2020年高考数学二轮 专题7 立体几何精品复习(理)(学生版)

合集下载

2020学年高考数学(理)二轮复习解题方法与技巧试题:专题七 立体几何 Word版含答案

2020学年高考数学(理)二轮复习解题方法与技巧试题:专题七 立体几何 Word版含答案

专题七 立体几何1、如图,已知矩形ABCD 所在平面外一点,⊥P PA 平面ABCD ,、E F 分别是,AB PC 的中点.(1)求证://EF 平面;PAD (2)求证:⊥EF CD ;(3)若45∠=︒PDA ,求EF 与平面ABCD 所成的角的大小.2、已知一个几何体的三视图如图:(1)求此几何体的表面积;(2)如果点,P Q 在正视图中所示位置:P 为所在线段中点,Q 为顶点.求在几何体侧面上,从P 点到Q 点的最短路径的长.3、如图,PC ⊥平面ABC ,//DA PC ,90ACB ∠=︒,E 为PB 的中点,1AC AD BC ===,2PC =.(1)求证://DE 平面ABC ; (2)求证:PD ⊥平面BCD ;(3)设Q 为PB 上一点PQ PB λ=uuu r uur,试确定λ的值使得二面角Q CD B --为45°.4、如图,在单位正方体1111-ABCD A B C D 中,O 是11B D 的中点. (1)求证1//B C 平面1ODC ;(2)求异面直线1B C 与OD 夹角的余弦值; (3)求直线1B C 到平面1ODC 的距离.5、已知直三棱柱111ABC A B C -中,112023BCA AB AC AA ∠︒=,==,=, E 是BC 的中点,F 是1A E 上一点,且13A F FE =. (1)证明:AF ⊥平面1A BC ;(2)求二面角11B A E B --余弦值的大小.6、四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于,AD BC 的平面分别交四面体的棱,,BD DC CA 于点,,F G H .(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值.答案以及解析1答案及解析:答案:(1)取PD 中点Q ,连、,AQ QF 则//AE QF , ∴四边形AEFQ 为平行四边形, ∴//EF AQ ,又∵AQ 在平面PAD 内,EF 不在平面PAD 内, ∴//EF 面PAD ;(2)证明:∵⊥CD AD ,⊥CD PA ,⋂=PA AD A ,PA 在平面PAD 内,AD 在平面PAD 内,∴⊥CD 面PAD , 又∵AQ 在平面PAD 内, ∴⊥CD AQ , ∵//EF AQ , ∴⊥CD EF ;(3)解:∵45∠=︒PDA , ∴PAD △为等腰直角三角形, ∴⊥AQ PD , ∴45∠=︒QAD ,即AQ 与平面ABCD 所成角为45︒, 又∵//AQ EF ,∴EF 与平面ABCD 所成角45︒.2答案及解析:答案:(1)由三视图可知,此几何体是一个圆锥和一个圆柱的组合体,其表面积是圆锥的侧面积、圆柱的侧面积与圆柱的一个底面积之和.()()12222S =π=π圆锥侧,()()224S =ππ⋅=圆柱侧,S =π圆柱底,所以此几何体的表面积()2π4ππ25.S S S S a =++=+π++=表圆锥侧圆柱侧圆柱底(2)分别沿点P 与点Q 所在的母线剪开圆柱的侧面,并展开铺平,如图所示则()()2221πPQ AP AQ =+=+,所以,P Q 两点在该几何体的侧面上的最短路径的长为2π1+.3答案及解析:答案:(1)证明:建立如图所示的空间直角坐标系,则010101()()()002B D P ,,,,,,,,,10,,12E ⎛⎫ ⎪⎝⎭,11,,02DE ⎛⎫=- ⎪⎝⎭uuur .可知()0,0,2PC =uuu r为平面ABC 的一个法向量,0DE PC ⋅=u u u r u u u r Q ,DE BC ∴⊥uuu r uu u r .DE ⊄Q 平面ABC ,//DE ∴平面ABC .(2)证明:()1,0,1PD =-uuu r Q ,()0,1,0BC =uu u r ,()1,0,1CD =uuu r.0PD BC ∴⋅=u u u r u u u r ,0PD CD ⋅=u u u r u u u r.PD BC ∴⊥,PD CD ⊥.BC DC C ⋂=Q ,PD ∴⊥平面BCD .(3)解:由(2)可知:()1,0,1PD =-uuu r为平面BCD 的法向量,()0,1,2PB =-uur Q ,()0,,2PQ PB λλλ==-uuu r uur,()0,1λ∈.()0,,22Q λλ∴-+.设平面QCD 的法向量为(),,n x y z r,由00n CD n CQ ⎧⋅=⎪⎨⋅=⎪⎩r uu u r r uu u r ,得()0220x z y z λλ+=⎧⎪⎨+-+=⎪⎩,令1z =,则1x =-,22y λ=-,()21,2,1,0,1n λλ⎛⎫∴=--∈ ⎪⎝⎭r .cos 45n PD n PD⋅︒=⋅r uu u r r uu u r22222222λ==⎛⎫⨯+- ⎪⎝⎭,解得22λ=-.4答案及解析:答案:(1)法一:连接1A D ,则11//.B A C D 而1⊆A D 平面1ODC ,1⊄B C 平面1ODC , 所以1//B C 平面1ODC .法二:设平面1ODC 的一个法向量为(,,)=n x y z ,由 1.0.0⎧=⎪⎨=⎪⎩n DO n DC ,得11022⎧++=⎪⎨⎪+=⎩x y z y z ,令1=y ,则1,1=-=z x , 所以(1,1,1)=-n .又1(1,0,1)=--B C .从而1.0=n B C , 所以1//B C 平面1ODC .(2)法一:由(1)知异面直线1B C 与OD 的夹角为1∠A DO 或其补角. 而1111==A D AC DC ,且O 为11A C 中点,故0130∠=A DO , 所以两异面直线1B C 与OD 的夹角θ的余弦值为3COS 2θ=. 法二:设1B C 、DO 分别为直线1B C 与OD 的方向向量,则由1(1,01)=--B C ,11(,,1)22=DO ,得1,3cos 2<>=B C DO ,所以两异面直线1B C 与OD 的夹角θ的余弦值为3COS 2θ=. (3)由(1)知平面1ODC 的一个法向量为(1,11)=-n ,又(0,1,0)=DC , 所以1B C 到平面1ODC 的距离33⋅==DC n d n.5答案及解析:答案:(1)连接,AE AF ,在ABC △中,11sin12022AB AC BC AE ⋅⋅=⋅°,故1AE =. 由于三棱柱111ABC A B C -是直三棱柱,故1AA ⊥平面1ABC AA AE ⇒⊥,直角三角形1A AE 中,因为13,1AA AE ==,所以1122A E EF =⇒=,又因1A EAE AFE EF AE =⇒∠为直角,即1A E AF ⊥,再由E 为BC 中点并且ABC △为等腰三角形可知AE BC ⊥,结合1AA BC ⊥,1AA AE A =I ,得BC ⊥平面1A AE BC AF ⇒⊥,综合1A E AF ⊥,BC AF ⊥,1BC A E E=I ,得到AF ⊥平面1A BC .(2)由于AE BC ⊥,如图以点E 为坐标原点建立空间直角坐标系,3tan 60AEBE ==°,故()()()()113,0,0,0,1,3,0,0,0,3,0,3B A E B --,()()()113,0,0,0,1,3,3,0,3EB EA EB =-==-u u r u u u r u u u r.设面1BA E 法向量为1111(,,)n x y z =u r,面11B A E 法向量为2222(,,)nx y z =u u r,111111030300n EB x y z n EA ⎧⎧⋅=-=⎪⎪⇒⎨⎨+=⋅=⎪⎪⎩⎩u r uu ru r uuu r ,取11z =,得1(0,3,1)n =-u r ,212221210330300n EB x z y z n EA ⎧⎧⋅=-+=⎪⎪⇒⎨⎨+=⋅=⎪⎪⎩⎩u u r uuu ru ur uuu r ,取21z =,得2(1,3,1)n =-u u r ,则二面角11B A E B --的余弦值1212425cos 545n n n n θ⋅===⋅⋅u r uu r u r u u r .6答案及解析:答案:(1)由该四面体的三视图可知,,BD DC ⊥,BD AD ⊥,AD DC ⊥BD DC ⊥,2BD DC ==,1AD =.由题知,//BC 平面EFGH ,平面EFGH ⋂平面BDC FG =,平面EFGH ⋂平面ABC EH =, ∴//BC FG ,//BC EH ,//FG EH . 同理//EF AD ,//HG AD ,∴//EF HG . ∴四边形EFGH 是平行四边形, 又AD DC ⊥,AD BD ⊥, ∴AD ⊥平面BDC , ∴EF FG ⊥,∴四边形EFGH 是矩形.(2)方法一:如图,以D 为坐标原点建立空间直角坐标系,则()0,0,0D ,()0,0,1A ,()2,0,0B ,()0,2,0C .()0,0,1DA =,()2,2,0BC =-,(2,0,1)BA =-.设平面EFGH 的法向量(,,)n x y z =, ∵//EF AD ,//FG BC ,∴0n DA ⋅=,0n BC ⋅=,得0220z x y =-+=⎧⎨⎩,取()1,1,0n =,∴210sin cos ,552BA n BA n BA nθ⋅=〈〉===⨯.方法二:如图,以D 为坐标原点建立空间直角坐标系,()0,0,0D ,()0,0,1A ,()2,0,0B ,()0,2,0C .∵E 是AB 的中点,∴F 、G 分别为BD 、DC 的中点,得11,0,2E ⎛⎫⎪⎝⎭,()1,0,0F ,()0,1,0G . ∴10,0,2FE ⎛⎫= ⎪⎝⎭,(1,1,0)FG =-,(2,0,1)BA =-.设平面EFGH 的法向量(,,)n x y z =,则0n FE ⋅=,0n FG ⋅=,得 12z x y ⎧=-+=⎪⎨⎪⎩ ,取()1,1,0n =, ∴210sin cos ,552BA n BA n BA nθ⋅=〈〉===⨯.。

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

专题07 立体几何综合问题【题型解读】▶▶题型一 空间点、线、面的位置关系及空间角的计算(1)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.(2)利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.【例1】 (2019·河南郑州高三联考)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.【答案】见解析【解析】(1)在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,所以△ABD 为直角三角形且∠ADB =90°,故BD ⊥AD .因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD , 又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3).所以AE →=(-1,0,3),AC →=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A E →=0,n ·A C →=0,即⎩⎨⎧ -x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为A F →=(-1,3,3), 所以cos 〈n ,A F →〉=n ·A F →|n |·|A F →|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 【素养解读】本例问题(1)证明两平面垂直,考查了逻辑推理的核心素养;问题(2)计算线面所成的角时,考查了直观想象和数学运算的核心素养.【突破训练1】 (2018·北京卷)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC = 5 ,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】见解析【解析】(1)证明:在三棱柱ABC -A 1B 1C 1中,因为CC 1⊥平面ABC ,所以四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,所以AC ⊥EF .因为AB =BC .所以AC ⊥BE ,所以AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐称系Exyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).所以CD →=(2,0,1),C B →=(1,2,0),设平面BCD 的法向量为n =(a ,b ,c ),所以⎩⎪⎨⎪⎧ n ·C D →=0,n ·C B →=0,所以⎩⎪⎨⎪⎧ 2a +c =0,a +2b =0.令a =2,则b =-1,c =-4,所以平面BCD 的法向量n =(2,-1,-4),又因为平面CDC 1的法向量为E B →=(0,2,0),所以cos 〈n ,E B →〉=n ·E B→|n ||EB →|=-2121. 由图可得二面角B -CD -C 1为钝二面角,所以二面角B -CD -C 1的余弦值为-2121. (3)证明:平面BCD 的法向量为n =(2,-1,-4),因为G (0,2,1),F (0,0,2),所以G F →=(0,-2,1),所以n ·G F →=-2,所以n 与G F →不垂直,所以GF 与平面BCD 不平行且不在平面BCD 内,所以GF 与平面BCD 相交. ▶▶题型二 平面图形折叠成空间几何体的问题1.先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.2.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(3)解决翻折问题的答题步骤第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量;第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面;第三步:利用判定定理或性质定理进行证明.【例2】 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】见解析【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|B F →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,D P →=⎝ ⎛⎭⎪⎫1,32,32,H P →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪H P →·D P →|H P →|·|DP →|= 34 3=34. 所以DP 与平面ABFD 所成角的正弦值为34. 【素养解读】本例在证明或计算过程中都要考虑图形翻折前后的变化,因此综合考查了逻辑推理、数学运算、直观想象、数学建模的核心素养.【突破训练2】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.【答案】见解析【解析】(1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC .所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); 由⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. ▶▶题型三 线、面位置关系中的探索性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,解决这类问题的基本思路类似于反证法,即“在假设存在的前提下通过推理论证,如果能找到符合要求的点(或其他的问题),就肯定这个结论,如果在推理论证中出现矛盾,就说明假设不成立,从而否定这个结论”.【例3】 (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2 2 ,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】见解析【解析】(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系Oxyz .则O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),A P →=(0,2,23),取平面PAC 的一个法向量O B →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则A M →=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ). 由A P →·n =0,A M →·n =0得⎩⎨⎧ 2y +23z =0,ax +(4-a)y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈O B →,n 〉=23(a -4)23(a -4)2+3a 2+a2.由已知得|cos 〈O B →,n 〉|=32. 所以23|a -4|23(a -4)2+3a 2+a2=32.解得a =-4(舍去),a =43. 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又P C →=(0,2,-23), 所以cos 〈P C →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【素养解读】本例问题(1)中证明线面垂直直接考查了逻辑推理的核心素养;问题(2)中要探求点M 的位置,要求较高,它既考查了直观想象的核心素养,又考查了数学建模的核心素养.【突破训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面ABB 1A 1,且AA 1=AB =2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为π6,请问在线段A 1C 上是否存在点E ,使得二面角A -BE -C 的大小为2π3,请说明理由.【答案】见解析【解析】(1)证明:连接AB 1交A 1B 于点D ,因为AA 1=AB ,所以AD ⊥A 1B ,又平面A 1BC ⊥侧面ABB 1A 1,平面A 1BC ⊂平面ABB 1A 1=A 1B ,所以AD ⊥平面A 1BC ,BC ⊂平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,所以AA 1⊥BC ,又AA 1∩AD =A ,所以BC ⊥侧面ABB 1A 1,所以BC ⊥AB . (2)由(1)得AD ⊥平面A 1BC ,所以∠ACD 是直线AC 与平面A 1BC 所成的角,即∠ACD =π6,又AD =2,所以AC =22,假设存在适合条件的点E ,建立如图所示空间直角坐标系Axyz ,设A 1E →=λA 1C →(0≤λ≤1),则B (2,2,0),B 1(2,2,2),由A 1(0,0,2),C (0,22,0),得E (0,22λ,2-2λ),设平面EAB 的一个法向量m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,得⎩⎨⎧ 22λy +(2-2λ)z =0,2x +2y =0, 所以可取m =(1-λ,λ-1,2λ), 由(1)知AB 1⊥平面A 1BC ,所以平面CEB 的一个法向量n =(1,1,2), 所以12=⎪⎪⎪⎪⎪⎪cos 2π3=cos 〈m ,n 〉=m·n |m ||n |=2λ22(λ-1)2+2λ2,解得λ=12,故点E 为线段A 1C 中点时,二面角A -BE -C 的大小为2π3.。

