数电课后习题及答案
数电课后答案解析康华光第五版(完整)
第一章数字逻辑习题1.1数字电路与数字信号1.1.2 图形代表的二进制数0101101001.1.4一周期性数字波形如图题所示,试计算:(1)周期;(2)频率;(3)占空比例MSB LSB0 1 2 11 12 (ms)解:因为图题所示为周期性数字波,所以两个相邻的上升沿之间持续的时间为周期,T=10ms 频率为周期的倒数,f=1/T=1/0.01s=100HZ占空比为高电平脉冲宽度与周期的百分比,q=1ms/10ms*100%=10%1.2数制2 1.2.2将下列十进制数转换为二进制数,八进制数和十六进制数(要求转换误差不大于4(2)127 (4)2.718解:(2)(127)D=72-1=(10000000)B-1=(1111111)B=(177)O=(7F)H(4)(2.718)D=(10.1011)B=(2.54)O=(2.B)H1.4二进制代码1.4.1将下列十进制数转换为8421BCD码:(1)43 (3)254.25解:(43)D=(01000011)BCD1.4.3试用十六进制写书下列字符繁荣ASCⅡ码的表示:P28(1)+ (2)@ (3)you (4)43解:首先查出每个字符所对应的二进制表示的ASCⅡ码,然后将二进制码转换为十六进制数表示。
(1)“+”的ASCⅡ码为0101011,则(00101011)B=(2B)H(2)@的ASCⅡ码为1000000,(01000000)B=(40)H(3)you的ASCⅡ码为本1111001,1101111,1110101,对应的十六进制数分别为79,6F,75(4)43的ASCⅡ码为0110100,0110011,对应的十六紧张数分别为34,331.6逻辑函数及其表示方法1.6.1在图题1. 6.1中,已知输入信号A,B`的波形,画出各门电路输出L的波形。
解: (a)为与非, (b)为同或非,即异或第二章 逻辑代数 习题解答2.1.1 用真值表证明下列恒等式 (3)A B AB AB ⊕=+(A ⊕B )=AB+AB 解:真值表如下A B A B ⊕ABAB A B ⊕AB +AB0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 11111由最右边2栏可知,A B ⊕与AB +AB 的真值表完全相同。
数字电路习题及答案
·数字电路与系统-习题答案1第1 章数字逻辑基础1.1 什么是数字电路?与模拟电路相比,数字电路具有哪些特点?答:处理数字信号并能完成数字运算的电路系统称为数字电路。
特点:采用二进制,结构简单易于集成;可用于数值计算和逻辑运算;抗干扰,精度高;便于长期存储和远程传输,保密性好,通用性强。
1.3 把下列二进制数转换成十进制数。
(1)(11000101)2 = (197)10(2)(0.01001)2 = (0.28125)10(3)(1010.001)2 = (10.125)101.4 把下列十进制数转换成二进制数。
(1)(12.0625)10 = (1100.0001)2(2)(127.25)10 = (1111111.01)2(3)(101)10 = (1100101)21.5 把二进制数(110101111.110)2分别转换成十进制数、八进制数和十六进制数。
答:(110101111.110)2 =(431.75)10 =(657.6)8 =(1AF.C)161.6 把八进制数(623.77)8分别转换成十进制数、十六进制数和二进制数。
答:(623.77)8 =(403.98)10 =(193.FC)16 =(110010011.111111)21.7 把十六进制数(2AC5.D)16分别转换成十进制数、八进制数和二进制数。
答:(2AC5.D)16 =(10949.81)10 =(25305.64)8 =(10101011000101.1101)21.8 把十进制数(432.13)10转换成五进制数。
答:(432.13)10 =(3212.0316)51.9 用8421BCD 码表示下列十进制数。
(1)(42.78)10 =(0100 0010.0111 1000)8421BCD(2)(103.65)10 =(0001 0000 0011.0110 0101)8421BCD(3)(9.04)10 =(1001.0000 0100)8421BCD数字电路与系统-习题答案21.10 把下列8421BCD 码表示成十进制数。
数字电子技术课后习题答案(全部)
第一章数制与编码1.1自测练习1.1.1、模拟量数字量1.1.2、(b)1.1.3、(c)1.1.4、(a)是数字量,(b)(c)(d)是模拟量1.2 自测练习1.2.1. 21.2.2.比特bit1.2.3.101.2.4.二进制1.2.5.十进制1.2.6.(a)1.2.7.(b)1.2.8.(c)1.2.9.(b)1.2.10.(b)1.2.11.(b)1.2.12.(a)1.2.13.(c)1.2.14.(c)1.2.15.(c)1.2.16.10010011.2.17.111.2.18.1100101.2.19.11011.2.20.8进制1.2.21.(a)1.2.22.0,1,2,3,4,5,6,71.2.23.十六进制1.2.24.0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 1.2.25.(b)1.3自测练习1.3.1.1221.3.2.675.521.3.3.011111110.011.3.4.521.3.5.1BD.A81.3.6.1110101111.11101.3.7.38551.3.8.28.3751.3.9.100010.111.3.10.135.6251.3.11.570.11.3.12.120.51.3.13.2659.A1.4自测练习1.4.1.BCD Binary coded decimal 二—十进制码1.4.2.(a)1.4.3.(b)1.4.4.8421BCD码,4221BCD码,5421BCD1.4.5.(a)1.4.6.011001111001.10001.4.7.111111101.4.8.101010001.4.9.111111011.4.10.61.051.4.11.01011001.011101011.4.12.