b样条曲线

合集下载

B样条曲线

B样条曲线

Bezier曲线
给定P0、P1、P2、P3,三次曲线的参数形式如下:
三次曲线的动态图如下:
对于三次曲线,可由线性贝塞尔曲线描述的中介点 Q0、Q1、Q2,和由二次曲线描述的点R0、R1所建 构。P0、P1、P2、P3四个点在平面或在三维空间中 定义了三次方贝塞尔曲线。曲线起始于P0走向P1, 并从P2的方向来到P3。一般不会经过P1或P2;这两 个点只是在那里提供方向资讯。P0和P1之间的间距, 决定了曲线在转而趋进P3之前,走向P2方向的“长 度有多长”。
Bezier曲线
更高阶的贝塞尔曲线,可以用以下公式表示:用表示由点 P0、P1、…、Pn所决定的贝塞尔曲线。则有:
高阶曲线的动态图如下:
要“画”出贝塞尔曲线,一般需要进行 较多的计算,然后绘制出来。
Bezier曲线 Bezier曲线的一般化形式:
即:
其中多项式:
又称作 n 阶的伯恩斯坦基底多项式,定义 00 = 1。
B样条曲线
Bezier曲线改变一点曲线整体受影响
B样条曲线
B样条曲ቤተ መጻሕፍቲ ባይዱ的优点:
易于进行局部修改; 更逼近特征多边形;
是低阶次的曲线。
B样条曲线改变一点曲线局部受影响
B样条曲线
均匀B样条曲线的参数表达式为:
式中为n次B样条基函数,其形式为:
其中
B样条曲线
B样条曲线的C语言实现
  #include<graphics.h> #include<conio.h> float px[10]={50,90,150,120,220,300,380,320,450,500}; float py[10]={100,60,50,150,240,100,100,200,250,130}; void B_spline() { float a0,a1,a2,a3,b0,b1,b2,b3; int k,x,y; float i,t,dt,n=10; setcolor(15); dt=1/n; for(k=0;k<10;k++) { if(k==0) moveto(px[k],py[k]);  lineto(px[k],py[k]); } setcolor(4); for(k=0;k<10-3;k++) {       if(getch()==17)exit();

B样条曲线

B样条曲线
赤峰学院计算机系 计算机图形学 08-09第二学期
B样条曲线的适用范围
对于特征多边形的逼近性
二次B样条曲线优于三次B样条曲线 三次Bezier曲线优于二次Bezier曲线 •
相邻曲线段之间的连续性
二次B样条曲线只达到一阶导数连续 三次B样条曲线则达到二阶导数连续

角点的修改对曲线形状的影响
Bezier曲线:修改一个角点将影响整条曲线的形状。
赤峰学院计算机系 计算机图形学 08-09第二学期
不易修改 由曲线的混合函数可 看出,其值在开区间 ( 0 , 1 ) 内均不为 零。因此,所定义之曲线在 ( 0 < t < 1) 的区间内的任何一点均要受到全部顶 点的影响,这使得对曲线进行局部修 改成为不可能。 (而在外形设计中, 局部修改是随时要进行的)
赤峰学院计算机系 计算机图形学 08-09第二学期
与以上这些式子所表达的性质相符的 曲线是何种形状:(见下图)
B1 P (1 /2 )
P '(1 /2 ) P (1 )
P (0 )
M
B0
是什么曲线? 与Bezier曲线有 何差别?
计算机图形学
B2
赤峰学院计算机系
08-09第二学期
结论:分段二次B样条曲线是一条抛 物线;有n个顶点定义的二次B样条曲 线,其实质上是n-2段抛物线(相邻三 点定义)的连接,并在接点处达到一 阶连续。(见下图)
00 0m n0 nm
P (0, 0 ) P0 0 , P (1, 0 ) Pn 0 ,
P (0,1) P0 m P (1,1) Pn m P14
P 44
P04
P03
P02 P01
P1 P2
1 1

第七章 B样条曲线

第七章 B样条曲线

V2k、V3k和V4k四个点, 该四点构成u向的一个特
d1
征多边形,定义一条新 2
的曲线P(u,vk);
d11
v
d14
d13
C1 d22
d23
C2 d32
d21
d31
u
d24 d33 C3 d4
2
d41
d34
d44 d43
C4
v
C1
C2 C3
V1k
V2k V3k
u
C4
V4k
✓当参数vk在[0,1] 之间取不同值时, P(u,vk)沿箭头方向扫描,即得到由 给定特征网格dij(i=1,2,3,4 j=1,2,3,4) 定义的双三次均匀B样条曲面片 P(u,v)。
t [0,1]
1
2
3
4
5
t
四段二次(三阶)均匀B样条基函数
曲线的起点和终点值:
pi
(0)
1 2
(Pi
Pi 1 ),
pi
(1)
1 2
(Pi1
Pi2 )
均匀二次B样条曲线起点和终点处的导数:
pi(0) Pi1 Pi , pi(1) Pi2 Pi1
P1
P2
P0
P3
四个控制点的二次周期性B样条曲线
第七章 B样条曲线曲面
Bezier曲线有许多优越性,但有几点不足: 一、控制多边形的顶点个数决定了Bezier曲线的
阶次; 二、不能作局部修改; 三 、Bezier曲线的拼接比较复杂。
• 1972年,Gordon、Riesenfeld等人发展了 1946年Schoenberg提出的样条方法 , 提出 了B样条方法,在保留Bezier方法的优点, 克服了Bezier方法的弱点。

