题 ,通常 独立给 分。解 答时要 分步骤 (层次 )解答 ,争取 步步得 分。 解题中 遇到困 难时, 能做几 步做几 步, 一分地争 取,也 可以跳 过某一 小
天津市南开区2019-2020学年中考数学仿真第一次备考试题含解析
天津市南开区2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根2.如图,A 、B 、C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是( )A .150°B .140°C .130°D .120°3.如图,点A 、B 、C 在圆O 上,若∠OBC=40°,则∠A 的度数为( )A .40°B .45°C .50°D .55°4.a 、b 是实数,点A (2,a )、B (3,b )在反比例函数y=﹣2x的图象上,则( ) A .a <b <0B .b <a <0C .a <0<bD .b <0<a5.如图,PA 和PB 是⊙O 的切线,点A 和B 是切点,AC 是⊙O 的直径,已知∠P =40°,则∠ACB 的大小是( )A .60°B .65°C .70°D .75°6.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )A.8 B.10 C.13 D.147.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.8.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9πB.10πC.11πD.12π9.下列运算,结果正确的是()A.m2+m2=m4B.2m2n÷12mn=4mC.(3mn2)2=6m2n4D.(m+2)2=m2+410.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是()A.B.C.D.11.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A .30和 20B .30和25C .30和22.5D .30和17.512.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是( ) A .1201806x x=+ B .1201806x x =- C .1201806x x =+ D .1201806x x=- 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,BC =6,点A 为平面上一动点,且∠BAC =60°,点O 为△ABC 的外心,分别以AB 、AC 为腰向形外作等腰直角三角形△ABD 与△ACE ,连接BE 、CD 交于点P ,则OP 的最小值是_____14.如图,在梯形ABCD 中,//,2AD BC BC AD =,E 、F 分别是边AD BC 、的中点,设AD a,AB b ==u u u r r u u u r r ,那么EF u u r 等于__________(结果用a b r r 、的线性组合表示).15.12的相反数是______. 16.分解因式:3a 2﹣12=___. 17.在ABC V 中,若211sin (cos )022A B -+-=,则C ∠的度数是______. 18.若一次函数y=-2x+b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是_________.(写出一个即可)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,已知:C F 90o ∠∠==,AB DE =,CE BF =,求证:AC DF =.20.(6分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90(n)(x)时间(第x天) 1 2 3 10 …日销售量(n件)198 196 194 ? …②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<50 50≤x≤90销售价格(元/件)x+60 100(1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.21.(6分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.22.(8分)如图,AD是△ABC的中线,过点C作直线CF∥AD.(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.23.(8分)如图1,已知抛物线y=﹣3x2+233x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.24.(10分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.求证:AB=DC.25.(10分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A组抽取一张,求抽到数字为2的概率;随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?26.(12分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图①所示,S与x的函数关系图象如图②所示:(1)图中的a=______,b=______.(2)求快车在行驶的过程中S 关于x 的函数关系式. (3)直接写出两车出发多长时间相距200km?27.(12分)从一幢建筑大楼的两个观察点A ,B 观察地面的花坛(点C ),测得俯角分别为15°和60°,如图,直线AB 与地面垂直,AB =50米,试求出点B 到点C 的距离.