2020年高考数学二轮限时训练立体几何7理

2020年高考数学二轮限时训练立体几何7理

第五部分:立体几何(7)(限时:时间45分钟,满分100分)一、选择题1. 若m n是两条不同的直线,a、B、丫是三个不同的平面,则下列命题中的真命题是()A. 若n? 3,a±3,贝U mLaB. 若久门丫 = m 3^Y= n, mil n,贝V a〃BC. 若mL3, m//a,贝U a//BD. 若a丄Y,a丄B,贝V B丄丫【解析】A中只有当m垂直于a、B的交线时,才有mha;B中a、B可能相交,如三棱柱的两个侧面;C中m//a ? a内有一直线l //m ] i 丄m 丄pj 丄0;/CcrJD中,B与丫可能平行,也可能相交(不一定垂直).【答案】C2. (2020年柳州质检一一)设a、b是不同的直线,a、B是不同的平面,则下列四个命题中正确的是()A. 若a丄b, a La,贝U b/aB. 若a/a,a丄B,贝V a丄BC. 若a 丄B,a丄B,贝V a /laD. 若a丄b, a±a, b±B,贝U a±B【解析】A中,b可能在a内;B中,a可能在B内,也可能与B平行或相交(不垂直);C中,a可能在a内;D中,a丄b, a丄a,贝U b? a或b//a,又b丄B,「・a丄B.【答案】D3.其中正确命题的序号是()如图,在斜三棱柱 ABO ABG 中,/ BAG= 90°, BG 丄AQ 贝U G 在底面 ABC 上的射影H 必在( )A. 直线AB 上B. 直线BG 上C. 直线AG 上D. A ABC 内部【解析】••• BAI AG BG 丄 AG BA H BGi = B,••• AGL 平面 ABG.•/ AG 平面ABG ••平面 ABGL 平面ABG ,且交线是 AB.故平面ABG 上一点 G 在底面ABG 的射影H 必在交线 AB 上.【答案】 A3.如果一个二面角的两个半平面与另一个二面角的两个半平面互相垂直,则这两个 .面角的大小是() A.相等•应选D.【答案】 D4. (2020年浙江模拟)下面四个命题:① “直线a //直线b ”的充要条件是“a 平行于b 所在的平面”;② “直线I 丄平面a 内所有直线”的充要条件是“ I 丄平面 a”; ③ “直线a 、b 为异面直线”的充分不必要条件是“直线 a 、b 不相交”;C.相等或互补.无法确定 【解析】如图, I —3为直二面角,丫一 a —S 为另一个二面角,使 丫丄a,.互补 把丫平面固定不动,a —3的度数不能确定,④“平面a//平面3”的必要不充分条件是“a内存在不共线三点到3的距离相其中正确命题的序号是()A.①②B .②③ C.②④ D .③④【解析】a //b 推不出a 平行于b 所在平面,反之也不成立.•••①不正确.由线面垂直的定义知②正确. a 、b 不相交时,a 、b 可能平行,此时 a 、b 共面•③不正确•当 a/3时,a 内一定有三个不共线的点到平面 3的距离相等•反之, 设A 、B 、C 是a 内三个不共线的 点,当3过厶ABC 的中位线时,A 、B C 三点到3的距离 相等,但此时a 、3相交,④正确.【答案】 C二、填空题6•将正方形ABCD 沿对角线BD 折起,使平面 AED 丄平面CBD E 是CD 的中点,则异面 直线AE BC 所成角的正切值是【解析】 如图,取BD 中点O,连接AO OE二 tan 乙 AEO = 27.正四棱锥S — ABCD 的底面边长为2,高为2, E 是边BC 的中点,动点P 在表面上运动,并且总保持 PE! AQ 则动点P 的轨「迹的周长为 _________【解析】贝U AO 丄BD.•••平面ABDL 平面 CBD•- AO 丄平面 BCD OE// BC, •••/ AEO 即为 AE 、 BC 所成的角.设正方形的边长为 则 0E 二 1/0 二 0由题意知;点P 的轨迹为 如图所示的三角形 EFG 其中GF 为中点,二 EF =Q,GE 二 GF 二二泗二斗2 2 '/>轨迹的周长为辽+ 6【答案】’八&设P 是60°的二面角 a — I — 3内一点,PAL a, PB±3, A B 分别为垂足,=2, PB = 4,贝U AB 的长是【解析】设平面PAB 与棱I 交于点0,连接AO BQ 则/ A0E 为二面角的平面角, •••/ AOB=60 ,•••/ APB=120 .• Ah=Ah+BP-2AP • BP- cos120= 4 + 16-2x2x4xS'PA10.【答案】三、解答题9.(2020年年苏北模拟)在四棱锥 S — ABCD 中,已知 AB// CD SA = SB, SC = SD, E 、F 分 别为AB CD 的中点.(1) 求证:平面 SEFL 平面 ABCD⑵ 若平面SABH 平面 SCD= I ,求证:AB//I.【证明】(1)由SA = SB, E 为AB 中点得SEI AB.一由SC = SD F 为CD 中点得SF 丄DC.又 AB// DC ••• SB 丄SF.又 SF A SE = S,「. AB!平面 SEF.又••• AB?平面 ABCD :平面 SEFL 平面 ABCD.(2) T AB// CD CD?平面 SCD• AB//平面 SCD.又•••平面 SABH 平面 SCD= I ,根据直线与平面平行的性质定理得:AB// I.(2020年九江模拟)如图,四棱锥S— ABCD的底面ABCD是正方形,SM底面ABCD E 是SC上一动点.(1) 求证:平面EBDL平面SAC(2) 当AA的值为多少时,二面角B—SC- D的大小为120°?(3) 在(2)的条件下,设AB= 1,当E位于何处时,恰为四棱锥S- ABCD的外接球的球心•并求该球的体积.【解析】⑴•/ ABC 为正方形,••• BDL AC又SAL底面ABCD:BDL SASAH AC= A平面EBD丄平面SAC.BD丄平面SAC又BD?平面EBD(2)由题设易知,Rt△ SBC也Rt△ SDC. 设BE! SC 贝U DEL SC.•••/ BED为二面角B- SG-D的平面角.•••/ BED= 120°.设AB= a, SA= b,计算可得,而BD= 2a,代入余弦定理:BD= B^+ DE—2BE- DE- cos120°? a = b,(3) 当E为SC的中点时,恰为四棱锥S—ABCD的外接球球心,禾U用补形法可把四棱锥补成一个正方体,则E点为对角线交点,即正方体中心,可得结论.•••外接球的半径为R=〒,V球=牙n.10.。

高考数学(理)二轮专题练习:立体几何(含答案)

高考数学(理)二轮专题练习:立体几何(含答案)

立体几何1.一个物体的三视图的排列规则是俯视图放在正(主)视图下面,长度与正(主)视图一样,侧(左)视图放在正(主)视图右面,高度与正(主)视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.在画一个物体的三视图时,一定注意实线与虚线要分明.[问题1] 如图,若一个几何体的正(主)视图、侧(左)视图、俯视图均为面积等于2的等腰直角三角形,则该几何体的体积为________. 答案 432.在斜二测画法中,要确定关键点及关键线段.“平行于x 轴的线段平行性不变,长度不变;平行于y 轴的线段平行性不变,长度减半.”[问题2] 如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________. 答案 2 23.简单几何体的表面积和体积(1)S 直棱柱侧=c ·h (c 为底面的周长,h 为高). (2)S 正棱锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 正棱台侧=12(c ′+c )h ′(c 与c ′分别为上、下底面周长,h ′为斜高).(4)圆柱、圆锥、圆台的侧面积公式 S 圆柱侧=2πrl (r 为底面半径,l 为母线), S 圆锥侧=πrl (同上),S 圆台侧=π(r ′+r )l (r ′、r 分别为上、下底的半径,l 为母线). (5)体积公式V 柱=S ·h (S 为底面面积,h 为高), V 锥=13S ·h (S 为底面面积,h 为高),V 台=13(S +SS ′+S ′)h (S 、S ′为上、下底面面积,h 为高).(6)球的表面积和体积 S 球=4πR 2,V 球=43πR 3.[问题3] 如图所示,一个空间几何体的正(主)视图和俯视图都是边长为1的正方形,侧(左)视图是一个直径为1的圆,那么这个几何体的表面积为( ) A .4π B .3π C .2π D.32π 答案 D4.空间直线的位置关系:①相交直线——有且只有一个公共点.②平行直线——在同一平面内,没有公共点.③异面直线——不在同一平面内,也没有公共点.[问题4] 在空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系是________. 答案 相交5.空间直线与平面、平面与平面的位置关系 (1)直线与平面①位置关系:平行、直线在平面内、直线与平面相交. ②直线与平面平行的判定定理和性质定理:判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.③直线与平面垂直的判定定理和性质定理:判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 性质定理:垂直于同一个平面的两条直线平行. (2)平面与平面①位置关系:平行、相交(垂直是相交的一种特殊情况). ②平面与平面平行的判定定理和性质定理:判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. ③平面与平面垂直的判定定理和性质定理:判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.[问题5] 已知b ,c 是平面α内的两条直线,则“直线a ⊥α”是“直线a ⊥b ,直线a ⊥c ”的________条件. 答案 充分不必要 6.空间向量(1)用空间向量求角的方法步骤①异面直线所成的角若异面直线l 1和l 2的方向向量分别为v 1和v 2,它们所成的角为θ,则cos θ=|cos 〈v 1,v 2〉|. ②直线和平面所成的角利用空间向量求直线与平面所成的角,可以有两种方法:方法一 分别求出斜线和它在平面内的射影直线的方向向量,转化为求两条直线的方向向量的夹角(或其补角).方法二 通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. ③利用空间向量求二面角也有两种方法:方法一 分别在二面角的两个面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小.方法二 通过平面的法向量来求,设二面角的两个面的法向量分别为n 1和n 2,则二面角的大小等于〈n 1,n 2〉(或π-〈n 1,n 2〉).易错警示:①求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,容易误以为是线面角的余弦.②求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. (2)用空间向量求A 到平面α的距离: 可表示为d =|n ·AB →||n |.[问题6] (1)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于________.(2)正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为________. 答案 (1)64 (2)24解析 (1)方法一 取A 1C 1的中点E ,连接AE ,B 1E ,如图. 由题意知B 1E ⊥平面ACC 1A 1,则∠B 1AE 为AB 1与侧面ACC 1A 1所成的角. 设正三棱柱侧棱长与底面边长为1, 则sin ∠B 1AE =B 1E AB 1=322=64.方法二 如图,以A 1C 1中点E 为原点建立空间直角坐标系E -xyz ,设棱长为1,则A ⎝⎛⎭⎫12,0,1,B 1⎝⎛⎭⎫0,32,0, 设AB 1与平面ACC 1A 1所成的角为θ,EB 1→为平面ACC 1A 1的法向量. 则sin θ=|cos 〈AB 1→,EB 1→〉|=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫-12,32,-1·⎝⎛⎭⎫0,32,02×32=64. (2)建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),D 1(0,0,1),C 1(0,1,1),O ⎝⎛⎭⎫12,12,1. 设平面ABC 1D 1的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·AB →=0,n ·AD 1→=0,∴⎩⎪⎨⎪⎧y =0,-x +z =0.令z =1,得⎩⎪⎨⎪⎧x =1,y =0,∴n =(1,0,1),又OD 1→=⎝⎛⎭⎫-12,-12,0, ∴O 到平面ABC 1D 1的距离d =|n ·OD 1→||n|=122=24.易错点1 三视图认识不清致误例1 一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80错解 由三视图知,该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4,宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是正方形,边长为4. 所以表面积S =42×3+2×4+2×12(2+4)×4=48+8+24=80.找准失分点 不能准确把握三视图和几何体之间的数量关系,根据正视图可知,侧视图中等腰梯形的高为4,而错认为等腰梯形的腰为4.正解 由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12 =17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.答案 C易错点2 对几何概念理解不透致误例2 给出下列四个命题:①有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱; ②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③底面是平行四边形的四棱柱是平行六面体; ④底面是矩形的平行六面体是长方体.其中正确的命题是__________(写出所有正确命题的序号). 错解1 ①②③ 错解2 ②③④找准失分点 ①是错误的,因为棱柱的侧棱要都平行且相等;④是错误的,因为长方体的侧棱必须与底面垂直. 正解 ②③易错点3 对线面关系定理条件把握不准致误例3 已知m 、n 是不同的直线,α、β、γ是不同的平面.给出下列命题: ①若α⊥β,α∩β=m ,n ⊥m ,则n ⊥α,或n ⊥β; ②若α∥β,α∩γ=m ,β∩γ=n ,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α,且n ∥β; ⑤若m 、n 为异面直线,则存在平面α过m 且使n ⊥α. 其中正确的命题序号是________. 错解 ②③④⑤找准失分点③是错误的;⑤是错误的.正解①是错误的.如正方体中面ABB′A′⊥面ADD′A′,交线为AA′.直线AC⊥AA′,但AC不垂直面ABB′A′,同时AC也不垂直面ADD′A′.②正确.实质上是两平面平行的性质定理.③是错误的.在上面的正方体中,A′C不垂直于平面A′B′C′D′,但与B′D′垂直.这样A′C就垂直于平面A′B′C′D′内与直线B′D′平行的无数条直线.④正确.利用线面平行的判定定理即可.⑤错误.从结论考虑,若n⊥α且m⊂α,则必有m⊥n,事实上,条件并不能保证m⊥n.故错误.答案②④1.已知三条不同直线m,n,l与三个不同平面α,β,γ,有下列命题:①若m∥α,n∥α,则m∥n;②若α∥β,l⊂α,则l∥β;③α⊥γ,β⊥γ,则α∥β;④若m,n为异面直线,m⊂α,n⊂β,m∥β,n∥α,则α∥β.其中正确命题的个数是()A.0 B.1 C.2 D.3答案 C解析因为平行于同一平面的两条直线除了平行,还可能相交或成异面直线,所以命题①错误;由直线与平面平行的定义知命题②正确;由于垂直于同一个平面的两个平面可能平行还可能相交,因此命题③错误;过两条异面直线分别作平面互相平行,这两个平面是唯一存在的,因此命题④正确.故选C.2.设m,n是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是()A.当m⊂α时,“n∥α”是“m∥n”的必要不充分条件B.当m⊂α时,“m⊥β”是“α⊥β”的充分不必要条件C.当n⊥α时,“n⊥β”是“α∥β”成立的充要条件D.当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件答案 A解析当m⊂α时,若n∥α可得m∥n或m,n异面;若m∥n可得n∥α或n⊂α,所以“n∥α”是“m∥n”的既不充分也不必要条件,答案选A.3.一个几何体的三视图如图所示,则该几何体的体积是()A .64B .72C .80D .112答案 B解析 根据三视图,该几何体为下面是一个立方体、上面两个三棱锥,所以V =4×4×4+2×13×(12·4·2)×3=72,故选B.4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C 与PM 相交;④NC 与PM 异面.其中不正确的结论是( ) A .① B .② C .③ D .④ 答案 C解析 作出过M ,N ,P ,Q 四点的截面交C 1D 1于点S ,交AB 于点R ,如图所示中的六边形MNSPQR ,显然点A 1,C 分别位于这个平面的两侧,故A 1C 与平面MNPQ 一定相交,不可能平行,故结论②不正确.5.一个几何体的三视图如图所示,则该几何体的表面积为( )A .2+ 2B .3+ 2C .1+2 2D .5答案 A解析 由三视图可知,该几何体是一个四棱锥,如图所示. 该几何体的底面是边长为1的正方形,故S 1=12=1. 侧棱P A ⊥面ABCD ,且P A =1, 故S △P AB =S △P AD =12×1×1=12,而PD ⊥DC ,CB ⊥PB ,且PB =PD =2, 所以S △PBC =S △PDC =12×2×1=22.所以该几何体的表面积为S =1+2×12+2×22=2+ 2.故选A.6.如图,已知六棱锥P —ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( ) A .PB ⊥ADB .平面P AB ⊥平面PBC C .直线BC ∥平面P AED .直线PD 与平面ABC 所成的角为45° 答案 D解析 若PB ⊥AD ,则AD ⊥AB ,但AD 与AB 成60°角,A 错误;平面P AB 与平面ABD 垂直,所以平面P AB 一定不与平面PBC 垂直,B 错误;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,C 错误;直线PD 与平面ABC 所成角为∠PDA ,在Rt △P AD 中,AD =P A , ∴∠PDA =45°,D 正确.7.对于四面体ABCD ,给出下列四个命题: ①若AB =AC ,BD =CD ,则BC ⊥AD ; ②若AB =CD ,AC =BD ,则BC ⊥AD ; ③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ; ④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD .其中正确的是________.(填序号) 答案 ①④解析 取线段BC 的中点E ,连接AE ,DE , ∵AB =AC ,BD =CD , ∴BC ⊥AE ,BC ⊥DE , ∴BC ⊥平面ADE , ∵AD ⊂平面ADE , ∴BC ⊥AD ,故①正确.设点O 为点A 在平面BCD 上的射影, 连接OB ,OC ,OD , ∵AB ⊥CD ,AC ⊥BD , ∴OB ⊥CD ,OC ⊥BD , ∴点O 为△BCD 的垂心, ∴OD ⊥BC ,∴BC ⊥AD ,故④正确,易知②③不正确,填①④.8.如图,四面体ABCD 中,AB =1,AD =23,BC =3,CD =2,∠ABC =∠DCB =π2,则二面角A -BC -D 的大小为________.答案 π3解析 由∠ABC =∠DCB =π2知,BA →与CD →的夹角θ就是二面角A -BC -D 的平面角. 又AD →=AB →+BC →+CD →,∴AD →2=(AB →+BC →+CD →)2 =AB →2+BC 2→+CD →2+2AB →·CD →.因此2AB →·CD →=(23)2-12-32-22=-2, ∴cos(π-θ)=-12,且0<π-θ<π,则π-θ=23π,故θ=π3.9.已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β. 其中为真命题的是________.(填序号) 答案 ①④解析 对命题①,则l ⊥α,α∥β得,l ⊥β,m ⊂β,∴l⊥m,故①正确.对命题②,l⊥mD⇒/l⊥β,则l⊥mD⇒/α∥β,故②错误.对命题③,当α⊥β时,l与m也可能相交或异面或平行,故③错误.对命题④,由l⊥α,l∥m得m⊥α,又m⊂β,∴α⊥β,故④正确.10.三棱锥D-ABC及其三视图中的正(主)视图和侧(左)视图如图所示,则棱BD的长为________.答案4 2解析由正(主)视图知CD⊥平面ABC,设AC中点为E,则BE⊥AC,且AE=CE=2;由侧(左)视图知CD=4,BE=23,在Rt△BCE中,BC=BE2+EC2=(23)2+22=4,在Rt△BCD中,BD=BC2+CD2=42+42=4 2.故答案为4 2.。