余3码1.4.13.XS31.4.14.XS31.4.15.1000.10111.4.16.1001100000111.4.17.521.4.18.110101.4.19.0101111.4.20.(b)1.4.21.ASCII1.4.22.(a)1.4.23.ASCII American Standard Code for Information Interchange美国信息交换标准码EBCDIC Extended Binary Coded Decimal Interchange Code 扩展二-十进制交换吗1.4.24.10010111.4.25.ASCII1.4.26.(b)1.4.27.(b)1.4.28.110111011.4.29.-1131.4.30.+231.4.31.-231.4.32.-861.5 自测练习 1.5.1 略1.5.2 11011101 1.5.3 010001011.5.4 11100110 补码形式 1.5.5 011111011.5.6 10001000 补码形式 1.5.7 11100010 补码形式习题1.1 (a )(d )是数字量,(b )(c )是模拟量,用数字表时(e )是数字量,用模拟表时(e )是模拟量 1.2 (a )7, (b )31, (c )127, (d )511, (e )40951.3 (a )22104108⨯+⨯+, (b )26108108⨯+⨯+,(c )321102105100⨯+⨯+⨯+(d )322104109105⨯+⨯+⨯+ 1.4 (a )212121⨯+⨯+, (b )4311212121⨯+⨯+⨯+, (c )64212+12+12+12+1⨯⨯⨯⨯(d )9843212+12+12+12+12⨯⨯⨯⨯⨯ 1.5 2201210327.15310210710110510--=⨯+⨯+⨯+⨯+⨯,3210-1-221011.0112+02+12+12+02+12=⨯⨯⨯⨯⨯⨯,210-18437.448+38+78+48=⨯⨯⨯⨯, 10-1-2163A.1C 316+A 16+116+C 16=⨯⨯⨯⨯1.6 (a )11110, (b )100110,(c )110010, (d )1011 1.7 (a )1001010110000, (b )10010111111.8 110102 = 2610, 1011.0112 = 11.37510, 57.6438 = 71.81835937510, 76.EB 16= 118.91796875101.9 1101010010012 = 65118 = D4916,0.100112 = 0.468 = 0.9816,1011111.011012 = 137.328 = 5F.68161.10 168 = 1410,1728 = 12210,61.538 = 49.671875, 126.748 = 86.9375101.11 2A 16 = 4210 = 1010102 = 528, B2F 16 = 286310 = 1011001011112 = 54578, D3.E 16= 211.87510 = 11010011.11102 = 323.78, 1C3.F916 = 451.9726562510 = 111000011.111110012 = 703.76281.12 (a )E, (b )2E, (c )1B3, (d )349 1.13 (a )22, (b )110, (c )1053, (d )2063 1.14 (a )4094, (b )1386, (c )49282 1.15(a )23, (b )440, (c )27771.16 198610 = 111110000102 = 00011001100001108421BCD , 67.31110 = 1000011.010012 =01100111.0011000100018421BCD , 1.183410 = 1.0010112 = 0001.00011000001101008421BCD ,0.904710 = 0.1110012 = 0000.10010000010001118421BCD1.17 1310 = 000100118421BCD = 01000110XS3 = 1011Gray, 6.2510 = 0110.001001018421BCD=1001.01011000 XS3 = 0101.01Gray,0.12510= 0000.0001001001018421BCD= 0011.010*********XS3 = 0.001 Gray1.18 101102 = 11101 Gray,0101102 = 011101 Gray1.19 110110112 = 0010000110018421BCD,45610 = 0100010101108421BCD,1748=0010011101008421BCD,2DA16 = 0111001100008421BCD,101100112421BCD = 010*********BCD, 11000011XS3 = 100100008421BCD1.20 0.0000原= 0.0000反= 0.0000补,0.1001原= 0.1001反= 0.1001补,11001原= 10110反= 10111补1.21 010100原= 010100补,101011原= 110101补,110010原= 101110补,100001原=111111补1.22 1310 = 00001101补,11010 = 01101110补,-2510 = 11100111补,-90 =10100110补1.23 01110000补= 11210,00011111补= 3110,11011001补= -3910,11001000补= -56101.24 1000011 1000001 1010101 1010100 1001001 1001111 1001110 0100001 01000001001000 1101001 1100111 1101000 0100000 1010110 1101111 1101100 1110100 1100001 1100111 11001011.25 0100010 1011000 0100000 0111101 0100000 0110010 0110101 0101111 101100101000101.26 BEN SMITH1.27 00000110 100001101.28 01110110 10001110第二章逻辑门1.1 自测练习2.1.1. (b)2.1.2. 