(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2ba-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误; ∵对称轴x=2ba-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确; ∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2ba-,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.2.A【解析】【分析】直接根据圆周角定理即可得出结论.【详解】∵A、B、C是⊙O上的三点,∠B=75°,∴∠AOC=2∠B=150°.故选A.3.C【解析】【分析】根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=∠BOC.【详解】∵OB=OC,∴∠OBC=∠OCB.又∠OBC=40°,∴∠OBC=∠OCB=40°,∴∠BOC=180°-2×40°=100°,∴∠A=∠BOC=50°故选:C.【点睛】考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.4.A【解析】解:∵2yx=-,∴反比例函数2yx=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数2yx=-的图象上,∴a<b<0,故选A.5.C【解析】试题分析:连接OB,根据PA、PB为切线可得:∠OAP=∠OBP=90°,根据四边形AOBP的内角和定理可得∠AOB=140°,∵OC=OB,则∠C=∠OBC,根据∠AOB为△OBC的外角可得:∠ACB=140°÷2=70°. 考点:切线的性质、三角形外角的性质、圆的基本性质.6.C【解析】【分析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.7.C【解析】分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选C.8.B【解析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π,故选B.【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.9.B【解析】【分析】直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.【详解】A. m2+m2=2m2,故此选项错误;B. 2m2n÷12mn=4m,正确;C. (3mn2)2=9m2n4,故此选项错误;D. (m+2)2=m2+4m+4,故此选项错误.故答案选:B.【点睛】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.10.A【解析】【分析】观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.11.C【解析】【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为=22.5,故选:C.【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.12.C【解析】【详解】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.33-【解析】试题分析:如图,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,∵AD=AB,∠DAC=∠BAE,AC=AE,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴点P在以BC为直径的圆上,∵外心为O,∠BAC=60°,∴∠BOC=120°,又BC=6,∴3OP的最小值是33.故答案为33考点:1.三角形的外接圆与外心;2.全等三角形的判定与性质.14.1b a 2+r r . 【解析】【分析】作AH ∥EF 交BC 于H ,首先证明四边形EFHA 是平行四边形,再利用三角形法则计算即可.【详解】作AH ∥EF 交BC 于H .∵AE ∥FH ,∴四边形EFHA 是平行四边形,∴AE=HF ,AH=EF .∵AE=ED=HF ,∴12HF a =u u u v r . ∵BC=2AD ,∴BC =u u u r 2a r .∵BF=FC ,∴BF a =u u u r r ,∴12BH a =u u u v r . ∵12EF AH AB BH b a ==+=+r u u u v u u u v u u u v u u u v r . 故答案为:12b a r r +. 【点睛】本题考查了平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.15.﹣12. 【解析】【分析】根据只有符号不同的两个数叫做互为相反数解答.【详解】12的相反数是12-.故答案为12-. 【点睛】 本题考查的知识点是相反数,解题关键是熟记相反数的概念.16.3(a+2)(a ﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,3a 2﹣12=3(a 2﹣4)=3(a+2)(a ﹣2).17.90o【解析】【分析】 先根据非负数的性质求出1sinA 2=,1cosB 2=,再由特殊角的三角函数值求出A ∠与B ∠的值,根据三角形内角和定理即可得出结论.【详解】Q 在ABC V 中,211sinA (cosB )022-+-=, 1sinA 2∴=,1cosB 2=, A 30∠∴=o ,B 60o ∠=,C 180306090∠∴=--=o o o o ,故答案为:90o .【点睛】本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键. 18.-1【解析】试题分析:根据一次函数的图象经过第二、三、四象限,可以得出k <1,b <1,随便写出一个小于1的b 值即可.