专题07 立体几何-2020年高考数学(理)二轮专项复习

专题07 立体几何-2020年高考数学(理)二轮专项复习

专题07立体几何立体几何的知识是高中数学的主干内容之一,它主要研究简单空间几何体的位置和数量关系.本专题内容分为三部分:一是点、直线、平面之间的位置关系,二是简单空间几何体的结构,三是空间向量与立体几何.在本专题中,我们将首先复习空间点、直线、平面之间的位置关系,特别是对特殊位置关系(平行与垂直)的研究;其后,我们复习空间几何体的结构,主要是柱体、锥体、台体和球等的性质与运算;最后,我们通过空间向量的工具证明有关线、面位置关系的一些命题,并解决线线、线面、面面的夹角问题.§7-1点、直线、平面之间的位置关系【知识要点】1.空间直线和平面的位置关系:(1)空间两条直线:①有公共点:相交,记作:a∩b=A,其中特殊位置关系:两直线垂直相交.②无公共点:平行或异面.平行,记作:a∥b.异面中特殊位置关系:异面垂直.(2)空间直线与平面:①有公共点:直线在平面内或直线与平面相交.直线在平面内,记作:a⊂α .直线与平面相交,记作:a∩α =A,其中特殊位置关系:直线与平面垂直相交.②无公共点:直线与平面平行,记作:a∥α .(3)空间两个平面:①有公共点:相交,记作:α ∩β =l,其中特殊位置关系:两平面垂直相交.②无公共点:平行,记作:α ∥β .2.空间作为推理依据的公理和定理:(1)四个公理与等角定理:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)空间中线面平行、垂直的性质与判定定理:①判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.②性质定理:如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行.如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)我们把上述判定定理与性质定理进行整理,得到下面的位置关系图:【复习要求】1.了解四个公理与等角定理;2.理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.【例题分析】例1如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,AA 1的中点.求证:(Ⅰ)E 、C 、D 1、F 四点共面;(Ⅱ)CE 、DA 、D 1F 三线共点.【分析】对于(Ⅰ)中证明“E 、C 、D 1、F 四点共面”,可由这四点连接成两条直线,证明它们平行或相交即可;对于(Ⅱ)中证明“CE 、DA 、D 1F 三线共点”,可证其中两条相交直线的交点位于第三条直线上.证明:(Ⅰ)连接D 1C 、A 1B 、EF .∵E ,F 分另是AB ,AA 1的中点,∴EF ∥A 1B ,,211B A EF =又A 1D 1∥BC ,A 1D 1=BC ,∴A 1D 1CB 是平行四边形.∴A 1B ∥D 1C ,EF ∥D 1C ,∴E 、C 、D 1、F 四点共面.(Ⅱ)由(Ⅰ)得EF ∥CD 1,,211CD EF =∴直线CE 与直线D 1F 必相交,记CE ∩D 1F =P ,∵P ∈D 1F ⊂平面A 1ADD 1,P ∈CE ⊂平面ABCD ,∴点P 是平面A 1ADD 1和平面ABCD 的一个公共点.∵平面A 1ADD 1∩平面ABCD =AD ,∴P ∈AD ,∴CE 、DA 、D 1F 三线共点.【评述】1、证明多点共面、多点共线、多线共面的主要依据:(1)证明多点共面常用公理2及其推论;(2)证明多点共线常用公理3,即证明点在两个平面内,从而点在这两个平面的交线上;(3)证明多线共面,首先由其中两直线确定平面,再证其余直线在此平面内.2、证明a ,b ,c 三线交于一点的主要依据:(1)证明a 与b 相交,c 与b 相交,再证明两交点重合;(2)先证明a 与b 相交于点P ,再证明P ∈c .例2在四棱锥P -ABCD 中,底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,求证:MN ∥平面PAD .【分析】要证明“线面平行”,可通过“线线平行”或“面面平行”进行转化;题目中出现了中点的条件,因此可考虑构造(添加)中位线辅助证明.证明:方法一,取PD 中点E ,连接AE ,NE .∵底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,∴MA ∥CD ,.21CD MA =∵E 是PD 的中点,∴NE ∥CD ,.21CD NE =∴MA ∥NE ,且MA =NE ,∴AENM 是平行四边形,∴MN ∥AE .又AE ⊂平面PAD ,MN ⊄平面PAD ,∴MN ∥平面PAD .方法二取CD 中点F ,连接MF ,NF .∵MF ∥AD ,NF ∥PD ,∴平面MNF ∥平面PAD ,∴MN ∥平面PAD .【评述】关于直线和平面平行的问题,可归纳如下方法:(1)证明线线平行:a ∥c ,b ∥c ,a ∥α,a ⊂βα∥βa ⊥α,b ⊥αα∩β=bγ ∩α=a ,γ ∩β=b⇒a ∥b⇒a ∥b⇒a ∥b⇒a ∥b(2)证明线面平行:a ∩α=∅a ∥bα∥βb⊂α,a⊄αa⊂β⇒a∥α⇒a∥α⇒a∥α(3)证明面面平行:α∩β=∅a∥β,b∥βa⊥α,a⊥βα∥γ ,β∥γa,b⊂α,a∩b=A⇒α∥β⇒α∥β⇒α∥β⇒α∥β例3在直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A1C垂直于经过BC1的平面即可.证明:连接AC1.∵ABC-A1B1C1是直三棱柱,∴AA1⊥平面ABC,∴AB⊥AA1.又AB⊥AC,∴AB⊥平面A1ACC1,∴A1C⊥A B.①又AA1=AC,∴侧面A1ACC1是正方形,∴A1C⊥AC1.②由①,②得A1C⊥平面ABC1,∴A1C⊥BC1.【评述】空间中直线和平面垂直关系的论证往往是以“线面垂直”为核心展开的.如本题已知条件中出现的“直三棱柱”及“AB⊥AC”都要将其向“线面垂直”进行转化.例4在三棱锥P-ABC中,平面PAB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面PAC ⊥平面PBC.【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又可以通过“线线垂直”进行转化.证明:∵平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,且AB ⊥BC ,∴BC ⊥平面PAB ,∴AP ⊥BC .又AP ⊥PB ,∴AP ⊥平面PBC ,又AP ⊂平面PAC ,∴平面PAC ⊥平面PBC .【评述】关于直线和平面垂直的问题,可归纳如下方法:(1)证明线线垂直:a ⊥c ,b ∥c ,a ⊥αb ⊂α⇒a ⊥b⇒a ⊥b (1)证明线面垂直:a ⊥m ,a ⊥n a ∥b ,b ⊥αα∥β,a ⊥βα⊥β,α∩β=l m ,n ⊂α,m ∩n =Aa ⊂β,a ⊥l ⇒a ⊥α⇒a ⊥α⇒a ⊥α⇒a ⊥α(1)证明面面垂直:a ⊥β,a ⊂α⇒α⊥β例5如图,在斜三棱柱ABC -A 1B 1C 1中,侧面A 1ABB 1是菱形,且垂直于底面ABC ,∠A 1AB =60°,E ,F 分别是AB 1,BC 的中点.(Ⅰ)求证:直线EF ∥平面A 1ACC 1;(Ⅱ)在线段AB 上确定一点G ,使平面EFG ⊥平面ABC ,并给出证明.证明:(Ⅰ)连接A 1C ,A 1E .∵侧面A 1ABB 1是菱形,E 是AB 1的中点,∴E 也是A 1B 的中点,又F 是BC 的中点,∴EF ∥A 1C .∵A 1C ⊂平面A 1ACC 1,EF ⊄平面A 1ACC 1,∴直线EF ∥平面A 1ACC 1.(2)解:当31=GA BG 时,平面EFG ⊥平面ABC ,证明如下:连接EG ,FG .∵侧面A 1ABB 1是菱形,且∠A 1AB =60°,∴△A 1AB 是等边三角形.∵E 是A 1B 的中点,31=GA BG ,∴EG ⊥AB .∵平面A 1ABB 1⊥平面ABC ,且平面A 1ABB 1∩平面ABC =AB ,∴EG ⊥平面ABC .又EG ⊂平面EFG ,∴平面EFG ⊥平面ABC .练习7-1一、选择题:1.已知m ,n 是两条不同直线,α ,β ,γ 是三个不同平面,下列命题中正确的是()(A)若m ∥α ,n ∥α ,则m ∥n (B)若m ⊥α ,n ⊥α ,则m ∥n (C)若α ⊥γ ,β ⊥γ ,则α ∥β (D)若m ∥α ,m ∥β ,则α ∥β 2.已知直线m ,n 和平面α ,β ,且m ⊥n ,m ⊥α ,α ⊥β ,则()(A)n ⊥β (B)n ∥β ,或n ⊂β (C)n ⊥α (D)n ∥α ,或n ⊂α 3.设a ,b 是两条直线,α 、β 是两个平面,则a ⊥b 的一个充分条件是()(A)a ⊥α ,b ∥β ,α ⊥β (B)a ⊥α ,b ⊥β ,α ∥β (C)a ⊂α ,b ⊥β ,α ∥β (D)a ⊂α ,b ∥β ,α ⊥β 4.设直线m 与平面α 相交但不垂直,则下列说法中正确的是()(A)在平面α 内有且只有一条直线与直线m 垂直(B)过直线m 有且只有一个平面与平面α 垂直(C)与直线m 垂直的直线不可能与平面α 平行(D)与直线m 平行的平面不可能与平面α 垂直二、填空题:5.在三棱锥P -ABC 中,6==PB PA ,平面PAB ⊥平面ABC ,PA ⊥PB ,AB ⊥BC ,∠BAC =30°,则PC =______.6.在直四棱柱ABCD -A 1B 1C 1D 1中,当底面ABCD 满足条件______时,有A 1C ⊥B 1D 1.(只要求写出一种条件即可)7.设α ,β 是两个不同的平面,m ,n 是平面α ,β 之外的两条不同直线,给出四个论断:①m ⊥n ②α ⊥β ③n ⊥β ④m ⊥α 以其中三个论断作为条件,余下的一个论断作为结论,写出正确的一个命题______.8.已知平面α ⊥平面β ,α ∩β =l ,点A ∈α ,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α ,m ∥β ,给出下列四种位置:①AB ∥m ;②AC ⊥m ;③AB ∥β ;④AC ⊥β ,上述四种位置关系中,不一定成立的结论的序号是______.三、解答题:9.如图,三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,M ,N 分别为PA ,BC的中点.(Ⅰ)求MN 的长;(Ⅱ)求证:PA ⊥BC .10.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点.求证:(Ⅰ)直线EF ∥平面ACD ;(Ⅱ)平面EFC ⊥平面BCD .11.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠FAB=90°,BC ∥AD ,AF BE AF BE AD BC 21,//,21==,G ,H 分别为FA ,FD 的中点.(Ⅰ)证明:四边形BCHG 是平行四边形;(Ⅱ)C ,D ,F ,E 四点是否共面?为什么?(Ⅲ)设AB =BE ,证明:平面ADE ⊥平面CDE .§7-2空间几何体的结构【知识要点】1.简单空间几何体的基本概念:(1)(2)特殊的四棱柱:(3)其他空间几何体的基本概念:几何体基本概念正棱锥底面是正多面形,并且顶点在底面的射影是底面的中心正棱台正棱锥被平行于底面的平面所截,截面与底面间的几何体是正棱台圆柱以矩形的一边所在的直线为轴,将矩形旋转一周形成的曲面围成的几何体圆锥以直角三角形的一边所在的直线为轴,将直角三角形旋转一周形成的曲面围成的几何体圆台以直角梯形中垂直于底边的腰所在的直线为轴,将直角梯形旋转一周形成的曲面围成的几何体球面半圆以它的直径为轴旋转,旋转而成的曲面球球面所围成的几何体2.简单空间几何体的基本性质:几何体性质补充说明棱柱(1)侧棱都相等,侧面是平行四边形(2)两个底面与平行于底面的截面是全等的多边形(3)过不相邻的两条侧棱的截面(对角面)是平行四边形(1)直棱柱的侧棱长与高相等,侧面及对角面都是矩形(2)长方体一条对角线的平方等于一个顶点上三条棱长的平方和正棱锥(1)侧棱都相等,侧面是全等的等腰三角形(2)棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形球(1)球心和球的截面圆心的连线垂直于截面(2)球心到截面的距离d ,球的半径R ,截面圆的半径r 满足22d R r -=(1)过球心的截面叫球的大圆,不过球心的截面叫球的小圆(2)在球面上,两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣弧的长度(两点的球面距离)3.简单几何体的三视图与直观图:(1)平行投影:①概念:如图,已知图形F ,直线l 与平面α 相交,过F 上任意一点M 作直线MM 1平行于l ,交平面α 于点M 1,则点M 1叫做点M 在平面α 内关于直线l 的平行投影.如果图形F 上的所有点在平面α 内关于直线l 的平行投影构成图形F 1,则F 1叫图形F 在α 内关于直线l 的平行投影.平面α 叫投射面,直线l 叫投射线.②平行投影的性质:性质1.直线或线段的平行投影仍是直线或线段;性质2.平行直线的平行投影是平行或重合的直线;性质3.平行于投射面的线段,它的投影与这条线段平行且等长;性质4.与投射面平行的平面图形,它的投影与这个图形全等;性质5.在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.(2)直观图:斜二侧画法画简单空间图形的直观图.(3)三视图:①正投影:在平行投影中,如果投射线与投射面垂直,这样的平行投影叫做正投影.②三视图:选取三个两两垂直的平面作为投射面.若投射面水平放置,叫做水平投射面,投射到这个平面内的图形叫做俯视图;若投射面放置在正前方,叫做直立投射面,投射到这个平面内的图形叫做主视图;和直立、水平两个投射面都垂直的投射面叫做侧立投射面,投射到这个平面内的图形叫做左视图.将空间图形向这三个平面做正投影,然后把三个投影按右图所示的布局放在一个水平面内,这样构成的图形叫空间图形的三视图.③画三视图的基本原则是“主左一样高,主俯一样长,俯左一样宽”.4.简单几何体的表面积与体积:(1)柱体、锥体、台体和球的表面积:①S 直棱柱侧面积=ch ,其中c 为底面多边形的周长,h 为直棱柱的高.②'=ch S 21正棱锥形面积,其中c 为底面多边形的周长,h '为正棱锥的斜高.③''+=h c c S )(21正棱台侧面积,其中c ',c 分别是棱台的上、下底面周长,h '为正棱台的斜高.④S 圆柱侧面积=2πRh ,其中R 是圆柱的底面半径,h 是圆柱的高.⑤S 圆锥侧面积=πRl ,其中R 是圆锥的底面半径,l 是圆锥的母线长.⑥S 球=4πR 2,其中R 是球的半径.(2)柱体、锥体、台体和球的体积:①V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.②Sh V 31=锥体,其中S 是锥体的底面积,h 是锥体的高.③)(31'+'+=S SS S h V 台体,其中S ',S 分别是台体的上、下底面的面积,h 为台体的高.④3π34R V =球,其中R 是球的半径.【复习要求】1.了解柱、锥、台、球及其简单组合体的结构特征;2.会画出简单几何体的三视图,会用斜二侧法画简单空间图形的直观图;3.理解球、棱柱、棱锥、台的表面积与体积的计算公式.【例题分析】例1如图,正三棱锥P -ABC 的底面边长为a ,侧棱长为b .(Ⅰ)证明:PA ⊥BC ;(Ⅱ)求三棱锥P -ABC 的表面积;(Ⅲ)求三棱锥P -ABC 的体积.【分析】对于(Ⅰ)只要证明BC (PA )垂直于经过PA (BC )的平面即可;对于(Ⅱ)则要根据正三棱锥的基本性质进行求解.证明:(Ⅰ)取BC 中点D ,连接AD ,PD .∵P -ABC 是正三棱锥,∴△ABC 是正三角形,三个侧面PAB ,PBC ,PAC 是全等的等腰三角形.∵D 是BC 的中点,∴BC ⊥AD ,且BC ⊥PD ,∴BC ⊥平面PAD ,∴PA ⊥BC .(Ⅱ)解:在Rt △PBD 中,,4212222a b BD PB PD -=-=∴.442122a b a PD BC S PBC -==⋅∆∵三个侧面PAB ,PBC ,PAC 是全等的等腰三角形,∴三棱锥P -ABC 的侧面积是.44322a b a-∴△ABC 是边长为a 的正三角形,∴三棱锥P -ABC 的底面积是,432a ∴三棱锥P -ABC 的表面积为⋅-+=-+)312(434434322222a b a aa b a a (Ⅲ)解:过点P 作PO ⊥平面ABC 于点O ,则点O 是正△ABC 的中心,∴,63233131aa AD OD =⨯==在Rt △POD 中,,3332222a b OD PD PO -=-=∴三棱锥P -ABC 的体积为.3123334331222222a b a a b a -=-⨯⨯【评述】1、解决此问题要求同学们熟悉正棱锥中的几个直角三角形,如本题中的Rt△POD ,其中含有棱锥的高PO ;如Rt △PBD ,其中含有侧面三角形的高PD ,即正棱锥的斜高;如果连接OC ,则在Rt △POC 中含有侧棱.熟练运用这几个直角三角形,对解决正棱锥的有关问题很有帮助.2、正n (n =3,4,6)边形中的相关数据:正三角形正方形正六边形边长aaa对角线长a2长:2a ;短:a3边心距a 632a a 23面积243a a 22233a 外接圆半径a 33a 22a例2如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1.【分析】本题给出的三棱柱不是直立形式的直观图,这种情况下对空间想象能力提出了更高的要求,可以根据几何体自身的性质,适当添加辅助线帮助思考.证明:(Ⅰ)∵ABC -A 1B 1C 1是正三棱柱,∴AA 1⊥平面ABC ,∴BE ⊥AA 1.∵△ABC 是正三角形,E 是AC 的中点,∴BE ⊥AC ,∴BE ⊥平面ACC 1A 1,又BE ⊂平面BEC 1,∴平面BEC 1⊥平面ACC 1A 1.(Ⅱ)证明:连接B 1C ,设BC 1∩B 1C =D .∵BCC 1B 1是矩形,D 是B 1C 的中点,∴DE ∥AB 1.又DE ⊂平面BEC 1,AB 1⊄平面BEC 1,∴AB 1∥平面BEC 1.例3在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知BD =2AD =8,542==DC AB .(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ;(Ⅱ)求四棱锥P -ABCD 的体积.【分析】本题中的数量关系较多,可考虑从“算”的角度入手分析,如从M 是PC 上的动点分析知,MB ,MD 随点M 的变动而运动,因此可考虑平面MBD 内“不动”的直线BD 是否垂直平面PAD .证明:(Ⅰ)在△ABD 中,由于AD =4,BD =8,54=AB ,所以AD 2+BD 2=AB 2.故AD ⊥BD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,所以BD ⊥平面PAD ,又BD ⊂平面MBD ,故平面MBD ⊥平面PAD .(Ⅱ)解:过P 作PO ⊥AD 交AD 于O ,由于平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD .因此PO 为四棱锥P -ABCD 的高,又△PAD 是边长为4的等边三角形.因此.32423=⨯=PO 在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为5585484=⨯,即为梯形ABCD 的高,所以四边形ABCD 的面积为.2455825452=⨯+=S 故.316322431=⨯⨯=-ABCD P V 例4如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图.它的主视图和左视图在下面画出(单位:cm)(Ⅰ)画出该多面体的俯视图;(Ⅱ)按照给出的尺寸,求该多面体的体积;(Ⅲ)在所给直观图中连结BC ',证明:BC '∥平面EFG .【分析】画三视图的基本原则是“主左一样高,主俯一样长,俯左一样宽”,根据此原则及相关数据可以画出三视图.证明:(Ⅰ)该几何体三视图如下图:(Ⅱ)所求多面体体积).cm (32842)2221(316442=⨯⨯⨯⨯-⨯⨯=-=正三棱锥长方体V V V (Ⅲ)证明:在长方体ABCD -A'B'C'D'中,连结AD',则AD'∥BC'.因为E ,G 分别为AA',A'D'中点,所以AD'∥EG ,从而EG ∥BC '.又BC'⊄平面EFG ,所以BC'∥平面EFG .例5有两个相同的直三棱柱,底面三角形的三边长分别是3a ,4a ,5a ,高为a2,其中a >0.用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的一个是四棱柱,求a 的取值范围.解:直三棱柱ABC -A 1B 1C 1的三个侧面的面积分别是6,8,10,底面积是6a 2,因此每个三棱柱的表面积均是2×6a 2+6+8+10=12a 2+24.情形①:将两个直三棱柱的底面重合拼在一起,只能拼成三棱柱,其表面积为:2×(12a 2+24)-2×6a 2=12a 2+48.情形②:将两个直三棱柱的侧面ABB 1A 1重合拼在一起,结果可能拼成三棱柱,也可能拼成四棱柱,但表面积一定是:2×(12a 2+24)-2×8=24a 2+32.情形③:将两个直三棱柱的侧面ACC 1A 1重合拼在一起,结果可能拼成三棱柱,也可能拼成四棱柱,但表面积一定是:2×(12a 2+24)-2×6=24a 2+36.情形④:将两个直三棱柱的侧面BCC 1B 1重合拼在一起,只能拼成四棱柱,其表面积为:2×(12a 2+24)-2×10=24a 2+28在以上四种情形中,②、③的结果都比④大,所以表面积最小的情形只能在①、④中产生.依题意“表面积最小的一个是四棱柱”,得24a 2+28<12a 2+48,解得,352<a 所以a 的取值范围是⋅)315,0(例6在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点,求三棱锥F -A 1ED 1的体积.【分析】计算三棱锥F -A 1ED 1的体积时,需要确定锥体的高,即点F 到平面A 1ED 1的距离,直接求解比较困难.利用等积的方法,调换顶点与底面的方式,如1111EFD A ED A F V V --=,也不易计算,因此可以考虑使用等价转化的方法求解.解法1:取AB 中点G ,连接FG ,EG ,A 1G .∵GF ∥AD ∥A 1D 1,∴GF ∥平面A 1ED 1,∴F 到平面A 1ED 1的距离等于点G 到平面A 1ED 1的距离.∴.8183313132111111111a a a D A S V V V EG A EG A D ED A G ED A F =⨯⨯====⋅∆---解法2:取CC 1中点H ,连接FA 1,FD 1,FH ,FC 1,D 1H ,并记FC 1∩D 1H =K .∵A 1D 1∥EH ,A 1D 1=EH ,∴A 1,D 1,H ,E 四点共面.∵A 1D 1⊥平面C 1CDD 1,∴FC ⊥A 1D 1.又由平面几何知识可得FC 1⊥D 1H ,∴FC ⊥平面A 1D 1HE .∴FK 的长度是点F 到平面A 1D 1HE (A 1ED 1)的距离.容易求得.811053453131,1053321111a a a FK S V a FK ED A ED A F =⨯⨯===⋅∴∆-练习7-2一、选择题:1.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为()(A)2π(B)4π(C)8π(D)16π2.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()(A)9π(B)10π(C)11π(D)12π3.有一种圆柱体形状的笔筒,底面半径为4cm ,高为12cm .现要为100个这种相同规格的笔筒涂色(笔筒内外均要涂色,笔筒厚度忽略不计).如果所用涂料每0.5kg 可以涂1m 2,那么为这批笔筒涂色约需涂料()(A)1.23kg (B)1.76kg (C)2.46kg (D)3.52kg 4.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为()(A)22(B)32(C)4(D)52二、填空题:5.如图,正三棱柱ABC -A 1B 1C 1的每条棱长均为2,E 、F 分别是BC 、A 1C 1的中点,则EF的长等于______.6.将边长为1的正方形ABCD 沿对角线AC 折起,使得BD =1,则三棱锥D -ABC 的体积是______.7.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,则这个球的体积为______.8.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①:_______________________________________________________________;充要条件②:_______________________________________________________________.(写出你认为正确的两个充要条件)三、解答题:9.如图,在正四棱柱ABCD-A1B1C1D1中,E是DD1的中点.(Ⅰ)求证:BD1∥平面ACE;(Ⅱ)求证:平面ACE⊥平面B1BDD1.10.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(Ⅰ)求该几何体的体积V;(Ⅱ)求该几何体的侧面积S.11.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1.(Ⅰ)求证:E,B,F,D1四点共面;(Ⅱ)若点G 在BC 上,32=BG ,点M 在BB 1上,GM ⊥BF ,求证:EM ⊥面BCC 1B 1.§7-3空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a +b =b +a ;加法结合律:(a +b +c )=a +(b +c );分配律:(λ +μ )a =λ a +μ a ;λ (a +b )=λ a +λ b .(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ ,使得a ∥λ b .②共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是存在惟一一对实数λ ,μ ,使得c =λ a +μ b .③空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在惟一的有序实数组λ 1,λ 2,λ 3,使得p =λ 1a +λ 2b +λ 3c .(3)空间向量的数量积运算:①空间向量的数量积的定义:a ·b =|a ||b |c os 〈a ,b 〉;②空间向量的数量积的性质:a ·e =|a |c os <a ,e >;a ⊥b ⇔a ·b =0;|a |2=a ·a ;|a ·b |≤|a ||b |.③空间向量的数量积的运算律:(λ a )·b =λ (a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c .(4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示:设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);λ a =(λ a 1,λ a 2,λ a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =λ b ⇔a 1=λ b 1,a 2=λ b 2,a 3=λ b 3(λ ∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式:设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211bb b aa ab a b a b a ++++++=>=<⋅b a ba b a 在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ;②l ⊥m ⇔a ⊥b ⇔a ·b =0;③l ∥α ⇔a ⊥u ⇔a ·u =0;④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ;⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ;⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v ②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l-β 在二面角的棱上任取一点O,在两个半平面内分别作射线OA⊥l,OB⊥l,则∠AOB叫做二面角α -l-β 的平面角.利用向量求二面角的平面角有两种方法:方法一:如图,若AB,CD分别是二面角α -l-β 的两个面内与棱l垂直的异面直线,则二面角α -l-β 的大小就是向量与的夹角的大小.方法二:如图,m1,m2分别是二面角的两个半平面α ,β 的法向量,则〈m1,m2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系.6.能用向量方法解决线线、线面、面面的夹角的计算问题.【例题分析】例1如图,在长方体OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,点P在棱AA1上,且AP=2PA1,点S在棱BB1上,且B1S=2SB,点Q,R分别是O1B1,AE的中点,求证:PQ∥RS.【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1,∴),34,0,0()2,0,0(32321===AA AP ∴⋅34,0,3(P 同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S ,)32,2,3(RS PQ =-=∴//,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),。