B样条曲线图片版

B样条曲线图片版
B样条函数(basis)
1960年,de Boor开始研究用B样条做几何表示。之后它与 Mansfield, Cox分别独立发现了B样条的递归算法。
给出了B样条基函数的递归算法
1974年,Gordon与Riesenfeld将B样条函数推广到矢值形式, 得到了B样条函数。
从B样条函数到B样条曲线
样条函数的定义
5.B网逼近性质
B网大致反映了B样条曲线的形状,这有利于人机交互设计.
6.变差缩减性
设平面内 n+1 个控制顶点 构成B样条曲线 P(t) 的特征多边形。在 该平面内的任意一条直线与 P(t) 的交点个数不多于该直线和特征 多边形的交点个数。
B样条曲线的性质
7. 连续阶性:
曲线在重数为 m 的节点处,连续阶能达到k-1-m 。 连续阶=次数-重数 整条曲线的连续阶能达到次数-重数的最大值
B样条曲线的性质
8. 退化性:
节点矢量中两端节点具有重数k,所有内节点重数为k-1,这样的节 点矢量定义了分段的Bernstein基。 B样条曲线用分段Bezier曲线表示后,各曲线段就具有了相对的独 立性,移动曲线段内的一个控制顶点只影响该曲线段的形状。例 如:T=(0,0,0,0,1,1,1,2,2,2,2)
区间 的一个分割 : a x0 x1 xn b 定义于分割上的函数 g(x)满足两条件:
Ø 在[xi , xi1]上, g(x)是x的 k次多项式 Ø 节点 k次样条函数
g(x)Ck1[a,b]
g(x)在区间 上有直到 k-1阶的连续导数
节点序列上定义的满足一定的连续性的分段函数 连续阶最高
谢谢!
均匀B样条曲线没有保留Bezier曲线端点的几何性质
图3.1.23 三次均匀的B样条曲线

b样条曲线生成原理

b样条曲线生成原理

b样条曲线生成原理
B样条曲线是一种基于局部控制点的曲线或曲面。

它是一种基于多项式插值的插值方法。

B样条曲线在插值时采用局部控制点,这意味着曲线上的每个点都受到它附近控制点的影响,而与其它控制点无关。

B样条曲线生成原理如下:
1.确定控制点:确定需要插值的一组控制点,它们用来定义曲线或曲面的形状和方向。

2.确定节点向量:确定节点向量,该向量定义样条曲线或曲面的参数空间。

3.建立基函数:使用节点向量来建立基函数,这些基函数是局部连续的、分段多项式函数。

4.拼接基函数:将相邻的基函数相加,得到样条曲线或曲面的表达式。

5.调整节点向量及其对应的控制点权值,得到最终的 B 样条曲线或曲面,用于插值和逼近目标函数。

总的来说, B 样条曲线是一种基于局部控制点和节点向量的插值方法,可以用于逼近任意复杂的函数,具有局部调整控制点的灵活性和良好的数学性质。

B样条曲线在图形学中的应用

B样条曲线在图形学中的应用

02
边界表示
截面线表示
• 利用B样条曲线表示三维模型的边界曲面
• B样条曲线用于表示三维模型的截面线
• 可以提高模型重建的精度和效率
• 可以用于模型的参数化设计和编辑
B样条曲线在三维曲线与曲面绘制中的应用
曲面绘制
• B样条曲线用于表示三维曲面的参数化表示
• 可以用于曲面的细分、拼接等操作
曲线绘制
• 利用B样条曲线表示三维曲线
• 可以实现高质量的图像修复
• 可以实现有效的图像去噪效
效果

B样条曲线在图像压缩与编码中的
应用
01
图像压缩
• 利用B样条曲线进行图像的降维表示
• 可以实现高效的图像压缩效果
02
图像编码
• B样条曲线用于表示图像中的关键点信

• 可以提高图像编码的效率和可靠性
06
B样条曲线在其他领域中的应用
B样条曲线在建筑设计中的应用


图像分割
边缘检测
• 利用B样条曲线逼近图像中的纹理和颜色信息
• B样条曲线用于表示图像中的边缘信息
• 可以实现精确的图像分割效果
• 可以提高边缘检测的准确性和鲁棒性
B样条曲线在图像修复与去噪中的应用
图像修复
图像去噪
• 利用B样条曲线进行图像的局
• B样条曲线用于表示图像中的
部修复和填充
平滑区域
• 可以实现平滑、连贯的曲线效果
B样条曲线在三维动画与游戏设计中的应用
模型动画
角色动画
01
02
• B样条曲线用于表示三维模
• 利用B样条曲线表示角色的
型的运动轨迹和形状变化
骨骼关节运动轨迹