∵一次函数y=﹣2x+b (b 为常数)的图象经过第二、三、四象限, ∴k <1,b <1.考点:一次函数图象与系数的关系三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析;【解析】【分析】根据HL 定理证明Rt △ABC ≌Rt △DEF ,根据全等三角形的性质证明即可.【详解】CE BF =Q ,BE 为公共线段,∴CE+BE=BF+BE ,即 CB EF =又90C F o Q ∠∠==,AB DE =在Rt ABC V 与Rt DEF V 中,AB DE CB EF =⎧⎨=⎩Rt ABC ∴V ≌Rt DEF V ()HL∴AC=DF.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键. 20.(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y 元,则当1≤x <50时,y=﹣2x 2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.试题解析:解:(1)∵n 与x 成一次函数,∴设n=kx+b ,将x=1,m=198,x=3,m=194代入,得:1983194k b k b +=⎧⎨+=⎩, 解得:2200k b =-⎧⎨=⎩, 所以n 关于x 的一次函数表达式为n=-2x+200;当x=10时,n=-2×10+200=1. (2)设销售该产品每天利润为y 元,y 关于x 的函数表达式为:221604000150120120005090y x x x y x x ⎧=-++≤⎨=-+≤≤⎩(<)() 当1≤x <50时,y=-2x 2+160x+4000=-2(x-40)2+7200,∵-2<0,∴当x=40时,y 有最大值,最大值是7200;当50≤x≤90时,y=-120x+12000,∵-120<0,∴y 随x 增大而减小,即当x=50时,y 的值最大,最大值是6000;综上所述:当x=40时,y 的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元.21.这栋楼的高度BC 是4003米. 【解析】试题分析:在直角三角形ADB 中和直角三角形ACD 中,根据锐角三角函数中的正切可以分别求得BD 和CD 的长,从而可以求得BC 的长.试题解析:解:∵90ADB ADC ∠∠==°,30BAD ∠=°,60CAD ∠=°,AD =100,∴在Rt ABD V 中,1003tan BD AD BAD ⋅∠= 在Rt ACD V 中,tan 1003CD AD CAD ⋅∠==.∴4003BC BD CD =+=. 点睛:本题考查解直角三角形的应用-仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系.22.【问题】:详见解析;【探究】:四边形ABPE 是平行四边形,理由详见解析;【应用】:8.【解析】【分析】(1)先根据平行线的性质和等量代换得出∠1=∠3,再利用中线性质得到BD =DC ,证明△ABD ≌△EDC ,从而证明AB =DE (2)方法一:过点D 作DN ∥PE 交直线CF 于点N ,由平行线性质得出四边形PDNE 是平行四边形,从而得到四边形ABPE 是平行四边形.方法二: 延长BP 交直线CF 于点N ,根据平行线的性质结合等量代换证明△ABP ≌△EPN ,从而证明四边形ABPE 是平行四边形(3)延长BP 交CF 于H ,根据平行四边形的性质结合三角形的面积公式求解即可.【详解】证明:如图①12,42313DG ABB CF AD∴∠=∠∠=∠∴∠=∠∴∠=∠Q Q ‖‖AD Q 是ABC V 的中线,BD DC ∴=,ABD EDC V V ≌,∴ AB DE ∴=.(或证明四边形ABDE 是平行四边形,从而得到AB DE =.)【探究】四边形ABPE 是平行四边形.方法一:如图②,证明:过点D 作DN PE P 交直线CF 于点N ,CF AD Q P ,∴四边形PDNE 是平行四边形,PE DN ∴=,∵由问题结论可得 AB DN =,PE AB =,∴ ∴四边形ABPE 是平行四边形.方法二:如图③,证明:延长BP 交直线CF 于点N ,PG AB Q P ,1254=,=,∠∠∠∠∴ CF AD Q P ,23∠∠∴=,13∠∠∴=,∵AD 是ABC V 的中线,CF AD P ,BP PN ∴=,ABP EPN V V ≌,∴ AB PE ∴=,∴四边形ABPE 是平行四边形.【应用】如图④,延长BP 交CF 于H .由上面可知,四边形ABPE 是平行四边形,AE BH ∴P ,PA EH ∴P ,∴四边形APHE 是平行四边形,PA EH ∴=,BD DC DP CH Q P =,,BP PH ∴=,CH 2PD ∴=,AP PDQ=,EC3PA∴=,PA ECQ P,PM PA1EM EC3∴==,S AEM3S APM3∴V V==,S ABP S APE4∴V V==,S ABPE8∴平行四边形=.【点睛】此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.23.(1)23;(2) 17312;(3)见解析.【解析】分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;(2)找点C关于DE的对称点N(4,3),找点C关于AE的对称点G(-2,-3),连接GN,交AE 于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=3x-3;直线AE的解析式:y= -3x-3,过点M作y轴的平行线交FH于点Q,设点M(m,-3m²+23m+3),则Q(m,3m-3),根据S△MFP=S△MQF+S△MQP,得出S△MFP= -3m²+3m+43,根据解析式即可求得,△MPF面积的最大值;(3)由(2)可知C(0,3),F(0,33),P(2,33),求得CF=43,CP=43,进而得出△CFP为等边三角形,边长为433,翻折之后形成边长为433的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.