2020版高考数学大二轮复习 专题 立体几何增分强化练 理

2020版高考数学大二轮复习 专题  立体几何增分强化练  理

增分强化练1.(2019·泉州质检)在四棱锥P ­ABCD 中,PD ⊥平面ABCD ,AB ⊥AD ,AD ∥BC ,AB =1,AD =2BC =2,PD = 3.(1)求证: 平面PBD ⊥平面PAC ;(2)M 为棱PB 上异于B 的点,且AM ⊥MC ,求直线AM 与平面MCD 所成角的正弦值. 解析:(1)证明:在Rt △ABC 与Rt △ABD 中,因为BC AB =22, AB AD =22, 所以BC AB =ABAD,∠ABC =∠DAB =90°,即△ABC ∽△DAB ,所以∠ABD =∠BCA .因为∠ABD +∠CBD =90°,所以∠BCA +∠CBD =90°,所以AC ⊥BD . 因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD ⊥AC , 又BD ∩PD =D ,所以AC ⊥平面PBD , 又AC ⊂平面PAC, 所以平面PBD ⊥平面PAC .(2)过A 作AE ∥DP ,因为PD ⊥平面ABCD ,所以AE ⊥平面ABCD ,即AE ,AB ,AD 两两相垂直,以A 为原点,AB ,AD ,AE 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,因为AB =1,AD =2BC =2,PD =3, 所以A (0,0,0),B (1,0,0),C ⎝ ⎛⎭⎪⎫1,22,0,D (0,2,0),P (0,2,3), AB →=(1,0,0),BP →=(-1,2,3),CB →=⎝⎛⎭⎪⎫0,-22,0, 设BM →=λBP →,λ∈(0,1].则AM →=AB →+λBP →=(1-λ,2λ,3λ), CM →=CB →+λBP →=(-λ,-22+2λ,3λ).因为AM ⊥MC ,所以AM →·CM →=0,即(1-λ)(-λ)+2λ⎝ ⎛⎭⎪⎫-22+2λ+3λ2=0,解得6λ2-2λ=0,λ=0或λ=13.因为λ∈(0,1],所以λ=13.所以AM →=⎝ ⎛⎭⎪⎫23,23,33,即M ⎝ ⎛⎭⎪⎫23,23,33.所以DC →=⎝ ⎛⎭⎪⎫1,-22,0,DM →=⎝ ⎛⎭⎪⎫23,-223,33,设n =(x 0,y 0,z 0)为平面MCD 的一个法向量,则⎩⎪⎨⎪⎧n ·DM →=0n ·DC →=0,所以⎩⎪⎨⎪⎧23x 0-223y 0+33z 0=0x 0-22y 0=0,所以取n =⎝⎛⎭⎪⎫62,3,2, 设直线AM 与平面MCD 所成角为θ, 所以sin θ=|cos 〈AM →,n 〉|=63+63+6349+29+39·64+3+2=23913,所以直线AM 与平面MCD 所成角的正弦值23913.2.(2019·济宁模拟)如图,在直角梯形ABED 中,AB ∥DE ,AB ⊥BE ,且AB =2DE =2BE ,点C 是AB 中点,现将△ACD 沿CD 折起,使点A 到达点P 的位置.(1)求证:平面PBC⊥平面PEB;(2)若PE与平面PBC所成的角为45°,求平面PDE与平面PBC所成锐二面角的余弦值.解析:(1)证明:∵AB∥DE,AB=2DE,点C是AB中点,∴CB∥ED,CB=ED,∴四边形BCDE为平行四边形,∴CD∥EB,又EB⊥AB,∴CD⊥AB,∴CD⊥PC,CD⊥BC,∴CD⊥平面PBC,∴EB⊥平面PBC,又∵EB⊂平面PEB,∴平面PBC⊥平面PEB.(2)由(1)知EB⊥平面PBC,∴∠EPB即为PE与平面PBC所成的角,∴∠EPB=45°,∵EB⊥平面PBC,∴EB⊥PB,∴△PBE为等腰直角三角形,∴EB=PB=BC=PC,故△PBC为等边三角形,取BC的中点O,连结PO,则PO⊥BC,∵EB⊥平面PBC,又EB⊂平面EBCD,∴平面EBCD⊥平面PBC,又PO⊂平面PBC,∴PO⊥平面EBCD,以O为坐标原点,过点O与BE平行的直线为x轴,CB所在的直线为y轴,OP所在的直线为z 轴建立空间直角坐标系如图,设BC =2,则B (0,1,0),E (2,1,0),D (2,-1,0),P (0,0,3),从而DE →=(0,2,0),PE →=(2,1,-3), 设平面PDE 的一个法向量为m =(x ,y ,z ), 则由⎩⎪⎨⎪⎧m ·DE →=0m ·PE →=0得⎩⎨⎧2y =02x +y -3z =0,令z =2得m =(3,0,2),又平面PBC 的一个法向量n =(1,0,0),则cos 〈m ,n 〉=m ·n |m ||n |=37=217,平面PDE 与平面PBC 所成锐二面角的余弦值为217. 3.(2019·高考全国卷Ⅰ)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A ­MA 1­N 的正弦值. 解析:(1)证明:如图,连接B 1C ,ME . 因为M ,E 分别为BB 1,BC 的中点, 所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1綊DC , 可得B 1C 綊A 1D ,故ME 綊ND , 因此四边形MNDE 为平行四边形, 所以MN ∥ED . 又MN ⊄平面C 1DE , 所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0). 设m =(x ,y ,z )为平面A 1MA 的法向量,则⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0,所以⎩⎨⎧-x +3y -2z =0,-4z =0,可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量, 则⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎨⎧-3q =0,-p -2r =0,可取n =(2,0,-1).于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,所以二面角A ­MA 1­N 的正弦值为105. 4.(2019·高考全国卷Ⅱ)如图,长方体ABCD ­A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B ­EC ­C 1的正弦值.解析:(1)证明:由已知得,B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故B 1C 1⊥BE .又BE ⊥EC 1,B 1C 1∩EC 1=C 1, 所以BE ⊥平面EB 1C 1.(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,DA →的方向为x 轴正方向,|DA →|为单位长度,建立如图所示的空间直角坐标系D ­xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB →=(1,0,0),CE →=(1,-1,1),CC 1→=(0,0,2). 设平面EBC 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧CB →·n =0,CE →·n =0,即⎩⎪⎨⎪⎧x 1=0,x 1-y 1+z 1=0,所以可取n =(0,-1,-1).设平面ECC 1的法向量为m =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧CC 1→·m =0,CE →·m =0,即⎩⎪⎨⎪⎧2z 2=0,x 2-y 2+z 2=0,所以可取m =(1,1,0).于是cos 〈n ,m 〉=n ·m |n ||m |=-12.所以,二面角B ­EC ­C 1的正弦值为32. 增分强化练一、选择题1.已知直线l ⊥平面α,直线m ∥平面β,若α⊥β,则下列结论正确的是( ) A .l ∥β或l ⊂β B .l ∥m C .m ⊥αD .l ⊥m解析:当直线l ⊥平面α,α⊥β时,假设l ∩β=A ,过A 在平面β内作a ⊥l ,根据面面垂直的性质定理可知:a ⊥α,这样过一点A 有两条直线a ,l 与平面α垂直,这与过一点有且只有一条直线与已知平面垂直相矛盾,故假设不成立,所以l ∥β或l ⊂β,故本题选A. 答案:A2.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若m ∥α,m ∥β,则α∥β B .若m ⊥α,m ⊥n ,则n ⊥α C .若m ⊥α,m ∥n ,则n ⊥α D .若α⊥β,m ⊥α,则m ∥β解析:设m ,n 是两条不同的直线,α,β是两个不同的平面,则: 在A 中,若m ∥α,m ∥β,则α与β相交或平行,故A 错误; 在B 中,若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故B 错误;在C 中,若m ⊥α,m ∥n ,则由线面垂直的判定定理得n ⊥α,故C 正确; 在D 中,若α⊥β,m ⊥α,则m ∥β或m ⊂β,故D 错误. 故选C. 答案:C3.(2019·蚌埠模拟)如图,在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =2AA 1=2,E ,F 分别在AB ,BC 上,则下列说法错误的是( )A .直线AD 与A 1C 1所成的角为π4B .当E 为中点时,平面A 1D 1E ⊥平面B 1C 1E C .当E ,F 为中点时,EF ⊥BD 1 D .当E ,F 为中点时,BD 1⊥平面B 1EF解析:对于A 选项,将A 1C 1平移到AC 如图所示,由于四边形ABCD 为正方形,故AD ,AC 所成角为π4,也即AD ,A 1C 1所成角为π4,故A 选项正确.对于B 选项,由于A 1E =B 1E =2,A 1B 1=2,满足勾股定理,故A 1E ⊥B 1E ,而A 1E ⊥B 1C 1,故A 1E ⊥平面B 1C 1E ,所以平面A 1D 1E ⊥平面B 1C 1E ,故B 选项正确.对于C 选项,由于EF ∥AC ,故EF ⊥BD ,EF ⊥BB 1,由此证得EF ⊥平面BDD 1B 1,故EF ⊥BD 1,故C 选项正确.对于D 选项,虽然EF ⊥BD 1,但是BD 1与B 1E ,B 1F 不垂直,故D 选项说法错误.综上所述,本小题选D.答案:D4.(2019·咸阳模拟)在正方体ABCD ­A 1B 1C 1D 1中,E 、F 分别是AB 、B 1C 1的中点,则异面直线A 1E 、FC 所成角的余弦值为( )A.105 B.1010C.102D.45解析:取C 1D 1的中点G ,连接CG ,FG (图略),因为正方体ABCD ­A 1B 1C 1D 1,且E ,G 分别是AB ,C 1D 1的中点, 所以A 1E ∥CG ,所以∠FCG 即为异面直线A 1E 、FC 所成角或其补角, 设正方体边长为2,则FC =CG =5,FG =2, 在△FCG 中由余弦定理得cos ∠FCG =5+5-22×5×5=45,所以异面直线A 1E 、FC 所成角的余弦值为45,故选D. 答案:D5.如图,在四棱柱ABCD ­A 1B 1C 1D 1中,E ,F 分别是AB 1、BC 1的中点,下列结论中正确的是( )A .EF ⊥BB 1 B .EF ⊥平面BCC 1B 1 C .EF ∥平面D 1BCD .EF ∥平面ACC 1A 1解析:连接B 1C 交BC 1于F ,由于四边形BCC 1B 1是平行四边形,对角线平分,故F 是B 1C 的中点.因为E 是AB 1的中点,所以EF 是△B 1AC 的中位线,故EF ∥AC ,所以EF ∥平面ACC 1A 1.故选D.答案:D6.如图,边长为2的正方形ABCD中,点E、F分别是AB、BC的中点,将△ADE,ΔBEF,△CDF分别沿DE,EF,FD折起,使得A、B、C三点重合于点A′,若四面体A′­EDF的四个顶点在同一个球面上,则该球的表面积为( )A.5π B.6πC.8π D.11π解析:由题意可知△A′EF是等腰直角三角形,且A′D⊥平面A′EF.三棱锥的底面A′EF扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球,正四棱柱的体对角线的长度就是外接球的直径,直径为1+1+4= 6.∴球的半径为62,∴球的表面积为4π·⎝ ⎛⎭⎪⎫622=6π.故选B. 答案:B 二、填空题7.在直三棱柱ABC ­A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1则异面直线BA 1与AC 1所成的角等于________.解析:延长CA 到D (图略),使得AD =AC ,则ADA 1C 1为平行四边形,∠DA 1B 就是异面直线BA 1与AC 1所成的角,又A 1D =A 1B =DB =2AB ,则△A 1DB 为等边三角形,∴∠DA 1B =60°. 答案:60°8.(2019·桂林、崇左模拟)在大小为75°的二面角α­l ­β内有一点M 到两个半平面的距离分别为1和2,则点M 到棱l 的距离等于________.解析:由题意,设垂足分别为A ,B ,则在△MAB 中,MA =1,MB =2,∠AMB =105°,∴AB 2=1+2-2×1×2×cos∠AMB =2+3, ∴AB =2+ 3.设M 到棱的距离为l ,则l =ABsin 105°=2+36+24=2.答案:2 三、解答题9.(2019·汕头模拟)如图,等边△PAC 所在平面与梯形ABCD 所在平面互相垂直,且有AD ∥BC ,AB =AD =DC =2,BC =4.(1)证明:AB ⊥平面PAC ; (2)求点D 到平面PAB 的距离.解析:(1)证明:取BC 中点M ,连接AM , 则四边形AMCD 为菱形, 即有AM =MC =12BC,所以AB ⊥AC ,又AB ⊂平面ABCD ,平面ABCD ⊥平面PAC ,平面ABCD ∩平面PAC =AC , ∴AB ⊥平面PAC .(2)由(1)可得PA =AC =23,所以∠ABC =60°,∠BAD =120°, 取AC 中点O ,连接PO , 则PO ⊥AC ,PO =3,又PO ⊂平面PAC ,平面PAC ⊥平面ABCD ,平面PAC ∩平面ABCD =AC ∴PO ⊥平面ABCD ; 所以V D ­PAB =V P ­ABD =13S ABD ·PO=13×12×2×2×sin 120°×3=3, 由(1)有AB ⊥平面PAC ,得AB ⊥PA , ∴S ΔPAB =12×2×23=23,设点D 到平面PAB 的距离为d , 由V D ­PAB =13S ΔPAB ·d .∴d =32.10.如图,E 是以AB 为直径的半圆上异于A 、B 的点,矩形ABCD 所在的平面垂直于该半圆所在的平面,且AB =2AD =2. (1)求证:EA ⊥EC ;(2)设平面ECD 与半圆弧的另一个交点为F . ①试证:EF ∥AB ;②若EF =1,求三棱锥E ­ADF 的体积. 