b样条曲线

b样条曲线

t ti t ik 1 t i
Ni,k1 (t)
tik t tik ti1
Ni1,k1 (t),
k 2
该递推公式表明:欲确定第i个k阶B样条Ni,k(t),需要用 ti ,ti+1 ,…ti+k 共k+1个节点,称区间[ti , ti+k]为Ni,k(t)的支撑区间。
曲线方程中,n+1个控制顶点Pi (i=0,1,…n) 要用到n+1个k阶B样条 基 Ni,k(t) 。 支 撑 区 间 的 并 集 定 义 了 这 一 组 B 样 条 基 的 节 点 矢 量 T=[t0 ,t1 ,…tn+k ]。
Ni 1,k 1(t )
其中Pi的调和函数Ni是在区间ti<=t<ti+k的k阶多项式,这个多项式 是分段的,每一段多项式不相同。不为0的这k段是将区间ti<=t<ti+k 分k个部分,即ti<=t<ti+1、ti+1<=t<ti+2、……、ti+k-1<=t<ti+k, 每个区间对应一段k阶多项式。在t的其余区间为0。
3.3.2 B样条曲线的性质
1. 局部性
k 阶B样条曲线上参数为 t [ti , ti1] 的一点P(t)至多与k个控制顶点
Pj(j=i-k+1,…i)有关,与其它控制顶点无关;移动该曲线的第i个控 制顶
点Pi至多影响到定义在区间(ti,ti+k) 上那部分曲线的形状, 对曲线的 其余
1 Ni,1(t) 0
ti t ti1 Otherwise
Ni,k (t)
t ti tik 1 ti
Ni,k1(t)

计算机图形学实验报告B样条曲线

计算机图形学实验报告B样条曲线

千里之行,始于足下。

计算机图形学实验报告B样条曲线B样条曲线是计算机图形学中常用的一种曲线表示方法。

它通过插值曲线的控制点来定义曲线的形状,并且具有较好的平滑性。

本次实验中,我们使用C++语言实现了B样条曲线的生成和显示,并进行了相应的实验和分析。

实验目的:1.了解B样条曲线的原理和算法;2.掌握B样条曲线的生成和显示方法;3.通过实验观察和分析B样条曲线的性质。

一、B样条曲线的原理B样条曲线是一种基于控制点的插值曲线,它通过一系列连续的基函数(B 样条基函数)来插值控制点,从而生成曲线。

B样条曲线的基本原理如下:1.选择一组控制点P0,P1,…,PN-1;2.定义一组节点向量U={u0,u1,…,um},其中u0<=u1<=…<=um;3.通过插值曲线的标准等式,通过计算线性组合来计算曲线上每个点的坐标。

二、B样条曲线的算法1.计算节点向量U;2.定义B样条基函数;3.计算曲线上每个点的坐标。

三、实验步骤和结果1.计算节点向量U:在实验中,我们选择均匀节点向量,即ui=i,其中i=0,1,…,m。

这样的节点向量比较简单,而且能够生成比较平滑的曲线。

第1页/共3页锲而不舍,金石可镂。

2.定义B样条基函数:B样条基函数是用来插值曲线的重要部分,它可以通过递归定义来实现。

在实验中,我们使用了三次B样条基函数,其递归定义如下:N(i,1)(u)={1,u∈[ui,ui+1];0,否则}N(i,k)(u)=[(u-ui)/(ui+k-1-ui)]*N(i,k-1)(u)+(ui+1-u)/(ui+k-ui+1)*N(i+1,k-1)(u)3.计算曲线上每个点的坐标:通过计算线性组合来计算曲线上每个点的坐标。

具体计算方法如下:P(u)=sum(B(i,k)(u)*Pi,i=0 to n-1),其中B(i,k)(u)=N(i,k)(u)/sum(N(j,k)(u))四、实验结果和分析在实验中,我们通过改变控制点的位置和数量,生成了不同的B样条曲线,并进行了显示和分析。

b样条曲线曲率简易求解算法

b样条曲线曲率简易求解算法

b样条曲线曲率简易求解算法摘要:一、背景介绍二、B样条曲线的基本概念1.控制点2.节点3.次数三、B样条曲线的曲率求解方法1.切线方向求解2.曲率求解公式四、简易求解算法步骤1.确定控制点2.计算切线方向3.计算曲率4.应用曲率求解公式五、算法实例演示六、算法优缺点分析1.优点2.缺点七、结论与展望正文:一、背景介绍在计算机图形学、计算机辅助设计等领域,B样条曲线(B-spline curve)是一种广泛应用的曲线表示方法。