本题解析:(1)对于抛物线y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,则DE=2;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN 最小,直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,联立得:F (0,﹣),P(2,),过点M作y轴的平行线交FH于点Q,设点M(m,﹣m2+m+),则Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵对称轴为:直线m=<2,开口向下,∴m=时,△MPF面积有最大值:;(3)由(2)可知C(0,),F(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,1)当K F′=KF″时,如图3,点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),∴OK=3;2)当F′F″=F′K时,如图4,∴F′F″=F′K=4,∵FP的解析式为:y=x﹣,∴在平移过程中,F′K与x轴的夹角为30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)当F″F′=F″K时,如图5,∵在平移过程中,F″F′始终与x轴夹角为60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,综上所述:OK=3,4﹣1,4+1或者1.点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.24.∵AC 平分BCD BC ∠,平分ABC ∠,∴ACB DBC ∠=∠在ABC V 与DCB V 中,{ABC DCBACB DBC BC BC∠=∠∠=∠=ABC ∴V DCB V ≌AB DC ∴=.【解析】分析:根据角平分线性质和已知求出∠ACB=∠DBC ,根据ASA 推出△ABC ≌△DCB ,根据全等三角形的性质推出即可.解答:证明:∵AC 平分∠BCD ,BC 平分∠ABC ,∴∠DBC=12∠ABC ,∠ACB=12∠DCB , ∵∠ABC=∠DCB ,∴∠ACB=∠DBC ,∵在△ABC 与△DCB 中,ABC DCB{BC BC ACB DBC∠=∠=∠=∠,∴△ABC ≌△DCB ,∴AB=DC .25.(1)P(抽到数字为2)=13;(2)不公平,理由见解析.【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P=13;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=42 63 =,乙获胜的情况有2种,P=21 63 =,所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.26.(1)a=6, b=154;(2)1516060004151606006460(610)x xS x xx x⎧⎛⎫-+<⎪⎪⎝⎭⎪⎪⎛⎫=-<⎨ ⎪⎝⎭⎪⎪⎪⎩„„剟;(3)52h或5h【解析】【分析】(1)根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b的值;(2)根据函数的图像可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可. (3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x的值.【详解】解:(1)由s与x之间的函数的图像可知:当位于C点时,两车之间的距离增加变缓,由此可以得到a=6,∵快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,∴15 600(10060)4b=÷+=;(2)∵从函数的图象上可以得到A、B、C、D点的坐标分别为:(0,600)、(154,0)、(6,360)、(10,600),∴设线段AB 所在直线解析式为:S=kx+b , ∴6001504b k b =⎧⎪⎨+=⎪⎩ 解得:k=-160,b=600,设线段BC 所在的直线的解析式为:S=kx+b , ∴15046360k b k b ⎧+=⎪⎨⎪+=⎩解得:k=160,b=-600,设直线CD 的解析式为:S=kx+b ,636010600k b k b +=⎧⎨+=⎩解得:k=60,b=0 ∴1516060004151606006460(610)x x S x x x x ⎧⎛⎫-+< ⎪⎪⎝⎭⎪⎪⎛⎫=-<⎨ ⎪⎝⎭⎪⎪⎪⎩„„剟 (3)当两车相遇前相距200km ,此时:S=-160x+600=200,解得:52x =, 当两车相遇后相距200km ,此时:S=160x-600=200,解得:x=5, ∴52x =或5时两车相距200千米 【点睛】本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围. 27.(500+【解析】【详解】试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.试题解析:作AD ⊥BC 于点D ,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt△ADB中,AB=1000,则AD=500,BD=5003,+.在Rt△ADC中,AD=500,CD=500,则BC=5005003+米.答:观察点B到花坛C的距离为(5005003)考点:解直角三角形。
2019年天津市南开区初三一模数学试卷--带答案