解析:(1)证明:∵平面ABCD ⊥平面 ABE ,平面ABCD ∩平面ABE =AB ,BC ⊥AB ,BC ⊂平面ABCD , ∴BC ⊥平面ABE .又∵AE ⊂平面ABE ,∴BC ⊥AE .∵E 在以AB 为直径的半圆上,∴AE ⊥BE ,又∵BE ∩BC =B ,BC 、BE ⊂平面BCE , ∴AE ⊥平面BCE .又∵CE ⊂平面BCE ,∴EA ⊥EC .(2)①证明: ∵AB ∥CD ,AB ⊄平面CED ,CD ⊂平面CED , ∴AB ∥平面CED .又∵AB ⊂平面ABE ,平面ABE ∩平面CED =EF , ∴AB ∥EF .②取AB 中点O ,EF 的中点O ′,(图略)在Rt△OO ′F 中,OF =1,O ′F =12,∴OO ′=32.由(1)已证得BC ⊥平面ABE ,又已知AD ∥BC , ∴AD ⊥平面ABE .故V E ­ADF =V D ­AEF =13·S △AEF ·AD =13·12·EF ·OO ′·AD =312.11.如图1,在△ABC 中,C =90°,AC =2BC =4,E ,F 分别是AC 与AB 的中点,将△AEF 沿EF 折起,连接AC 与AB 得到四棱锥A ­BCEF (如图2),G 为线段AB 的中点.(1)求证:FG ∥平面ACE ;(2)当四棱锥A ­BCEF 体积最大时,求F 与平面ABC 的距离. 解析:(1)证明:取AC 的中点H ,连接EH ,GH ,由于G 是AB 的中点, ∴GH ∥BC ,且GH =12BC ,又E ,F 分别为图1中AC 与AB 的中点, ∴FE ∥BC ,且FE =12BC ,∴FE ∥GH ,FE =GH ,∴四边形EFGH 为平行四边形, ∴FG ∥EH ,又FG ⊄平面ACE ,EH ⊂平面ACE , ∴FG ∥平面ACE .(2)当四棱锥A ­BCF 体积最大时,AE ⊥平面BCEF , 又EF ⊥EC ,AE ∩EF =E , ∴FE ⊥平面AEC ,又FE ∥BC , ∴BC ⊥平面ACE ∴BC ⊥EH ,又AE =EC =2,H 是AC 的中点,EH ⊥AC ,AC ∩BC =C ,∴EH ⊥平面ABC ,而EF ∥平面ABC ,∴F 到平面ABC 的距离即为E 到平面ABC 的距离,EH =EC ×sin 45°= 2.增分强化练考点一 利用空间向量证明平行与垂直如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .证明:∵平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD ,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A ­xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 考点二 利用空间向量求空间角1.(2019·滨州模拟)如图,在三棱柱ABC ­A 1B 1C 1中,BC =BB 1,∠B 1BC =60°,B 1C 1⊥AB 1.(1)证明:AB =AC ;(2)若AB ⊥AC ,且AB 1=BB 1,求二面角A 1­CB 1­C 1的余弦值. 解析:(1)证明:取BC 的中点O ,连结AO ,OB 1. 因为BC =BB 1,∠B 1BC =60°, 所以△BCB 1是等边三角形, 所以B 1O ⊥BC ,又BC ∥B 1C 1,B 1C 1⊥AB 1, 所以BC ⊥AB 1, 所以BC ⊥平面AOB 1,所以BC ⊥AO ,由三线合一可知△ABC 为等腰三角形 所以AB =AC .(2)设AB 1=BB 1=2,则BC =B 1C =2. 因为AB ⊥AC ,所以AO =1.又因为OB 1=3,所以OB 21+AO 2=AB 21, 所以AO ⊥OB 1.以O 为坐标原点,向量OB →的方向为x 轴的正方向,建立如图所示的空间直角坐标系O ­xyz ,则O (0,0,0),C (-1,0,0),A 1(-1,3,1),B 1(0,3,0),CA →1=(0,3,1),CB →1=(1,3,0).设平面A 1B 1C 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CA →1 ·n =0CB →1·n =0,即⎩⎨⎧3y +z =0x +3y =0,可取n =(3,-1,3),由(1)可知,平面CB 1C 1的法向量可取OA →=(0,0,1),所以cos 〈OA →,n 〉=OA →·n |OA →||n | =217,由图示可知,二面角A 1­CB 1­C 1为锐二面角, 所以二面角A 1­CB 1­C 1的余弦值为217. 2.已知四棱锥P ­ABCD 的底面ABCD 是直角梯形,AD ∥BC ,AB ⊥BC ,AB =3,BC =2AD =2,E 为CD 的中点,PB ⊥AE . (1)证明:平面PBD ⊥平面ABCD ;(2)若PB =PD ,PC 与平面ABCD 所成的角为π4,求二面角B ­PD ­C 的余弦值.解析:(1)证明:由ABCD 是直角梯形,AB =3,BC =2AD =2,可得DC =2,∠BCD =π3,BD =2,从而△BCD 是等边三角形, ∠BDC =π3,BD 平分∠ADC ,∵E 为CD 的中点,DE =AD =1,∴BD ⊥AE , 又∵PB ⊥AE ,PB ∩BD =B ,∴AE ⊥平面PBD , ∵AE ⊂平面ABCD ,∴平面PBD ⊥平面ABCD . (2)如图,作PO ⊥BD 于O ,连接OC ,∵平面PBD ⊥平面ABCD ,平面PBD ∩平面ABCD =BD ,∴PO ⊥平面ABCD , ∴∠PCO 为PC 与平面ABCD 所成的角,∠PCO =π4,又∵PB =PD ,∴O 为BD 中点,OC ⊥BD ,OP =OC =3, 以OB ,OC ,OP 为x ,y ,z 轴建立空间直角坐标系,B (1,0,0),C (0,3,0),D (-1,0,0),P (0,0,3).PC →=(0,3,-3),PD →=(-1,0,-3),设平面PCD 的一个法向量n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0得⎩⎨⎧3y -3z =0,x +3z =0,令z =1得n =(-3,1,1),又平面PBD 的一个法向量为m =(0,1,0), 设二面角B ­PD ­C 为θ,则|cos θ|=|n ·m ||n |·|m |=15×1=55.所求二面角B ­PD ­C 的余弦值是55. 考点三 立体几何中的探索性问题1.(2019·桂林、崇左模拟)已知四棱锥S ­ABCD 的底面ABCD 是菱形,∠ABC =π3,SA ⊥底面ABCD ,E 是SC 上的任意一点.(1)求证:平面EBD⊥平面SAC;(2)设SA=AB=2,是否存在点E使平面BED与平面SAD所成的锐二面角的大小为30°?如果存在,求出点E的位置,如果不存在,请说明理由.解析:(1)证明:∵SA⊥平面ABCD,BD⊂平面ABCD,∴SA⊥BD.∵四边形ABCD是菱形,∴AC⊥BD.∵AC∩AS=A,∴BD⊥平面SAC.∵BD⊂平面EBD,∴平面EBD⊥平面SAC.(2)当点E为SC的中点时,平面BED与平面SAD所成的锐二面角的大小为30°,理由如下:设AC与BD的交点为O,以OC、OD所在直线分别为x、y轴,以过O垂直平面ABCD的直线为z轴建立空间直角坐标系(如图),则A (-1,0,0),C (1,0,0),S (-1,0,2),B (0,-3,0),D (0,3,0). 设E (x,0,z ),则SE →=(x +1,0,z -2),EC →=(1-x,0,-z ), 设SE →=λEC →,∴⎩⎪⎨⎪⎧x =λ-1λ+1z =2λ+1,∴E ⎝⎛⎭⎪⎫λ-1λ+1,0,2λ+1,∴DE →=⎝ ⎛⎭⎪⎫λ-1λ+1,-3,2λ+1,BD →=(0,23,0),设平面BDE 的法向量n =(x 1,y 1,z 1), ∵⎩⎪⎨⎪⎧n ⊥DE→n ⊥BD→ ,∴⎩⎪⎨⎪⎧n ·DE →=0n ·BD →=0.求得n =(2,0,1-λ)为平面BDE 的一个法向量. 同理可得平面SAD 的一个法向量为m =(3,-1,0), ∵平面BED 与平面SAD 所成的锐二面角的大小为30°,∴cos 30°=|m ·n ||m ||n |=|(3,-1,0)·(2,0,1-λ)|24+(1-λ)2=32,解得λ=1. ∴E 为SC 的中点.2.如图,在三棱柱ABC ­A 1B 1C 1中,CA =CB =CC 1=2,∠ACC 1=∠CC 1B 1,直线AC 与直线BB 1所成的角为60°.(1)求证:AB 1⊥CC 1;(2)若AB 1=6,M 是AB 1上的点,当平面MCC 1与平面AB 1C 夹角的余弦值为15时,求AMMB 1的值.解析:(1)证明:在三棱柱ABC ­A 1B 1C 1中,各侧面均为平行四边形, 所以BB 1∥CC 1,则∠ACC 1即为AC 与BB 1所成的角, 所以∠ACC 1=∠CC 1B 1=60°, 如图,连接AC 1和B 1C , 因为CA =CB =CC 1=2,所以△ACC 1和△B 1CC 1均为等边三角形, 取CC 1的中点O ,连AO 和B 1O , 则AO ⊥CC 1,B 1O ⊥CC 1, 又AO ∩B 1O =O , 所以CC 1⊥平面AOB 1,AB 1⊂平面AOB 1,所以AB 1⊥CC 1.(2)由(1)知AO =B 1O =3,因为AB 1=6, 则AO 2+B 1O 2=AB 21,所以AO ⊥B 1O , 又AO ⊥CC 1,所以AO ⊥平面BCC 1B 1,以OB 1所在直线为x 轴,OC 1所在直线为y 轴,OA 所在直线为z 轴,建立如图空间直角坐标系,则A (0,0,3),C (0,-1,0),C 1(0,1,0),B 1(3,0,0),AC →=(0,-1,-3),AB 1→=(3,0,-3),CC 1→=(0,2,0),设AM →=tMB 1→,M (x ,y ,z ),则(x ,y ,z -3)=t (3-x ,-y ,-z ). 所以x =3t t +1,y =0,z =3t +1,M (3t t +1,0,3t +1), 所以CM →=(3t t +1,1,3t +1),设平面ACB 1的法向量为n 1=(x 1,y 1,z 1), 平面MCC 1的法向量为n 2=(x 2,y 2,z 2), 所以⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AB 1→=0⇒⎩⎨⎧-y 1-3z 1=0,3x 1-3z 1=0,解得n 1=(1,-3,1), ⎩⎪⎨⎪⎧n 2·CC 1→=0,n 2·CM →=0⇒⎩⎪⎨⎪⎧2y 2=0,3t t +1x 2+y 2+3t +1z 2=0.解得n 2=(1,0,-t ).所以|cos θ|=|n 1·n 2||n 1|·|n 2|=|1-t |5·1+t 2=15, 解得t =12或t =2,即AM MB 1=12或AMMB 1=2.增分强化练一、选择题1.在一个密闭透明的圆柱筒内装一定体积的水,将该圆柱筒分别竖直、水平、倾斜放置时,指出圆柱桶内的水平面可以呈现出的几何形状不可能是( )A.圆面B.矩形面C.梯形面D.椭圆面或部分椭圆面解析:将圆柱桶竖放,水面为圆面;将圆柱桶斜放,水面为椭圆面或部分椭圆面;将圆柱桶水平放置,水面为矩形面,所以圆柱桶内的水平面可以呈现出的几何形状不可能是梯形面,故选C.答案:C2.(2019·三明质检)如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则该几何体的体积为( )A.23πB.2πC.83π D.8π解析:由几何体三视图可知:该几何体为圆柱,且圆柱的底面圆半径为1,高为2,所以圆柱的体积为V=π×12×2=2π.故选B.答案:B3.(2019·新乡模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .28B .30C .36D .42解析:该几何体是由12个棱长为1的正方体组合而成的,所以S (前后)=12+12=24,S (左右)=3+3=6,S (上下)=6+6=12,从而S (表面)=24+6+12=42.故选D. 答案:D4.某几何体的三视图如图所示,则该几何体的体积为( )A .16π-323B .16π-163C .8π-323D .8π-163解析:由三视图可知,该几何体是一个半圆柱挖去一个倒立的四棱锥,∴V =12×π×22×4-13×42×2=8π-323.故选C.答案:C5.如图,网格纸的小正方形的边长是1,在其上用粗实线和粗虚线画出了某几何体的三视图,图中的曲线为半圆弧或圆,则该几何体的体积是( )A.2π3+83B .2π+83C .2π+8D .8π+8解析:由题意可知几何体是组合体,由14的圆柱与一个四棱锥组成,如图:V =14×22×π×2+13×2×2×2=2π+83.故选B.答案:B6.用一个平面去截正方体,则截面不可能是( ) A .直角三角形 B .等边三角形 C .正方形D .正六边形解析:用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故选A. 答案:A7.某几何体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积不可能是( )A .πB .2C .4D .6解析:几何体可能是圆锥,底面半径为1,高为3,几何体的体积为13×12×π×3=π,排除A ;几何体如果是正四棱锥,底面是正方形边长为2,高为3,几何体的体积为13×22×3=4,排除C ;几何体如果是三棱锥,底面是等腰三角形,底边长为2,三角形的高为2,三棱锥的高为3,几何体的体积为13×12×2×2×3=2,排除B ,故选D.答案:D8.某四棱锥的三视图如图所示,某侧视图是等腰直角三角形,俯视图轮廓是直角梯形,则该四棱锥的各侧面中,面积的最大值为( )A .8B .4 5C .8 2D .12 2解析: 因为三视图复原的几何体是四棱锥,顶点在底面的射影是直角梯形的一个顶点,后面是等腰直角三角形,直角边为4,所以后面的三角形的面积为12×4×4=8, 右面三角形是直角三角形,直角边长为42,4,三角形的面积为12×42×4=8 2.前面三角形BC 边长为6,高为42,其面积为12×42×6=122,左面也是直角三角形,直角边长为4,25,三角形的面积为12×4×25=45,四棱锥的四个侧面中面积最大的是前面三角形的面积12 2.故选D. 答案:D9.(2019·宁德质检)直三棱柱ABC ­A ′B ′C ′的所有棱长均为23,则此三棱柱的外接球的表面积为( ) A .12π B .16π C .28πD .36π解析:由直三棱柱的底面边长为23,得底面所在平面截其外接球所成的圆O 的半径r =2,又由直三棱柱的侧棱长为23,则球心到圆O 的球心距d =3, 根据球心距,截面圆半径,球半径构成直角三角形, 满足勾股定理,我们易得球半径R 满足:R 2=r 2+d 2=7, ∴外接球的表面积S =4πR 2=28π. 