162.1.3. 32, 62.1.4. 与2.1.5. (b)2.1.6. 162.1.7. 32, 62.1.8. 或2.1.9. 非2.1.10. 12.2 自测练习=⋅2.2.1. F A B2.2.2. (b)2.2.3. 高2.2.4. 322.2.5. 16,52.2.6. 12.2.7. 串联2.2.8. (b)2.2.9. 不相同2.2.10. 高2.2.11. 相同2.2.12. (a)2.2.13. (c)2.2.14. 奇2.3 自测练习2.3.1. OC,上拉电阻2.3.2. 0,1,高阻2.3.3. (b)2.3.4. (c)2.3.5. F A B=⋅, 高阻2.3.6. 不能2.4 自测练习1.29 TTL,CMOS1.30 Transisitor Transistor Logic1.31 Complementary Metal Oxide Semicoductor1.32 高级肖特基TTL,低功耗和高级低功耗肖特基TTL1.33 高,强,小1.34 (c)1.35 (b)1.36 (c)1.37 大1.38 强1.39 (a)1.40 (a)1.41 (b)1.42 高级肖特基TTL1.43 (c)习题2.1 与,或,与2.2 与门,或门,与门2.3 (a)F=A+B, F=AB (b)F=A+B+C, F=ABC (c)F=A+B+C+D, F=ABCD2.4 (a )0 (b )1 (c )0 (d )0 2.5 (a )0 (b )0 (c )1 (d )0 2.6 (a )1 (b )1 (c )1 (d )1 2.7 (a )4 (b )8 (c )16 (d )32 2.8 (a )3 (b )4 (c )5 (d )62.9 (a )(b ) A B C D F 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 11112.10 Y AB AC =+2.11A B C Y 0 0 0 0 0 0 1 0 011A B C F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 11110 1 1 11 0 0 01 0 1 11 1 0 01 1 1 12.122.13F1 = A(B+C), F2=A+BCA B C F1F20 0 0 0 00 0 1 0 00 1 0 0 00 1 1 0 11 0 1 1 11 0 0 0 11 1 0 1 11 1 1 1 12.142.15 (a)0 (b)1 (c)1 (d)02.16 (a)1 (b)0 (c)0 (d)12.17 (a)0 (b)02.182.19 Y AB BC DE F=⋅⋅⋅2.20 Y AB CD EF=⋅⋅2.21 102.22 402.23 当TTL反相器的输出为3V,输出是高电平,红灯亮。
数电第五版_部分课后答案(清晰pdf康光华主编).txt
解:由图知该电路属于漏极开路门的线与输出
L E L4 E L1 L2 L3 E AB BC D
3.1.9 图题 3.1.9 表示三态门作总线传输的示意图,图中 n 个三态门的输出接到数据传 输总线,D1、D2、…、Dn 为数据输入端,CS1、CS2、…、CSn 为片选信号输入端。试问: (1)CS 信号如何进行控制,以便数据 D1、D2、…、Dn 通过该总线进行正常传输;(2)CS 信 号能否有两个或两个以上同时有效?如果 CS 出现两个或两个以上有效,可能发生什么情 况?(3)如果所有 CS 信号均无效,总线处在什么状态?
2 / 31
(3) A ABC ACD (C D) E A CD E
A ABC ACD (C D) E A(1 BC ) ACD (C D) E A(1 CD) ACD CDE A CD CDE A CD(1 E ) CDE A CD E
解: L ACD BCD ABCD ACD( B B) ( A A) BCD ABCD
ABCD ABCD ABCD ABCD ABCD m13 m9 m10 m 2 m15
(2) L A( B C )
L A( B C ) A ( B C ) A( BC BC ) BC ABC ABC BC ( A A) ABC A( B C ) ABC ABC ABC ABC ABC AB (C C ) AC ( B B ) ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC m 7 m 5 m1 m 4 m 6
数电课后习题及标准答案
题1.1 完成下面的数值转换:(1)将二进制数转换成等效的十进制数、八进制数、十六进制数。
①(0011101)2②(11011.110)2③(110110111)2解:①(0011101)2 =1×24+ 1×23+ 1×22+ 1×20=(29)10(0011101)2 =(0 011 101)2= (35)8(0011101)2 =(0001 1101)2= (1D)16②(27.75)10,(33.6)8,(1B.C)16;③(439)10,(667)8,(1B7)16;(2)将十进制数转换成等效的二进制数(小数点后取4位)、八进制数及十六进制数。
①(89)②(1800)10③(23.45)1010解得到:①(1011001)2,(131)8,(59)16;②(11100001000) 2,(3410) 8,(708) 16③(10111.0111) 2,(27.31) 8,(17.7) 16;(3)求出下列各式的值。
①(54.2)16=()10 ②(127)8=()16 ③(3AB6)16=()4解①(84.125)10;②(57)16;③(3222312)4;题1.2 写出5位自然二进制码和格雷码。