2018-2019年度南开区一模数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(-6)÷(-2)的结果等于A.3B.-3C.4D.-82.3tan60°的值等于A.3B.C.32D.3.下列图形中既是轴对称图形又是中心对称图形的是A.B.C.D.4.于2018年10月23日开通的港珠澳大桥,是中国乃至当今世界规模最大、标准最高、最具挑战性的跨海桥梁工程,被誉为桥梁界的“珠穆朗玛峰”,仅主体工程的主梁钢板用量就达42000万千克,相当于60座埃菲尔铁塔的重量,这里的数据42000万可用科学记数法表示为 A.42×107B.4.2×108C.4.2×109D.0.421×1095.如图是由6个相同的小立方块搭成的几何体,那么这个几何体的左视图是A. B. C. D.6.如果实数a 的值在A.5和6之间B.4和5之间C.3和4之间D.2和3之间7.计算2a 12a a 11a的结果为A.1B.aC.a-1D.a+1a 18.一元二次方程x²-4x=0的解为A.x1=2,x2=-1 B.x1=4,x2=-4C.x1=0,x2=4D.x1=0,x2=-49.如图,反比例函数ky=x的图象经过点A(4,1),当y<1时,x 的取值范围是A.x>B.0<x<4C.x<4D.x>4或x<010.如图1,点P 从△ABC 的顶点A 出发,沿A-B-C 匀速运动,到点C 停止运动。
点P 运动时,线段AP 的长度y 与运动时间x 的函数关系如图2所示,其中D 为曲线部分的最低点,则△ABC 的面积是A.10B.12C.20D.2411.如图,已知正方形ABCD 的顶点A、B 在⊙O 上,顶点C、D 在⊙O 内,将正方形ABCD 绕点A 逆时针旋转,使点D 落在⊙O 上。
天津市南开区2019-2020学年中考第一次质量检测数学试题含解析
天津市南开区2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为( )A .30°B .60°C .120°D .180°2.如图,BC 平分∠ABE ,AB ∥CD ,E 是CD 上一点,若∠C=35°,则∠BED 的度数为( )A .70°B .65°C .62°D .60°3.如果关于x 的一元二次方程k 2x 2-(2k+1)x+1=0有两个不相等的实数根,那么k 的取值范围是( ) A .k>-14 B .k>-14且0k ≠ C .k<-14 D .k ≥-14且0k ≠ 4.若代数式3x x -的值为零,则实数x 的值为( ) A .x =0 B .x≠0 C .x =3 D .x≠35.已知圆内接正三角形的面积为33,则边心距是( )A .2B .1C .3D .3 6.如图,梯形ABCD 中,AD ∥BC ,AB=DC ,DE ∥AB ,下列各式正确的是( )A .AB DC =u u u r u u u r B .DE DC =u u u v u u u v C .AB ED =u u u v u u u v D .AD BE =u u u v u u u v7.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④8.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是( )A .2011﹣2014年最高温度呈上升趋势B .2014年出现了这6年的最高温度C .2011﹣2015年的温差成下降趋势D .2016年的温差最大9.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的函数关系的大致图象是( )A .B .C .D .10.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为A .60°B .120°C .60°或120°D .30°或120°11.若点()()()112233,,,,,x y x y x y 都是反比例函数21a y x--=的图象上的点,并且1230x x x <<<,则下列各式中正确的是(( )A .132y y y <<B .231y y y <<C .321y y y <<D .123y y y <<12.已知二次函数2()y x h =-(h 为常数),当自变量x 的值满足13x -剟时,与其对应的函数值y 的最小值为4,则h 的值为( )A .1或5B .5-或3C .3-或1D .3-或5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的半径是____cm.14.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.15.如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_____.16.若一个棱柱有7个面,则它是______棱柱.17.分解因式:a2-2ab+b2-1=______.18.北京奥运会国家体育场“鸟巢”的建筑面积为258000平方米,那么258000用科学记数法可表示为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某水果批发市场香蕉的价格如下表购买香蕉数(千克) 不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?20.(6分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.21.(6分)如图是某旅游景点的一处台阶,其中台阶坡面AB和BC的长均为6m,AB部分的坡角∠BAD 为45°,BC部分的坡角∠CBE为30°,其中BD⊥AD,CE⊥BE,垂足为D,E.现在要将此台阶改造为直接从A至C的台阶,如果改造后每层台阶的高为22cm,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm且不足22cm时,按一个台阶计算.可能用到的数据:2≈1.414,3≈1.732)22.(8分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?23.(8分)雅安地震,某地驻军对道路进行清理.该地驻军在清理道路的工程中出色完成了任务.