故选C. 答案:C10.(2019·蚌埠模拟)榫卯是我国古代工匠极为精巧的发明,广泛用于建筑.榫卯是在两个构件上采用凹凸部位相结合的一种连接方式.榫卯结构中凸出的部分叫榫(或叫榫头).已知某“榫头”的三视图如图所示,则该“榫头”的体积是( )A .48B .50C .54D .63解析:由三视图可知,该几何体是由两个直棱柱组合而成,其直观图如图所示,故体积为3+62×3×3+3+62×3×1=54.故选C.答案:C11.如图,在矩形ABCD中,EF∥DA,GH∥BC,BC=2,AF=FG=BG=1,现分别沿EF,GH将矩形折叠使得AD与BC重合,则折叠后的几何体的外接球的表面积为( )A.8π3B.16π3C.6π D.24π解析:由题意得,折叠后的几何体为正三棱柱,且该三棱柱的底面边长为1,高为 2.如图所示的正三棱柱ABC­A1B1C1.设上下底面的中心分别为O 1,O 2,则球心O 为O 1,O 2的中点,连OC ,O 2C , 则O 2C =23×⎝ ⎛⎭⎪⎫32×1=33,OO 2=1,∴OC =O 2C 2+O 2O 2= ⎝ ⎛⎭⎪⎫33 2+1=233, 即球半径R =233,∴该几何体的外接球的表面积为S =4πR 2=4π×43=16π3.故选B. 答案:B12.若长方体ABCD ­A 1B 1C 1D 1的顶点都在体积为288π的球O 的球面上,则长方体ABCD ­A 1B 1C 1D 1的表面积的最大值等于( ) A .576 B .288 C .144 D .72答案:B 二、填空题13.若圆锥底面半径为1,侧面积为5π,则该圆锥的体积是________. 解析:设圆锥的母线长为l ,圆锥底面半径为1,侧面积为5π, ∴5π=πl ,即l =5, ∴圆锥的高h =5-1=2,∴该圆锥的体积是V =13πr 2h =13π×2=23π.314.(2019·长春质检)一个倒置圆锥形容器,底面直径与母线长相等,容器内存有部分水,向容器内放入一个半径为1的铁球,铁球恰好完全没入水中(水面与铁球相切)则容器内水的体积为________.解析:如图所示,作出轴截面,由题意,圆锥的底面直径与母线长相等,可得AP =AB ,则AP =2AC ,所以∠APC =30°,记铁球的半径为r ,即OC =OD =r =1,在△ODP 中,sin ∠OPD =OD OP =12,则OP =2r =2,所以PC =3r =3,因此AC =3r =3,PA =23r =23,所以铁球所在圆锥的体积为V 圆锥=V 水+V 铁球,即V 水=V 圆锥-V 铁球=13S 圆C ·PC -43πr 3=13π(3)2·3-43π=53π.315.已知所有棱长都相等的三棱锥的各个顶点同在一个半径为3的球面上,则该三棱锥的表面积为________.解析:构造一个各棱长为a 的正方体,连接各面的对角线可作出一个正四面体, 而此四面体的外接球即为正方体的外接球. 此球的直径为正方体的体对角线,即23,由勾股定理得到3a 2=12⇒a =2,三棱锥的边长即为正方体的面对角线长为:22, 所以该锥体表面积S =4×12×(22)2×32=8 3.答案:8 316.(2019·洛阳、许昌质检)在直三棱柱ABC ­A 1B 1C 1中,∠ACB =90°,AC =2,BC =CC 1=2,P 是BC 1上一动点,则A 1P +PC 的最小值为________.解析:连接A 1B ,沿BC 1将△CBC 1展开与△A 1BC 1在同一个平面内(图略), 在BC 1上取一点与A 1C 构成三角形, ∵三角形两边和大于第三边,∴A 1P +PC 的最小值是A 1C 的连线.作展开图,如图,由∠ACB =90°,AC =2,BC =CC 1=2, 得AB =AC 2+BC 2=6, 又AA 1=CC 1=2,∴A 1B =AA 21+AB 2=2+6=22,BC 1=2+2=2,A 1C 1=AC =2, ∴∠A 1BC 1=45°,∠CBC 1=45°,∴∠A 1BC =90°, ∴A 1C =A 1B 2+BC 2=8+2=10.答案:10增分强化练考点一 空间线、面位置关系的判断1.在长方体ABCD ­A 1B 1C 1D 1中,AB =AD =2,AA 1=2,则异面直线AB 1与BC 1所成角的余弦值为( )A.23 B.56 C.33D.66解析:画出图形,如图所示.连接AD 1,B 1D 1,则AD 1∥BC 1,所以∠B 1AD 1即为AB 1与BC 1所成的角或其补角. 在B 1AD 1中,AB 1=AD 1=6,B 1D 1=2, 所以由余弦定理得cos ∠B 1AD 1=6+6-42×6=23,所以异面直线AB 1与BC 1所成角的余弦值为23.故选A. 答案:A2.(2019·宝鸡模拟)异面直线a ,b 所成的角为π3,直线a ⊥c ,则异面直线b 与c 所成角的范围为( ) A.⎣⎢⎡⎦⎥⎤π3,π2B.⎣⎢⎡⎦⎥⎤π6,π2C.⎣⎢⎡⎦⎥⎤π3,2π3D.⎣⎢⎡⎦⎥⎤π6,5π6解析:作b 的平行线b ′,交a 于O 点(图略),所有与a 垂直的直线平移到O 点组成一个与直线a 垂直的平面α,O 点是直线a 与平面α的交点,在直线b ′上取一点P ,作垂线PP ′⊥平面α,交平面α于P ′,∠POP ′是b ′与面α的夹角为π6,在平面α中,所有与OP ′平行的直线与b ′的夹角都是π6,在平面α所有与OP ′垂直的线,由于PP ′垂直于平面α,所以该线垂直于PP ′,则该线垂直于平面OPP ′,所以该线垂直于b ′,故在平面α所有与OP ′垂直的线与b ′的夹角为π2,与OP ′夹角大于0,小于π2的线,与b ′的夹角为锐角且大于π6,故选B.答案:B3.在直三棱柱ABC ­A 1B 1C 1中,CA =CB =4,AB =27,CC 1=25,E ,F 分别为AC ,CC 1的中点,则直线EF 与平面AA 1B 1B 所成的角是( ) A .30° B .45° C .60°D .90°解析:连接AC 1,则EF ∥AC 1,直线EF 与平面AA 1B 1B 所成的角,就是AC 1与平面AA 1B 1B 所成的角;作C 1D ⊥A 1B 1于D ,连接AD ,因为直三棱柱ABC ­A 1B 1C 1中,CA =CB =4,所以底面是等腰三角形,则C 1D ⊥平面AA 1B 1B ,可知∠C 1AD 就是直线EF 与平面AA 1B 1B 所成的角,CA =CB =4,AB =27,CC 1=25,可得C 1D =42-(7)2=3,AD =(7)2+(25)2=33, 所以tan ∠C 1AD =C 1D AD =33, 所以∠C 1AD =30°. 故选A.答案:A考点二空间线面平行、垂直关系的证明1.(2019·晋城模拟)若a,b是不同的直线,α,β是不同的平面,则下列命题中正确的是( ) A.若a∥α,b∥β,a⊥b,则α⊥βB.若a∥α,b∥β,a∥b,则α∥βC.若a⊥α,b⊥β,a∥b,则α∥βD.若a∥α,b⊥β,a⊥b,则α∥β解析:A中若a∥α,b∥β,a⊥b,平面α,β可能垂直也可能平行或斜交;B中若a∥α,b∥β,a∥b,平面α,β可能平行也可能相交;C中若a⊥α,a∥b,b⊥α,又b⊥β,故α∥β,所以a∥b必有α∥β;D中若a∥α,b⊥β,a⊥b,平面α,β可能平行也可能相交.故选C.答案:C2.(2019·蚌埠模拟)如图,在以P为顶点,母线长为2的圆锥中,底面圆O的直径长为2,点C在圆O所在平面内,且AC是圆O的切线,BC交圆O于点D,连接PD,OD.(1)求证:PB ⊥平面PAC ;(2)若AC =233,求点O 到平面PBD 的距离.解析:(1)证明:因为AB 是圆O 的直径,AC 与圆O 切于点A ,所以AC ⊥AB . 又在圆锥中,PO 垂直底面圆O ,所以PO ⊥AC ,而PO ∩AB =O , 所以AC ⊥平面PAB ,从而AC ⊥PB .在△PAB 中,PA 2+PB 2=AB 2,所以PA ⊥PB ,又PA ∩AC =A 所以PB ⊥平面PAC . (2)因为AB =2,AC =233,AC ⊥AB ,所以在直角△ABC 中,∠ABC =π6.又OD =OB =1=PO ,则△OBD 是等腰三角形,所以BD =3,S △OBD =12×1×1×sin 2π3=34.又PB =PD =2,所以S △PBD =12×3×52=154,设点O 到平面PBD 的距离为d ,由V P ­OBD =V O ­PBD , 即13S △OBD ·PO =13S △PBD ·d ,所以d =55. 考点三 空间中的翻折问题1.(2019·淮南模拟)正三角形ABC 的边长为a ,将它沿平行于BC 的线段PQ 折起(其中P 在边AB 上,Q 在AC 边上),使平面APQ ⊥平面BPQC .D ,E 分别是PQ ,BC 的中点.(1)证明:PQ ⊥平面ADE ;(2)若折叠后,A ,B 两点间的距离为d ,求d 最小时,四棱锥A ­PBCQ 的体积. 解析:(1)证明:在△APQ 中,AP =AQ ,D 是PQ 的中点,所以AD ⊥PQ .又因为DE 是等腰梯形BPQC 的对称轴,所以DE ⊥PQ . 而AD ∩DE =D ,所以PQ ⊥平面ADE .(2)因为平面APQ ⊥平面BPQC ,AD ⊥PQ ,所以AD ⊥平面PBCQ ,连结BD ,则d 2=AD 2+BD 2. 设AD =x ,DE =32a -x (E 为BC 的中点), 于是BD 2=DE 2+BE 2= ⎝⎛⎭⎪⎫32a -x 2+14a 2. 因此d 2=x 2+BD 2=x 2+DE 2+BE 2=x 2+⎝⎛⎭⎪⎫32a -x 2+14a 2=2⎝⎛⎭⎪⎫x -34a 2+58a 2,当x=34a时,d min=104a.此时四棱锥A­PBCQ的体积为13×S梯形PBCQ×AD=13×12⎝⎛⎭⎪⎫a2+a×34a×34a=364a3.2.如图1,在菱形ABCD中,AB=2,∠DAB=60°,M是AD的中点,以BM为折痕,将△ABM 折起,使点A到达点A1的位置,且平面A1BM⊥平面BCDM,如图2.(1)求证:A1M⊥BD;(2)若K为A1C的中点,求四面体M­A1BK的体积.解析:(1)证明:在图1中,∵四边形ABCD是菱形,∠DAB=60°,M是AD的中点,∴AD⊥BM,故在图2中,BM⊥A1M,∵平面A1BM⊥平面BCDM,平面A1BM∩平面BCDM=BM,∴A1M⊥平面BCDM,又BD⊂平面BCDM,∴A1M⊥BD.图1 图2(2)在图1中,∵ABCD 是菱形,AD ⊥BM ,AD ∥BC ,∴BM ⊥BC ,且BM =3, 在图2中,连接CM ,则VA 1-BCM =13S △BCM ·A 1M =13×12×2×3×1=33,∵K 是A 1C 的中点,∴VM ­A 1BK =VK ­MA 1B =12VC ­MA 1B =12VA 1­BCM =36.增分强化练考点一 空间几何体的三视图1.日晷是中国古代利用日影测得时刻的一种计时工具,又称“日规”.通常由铜制的指针和石制的圆盘组成,铜制的指针叫做“晷针”,垂直地穿过圆盘中心,石制的脚盘叫做“晷面”,它放在石台上,其原理就是利用太阳的投影方向来测定并划分时刻.利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久,下图是一位游客在故宫中拍到的一个日晷照片,假设相机镜头正对的方向为正方向,则根据图片判断此日晷的侧(左)视图可能为( )解析:因为相机镜头正对的方向为正方向,所以侧视图中圆盘为椭圆,又晷针斜向下穿盘而过,故其投影为下虚上实,故选D.答案:D2.“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由完全相同的四个曲面构成,其直观图如图(其中四边形是为体现直观性而作的辅助线).当“牟合方盖”的正视图和侧视图完全相同时,其俯视图为( )解析:∵相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).∴其正视图和侧视图是一个圆,俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上,∴俯视图是有2条对角线且为实线的正方形,故选B.答案:B3.(2019·青岛模拟)某四棱锥的三视图如图所示,则该四棱锥的侧面为等腰直角三角形的个数为( )A.1 B.2C.3 D.4解析:由三视图可得直观图如图所示:由三视图可知:PD ⊥平面ABCD , ∴PD ⊥AD ,PD ⊥DC ,PD ⊥AB , 又PD =AD =2,PD =DC =2,∴△PAD 和△PDC 为等腰直角三角形. 又PD ⊥AB ,AD ⊥AB , ∴AB ⊥平面PAD , ∴AB ⊥PA ,又AB =1,PA =4+4=22, ∴ΔPAB 不是等腰直角三角形.∵PB =12+22+22=3,BC =12+22=5,PC =22+22=22, ∴△PBC 不是等腰直角三角形,综上所述,侧面为等腰直角三角形的共有2个. 故选B. 答案:B考点二 空间几何体的表面积与体积1.用半径为3 cm ,圆心角为2π3的扇形纸片卷成一个圆锥筒,则这个圆锥筒的高为( )A .1 cmB .2 2 cm C. 2 cmD .2 cm解析:设圆锥的底面半径为r cm ,由题意底面圆的周长即扇形的弧长,可得2πr =2π3×3,即底面圆的半径为1,所以圆锥的高h =32-1=22,故选B. 答案:B2.(2019·中卫模拟)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A.16π3B.8π3C .4 3D .23π解析:由已知几何体的正视图是一个正三角形,侧视图和俯视图均为三角形,可得该几何体是有一个侧面PAC 垂直于底面,高为3,底面是一个等腰直角三角形的三棱锥,如图.则这个几何体的外接球的球心O 在高线PD 上,且是正三角形PAC 的中心,这个几何体的外接球的半径R =23PD =233.则这个几何体的外接球的表面积为S =4πR 2=4π×⎝ ⎛⎭⎪⎫2332=16π3.故选A. 答案:A3.某几何体的三视图如图所示,则该几何体的体积为( )A .6+3π2B .6+3πC .2+3π2D .2+3π解析:由题意,根据给定的三视图可知,该几何体左边表示一个底面为腰长为2的等腰直角三角形,高为3的直三棱柱,右边表示一个底面为半径为1的半圆,母线长为3的半圆柱,所以该几何体的体积为V =12×2×2×3+12π×12×3=6+3π2,故选A.答案:A4.(2019·泰安模拟)如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,点P 为棱AA 1上任意一点,则四棱锥P ­BDD 1B 1的体积为________.解析:连结AC 交BD 于O (图略),则有AO ⊥平面BDD 1B 1,。