它具有较好的局部性和灵活性,可以方便地控制曲线的形状。

然而,B样条曲线的曲率求解一直是一个较为复杂的问题。

本文将介绍一种简易的B样条曲线曲率求解算法,以期为相关领域的研究和实践提供参考。

二、B样条曲线的基本概念1.控制点:B样条曲线由一系列控制点确定,这些控制点共同决定了曲线的形状。

2.节点:节点是B样条曲线上的关键点,它们将曲线划分为若干段,每段的曲率由相邻节点决定。

3.次数:B样条曲线的次数表示曲线上最多可以取样的点的数量。

次数越高,曲线越平滑。

三、B样条曲线的曲率求解方法B样条曲线的曲率求解方法主要包括切线方向求解和曲率求解公式。

1.切线方向求解:在B样条曲线上,相邻两个节点之间的切线方向可以通过插值基函数计算得到。

基函数的值决定了切线方向上的权重,从而影响曲线的弯曲程度。

2.曲率求解公式:B样条曲线的曲率可以通过切线方向的改变率求得。

在相邻两个节点间,曲率表示为切线方向的变化量除以节点间距。

四、简易求解算法步骤1.确定控制点:根据需求设定一定数量的的控制点,以确定B样条曲线的初始形状。

2.计算切线方向:利用插值基函数计算相邻节点间的切线方向。

3.计算曲率:根据切线方向的改变率,计算B样条曲线的曲率。

4.应用曲率求解公式:将计算得到的曲率应用于B样条曲线,得到最终的曲线形状。

五、算法实例演示以下是一个简单的B样条曲线曲率求解算法实例。

设定四个控制点分别为(0,0),(1,2),(2,4),(3,6),次数为3。

b样条曲线的一般表达式

b样条曲线的一般表达式

B 样条曲线的一般表达式B 样条曲线是一种用于曲线拟合和插值的数学工具,具有很好的局部性和灵活性。

本文将介绍 B 样条曲线的一般表达式,以及其应用场景和优点。

B 样条曲线是一种用于曲线拟合和插值的数学工具,由Schatzman 和 Thomas 于 1967 年提出。

与常见的多项式插值和样条插值不同,B 样条曲线采用基函数和控制点来描述曲线,具有很好的局部性和灵活性。

B 样条曲线的一般表达式为:$$P(x) = sum_{i=0}^n lambda_i B_i(x)$$其中,$P(x)$表示曲线在$x$点的值,$lambda_i$是控制点,$B_i(x)$是基函数。

B 样条曲线的基函数是通过 B-spline 函数生成的。

B-spline 函数是一种用于描述曲线或曲面的数学函数,具有很好的局部性和光滑性。

B-spline 函数的定义如下:$$B_i(u) = begin{cases}u^0 & text{if } u leq i(i-u)^i & text{if } i < u leq i+1u^i & text{if } u > i+1end{cases}$$其中,$u$表示曲线或曲面上的某个点,$i$表示 B-spline 函数的阶数。

B 样条曲线的控制点是指在曲线或曲面上选取的一些点,通过这些点的值可以控制曲线或曲面的形状。

B 样条曲线的控制点可以通过以下公式计算:$$lambda_i = frac{1}{p_i - p_{i-1}}$$其中,$p_i$表示曲线或曲面上的第$i$个控制点,$p_{i-1}$表示曲线或曲面上的第$i-1$个控制点。

B 样条曲线的优点在于,它可以很好地适应曲线的局部性和复杂性,同时具有很好的计算效率和精度。

origin b样条拟合原理

origin b样条拟合原理

origin b样条拟合原理
B样条曲线是一种常用的曲线拟合方法,其原理涉及到控制点、节点序列、基函数和权重等概念。

B样条曲线的拟合原理可以从以
下几个方面来进行解释:
1. 控制点,B样条曲线的形状由一系列控制点决定,这些控制
点的位置和权重影响着曲线的走向和形状。

通过调整控制点的位置
和权重,可以实现对曲线的精细调节和拟合。

2. 节点序列,B样条曲线的节点序列是一个非递减的实数序列,它定义了参数空间。

节点序列的选择影响着曲线的插值特性和拟合
精度。

3. 基函数,B样条曲线的形状由基函数的线性组合来表示。


些基函数是关于节点序列的局部支撑函数,它们决定了曲线在各个
参数区间的形状。

4. 权重,在有理B样条曲线中,每个控制点都有一个权重因子,它决定了曲线在该控制点处的影响程度。

通过调整权重,可以实现
对曲线的局部调节和优化。

综合以上几点,B样条曲线的拟合原理可以简单概括为,通过控制点、节点序列、基函数和权重的合理调整,使得曲线能够在参数空间内灵活地拟合给定的数据点,从而实现对曲线形状的精细控制和拟合。

这种灵活性和精确度使得B样条曲线成为了计算机图形学、CAD和计算机辅助设计等领域中常用的曲线拟合方法。

b样条曲线原理

b样条曲线原理

b样条曲线原理
b样条曲线是一种用来插值和逼近离散数据的数学方式。

它是
一条平滑的曲线,由一系列连续的曲线段组成。

每个曲线段由一个基函数控制,这个基函数在局部区域内起作用。

b样条曲线的主要原理是通过控制点和基函数的权重来确定曲
线的形状。

在插值问题中,我们首先需要定义一组控制点,这些点是我们想要曲线经过的点。

然后,我们选择一种基函数,如三次b样条。

基函数的选择取决于所需的曲线平滑度和形状。

基函数控制点的权重是通过求解线性方程组得到的。

线性方程组的系数矩阵由控制点和基函数共同决定。

解出的权重即确定了曲线的形状。

b样条曲线的关键特点是它的局部性质。

每个控制点只影响曲
线的一小部分。

这使得曲线在插值和逼近过程中能够自由地调整。

如果我们修改一个控制点的位置,只有与这个控制点相邻的曲线段会受到影响,而其他曲线段则保持不变。

b样条曲线的另一个重要特点是它的光滑性。

通过适当选择基
函数和控制点的位置,我们可以确保曲线在控制点处是连续且可导的。

这使得b样条曲线在计算机图形学和计算机辅助设计等领域得到广泛应用。

综上所述,b样条曲线是一种通过控制点和基函数控制形状的
平滑曲线。

它具有局部性和光滑性的特点,适用于插值和逼近
问题。

通过调整控制点的位置和权重,我们可以灵活地控制曲线的形状。

b样条曲线法原理

b样条曲线法原理

b样条曲线法原理
b样条曲线法(B-splinecurve)是一种广泛应用于计算机图形学、计算机辅助设计(CAD)和计算机辅助制造(CAM)等领域中的曲线表示方法。