这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的?通过这段对话,请你求出该地驻军原来每天清理道路的米数.24.(10分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对A B C D E ,,,,五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:(1)本次被调查的学生的人数为 ;(2)补全条形统计图(3)扇形统计图中,C 类所在扇形的圆心角的度数为 ;(4)若该中学有2000名学生,请估计该校最喜爱C D ,两类校本课程的学生约共有多少名.25.(10分)如图,抛物线21y x bx 2c =-++与x 轴交于A ,B ,与y 轴交于点C (0,2),直线1x 22y =-+经过点A ,C.(1)求抛物线的解析式;(2)点P 为直线AC 上方抛物线上一动点;①连接PO ,交AC 于点E ,求PE EO的最大值; ②过点P 作PF ⊥AC ,垂足为点F ,连接PC ,是否存在点P ,使△PFC 中的一个角等于∠CAB 的2倍?若存在,请直接写出点P 的坐标;若不存在,请说明理由.26.(12分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2m元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5m%和m%,结果在结算时发现,两种耗材的总价相等,求m的值.27.(12分)如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=32交x轴于点D.(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】求出正三角形的中心角即可得解【详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,故选C.本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键2.A【解析】【分析】由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.【详解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故选:A.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.3.B【解析】【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>14且k≠1.故选B.【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键. 4.A【解析】根据分子为零,且分母不为零解答即可.【详解】 解:∵代数式3x x -的值为零, ∴x =0,此时分母x-3≠0,符合题意.故选A .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.5.B【解析】【分析】根据题意画出图形,连接AO 并延长交BC 于点D ,则AD ⊥BC ,设OD=x ,由三角形重心的性质得AD=3x ,利用锐角三角函数表示出BD 的长,由垂径定理表示出BC 的长,然后根据面积法解答即可.【详解】如图,连接AO 并延长交BC 于点D ,则AD ⊥BC ,设OD=x ,则AD=3x ,∵tan ∠BAD=BD AD, ∴BD= tan30°·3,∴3,∵1332BC AD ⋅=, ∴12×33 ∴x =1所以该圆的内接正三边形的边心距为1,【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.6.D【解析】∵AD//BC ,DE//AB ,∴四边形ABED 是平行四边形,∴AB DE =u u u v u u u v ,AD BE =u u u v u u u v,∴选项A 、C 错误,选项D 正确,选项B 错误,故选D.7.B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
和使用优惠卡购物分别视为方式一购物和方式二购物,且设顾客购买商品的金额为 x 元.
(1)根据题意,填写下表:
商品金额(元) 300
600
1000
…
x
方式一的总费
300
600
1000
…
用(元)
方式二的总费
540
…
用(元)
(2)顾客购买多少元金额的商品时,买卡与不买卡花钱相等? (3)小张要买一台标价为 3500 元的冰箱,如何购买合算?小张能节省多少元钱? (4)小张按合算的方案,把这台冰箱买下,如果该商场还能盈利 25%,那么这台冰箱的 进价是多少元?
(1)本次参加跳绳测试的学生人数为
,图①中 m 的值为
;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校九年级跳绳测试中,成绩超过 3 分的学生有多少人?
21.(10 分)已知:如图 1,在⊙O 中,直径 AB=4,CD=2,直线 AD,BC 相交于点 E.
(1)∠E 的度数为
A.﹣15
B.﹣12
C.﹣4
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)
D.﹣2
13.(3 分)计算 的结果等于
.
14.(3 分)将 3x3﹣6x2+3x 分解因式,其结果为
.
15.(3 分)有一个反比例函数的图象,在第二象限内函数值随着自变量的值增大而增大,
这个函数的表达式可能是(写出一个即可):
;
(2)如图 2,AB 与 CD 交于点 F,请补全图形并求∠E 的度数;
(3)如图 3,弦 AB 与弦 CD 不相交,求∠AEC 的度数.
第 4 页(共 24 页)
22.(10 分)如图,建筑物的高 CD 为 10 m.在其楼顶 C,测得旗杆底部 B 的俯角 α 为
60°,旗杆顶部 A 的仰角 β 为 20°,请你计算:
A.
B.
C.
D.