题1.3 用余3码表示下列各数①(8)10 ②(7)10 ③(3)10解(1)1011;(2)1010;(3)0110题1.4 直接写出下面函数的对偶函数和反函数。
()()Y AB C D E C'=++()()Y AB A C C D E ''=+++ (())Y A B C D E '''=++++()Y A B C A B C '''=++解(1)(())(())(2)()(())()(())(3)(())(())(4)D D D D Y A B C D E C Y A B C D E C Y A B A C C D E Y A B AC C D E Y A BC DE Y A B C D E Y ABC A B C Y A B C A B C'''''''=+++=+++''''''''=+++=+++''''''''''=='''''''=+++=+++,,,,题1.5 证明下面的恒等式相等 ()()()()()()()()AB C B ABC A BC ABC AB B A B A BBC AD A B B D A C C D A C B D B D AB BC ''+=++''++=++=++++'''+++=+1、(AB+C)B=AB+BC=AB ( C+C')+ ( A+A')BC=ABC +ABC'+ABC + A'BC= ABC+ABC'+ A'BC 2、AB'+B+A'B=A+B+A'B=A+B+B=A+B3、左=BC+AD , 对偶式为(B+C)(A+D)=AB+AC+BD+CD 右=(A+B)(B+D) (A+C)(C+D),对偶式为: AB+AC+BD+CD 对偶式相等,推得左=右。
数电课后习题答案
数电课后习题答案(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2思考题与习题思考题与习题第一章【1-1】(1)(1101)2= (13)10(2)(10111)2=(23)10 (3)(110011)2=(51)10 (4)()2=()10【1-2】(1)(35)10=(100011)2 (2)(168)10 =()2 (3)()10=()2 (4)(199)10=()2【1-3】(1)(1011011682)()55()AD ==(2)(11682)1()715()CD == (3)(011682)36()1435()D == (4)(11682)157()527()==【1-4】答:数字逻辑变量能取“1”,“0”值。
它们不代表数量关系,而是代表两种状态,高低电平.【1-5】答:数字逻辑系统中有“与”,“或”,“非”三种基本运算,“与”指只有决定事件发生的所有的条件都成立,结果才会发生,只要其中有一个条件不成立,结果都不会发生. “与“指只要所有的条件中有一个条件成立,结果就会发生,除非所有的条件都不成立,结果才不会发生. ”非“指条件成立,结果不成立。
条件不成立,结果反而成立。
【1-6】答:逻辑函数:指用与,或,非,等运算符号表示函数中各个变量之间逻辑关系的代数式子。
将由真值表写出逻辑函数表达式的方法: 1.在真值表中挑选出所有使函数值为1的变量的取值组合。
2.将每一个选出的变量取值组合对应写成一个由各变量相与的乘积项,在此过程中,如果某变量取值为1,该变量以原变量的形式出现在乘积项中,如果某变量取值为0,则该变量以反变量的形式出现在乘积项中。
3.将所有写出的乘积项相或,即可得到该函数的表达式。
【1-7】答:在n 输入量的逻辑函数中,若m 为包含n 个因式的乘积项,而且这n 个输入变量均以原变量或反变量的形式在m 中出现且仅出现一次,这m 称为该n 变量的一个最小项。
数字电子技术课后习题答案(全部)
第一章数制与编码1.1自测练习1.1.1、模拟量数字量1.1.2、(b)1.1.3、(c)1.1.4、(a)是数字量,(b)(c)(d)是模拟量1.2 自测练习1.2.1. 21.2.2.比特bit1.2.3.101.2.4.二进制1.2.5.十进制1.2.6.(a)1.2.7.(b)1.2.8.(c)1.2.9.(b)1.2.10.(b)1.2.11.(b)1.2.12.(a)1.2.13.(c)1.2.14.(c)1.2.15.(c)1.2.16.11.2.17.111.2.18.1.2.19.11011.2.20.8进制1.2.21.(a)1.2.22.0,1,2,3,4,5,6,71.2.23.十六进制1.2.24.0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 1.2.25.(b)1.3自测练习1.3.1.1221.3.2.675.521.3.3.011111110.011.3.4.521.3.5.1BD.A81.3.6.1111.11101.3.7.38551.3.8.28.3751.3.9.100010.111.3.10.135.6251.3.11.570.11.3.12.120.51.3.13.2659.A1.4自测练习1.4.1.BCD Binaryl二—十进制码1.4.2.(a)1.4.3.(b)1.4.4.8421BCD码,4221BCD码,5421BCD1.4.5.(a)1.4.6.011001111001.10001.4.7.111111101.4.8.101010001.4.9.111111011.4.10.61.051.4.11.01011001.011101011.4.12.余3码1.4.13.XS31.4.14.XS31.4.15.1000.10111.4.16.1001100000111.4.17.521.4.18.110101.4.19.0101111.4.20.(b)1.4.21.ASCII1.4.22.(a)1.4.23.ASCII h ange美准码EBCDICExtende d BinaryCoded Decimal Interch ange Code 扩展二-十进制 1.4.24.10010111.4.25.ASCII1.4.26.(b)1.4.27.(b)1.4.28.110111011.4.29.-1131.4.30.+231.4.31.-231.4.32.