它是一种基于局部控制点的曲线表示方法,通过将多个局部控制点之间的曲线段拼接在一起形成曲线。

其原理是将整个曲线分解为多个小的控制曲线段,每个控制曲线段由一组控制点决定。

这些控制点可以用来控制曲线的形状和方向。

在b样条曲线法中,控制点的数量和位置可以灵活地调整,从而可以得到各种各样的曲线形状。

b样条曲线法使用了基函数(basis function)来计算控制点与曲线之间的关系。

基函数通常被定义为B样条基函数,并且具有许多有用的性质,例如,它们是正的、局部支持的,以及满足递推关系等。

使用b样条曲线法可以得到平滑的曲线,它们可以用来表示各种复杂的几何形状,例如汽车外形、飞机翼形等。

此外,b样条曲线法还可以用于插值、逼近和曲面拟合等问题。

在实际应用中,b样条曲线法也常常与其他技术如Bezier曲线、NURBS曲线等结合使用,以得到更加灵活和高效的曲线表示方法。

- 1 -。

occ b样条生成曲线

occ b样条生成曲线

occ b样条生成曲线
B样条(B-spline)是一种常用的曲线生成方法,它可以用于进行曲线和曲面的建模。

B样条曲线的生成过程涉及控制点、节点向量和基函数的计算。

下面我将从多个角度来解释B样条生成曲线的过程。

首先,B样条曲线的生成需要确定控制点。

控制点是影响曲线形状的关键点,它们的位置决定了曲线的走向。

通常情况下,我们会根据设计需求手动或者通过算法确定这些控制点的位置。

其次,B样条曲线的生成还涉及到节点向量的确定。

节点向量是一个非递减的序列,它决定了曲线上各个控制点的影响范围。

节点向量的确定需要满足一定的规则,比如在曲线端点处重复出现的节点称为多重节点,它会影响曲线的曲率。

最后,B样条曲线的生成还需要计算基函数。

基函数是描述控制点对曲线影响程度的函数,它们通常是局部支撑的,也就是说只在某个区间内起作用。

常见的基函数包括线性、二次和三次样条函数,它们的选择会影响曲线的光滑度和形状。

总的来说,B样条曲线的生成过程是一个综合考虑控制点、节点向量和基函数的计算过程。

通过合理的设置这些参数,我们可以得到符合设计要求的曲线形状。

这种方法在计算机图形学、CAD设计等领域得到了广泛的应用。

希望这个回答能够帮助你更好地理解B样条曲线的生成过程。

第7讲-B样条曲线曲面

第7讲-B样条曲线曲面

...
⎥ ⎥
⎢ ⎢
B2
⎥ ⎥
⎥⎢

⎢ ⎢
P2
⎥ ⎥



...

⎥ ⎢ ... ⎥ = 6 ⎢ ... ⎥
⎥⎢
⎥⎢


...
⎥⎢
⎥⎢

⎢ ⎢
141
⎥ ⎥
⎢ ⎢
B
n−
2
⎥ ⎥
⎢ ⎢
Pn

2
⎥ ⎥

1 4 1 ⎥ ⎢ B n −1 ⎥
⎢ Pn −1 ⎥
⎢⎣
1
5 ⎥⎦
⎢ ⎣
Bn
⎥ ⎦
⎢ ⎣
Pn
⎥ ⎦
用追赶法解上式
B
n

2
⎥ ⎥
⎢ ⎢
Pn

2
⎥ ⎥

1 4 1 ⎥ ⎢ B n −1 ⎥
⎢ Pn −1 ⎥
⎢⎣
1 4 ⎥⎦ ⎢⎣ B n ⎥⎦
⎢⎣ P n ⎥⎦
B样条曲线的节点插入与升阶
节点插入
具有较高的理论价值,在曲线曲面设计中广泛使用,优点: 简单证明B样条曲线的变差缩减性; 改善B样条曲线的局部性质,提高曲线形状控制的潜在灵活性 求出曲线上的点; 生成曲线的Bezier点,得到B样条曲线的分段Bezier表示; 实现对曲线的分割; 生成曲面时,使不相同的节点矢量统一起来
用追赶法解上式,将结果带入(2)式中求出Bi (i=-1,0,1,…n+1)即可。
B. 自由端点条件
一般取
B −1 = B 0 B n +1 = B n
联立式(1)(4)构成三对角线型方程组

B样条曲线

B样条曲线

3.3.1 B样条的递推定义和性质 样条的递推定义和性质
4. B样条曲线类型的划分
非均匀Bezier曲线 曲线 非均匀 任意分布的节点矢量 T=[t0,t1,…,tn+k],只要在数学上成立(节点 ,只要在数学上成立( 序列非递减,两端节点重复度≤k,内节点重复度≤k-1)都可选取。这 序列非递减,两端节点重复度 ,内节点重复度 )都可选取。 样 的 节 点 矢 量 定 义 了 非 均 匀 B 样 条 基 。 例 T=(0 11,16) 如:T=(0,0,2,2,3,5,8,11,16)
t ∈[t k −1 , tn+1 ]
(3) 微分公式
N′ k (t) = i,
k −1 ti+k−1 − ti
Ni,k−1(t) -
k −1 Ni+1,k−1(t) ti+k − ti+1
其中Pi的调和函数Ni是在区间ti<=t<ti+k的 阶多项式, 其中Pi的调和函数Ni是在区间ti<=t<ti+k的k阶多项式,这个多项式 Pi的调和函数Ni是在区间ti<=t<ti+k 是分段的,每一段多项式不相同。不为0的这k段是将区间ti<=t<ti+k 是分段的,每一段多项式不相同。不为0的这k段是将区间ti<=t<ti+k 个部分, ti<=t<ti+1、ti+1<=t<ti+2、……、ti+k分k个部分,即ti<=t<ti+1、ti+1<=t<ti+2、……、ti+k-1<=t<ti+k, 每个区间对应一段k阶多项式。 的其余区间为0 每个区间对应一段k阶多项式。在t的其余区间为0。 例如: 例如:

B-样条曲线

B-样条曲线

Ni1,k 1
u
定义
0
0
0
4
B-样条基函数实例
n=3 (4个控制顶点)
u
k=3 三次(四阶)曲线
u=[0 0 0 1 2 2 2 2]
在 u = 0.6 处, 基函数的和为: N1,3+N2,3+N3,3+N4,3 =0.16+0.66+0.18+0.0= 1.0
5
B-样条曲线性质
B-样条曲线具有凸包性和几何不变性。 当曲线的两个端节点的重复度是k+1时
B-样条曲线具有类似于Bézier曲线的性质
端点插值性质 端点导数与控制的起始边与终止边相切
当n=k+1时,B-样条曲线就是一条Bézier曲线
6
B-样条曲线性质
局部性:当移动一个控制顶点时,只会影响曲线的一部 分,而不是整条曲线
三次B-样条曲线的局部性质
7
n
Ru Ri Ni,k u i0
u uk ,un1
3
B-样条曲线的定义
Ri为控制顶点,{Ri}i=0,1,…,n顺次连接称为曲线的 控制多边形
Ni,k(u)为单位化的B-样条基函数:
1
Ni,0
0
当ui u ui1 其它
Ni
,kuΒιβλιοθήκη u ui uik uiNi,k 1
u
uik 1 u uik 1 ui1
B-样条曲线实列
R2
R1
R3
R7
R0
R4
R6
R5
三次(四阶)B-样条曲线
2
B-样条曲线的定义
B-样条曲线是分段连续的多项式曲线, 其定义与节点向量密切相关