4.(3 分)2018 年 10 月 23 日,港珠澳大桥正式开通,挑战性的跨海桥梁工程,被誉为桥梁界的“珠穆朗玛峰”,仅主体工程的主
梁钢板用量就达 42000 万千克,相当于 60 座埃菲尔铁塔的重量.这里的数据 42000 万可
用科学记数法表示为( )
A.x<0 或 x>4
B.0<x<4
C.x<4
D.x>4
10.(3 分)如图 1,点 P 从△ABC 的顶点 A 出发,沿 A﹣B﹣C 匀速运动,到点 C 停止运动.点
P 运动时,线段 AP 的长度 y 与运动时间 x 的函数关系如图 2 所示,其中 D 为曲线部分的
最低点,则△ABC 的面积是( )
A.10
B.12
C.20
D.24
11.(3 分)如图,已知正方形 ABCD 的顶点 A、B 在⊙O 上,顶点 C、D 在⊙O 内,将正方
形 ABCD 绕点 A 逆时针旋转,使点 D 落在⊙O 上,若正方形 ABCD 的边长和⊙O 的半径
均为 6cm,则点 D 运动的路径长为( )
第 2 页(共 24 页)
A.42×107
B.4.2×108
C.4.2×109
D.0.42×109
5.(3 分)如图是由 6 个相同的小立方块搭成的几何体,那么这个几何体的左视图是( )
A.
B.
C.
D.
第 1 页(共 24 页)
6.(3 分)如果实数 a= ﹣3,那么 a 的值在( )
A.5 和 6 之间
B.4 和 5 之间
.
18.(3 分)如图,是大小相等的边长为 1 的正方形构成的网格,A,C,M,N 均为格点,
第 3 页(共 24 页)
AN 与 CM 交于点 P.
(1)MP:CP 的值为
;
(2)现只有无刻度的直尺,请在给定的网格中作出一个格点三角形,要求:①三角形中
含有与∠CPN 大小相等的角;
②可借助该三角形求得∠CPN 的三角函数值,请并在横线上简单说明你的作图方法.
三、解答题(本大题共 7 小题,共 6 分.解答应写出文学说明、演算步骤或推理过程)
19.(8 分)解不等式组
请结合题意填空,完成本题的解答.
(1)解不等式①,得
;
(2)解不等式②,得
;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为
.
20.(8 分)某校九年级有 900 名学生,在体育考试前随机抽取部分学生进行跳绳测试,根 据测试成绩制作了下面两个统计图.请根据相关信息,解答下列问题:
.
16.(3 分)箱子里放有 2 个黑球和 2 个红球,它们除颜色外其余都相同,现从箱子里随机
摸出两个球,恰好为 1 个黑球和 1 个红球的概率是
.
17.(3 分)如图,O 为矩形 ABCD 对角线 AC,BD 的交点,AB=6,M,N 是直线 BC 上的
动点,且 MN=2,则 OM+ON 的最小值是
C.3 和 4 之间
D.2 和 3 之间
7.(3 分)化简
的结果为( )
A.
B.a﹣1
C.a
D.1
8.(3 分)方程 x2﹣4x=0 的解是( )
A.x=4
B.x1=1,x2=4
C.x1=0,x2=4 D.x=0
9.(3 分)如图,反比例函数 的图象经过点 A(4,1),当 y<1 时,x 的取值范围是( )
(1)建筑物与旗杆的水平距离 BD;
(2)旗杆的高度.
(sin20°≈0.342,tan20°≈0.364,cos20°≈0.940,
1.732,结果精确到 0.1 米)
23.(10 分)某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优恵凭证不
能顶替货款),花 300 元买这种卡后,卡可在这家商场按标价的 8 折购物.若不够卡购物
A.2πcm
B.
C.πcm
D. cm
12.(3 分)如图,抛物线 y=ax2+bx+c 与 x 轴相交于 A、B 两点,点 A 在点 B 左侧,顶点在 折线 M﹣P﹣N 上移动,它们的坐标分别为 M(﹣1,4)、P(3,4)、N(3,1).若在抛 物线移动过程中,点 A 横坐标的最小值为﹣3.则 a﹣b+c 的最小值是( )
2019 年天津市南开区中考数学一模试卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只 有一项是符合题目要求的)
1.(3 分)计算(﹣6)÷(﹣2)的结果是( )
A.3
B.﹣3
C.4
2.(3 分)3tan60°的值为( )
D.﹣4
A.
B.
C.
D.3
3.(3 分)下列图形中既是轴对称图形又是中心对称图形的是( )