-861.5 自测练习 1.5.1 略 1.5.2 11011101 1.5.3 01000101 1.5.4 11100110 补码形式 1.5.5 01111101 1.5.6 10001000 补码形式 1.5.7 11100010 补码形式 习题1.1 (a )(d )是数字量,(b )(c )是模拟量,用数字表时(e )是数字量,用模拟表时(e )是模拟量1.2 (a )7, (b )31, (c )127, (d )511, (e )40951.3 (a )22104108⨯+⨯+, (b )26108108⨯+⨯+,(c )321102105100⨯+⨯+⨯+(d )322104109105⨯+⨯+⨯+1.4 (a )212121⨯+⨯+, (b )4311212121⨯+⨯+⨯+, (c )64212+12+12+12+1⨯⨯⨯⨯(d )9843212+12+12+12+12⨯⨯⨯⨯⨯ 1.5 2201210327.15310210710110510--=⨯+⨯+⨯+⨯+⨯,3210-1-221011.0112+02+12+12+02+12=⨯⨯⨯⨯⨯⨯, 210-18437.448+38+78+48=⨯⨯⨯⨯, 10-1-2163A.1C 316+A 16+116+C 16=⨯⨯⨯⨯1.6 (a )11110, (b ) ,(c ) , (d )1011 1.7 (a ) 0, (b ) 1111 1.8 110102 = 2610, 1011.0112 = 11.37510, 57.6438 = 71.81835937510, 76.EB 16 = 118.7510 1.9 1101010010012 = 65118 = D4916,0.100112 = 0.468 = 0.9816,1011111.011012 =137.328 = 5F.68161.10 168 = 1410,1728 = 12210,61.538 = 49.671875, 126.748 = 86.937510 1.11 2A 16 = 4210 = 2 = 528, B2F 16 = 286310 = 2 = 54578,D3.E 16 = 211.87510 = 11.11102 = 323.78, 1C3.F916 = 451 2510 = 011.111110012 = 703.76281.12 (a )E, (b )2E, (c )1B3, (d )349 1.13 (a )22, (b )110, (c )1053, (d )2063 1.14 (a )4094, (b )1386, (c )49282 1.15 (a )23, (b )440, (c )2777 1.16 198610 = = 00011001100001108421BCD , 67.31110 = 1.010012 = 01100111.0011000100018421BC D ,1.183410 = 1.0010112 = 0001.00011000001101008421BCD , 0.904710 = 0.1110012 = 0000.10010000010001118421BCD1.17 1310 = 000100118421B CD = 01000110XS3 = 1011Gra y, 6.2510 = 0110.001001018421B CD = 1001.01011000XS3 = 0101.01Gray,0.12510= 0000.000100100101 = 0011.010001101000X S3 = 0.001 Gray8421BCD1.18 101102= 11101 Gray,0101102 = 011101 Gray1.19 110110112 = 0010000110018421BCD,45610 = 0100010101108421BCD,1748=0010011101008421BCD,2DA16 = 0111001100008421BCD,101100112421B CD = 010100118421B CD,11000011XS3 = 100100008421B CD1.20 0.0000原= 0.0000反= 0.0000补,0.1001原= 0.1001反= 0.1001补,11001原=10110反=10111补1.21 010100原= 010100补,101011原= 110101补,110010原= 101110补,100001原=111111补1.22 1310 = 00001101补,11010 = 01101110补,-2510 = 11100111补,-90 = 10100110补1.23 01110000补= 11210,00011111补= 3110,11011001补= -3910,11001000补= -56101.24 100001110000011010101101010010010011001111 1001110010000101000001001000 1101001 1100111 1101000 0100000 1010110 1101111 1101100 1110100 1100001 1100111 11001011.25 010001010110000100000011110101000000110010 01101010101111101100101000101.26 BEN SMITH1.27 00000110 100001101.28 01110110 10001110第二章逻辑门1.1 自测练习2.1.1. (b)2.1.2. 162.1.3. 32, 62.1.4. 与2.1.5. (b)2.1.6. 162.1.7. 32, 62.1.8. 或2.1.9. 非2.1.10. 12.2 自测练习2.2.1. F A B=⋅2.2.2. (b)2.2.3. 高2.2.4. 322.2.5. 16,52.2.6. 12.2.7. 串联2.2.8. (b)2.2.9. 不相同2.2.10. 高2.2.11. 相同2.2.12. (a)2.2.13. (c)2.2.14. 奇2.3 自测练习2.3.1. OC,上拉电阻2.3.2. 0,1,高阻2.3.3. (b)2.3.4. (c)2.3.5. F A B=⋅, 高阻2.3.6. 