2020江苏高考理科数学二轮练习:高考热点追踪立体几何专题强化 精练提能 含解析

2020江苏高考理科数学二轮练习:高考热点追踪立体几何专题强化 精练提能 含解析

1.(20xx·徐州、淮安、宿迁、连云港四市模拟)已知圆锥的轴截面是边长为2的正三角形,则该圆锥的体积为________.[解析] 由题意得圆锥的底面半径、高分别为r =1,h =3,故该圆锥的体积为V =13π×12×3=3π3. [答案]33π 2.(20xx·江苏省高考命题研究专家原创卷(五))《九章算术》第五章《商功》记载:今有圆堡瑽,周四丈八尺,高一丈一尺,问积几何?此处圆堡瑽即圆柱体,其意思是:有一个圆柱体的底面周长是4丈8尺,高1丈1尺,问它的体积是多少?若π的值取3,估算该圆堡瑽的体积为________立方尺.(注:一丈等于十尺)[解析] 设该圆柱体底面圆的半径为r 尺,则由题意得2πr =48,所以r ≈8,又圆柱体的高为11尺,故该圆堡瑽的体积V =πr 2h ≈2 112立方尺.[答案] 2 1123.(20xx·苏北四市高三模拟)已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使平面DAC ⊥平面BAC ,则三棱锥D -ABC 的体积为________.[解析] 在平面DAC 内过点D 作DE ⊥AC ,因为平面DAC ⊥平面BAC ,由面面垂直的性质定理可得DE ⊥平面BAC .又DE =125,所以三棱锥D -ABC 的体积为13×12×4×3×125=245.[答案] 2454.(20xx·南京模拟)设平面α与平面β相交于直线m ,直线b 在平面α内,直线c 在平面β内,且c ⊥m ,则“c ⊥b ”是“α⊥β”的________条件.[解析] 若α⊥β,又α∩β=m ,c ⊂β,c ⊥m 可得c ⊥α,因为b ⊂α,所以c ⊥b .反过来c ⊥b 不能得到α⊥β(如b ∥m 时,由c ⊥m 可得c ⊥b ,但不能判断α,β的位置关系).[答案] 必要不充分5.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.[解析] 因为EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,所以EF ∥AC ,又因为E 是AD 的中点,所以F 是CD 的中点,即EF 是△ACD 的中位线, 所以EF =12AC =12×22=2.[答案] 26.(20xx·扬州模拟)设l ,m 是两条不同的直线,α是一个平面,有下列三个命题: ①若l ⊥α,m ⊂α,则l ⊥m ; ②若l ∥α,m ⊂α,则l ∥m ; ③若l ∥α,m ∥α,则l ∥m . 则其中正确命题的序号是________.[解析] 根据线面垂直的性质定理可知①正确. [答案] ①7.(20xx·南通高三模拟)已知正三棱柱的各条棱长均为a ,圆柱的底面直径和高均为b .若它们的体积相等,则a 3∶b 3的值为________.[解析] 由题意可得12×a 2×32×a =π(b 2)2×b ,即34a 3=14πb 3,则a3b3=π3=3π3.[答案]3π38.(20xx·江苏省高考命题研究专家原创卷(三))如图,若三棱锥A 1­BCB 1的体积为3,则三棱柱ABC -A 1B 1C 1的体积为________.[解析] 设三棱柱的底面面积为S ,高为h ,则VA 1­ABC =13S △ABC ·h =13Sh =13VABC ­A 1B 1C 1,同理VC ­A 1B 1C 1=13VABC ­A 1B 1C 1,所以VA 1­BCB 1=13VABC ­A 1B 1C 1.又VA 1­BCB 1=3,所以三棱柱ABC -A 1B 1C 1的体积为9.[答案] 99.(20xx·南通模拟)如图是一几何体的平面展开图,其中ABCD 为正方形,E ,F 分别为PA ,PD 的中点.在此几何体中,给出下面四个结论:①直线BE 与CF 异面;②直线BE 与AF 异面;③直线EF ∥平面PBC ;④平面BCE ⊥平面PAD .其中一定正确的有________个.[解析] 如图,易得EF ∥AD ,AD ∥BC ,所以EF ∥BC ,即B ,E ,F ,C 四点共面,则①错误,②正确,③正确,④不一定正确. [答案] 210.(20xx·江苏高考专家原创卷)已知正三棱锥P -ABC 的体积为223,底面边长为2,D 为侧棱PA 的中点,则四面体D -ABC 的表面积为________.[解析] 设底面正三角形ABC 的中心为O ,连结OA ,OP ,又底面边长为2,可得OA =233,由V P ­ABC =13S △ABC ·PO ,即223=13PO ×34×22,得PO =263,所以PA =PO2+AO2=2.S △ABC =3,S △DAB =S △DAC =32,S △DBC =2,所以四面体D -ABC 的表面积为23+2.[答案] 23+ 211.(20xx·江苏省高考命题研究专家原创卷(二))已知三棱锥P -ABC 中,PA =3,PC =2,AC =1,平面PAB ⊥平面ABC ,D 是PA 的中点,E 是PC 的中点.(1)求证:DE ∥平面ABC ; (2)求证:平面BDE ⊥平面PAB .[证明] (1)因为D 是PA 的中点,E 是PC 的中点, 所以DE ∥AC .又DE ⊄平面ABC ,AC ⊂平面ABC , 所以DE ∥平面ABC .(2)因为PA =3,PC =2,AC =1,所以PA 2+AC 2=PC 2, 所以三角形PAC 是直角三角形,AC ⊥PA . 又DE ∥AC ,所以DE ⊥PA . 过P 作PH ⊥AB 于H .因为平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,PH ⊂平面PAB , 所以PH ⊥AC .又DE ∥AC ,所以DE ⊥PH .又PA ∩PH =P ,PA ,PH ⊂平面PAB , 所以DE ⊥平面PAB .又DE ⊂平面BDE ,所以平面BDE ⊥平面PAB .12.(20xx·南京检测)如图,在正三棱柱ABC -A 1B 1C 1中,E ,F 分别为BB 1,AC 的中点.(1)求证:BF ∥平面A 1EC ;(2)求证:平面A 1EC ⊥平面ACC 1A 1.[证明] (1)连结AC 1交A 1C 于点O ,连结OE ,OF ,在正三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1为平行四边形,所以OA =OC 1. 又因为F 为AC 中点,所以OF ∥CC 1且OF =12CC 1.因为E 为BB 1中点,所以BE ∥CC 1且BE =12CC 1.所以BE ∥OF 且BE =OF ,所以四边形BEOF 是平行四边形,所以BF ∥OE . 又BF ⊄平面A 1EC ,OE ⊂平面A 1EC , 所以BF ∥平面A 1EC .(2)由(1)知BF ∥OE ,因为AB =CB ,F 为AC 中点, 所以BF ⊥AC ,所以OE ⊥AC .又因为AA 1⊥底面ABC ,而BF ⊂底面ABC , 所以AA 1⊥BF .由BF ∥OE ,得OE ⊥AA 1,而AA 1,AC ⊂平面ACC 1A 1,且AA 1∩AC =A , 所以OE ⊥平面ACC 1A 1.因为OE ⊂平面A 1EC , 所以平面A 1EC ⊥平面ACC 1A 1.13.(20xx·江苏高考原创卷)如图,已知AB ⊥平面ACD ,DE ∥AB ,△ACD 是正三角形,AD =4,DE =2AB =3,且F 是CD 的中点.(1)求证:AF ∥平面BCE ;(2)在线段CE 上是否存在点H ,使DH ⊥平面BCE ?若存在,求出CHHE 的值;若不存在,请说明理由.[解] (1)证明:取CE 的中点P ,连结FP ,BP , 因为F 为CD 的中点, 所以FP ∥DE ,且FP =12DE .又AB ∥DE ,且AB =12DE ,所以AB ∥FP ,且AB =FP , 所以四边形ABPF 为平行四边形, 所以AF ∥BP .因为AF ⊄平面BCE ,BP ⊂平面BCE , 所以AF ∥平面BCE .(2)在线段CE 上存在点H ,使DH ⊥平面BCE .理由如下:在△CDE 中,过点D 作DH ⊥CE ,交CE 于点H , 因为△ACD 为正三角形,所以AF ⊥CD .因为AB ⊥平面ACD ,DE ∥AB ,所以DE ⊥平面ACD ,又CD 、AF ⊂平面ACD ,所以DE ⊥AF ,DE ⊥CD .又CD ∩DE =D ,所以AF ⊥平面DCE .又BP ∥AF , 所以BP ⊥平面DCE .因为DH ⊂平面CDE ,所以DH ⊥BP . 又BP ∩CE =P , 所以DH ⊥平面BCE .在Rt △CDE 中,CD =4,DE =3,DH ⊥CE , 所以CH =165,HE =95,CH HE =169.14.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BB 1,AC 1⊥平面A 1BD ,D 为AC 的中点.(1)求证:B 1C 1⊥平面ABB 1A 1;(2)在CC 1上是否存在一点E ,使得∠BA 1E =45°,若存在,试确定E 的位置,并判断平面A 1BD 与平面BDE 是否垂直?若不存在,请说明理由.[解] (1)证明:因为AB =B 1B ,所以四边形ABB 1A 1为正方形,所以A 1B ⊥AB 1, 又因为AC 1⊥平面A 1BD ,所以AC 1⊥A 1B , 所以A 1B ⊥平面AB 1C 1,所以A 1B ⊥B 1C 1. 又在直棱柱ABC -A 1B 1C 1中,BB 1⊥B 1C 1, 所以B 1C 1⊥平面ABB 1A 1.(2)存在.证明如下:设AB =BB 1=a ,CE =x ,因为D 为AC 的中点,且AC 1⊥A 1D ,所以A 1B =A 1C 1=2a ,又因为B 1C 1⊥平面ABB 1A 1,B 1C 1⊥A 1B 1,所以B 1C 1=a ,BE =a2+x2, A 1E =2a2+(a -x )2=3a2+x2-2ax ,在△A 1BE 中,由余弦定理得BE 2=A 1B 2+A 1E 2-2A 1B ·A 1E ·cos 45 °,即a 2+x 2=2a 2+3a 2+x 2-2ax -23a2+x2-2ax·2a ·22,所以3a2+x2-2ax =2a -x ,解得x =12a ,即E 是C 1C 的中点,因为D ,E 分别为AC ,C 1C 的中点,所以DE ∥AC 1, 因为AC 1⊥平面A 1BD ,所以DE ⊥平面A 1BD , 又因为DE ⊂平面BDE ,所以平面A 1BD ⊥平面BDE .。