b样条曲线算法

b样条曲线算法

b样条曲线算法B样条曲线算法是一种用于计算和绘制平滑曲线的数学算法。

它可以在计算机图形学、CAD、动画等领域中广泛应用。

本文将详细介绍B 样条曲线算法的原理、应用、优缺点等方面。

一、B样条曲线概述1.1 定义B样条曲线是一种由多个控制点组成的平滑曲线,它通过对控制点之间的插值来确定曲线形状。

1.2 历史B样条曲线最早由Isaac Jacob Schoenberg于1946年提出,但直到20世纪60年代才开始被广泛使用。

最初,它主要应用于航空工业中的飞机设计和建模。

1.3 特点B样条曲线具有以下特点:(1)平滑性:B样条曲线可以通过调整控制点来实现平滑过渡。

(2)局部性:每个控制点只影响相邻的几个插值段,不会影响整个曲线。

(3)灵活性:可以通过增加或删除控制点来改变曲线形状。

二、B样条曲线原理2.1 插值问题在计算机图形学中,插值是一个常见的问题。

插值问题通常可以概括为:给定一组数据点,如何通过这些数据点来构造一个平滑的曲线或曲面。

2.2 B样条基函数B样条曲线使用B样条基函数来进行插值。

B样条基函数是一组递归定义的多项式函数,它们具有局部性和平滑性。

2.3 B样条曲线方程B样条曲线可以表示为以下形式:C(u) = ΣNi=0 Bi,k(u)Pi其中,C(u)是曲线上的点,Ni是控制点的数量,Bi,k(u)是B样条基函数,Pi是控制点。

三、B样条曲线应用3.1 计算机图形学在计算机图形学中,B样条曲线广泛用于三维建模和动画制作中。

它可以用于创建平滑的曲面和复杂的几何体。

3.2 汽车设计在汽车设计中,B样条曲线被用于创建汽车外观的流畅轮廓。

它可以通过调整控制点来实现汽车外观的微调。

3.3 航空工业在航空工业中,B样条曲线被广泛用于飞机设计和建模。

它可以用于创建复杂的飞行器结构和机翼形状。

四、B样条曲线优缺点4.1 优点(1)平滑性:B样条曲线可以通过调整控制点来实现平滑过渡。

(2)局部性:每个控制点只影响相邻的几个插值段,不会影响整个曲线。

b样条曲线的定义域

b样条曲线的定义域
B样条曲线的定义域
• B样条曲线的基本概念 • B样条曲线的数学表达 • B样条曲线的应用场景 • B样条曲线的计算方法 • B样条曲线的优化与改进 • B样条曲线的实例展示
目录
Part
01
B样条曲线的基本概念
定义与性质
B样条曲线的定义
B样条曲线是一种参数曲线,定义在给定的节点区间上,通过控制多边形的顶点来逼近给 定的曲线。
基函数
多维B样条曲线的基函数是$N_{i,k}(t_1, t_2, ..., t_n)$,其中$i$表示控制点序列中的第$i$个点,$k$表示B样条曲线 的阶数。
控制点
多维B样条曲线的控制点是一个多维向量,改变控制点的值会影响曲线的形状。
均匀与非均匀B样条曲线
01
定义
均匀B样条曲线是指各段曲线的节点参数均匀分布,即各段曲线的长度
参数化优化
参数化方法选择
针对不同的应用场景和需求,选 择适合的参数化方法,如基于能 量的参数化方法、保形参数化方 法等。
优化目标设定
根据实际需求,设定优化的目标 函数,如最小化能量、最大化保 形性等。
求解优化问题
采用合适的优化算法,如梯度下 降法、牛顿法等,求解优化问题 ,得到最优的参数化结果。
自适应节点插入技术
03
多维B样条曲线实例
f_{0}(x)g_{1}(y)f_{1}(x)g_{0}(y)+f_{1}(x)g_{1}(y) & (x,y) \in [0,1] \times [1,2] \\
f_{0}(x)g_{2}(y)f_{1}(x)g_{1}(y)+f_{2}(x)g_{0}(y)f_{2}(x)g_{1}(y)+f_{3}(x)g_{0}(y) & (x,y)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t

3
t
2
1 3 3 3 6 3 t 1 3 3 0 1 0 0

1 P0 0 P1 0 P2 0 P3
***
二、B样条曲线
1.从 Bezier 曲线到B样条曲线 (1) Bezier 曲线在应用中的不足:
P1
P2 P1
P2
P0 P1
P3 P3
P0
P3
P0
P2
1.Bezier曲线的数学表达式 Bezier曲线是由多项式混合函数推导 出来的,通常 n+1 个顶点定义一个 n 次多项式。其数学表达式为:
P(t )
PB
i 0 i
n
i ,n
(t )
(0 ≤ t ≤ 1)
式中:Pi:为各顶点的位置向量 Bi,n(t):为伯恩斯坦基函数
t=0: i=0: Bi-1,n-1(t)=0; Bi,n-1(t)=1。 i=1: Bi-1,n-1(t)=1; Bi,n-1(t)=0。 i2: Bi-1,n-1(t)=0; Bi,n-1(t)=0。
(均出现 0 的非 0 次幂)
t=0
P (0) P (t 0) n( P 1P 0)
P(1/2) P'(1/2) P0 Pm P2 P1
二次 Bezier 曲 线是一条抛物线
(2) 四个顶点 P0、P1、P2、P3 可 定义一条三次 Bezier 曲线:
P(t ) (1 t ) P0 3t (1 t ) P1 3t (1 t ) P2 t P3
3 2 2 3
2! B0, 2 (t ) t 0 (1 t ) 20 (1 t ) 2 0!2! 2! 1 2 1 B1, 2 (t ) t (1 t ) 2t (1 t ) 1 !1 ! 2! B2, 2 (t ) t 2 (1 t ) 2 2 t 2 2!0!
伯恩斯坦基函数的表达式为:
n! Bi , n (t ) t i (1 t ) n i i!(n i )!
假如规定:0=1,0!=1,则 t=0: i=0 ,Bi,n(t)=1 i0 ,Bi,n(t)=0 P(0)=P0
n! 0 n P(0) 0 (1 0) P0 P0 1 n!
k 0 2