不能2.4 自测练习1.29 TTL,CMOS1.30 Transis itor Transis tor Logic1.31 Complem entary Metal Oxide Semicod uctor1.32 高级肖特基TT L, 高级 肖特基T TL1.33 高,强,小1.34 (c)1.35 (b)1.36 (c)1.37 大1.38 强1.39 (a)1.40 (a)1.41 (b)1.42 高级肖特基TT L1.43 (c)习题2.1 与,或,与2.2 与门,或门,与门2.3 (a)F=A+B, F=AB (b)F=A+B+C, F=ABC (c)F=A+B+C+D, F=ABCD2.4 (a )0 (b )1 (c )0 (d )0 2.5 (a )0 (b )0 (c )1 (d )0 2.6 (a )1 (b )1 (c )1 (d )1 2.7 (a )4 (b )8 (c )16 (d )32 2.8 (a )3 (b )4 (c )5 (d )6 2.9 (a )(b ) A B C D F 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 11112.10 Y AB AC =+2.11A B C Y 0 0 0 0 0 0 1 0 011A B C F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 11110 1 1 11 0 0 01 0 1 11 1 0 01 1 1 12.122.13F1 = A(B+C), F2=A+BCA B C F1F20 0 0 0 00 0 1 0 00 1 0 0 00 1 1 0 11 0 1 1 11 0 0 0 11 1 0 1 11 1 1 1 12.142.15 (a)0 (b)1 (c)1 (d)02.16 (a)1 (b)0 (c)0 (d)12.17 (a)0 (b)02.18=⋅⋅⋅2.19 Y AB BC DE F=⋅⋅2.20 Y AB CD EF2.21 102.22 402.23 当TTL反相器的输出为3V,输出是高电 ,红灯亮。
数电-带答案
第一章 逻辑代数基础 例题1.与(10000111)BCD 相等的十进制数是87, 二进制数是1010111 十六进制数是57,2.AB+CD=0(约束项)求 的最简与或表达式。
解:D C A C B A Z +=,见图1-1, 得3.若F(A,B,C,D)=∑m(0,1,2,3,4,7,15)的函数可化简为: 则可能存在的约束项为( 3 )。
见图1-21.逻辑函数式Y A B C D =++()的反演式为 D C B A + 2. 在下列不同进制的数中,数值最大的数是( D )1051A.() .101010B 2() 163E C.() D.(01011001)8421BCD 码 3、用卡诺图化简下式为最简与或式。
D C B A ++ Y(A,B,C,D)= ∑m(0,2,4,5,6,8,9)+ ∑d(10,11,12,13,14,15) 4.已知F ABC CD =+选出下列可以肯定使F=0的情况( D )A. A=0,BC=1B. B=C=1C. D=0,C=1D. BC=1,D=1 5、是8421BCD 码的是( B )。
A 、1010 B C 、1100 D 、11016、欲对全班43个学生以二进制代码编码表示,最少需要二进制码的位数是( B )。
A 、5B 、6C 、8D 、437、逻辑函数F(A,B,C) = AB+B C+C A 的最小项标准式为( D )。
A 、F(A,B,C)=∑m(0,2,4)B 、F(A,B,C)=∑m(1,5,6,7)C 、F(A,B,C)=∑m (0,2,3,4)D 、F(A,B,C)=∑m(3,4,6,7)Z A BC A B AC D =++Z Z AC AC =+()B C D C D ++1..2..3..4..AC A DA C AB A D A B A B B C++++8、用代数法化简下式为最简与或式。
A+CC B BC C B A BCD A A F ++++=判断题1.若两个函数具有不同的真值表,则两个逻辑函数必然不相等。
数电课后习题及答案
第1章 数字电路基础知识1 电子电路主要分为两类:一类是电子电路主要分为两类:一类是 模拟电路 ,另一类是,另一类是 数字电路 。
2 模拟电路处理的是模拟电路处理的是 模拟信号 ,而数字电路处理的是,而数字电路处理的是 数字信号 。
3 晶体管(即半导体三极管)的工作状态有三种:晶体管(即半导体三极管)的工作状态有三种:截止截止、 放大和 饱和。
在模拟电路中,晶体管主要工作在体管主要工作在 放大状态 。
4 在数字电路中,晶体管工作在在数字电路中,晶体管工作在 截止与 饱和状态,也称为状态,也称为 “开关”状态。
状态。
5 模拟信号是一种模拟信号是一种大小随时间连续变化大小随时间连续变化的电压或电流,数字信号是一种的电压或电流,数字信号是一种突变突变的电压和电流。
6 模拟信号的电压或电流的大小是模拟信号的电压或电流的大小是随时间连续缓慢变化的随时间连续缓慢变化的,而数字信号的特点是“保持”(一段时间内维持低电压或高电压)和“段时间内维持低电压或高电压)和“突变突变”(低电压与高电压的转换瞬间完成)。
7 在数字电路中常将0~1v 范围的电压称为范围的电压称为低电平低电平,用,用““0”来表示;将3~5v 范围的电压称为高电平,用,用““1”来表示。
来表示。
介绍了数字电路的发展状况和数字电路的一些应用领域,并将数字电路和模拟电路进行了比较,让读者了解两者的区别,以利于后面数字电路的学习。
以利于后面数字电路的学习。
第2章 门电路1 基本门电路有基本门电路有与门与门、或门、非门三种。
三种。
2 与门电路的特点是:只有输入端都为只有输入端都为 高电平 时,输出端才会输出高电平;只要有一个输入端为“0”,输出端就会输出输出端就会输出 低电平 。
与门的逻辑表达式是与门的逻辑表达式是 Y A B =· 。
3 或门电路的特点是:只要有一个输入端为只要有一个输入端为 高电平 ,输出端就会输出高电平。
只有输入端都为 低电平 时,输出端才会输出低电平。
数电习题及答案
数电习题及答案(总32页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、时序逻辑电路与组合逻辑电路不同,其电路由组合逻辑电路和存储电路(触发器)两部分组成。