2020高考数学大二轮复习专题7立体几何第2讲综合大题部分真题押题精练理

2020高考数学大二轮复习专题7立体几何第2讲综合大题部分真题押题精练理

第2讲综合大题部分真题押题精练演练模拟| [真题体验1.(2018 •高考全国卷I )如图,四边形ABCD^正方形,E, F分别为AD BC的中点,以DF为折痕把厶DFC折起,使点C到达点P的位置,且PF丄BF(1)证明:平面PEFL平面ABFD⑵求DP与平面ABFD所成角的正弦值.解析:⑴证明:由已知可得BF丄PF, BF丄EF,所以BF丄平面PEF又BF?平面ABFD所以平面PEFL平面ABFD⑵如图,作PH丄EF,垂足为H由⑴ 得,PH丄平面ABFD以H为坐标原点,希勺方向为y轴正方向,| BF为单位长,建立如图所示的空间直角坐标系H-xyz.由⑴可得,DEI PE又DP= 2, DE= 1,所以PE= 3.又PF= 1, EF= 2,所以PEL PF.31,- 1, 0 ,所以PH=2则 H(0,0,0)又帀为平面ABFD 勺法向量,设DP 与平面ABF [所成角为0 ,所以DP 与平面ABFD 所成角的正弦值为)如图,在三棱锥 F -ABC 中, AB= BC= 2 2, PA= PB= PC= AC 4,O 为AC 的中点.(1)证明:POL 平面ABC⑵ 若点M 在棱BC 上,且二面角 MPAC 为30°,求PC 与平面PAM 所成角的正弦值. 解析:⑴ 证明:因为 PA= PC= AC= 4, O 为AC 的中点, 所以 OPL AC 且 OP= 2^3.如图,连接OB所以△ ABC 为等腰直角三角形, 1且 OBLAC , OB= q AC= 2. 由 OP + OB= PB 知 PC L OB由 OPL OB OPLAC , OBH AC= O,得 PO L 平面 ABC⑵ 如图,以O 为坐标原点,OB 勺方向为x 轴正方向,建立空间直角坐标系Oxyz .由已知得 Q 0,0,0) , B (2,0,0) , A (0, — 2,0) , C (0,2,0) , P (0,0 , 2护),辰(0,2,2 西). 取平面PAC 的一个法向量 OB= (2,0,0).设 Ma,2— a, 0)(0 < a w 2),贝 U AM = (a, 4 — a,0). 设平面PAM 勺法向量为n = (x , y , z ). 由 AP • n = 0 , AM ・ n = 0 得可取y = 3a ,得平面PAM 勺一个法向量为n = (.3( a — 4), .3 a, — a),2 羽 a-&2* a —1 2+ 3a 2 + a 2则sin葩5P1丽6p2. (2018 •高考全国卷n 2y + 2伍=0 , ©x +4 — a y = 0 ,所以 cos 〈 O B n > 因为AB= BC=由已知可得|cos 〈 O B n> | = cos 30所以2臂;4|a尋2a — 4 + 3a + a24解得 a =— 4(舍去)或a =3.又 PC= (0,2 , — 2 3),所以 cos 〈P c , n 〉=¥• 所以PC 与平面PA 術成角的正弦值为电33. (2017 •高考全国卷I )如图,在四棱锥 RABCDK AB// CD 且/ BAP=Z CDP= 90(1) 证明:平面 PABL 平面PAD(2) 若 PA= PD= AB= DC / APD= 90°,求二面角 A PB C 的余弦值. 解析:⑴ 证明:由已知/ BAP=Z CDP= 90°, 得 AB 丄 AP, CDL PD由于 AB// CD 故 ABL PD 又 APA PD= P , 从而AE L 平面PAD又AB ?平面PAB 所以平面 PABL 平面PAD (2)在平面PAD 内作PF 丄AD 垂足为F .由(1)可知,AB 丄平面PAD 故AE L PF,可得PF 丄平面 ABCD以F 为坐标原点,F A 的方向为x 轴正方向,|AB 为单位长度,建立如图所示的空间直角 坐标系F -xyz .由(1)及已知可得,0,0,P 0,0,-2,B-22,1, 0,C —¥,1,0 .所以陀—与,1, — -2,6B = ( ,2, 0,0) , P A = -2, 0, — -2 , X B = (0,1,0) 设n = (X 1,屮,Z 1)是-3.4“33 ,平面PCE的法向量,则可取 n = (0,- 1,—2).设m = (X 2, y 2, Z 2)是平面PAB 的法向量,则4. (2018 •高考全国卷川)如图,边长为2的正方形ABCD 所在的平面与半圆弧 「丨:'所在平面.X — 垂直,M 是「「上异于C, D 的点.(1)证明:平面AM D 平面BMC⑵ 当三棱锥 MABC 体积最大时,求面 MAB^面MCC 所成二面角的正弦值.解析:(1)证明:由题设知,平面 CM D 平面 ABCD 交线为 CD 因为BC D CD BC ?平面ABCD所以BC D 平面 CMD 故BC D DM因为M 为「1 :'上异于C, D 的点,且DC 为直径, 所以DML CM 又BOH CM = C,所以DML 平面BMC 而DM ?平面AMD 故平面 AM D 平面BMC⑵ 以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz .当三棱锥MABC 体积最大时,M 为「■!:'的中点.由题设得D (0,0,0) , A (2,0,0) , B (2,2,0) , C (0,2,0) , M 0,1,1),n • P C= 0, n • CB= 0,m- PA = 0,m- AB= 0,可取 m = (1,0,1)贝U cos 〈 n , m 〉n • m -申 护I n || m = 3x ^2 =-~所以二面角A -PBC 的余弦值为一A M = ( - 2,1,1) ,A E= (0,2,0) ,D A = (2,0,0)—2x+ y + z= 0 ,即<2y= 0.可取n= (1,0,2) ,DA是平面MCD勺法向量,因此设n= (x , y , z)是平面MAB勺法向量,则押题预测1.如图所示,在平行四边形 ABCDK BC= 2AB= 4, / ABC= 60°, PAL AD E, F 分别为BCPE 的中点,AF 丄平面PED(1) 求证:PA!平面 ABCD(2) 求直线BF 与平面AFD 所成角的正弦值. 解析:⑴证明:连接AE 由 BC= 2AB= 4,Z ABC= 60°,••• AE= 2, ED- 2 3,从而有 AU + E D = AD ,所以AE! ED又AF P AE= A ,所以ED 丄平面PAE PA ?平面PAE 贝U ED L PA又 PA L AD ADA ED - D,所以 PA!平面 ABCD则 A (0,2,0) , D (2 .3 , 0,0),氏—.3 ,1,0), 因为AFL 平面PED 所以AF L PEcos 〈 n , D A >「艮仝,sin 〈n , D A >=罕.|n | |D A |55所以面MAB 与面MCC 所成二面角的正弦值是2:55⑵ 以E 为坐标原点,建立如图所示的空间直角坐标系,又F为PE的中点,所以PA= AE= 2 ,所以F(0,2,2) , F(0,1,1) , X F= (0,- 1,1) , K b= (2 3,—2,0) , B F= ( 3, 0,1),设平面AFb的法向量为n= (x, y, z),A F- n = 0, —y+ z= 0,由得X b- n = 0, 2 3x—2y= 0令x = 1,得n= (1 , 3, 3).设直线BF与平面AFb所成的角为0 ,小X I BF・ n l 2护J21贝U sin 0 = |cos 〈BF, n〉| = =———= ,|BF| n| 2p7即直线BF与平面AFD所成角的正弦值为亠g=45°, AD= AP= 2,2.如图所示,在四棱锥P-ABCDK 侧面PADL底面ABCD底面ABCD1平行四边形,/ ABC(1)求证:ADL PC⑵试确定点F的位置,使得直线EF与平面PDC所成的角和直线EF与平面ABC斷成的角相等.解析:(1)证明:如图所示,在平行四边形ABC呼,连接AC因为AB= 2 ,2 , BC= 2,/ ABC= 45°,由余弦定理得,A C=A B+B C— 2 - AB- BC- cos 45°= 4,得AC= 2,所以/ ACB= 90°, 即BC L AC又AD// BC 所以AD L AC 因为AD= AF= 2, DP= 2 2,所以PAL AD又AP n AC= A ,所以AC L 平面PAC 所以ADL PC⑵因为侧面PA L 底面ABCD PAL AD所以PA L 底面ABCD 所以直线 AC AD AP 两两互相垂直,以 A 为原点,直线 AD AC设兽入(入€ [0,1]),则 PF = (2 入,2 入,一2 入),F (2 入,2 入,一2 入 + 2), 所以矗(2入+ 1,2入一1,— 2入+ 2),易得平面ABCD 勺一个法向量为 设平面PDC 的法向量为n = (x , y , z ),n • PC= 0 , 由Tn • PD= 0 ,EF 与平面PDC 所成的角和直线 EF 与平面ABC 斷成的角相等, < EF, m> | = |cos 〈 EF,n 〉| , 即I EF ・ m = | EF ・ n ||EF | m |EF | n 「2入所以 | — 2 入 + 2| =1二1 ,即,3| 入一1| = | 入 |(入 € [0,1]),3—V3PF 3—J3解得x=,所以PT —AP 为坐标轴,建立如图所示的空间直角坐标系A -xyz ,贝U A (0,0,0) ,Q — 2,0,0), C (0,2,0) ,B (2,2,0) , E ( — 1,1,0) , P (0,0,2),所以归(0,2 , — 2),PD= ( — 2,0,—2) , PB= (2,2 , — 2).m ^ (0,0,1)得 2y — 2Z = 0, —2x — 2z = 0,令 x = 1,得 n = (1 , — 1,— 1).因为直线 所以|cos即当PB= 32討时,直线EF 与平面PDC 所成的角和直线EF 与平面ABC [所成的角相等.3.如图,在二棱柱 ABC -A i BiC 中,/ AAB = 45 , AC= BC 平面 BBCC 丄平面 AABB, E 为CC 中点.(1)求证:BB 丄AC⑵ 若AA = 2, AB=P 2,直线AC 与平面ABBA 所成角为45°,求平面 ABE 与平面ABC 所成锐二面角的余弦值.解析:(1)证明:过点 C 做CC 丄BB 交BB 于Q 因为面BBCC 丄面AABB,BBCC Q 面 AAB i B = BB,所以 CQ_面 AABB , 故 CQL BB , 又因为 AC = BC QC= QC所以 Rt △ AQC2 Rt △ BQC 故 QA= QB 因为/ B i A A =Z 0B = 45°,所以 AQL BB , 又因为BB L CQ 所以BB L 面AOC 故 BB L AC⑵ 以Q 为坐标原点,QA QB QC 所在直线为x , y , z 轴,建立空间直角坐标 Q -xyz ,A 1 ,0,0) ,B (0,1 ,0) , Q0,0,1 ) , A l (1 , — 2,0) , B i (0 , — 1 ,0) , E (0 , — 1 , 1 ),设面ABE 的法向量为n = (x , y , zj ,—X 1 + y 1 + Z 1 = 0 ,Z 1 = 0 ,令 X 1= 1,得 n = (1,1,0).设面ABC 勺法向量为m = (X 2 , y 2 , Z 2),n • AE = 0 , 、n • BiE =—X 2 + y = 0,—X 2 + Z 2 = 0,令 X 2= 1,得 m= (1,1,1),二 cos 〈 m n >面ABE 与面ABC 所成锐二面角的余弦值为4. (2018 •临沂模拟)如图①,在矩形 ABCDK AB= 3, BC = 4, E 是边AD 上一点,且 AE =3,把△ ABE 沿 BE 翻折,使得点 A 到A'满足平面 A BE 与平面BCDE 垂直(如图②). (1)若点P 在棱A C 上,且CP= 3PA ,求证:DP//平面A BE;(2)求二面角 BA' E -D 的余弦值的大小.解析:(1)证明:在图②中,过 P 作PQ/ BC 交A' B 于点Q 连接QE因为BC = 4,所以PQ 1,因为DE/ BC DE= 1,所以DE 綊PQ所以四边形QED 为平行四边形,所以 DP// EQ 因为DF ?平面A BE EQ ?平面A BE,所以DP//平面A BE⑵在图②中,过A 作A F 丄BE 于点F ,因为平面 A BEL 平面BCDE 所以A F 丄平面BCDE因为/ BA E = 90°, A B = 3, A E = 3,33^3所以/ A EB= 30°, A F = 2, EF=W ,n r AC= 0, £ 7nr n 6 mm?=亍,因为 CP= 3PA',所以 PQ _A _P -1BC = A 'C = 4过F 作FGL DE 交DE 的延长线于点 G 则 FG=9 E & 9.如图②,建立空间直角坐标系,D (0,0,0) ,E (1,0,0) , 04 , . 3, 0) , C (0 , . 3, 0),X)图②/13 3 ;343,2誓,0,则E A EF= 324(1,0,0)设平面A BE 的法向量n = (x , y , z ),94x + 即 9 x + .4可取 n = (1,——3, 0).设平面 A DE 的法向量m ^(x i , y i , z i ),X = 0,即 9x i + 芈y i + 2z i = 0, 可取 m = (0,2 , - 3).所以 cos 〈m n 〉=-2 3——=--^ . + 3 — 4+ 37因为二面角 BA' E- D 为钝角,所以二面角 BA' E-D 的余弦值的大小为一 -21n • EF ^ 0,则彳[n • E A = 0,叶 6E= o , 则 Am- E /A = 0,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高考数学二轮复习资料专题七 立体几何(理)(学生版)【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。

2、空间两条直线的三种位置关系,并会判定。

3、平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线平行及角相等的方法。

4、异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范围,会求异面直线的所成角。

5.理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6.了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.7.空间平行与垂直关系的论证.8. 掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题,进一步掌握异面直线所成角的求解方法,熟练解决有关问题.9.理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转化法、向量法).对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离.【考点预测】在2020年高考中立体几何命题有如下特点:1.线面位置关系突出平行和垂直,将侧重于垂直关系.2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现.3.多面体及简单多面体的概念、性质、三视图多在选择题,填空题出现.4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题.【要点梳理】1.三视图:正俯视图长对正、正侧视图高平齐、俯侧视图宽相等.2.直观图:已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半.3.体积与表面积公式:(1)柱体的体积公式:V =柱Sh ;锥体的体积公式: V =锥13Sh ;台体的体积公式: V =棱台1()3h S S '+;球的体积公式: V =球343r π. (2)球的表面积公式: 24S R π=球.4.有关球与正方体、长方体、圆柱、圆锥、圆台的结合体问题,要抓住球的直径与这些几何体的有关元素的关系.5.平行与垂直关系的证明,熟练判定与性质定理.6.利用空间向量解决空间角与空间距离。

【考点在线】考点一三视图例1.(2020年高考海南卷文科第8题)在一个几何体的三视图中,正视图和俯视图如右图,则相应的侧视图可以为()练习1:(2020年高考江西卷文科9)将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()例2..(2020年高考安徽卷文科8)一个空间几何体得三视图如图所示,则该几何体的表面积(A )1717练习2:(2020年高考湖南卷文科4)设图1是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+ 考点三 球的组合体例3. (2020年高考辽宁卷文科10)己知球的直径SC=4,A ,B 是该球球面上的两点.AB=2,45ASC ∠=o , 则棱锥S ABC -的体积为( ) (A)33 (B) 33 (C) 33 (D) 533 练习3:(2020年高考海南卷文科16)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .考点四 空间中平行与垂直关系的证明例4. (2020年高考山东卷文科19)如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,∠ (Ⅰ)证明:1AA BD ⊥;(Ⅱ)证明:11CC A BD ∥平面.练习4. (2020年高考江苏卷16)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点.求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面PAD.考点五 空间角与距离的求解 例5. (2020年高考浙江卷理科20).如图,在三棱锥P ABC -中,AB AC =,D 为BC 的3正视图 侧视图 俯视图 图1F E A C D中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP ⊥BC ;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-β为直二面角?若存在,求出AM 的长;若不存在,请说明理由。

练习 5. (2020年高考全国卷理科16)己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于 . 【易错专区】问题:三视图与表面积、体积例.(2020年高考陕西卷文科5)某几何体的三视图如图所示,则它的体积是( )(A )283π-(B )83π- (C )82π- (D )23π 【考题回放】1.(2020年高考浙江卷理科4)下列命题中错误的是( )(A )如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β(B )如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β(C )如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面(D )如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β2. (2020年高考山东卷理科11)下图是长和宽分别相等的两个矩形.给定下列三个命题: ①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如 下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是( )(A)3 (B)2 (C)1 (D)03.(2020年高考浙江卷理科3)若某几何体的三视图如图所示,则这个几何体的直观图可以是( )列结论中不正确...的是( )(B) AB ∥平面SCD(C) SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角(D)AB 与SC 所成的角等于DC 与SA 所成的角5.(2020年高考江西卷理科8)已知1α,2α,3α是三个相互平行的平面.平面1α,2α之间的距离为1d ,平面2α,3α之间的距离为2d .直线l 与1α,2α,3α分别相交于1P ,2P ,3P ,那么“12P P =23P P ”是“12d d =”的( )A.充分不必要条件B.必要不充分条件C .充分必要条件D .既不充分也不必要条件6.(2020年高考重庆卷理科9)高为24的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )(A 2(B 2 (C )1 (D 27.(2020年高考四川卷理科3)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( )(A)12l l ⊥,23l l ⊥13l l ⇒P (B )12l l ⊥,23l l P ⇒13l l ⊥(C)233l l l P P ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面8.(2020年高考全国卷理科6)已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1,AB AC BD ===则D 到平面ABC 的距离等于( )(A )23(B )33 (C )63 (D )1 15. (2020年高考全国卷理科11)已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N的面积为( )(A)7π (B)9π (c)11π (D)13π16. (2020年高考全国新课标卷理科15)已知矩形ABCD的顶点都在半径为4的球O 的球面上,且6,3AB BC ==则棱锥O ABCD -的体积为 。

17. (2020年高考全国新课标卷理科18) (本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD.(Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD=AD ,求二面角A-PB-C 的余弦值。

18.(2020年高考湖南卷理科19)如图5,在圆锥PO 中,已知PO 2⊙O 的直径2AB =,C 是»AB 的中点,D 为AC 的中点.(Ⅰ)证明:平面POD ⊥平面PAC ;(Ⅱ)求二面角B PA C --的余弦值.【高考冲策演练】一、选择题:1.(2020年高考广东卷A 文科第6题)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是 ( )A .①和②B .②和③C .③和④D .②和④2.(2020年高考湖南卷文科第6题)平面六面体1111ABCD A B C D -中,既与AB 共面也与1CC 共面的棱的条数为( )A .3B .4C .5D .63. (山东省青岛市2020年3月高考第一次模拟)已知直线 l 、m ,平面α、β,且l α⊥,m β⊂,则//αβ是l m ⊥的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.(山东省济宁市2020年3月高三第一次模拟)已知a 、b 为直线,α、β为平面.在下列四个命题中,① 若a ⊥α,b ⊥α,则a ∥b ; ② 若 a ∥α,b ∥α,则a ∥b ; ③ 若a ⊥α,a ⊥β,则α∥β; ④ 若α∥b ,β∥b ,则α∥β.正确命题的个数是 ( )A . 1B . 3C . 2D . 05. (山东省泰安市2020届高三上学期期末文科)设l 、m 、n 为不同的直线,βα、为不同的平面,有如下四个命题:( )①若βαβα//,l ,l 则⊥⊥②若βαβα⊥⊂⊥l ,l 则, ③若n l n m m l //,,则⊥⊥ ④若n m n m ⊥⊥则且βαβα////,A.0B.1C.2D.36. (山东省济南一中2020届高三上学期期末文科)已知正三棱锥V ABC -的主视图、俯视图如下图所示,其中VA=4,AC=32,则该三棱锥的左视图的面积 ( )A .9B .6C .33D .397.(山东省烟台市2020届高三上学期期末文科)已知空间两条不同的直线n m ,和两个不同的平面,αβ,则下列命题中正确的是( )A .若//,,//m n m n αα⊂则B .若,,m m n n αβα=⊥⊥I 则C .若//,//,//m n m n αα则D .若//,,,//m m n m n αβαβ⊂=I 则8.(2020年高考全国2卷理数9)已知正四棱锥S ABCD -中,23SA =,那么当该棱锥的体积最大时,它的高为( )(A )1 (B )3(C )2 (D )39.(2020年高考全国2卷理数11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点( )(A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个10. (2020年高考重庆市理科10)到两互相垂直的异面的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )(A ) 直线 (B ) 椭圆 (C ) 抛物线 (D ) 双曲线11. (2020年全国高考宁夏卷10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )(A) 2a π (B) 273a π (C) 2113a π (D) 25a π 12.(2020年高考广东卷理科6)如图1,△ ABC 为三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC ' =AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )13.(2020年高考上海卷理科7)若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 。

相关文档
最新文档