1 2 1 B0 1 B t 1 2 2 0 1 2 1 0 1 B2

式中,Bk为分段曲线的B特征多边形 的顶点:B0,B1,B2。对于第i段曲线的 Bk 即为:Pi,Pi+1,Pi+2 连续的三个顶 点。 (见下图)
因为在外形设计中(比如汽车、船舶), 初始给出的数据点往往并不精确;并 且有的地方在外观上考虑是主要的, 因为不是功能的要求,所以为了美观 而宁可放弃个别数据点。因此不须最 终生成的曲线都通过这些数据点。 另一方面,考虑到在进行外形设计时 应易于实时局部修改,反映直观,以 便于设计者交互操作。第一类曲线在 这方面就不能适应。
(而在外形设计中,局部修改是随时要进行的)
为了克服 Bezier 曲线存在的问题, Gordon 等人拓展了 Bezier曲线,就 外形设计的需求出发,希望新的曲线 要: 易于进行局部修改; 更逼近特征多边形; 是低阶次曲线。 于是,用 n次B样条基函数替换了伯 恩斯坦基函数,构造了称之为B样条 曲线的新型曲线。
B (t ) n[Bi 1,n1 (t ) Bi,n1 (t )]
' i ,n
得:
P ' (t ) n P i [ Bi 1, n 1 (t ) Bi , n 1 (t )]
i 0 n 1
讨论:
(n 1)! Bi 1, n 1 (t ) t i 1 (1 t ) n 1i (i 1)! ( n i )! (n 1)! Bi , n 1 (t ) t i (1 t ) n 1i i!( n 1 i )!
B: P1,P2,P3 P1
i=1 P1,2(t)
P3
n=2,二次B样条曲线 m+n+1个顶点,三 点一段,共m+1段。
i=0 P0,2(t)
P2
P4
P0 B: P0,P1,P2
二次B样条曲线的性质
先对 P(t)求导得:
P (t ) t 1 1 1
2 1
然后分别将 t=0,t=0.5,t=1 代入 P(t) 和 P’(t),可得: P(0)=1/2(B0+B1), P(1)=1/2(B1+B2); P’(0)=B1-B0, P’(1)=B2-B1; P(1/2)=1/2{1/2[P(0)+P(1)]+B1} P’(1/2)=1/2(B2-B0)=P(1)- P(0)
i 0 j 0 n m
式中:(0 ≤ u,v ≤ 1) ; Bi,n(u) 为 n 次 Bernstein 基函数;连接点列 bi,j 中相 邻两点组成特征网格。
法国的 Bezier 为此提出了一种新的 参数曲线表示方法,因此称为Bezier 曲线。后来又经过 Gordon、Forrest 和 Riesenfeld等人的拓广、发展, 提出了B样条曲线。 这两种曲线都因能较好地适用于 外形设计的特殊要求而获得了广泛的 应用。
一、Bezier曲线 Bezier曲线的形状是通过一组多边折 线(特征多边形)的各顶点唯一地定 义出来的。在这组顶点中: (1) 只有第一个顶点和最后一个顶点 在曲线上; (2) 其余的顶点则用于定义曲线的导 数、阶次和形状; (3) 第一条边和最后一条边则表示了 曲线在两端点处的切线方向。
B0 1 B 1 0 B2
与以上这些式子所表达的性质相符的 曲线是何种形状:(见下图)
B1 P(1/2) P(0) P'(1/2) P(1)
M
B0
是什么曲线? 与Bezier曲线有 何差别?
B2
结论:分段二次B样条曲线是一条抛 物线;有n个顶点定义的二次B样条曲 线,其实质上是n-2段抛物线(相邻三 点定义)的连接,并在接点处达到一 阶连续。(见下图)
t=1: i=n ,Bi,n(t)=1 in ,Bi,n(t)=0 P(1)=Pn
n! n 0 P(1) 1 (1 1) Pn Pn n!1
所以说,“只有第一个顶点和最后一个 顶点在曲线上”。即 Bezier曲线只通过多边折线的起点 和终点。
下面我们通过对基函数求导,来分析 两端切矢的情况。
在以上表达式中: F k,n ( t ) 为 n 次B样条基函数,也称B 样条分段混合函数。其表达式为:
1 nk j j n Fk ,n (t ) (1) C n1 (t n k j ) n! j 0
式中: 0 ≤ t ≤1 k = 0, 1, 2, …, n
连接全部曲线段所组成的整条曲线称 为 n 次B样条曲线。依次用线段连接 点 Pi+k (k=0,1,…,n)所组成的多边折 线称为B样条曲线在第i段的B特征多 边形。
3.1.2 B样条曲线和曲面
在我们工程中应用的拟合曲线,一般 地说可以分为两种类型:一种是最终 生成的曲线通过所有的给定型值点, 比如抛物样条曲线和三次参数样条曲 线等,这样的曲线适用于插值放样; 另一种曲线是,它的最终结果并不一 定通过给定的型值点,而只是比较好 地接近这些点,这类曲线(或曲面) 比较适合于外形设计。
所以,根据式:
P(t )
PB
i 0 i
n
i ,
(t )
二次 Bezier 曲线的表达形式为:
P(t)=(1-t)2P0+2t(1-t)P1+t 2 P2 (0≤t ≤ 1)
根据 Bezier 曲线的总体性质,可讨 论二次 Bezier 曲线的性质: P(t)=(1-t)2P0+2t(1-t)P1+t2 P2 P’(t)=2(t-1)P0+2(1-2t)P1+2tP2 P(1/2)=1/2[P1+1/2(P0+P2)] P(0)=2(P1-P0) P(1)=2(P2-P1) P(1/2)=P2-P0
B样条曲线是一种非常灵活的曲线, 曲线的局部形状受相应顶点的控制很 直观。这些顶点控制技术如果运用得 好,可以使整个B样条曲线在某些部 位满足一些特殊的技术要求。如: 可以在曲线中构造一段直线; 使曲线与特征多边形相切; 使曲线通过指定点; 指定曲线的端点; 指定曲线端点的约束条件。
三、B样条曲面
缺乏灵活性 一旦确定了特征多 边形的顶点数(m个),也就决定了曲 线的阶次(m-1次),无法更改; 控制性差 当顶点数较多时,曲 线的阶次将较高,此时,特征多边形 对曲线形状的控制将明显减弱;
不易修改 由曲线的混合函数可 看出,其值在开区间 ( 0 , 1 ) 内均不为 零。因此,所定义之曲线在 ( 0 < t < 1) 的区间内的任何一点均要受到全部顶 点的影响,这使得对曲线进行局部修 改成为不可能。
2.B样条曲线的数学表达式 B样条曲线的数学表达式为:
Pi ,n (t )
P
k 0
n
ik
Fk ,n (t )
在上式中,0 ≤ t ≤ 1; i= 0, 1, 2, …, m 所以可以看出:B样条曲线是分段定 义的。如果给定 m+n+1 个顶点 Pi ( i= 0, 1, 2,…, m+n),则可定义 m+1 段 n 次的参数曲线。
' '
同理可得,当 t=1 时
P (1) n( Pn Pn1 )
'
这两个式子说明:Bezier曲线在两端 点处的切矢方向与特征多边形的第一 条边和最后一条边相一致。
2.二次和三次Bezier曲线 (1) 三个顶点:P0,P1,P2 可定义一条 二次(n=2) Bezier曲线: 其相应的混合函数为:
相关文档
最新文档