二、描述同步时序电路有三组方程,分别是驱动方程、状态方程和输出方程。
三、时序逻辑电路根据触发器的动作特点不同可分为同步时序逻辑电路和异步时序逻辑电路两大类。
四、试分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图。
解:驱动方程:001101J KJ K Q====状态方程:100111010nnQ QQ Q Q Q Q++==+输出方程:10Y Q Q=状态图:功能:同步三进制计数器五、试用触发器和门电路设计一个同步五进制计数器。
解:采用3个D触发器,用状态000到100构成五进制计数器。
(1)状态转换图(2)状态真值表(3)求状态方程(4)驱动方程(5)逻辑图(略)[题] 分析图所示的时序电路的逻辑功能,写出电路驱动方程、状态转移方程和输出方程,画出状态转换图,并说明时序电路是否具有自启动性。
解:触发器的驱动方程2001021010211J Q K J Q J QQ K Q K ====⎧⎧⎧⎨⎨⎨==⎩⎩⎩ 触发器的状态方程120011010112210n n n Q Q Q Q Q Q Q Q Q Q Q Q +++==+=⎧⎪⎪⎨⎪⎪⎩输出方程 2Y Q = 状态转换图如图所示所以该电路的功能是:能自启动的五进制加法计数器。
[题] 试分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,并检查电路能否自启动。
解:驱动方程输出方程 状态方程状态转换图如图 所示功能:所以该电路是一个可控的3进制计数器。
[题] 分析图时序电路的功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,并检查电路能否自启动。
数电习题答案
第一章数制和码制1.数字信号和模拟信号各有什么特点?答:模拟信号——量值的大小随时间变化是连续的。
数字信号——量值的大小随时间变化是离散的、突变的(存在一个最小数量单位△)。
2.在数字系统中为什么要采用二进制?它有何优点?答:简单、状态数少,可以用二极管、三极管的开关状态来对应二进制的两个数。
3.二进制:0、1;四进制:0、1、2、3;八进制:0、1、2、3、4、5、6、7;十六进制:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F。
4.(30.25)10=( 11110.01)2=( 1E.4)16。
(3AB6)16=( 0011101010110110)2=(35266)8。
(136.27)10=( 10001000.0100)2=( 88.4)16。
5. B E6.ABCD7.(432.B7)16=( 010*********. 10110111)2=(2062. 556)8。
8.二进制数的1和0代表一个事物的两种不同逻辑状态。
9.在二进制数的前面增加一位符号位。
符号位为0表示正数;符号位为1表示负数。
这种表示法称为原码。
10.正数的反码与原码相同,负数的反码即为它的正数原码连同符号位按位取反。
11.正数的补码与原码相同,负数的补码即为它的反码在最低位加1形成。
12.在二进制数的前面增加一位符号位。
符号位为0表示正数;符号位为1表示负数。
正数的反码、补码与原码相同,负数的反码即为它的正数原码连同符号位按位取反。
负数的补码即为它的反码在最低位加1形成。
补码再补是原码。
13.A:(+1011)2的反码、补码与原码均相同:01011;B: (-1101)2的原码为11101,反码为10010,补码为10011.14.A: (111011)2 的符号位为1,该数为负数,反码为100100,补码为100101. B: (001010)2的符号位为0,该数为正,故反码、补码与原码均相同:001010.15.两个用补码表示的二进制数相加时,和的符号位是将两个加数的符号位和来自最高有效数字位的进位相加,舍弃产生的进位得到的结果就是和的符号。
数电课后答案康华光版
第1章习题及解答1.1 将下列二进制数转换为等值的十进制数。
(1)(11011)2 (2)(10010111)2(3)(1101101)2 (4)(11111111)2(5)(0.1001)2(6)(0.0111)2(7)(11.001)2(8)(101011.11001)2题1.1 解:(1)(11011)2 =(27)10 (2)(10010111)2 =(151)10(3)(1101101)2 =(109)10 (4)(11111111)2 =(255)10(5)(0.1001)2 =(0.5625)10(6)(0.0111)2 =(0.4375)10(7)(11.001)2=(3.125)10(8)(101011.11001)2 =(43.78125)10 1.3 将下列二进制数转换为等值的十六进制数和八进制数。
(1)(1010111)2 (2)(110111011)2(3)(10110.011010)2 (4)(101100.110011)2题1.3 解:(1)(1010111)2 =(57)16 =(127)8(2)(110011010)2 =(19A)16 =(632)8(3)(10110.111010)2 =(16.E8)16 =(26.72)8(4)(101100.01100001)2 =(2C.61)16 =(54.302)81.5 将下列十进制数表示为8421BCD码。
(1)(43)10 (2)(95.12)10(3)(67.58)10 (4)(932.1)10题1.5 解:(1)(43)10 =(01000011)8421BCD(2)(95.12)10 =(10010101.00010010)8421BCD(3)(67.58)10 =(01100111.01011000)8421BCD(4)(932.1)10 =(100100110010.0001)8421BCD1.7 将下列有符号的十进制数表示成补码形式的有符号二进制数。
数字电子技术课后习题答案
ABACBC
BC
A
00 01 11 10
00
1
0
1
11
0
1
0
Y ABC
❖ 3.13某医院有一、二、三、四号病室4间,每室设有 呼叫按钮,同时在护士值班室内对应的装有一号、 二号、三号、四号4个指示灯。
❖ 现要求当一号病室的按钮按下时,无论其它病室的 按钮是否按下,只有一号灯亮。当一号病室的按钮 没有按下而二号病室的按钮按下时,无论三、四号 病室的按钮是否按下,只有二号灯亮。当一、二号 病室的按钮都未按下而三号病室的按钮按下时,无 论四号病室的按钮是否按下,只有三号灯亮。只有 在一、二、三号病室的按钮均未按下四号病室的按 钮时,四号灯才亮。试用优先编码器74148和门电路 设计满足上述控制要求的逻辑电路,给出控制四个 指示灯状态的高、低电平信号。
HP RI/BIN
I0
0/ Z1 0 10 ≥1
I1
1/ Z1 1 11
I2
2/ Z1 2 12 18
YS
I3
3/ Z1 3 13
I4
4/ Z1 4 14
YEX
I5
5/ Z1 5 15
I6
6/ Z1 6 16
I7
7/ Z1 7 17
Y0
V18
Y1
ST
E N
Y2
(b)
74148
(a)引脚图;(b)逻辑符号
A
00 01 11 10
00
0
0
1
11
1
0
1
Y AB BC AC
由于存在AC 项,不存在相切的圈,故无冒险。
❖ 4.1在用或非门组成的基本RS触发器中,已知 输入SD 、RD的波形图如下,试画出输出Q, Q
数字电路课后题参考答案
习题参考答案注:参考答案,并不是唯一答案或不一定是最好答案。
仅供大家参考。
第一章习题2. C B A D B A C B A F ⋅⋅+⋅⋅+⋅⋅=3. 设:逻辑变量A 、B 、C 、D 分别表示占有40%、30%、20%、10%股份的四个股东,各变量取值为1表示该股东投赞成票;F 表示表决结果,F =1表示表决通过。
F =AB +AC +BCD4. 设:A 、B 开关接至上方为1,接至下方为0;F 灯亮为1,灯灭为0。
F =A ⊙B5. 设:10kW 、15kW 、25kW 三台用电设备分别为A 、B 、C ,设15kW 和25kW 两台发电机组分别为Y 和Z ,且均用“0”表示不工作,用“1”表示工作。
C AB Z BA B A Y ⋅=⋅=6.输入为余3码,用A 、B 、C 、D 表示,输出为8421BCD 码,用Y 0、Y 1、Y 2、Y 3表示。
D C A B A Y CB DC BD B Y DC Y DY ⋅⋅+⋅=⋅+⋅⋅+⋅=⊕==32107. 设:红、绿、黄灯分别用A 、B 、C 表示,灯亮时为1,灯灭时为0;输出用F 表示,灯正常工作时为0,灯出现故障时为1。
C A B A C B A F ⋅+⋅+⋅⋅=8. D C B D A H DC B AD C B A D C B A D C B A G DC B AD C A B A F DC B A E ⋅⋅+⋅=⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=⋅⋅⋅+⋅⋅+⋅=⋅⋅⋅=第二章习题1. 设:红、绿、黄灯分别用A 、B 、C 表示,灯亮时其值为1,灯灭时其值为0;输出报警信号用Y 表示,灯正常工作时其值为0,灯出现故障时其值为1。
AC AB C B A Y ⋅⋅=2. 设:烟、温度和有害气体三种不同类型的探测器的输出信号用A 、B 、C 表示,作为报警信号电路的输入,有火灾探测信号时用1表示,没有时用0表示。
报警信号电路的书躇用Y 表示,有报警信号时用1表示,没有时用0表示。
数电第三版课后答案(共19页)
数电第三版课后答案[模版仅供参考,切勿通篇使用]篇一:数电答案蔡良伟(完整版)数字电路答案第一章习题1-1(1)221*8010=2*8+6=268268=2?6?=101102010110101102=0?0010?110=1616 16(2) 10821010=1*8+5*8+4*8=15481548=1?5??4=11011002 00110110011011002=0?1101?100=6C16 6C(3)*80-110=1*8+5+1*8==1?5?.1?= 001101001=1??010= D2(4)-110=2*8+0*8+3*8+5*8==2?0?3?.5?= 010*********=1?0000??010= 83A1-2(1)1011012=1?011?01=558 551011012=0?0101?101=2D16 2D555*81+5*808==4510(2)111001012=0?111?001? 01=3458 345111001012=1?1100?101=E516 E534528=3*8+4*81+5*80=22910(3)=1??011?00= 514=0??011= 53-184=5*+81*+8-42=*851 0.1875(4)=1?001?? 01= 474=0?0100??010= 27A?4*81?7*80?5*8?1? 1-3(1)161+6*808=1*8=1410168=1?6?=1110200111011120=?11=10E16E(2)1722108=1*8+7*8+2*8=12210 1728=1?7??2=11110102 001111010 11110102?0111?1010??7A167A(3)-1-28=6*8+1*8+5*8+3*8= =6?1?.5?3?= 110001101011=0?0110??0101?100= 31AC(4)-1-28=1*8+2*8+6*8+7*8+4*8= =1?2?6?.7??4 = 001010110111100=0?1010??111= 56F1-4 (1)2A16=2??A=1010102 001010101010102=1?010?10=528 52521+2*808=5*8=4210(2)B2F16=B?2?F?=1011001011112 1011001011111011001011112=1?011?001? 011?11=54578 54575457=5*83+4*82+5*81+7*80 8=286310(3)=D?3?.E?= 110100111110=0?110?100??11= 3237-18=3*8+2*8+3*8+7*8= (4)=1?C?3?.F?9?= 00011100001111111001=1?110?000??111?100?10= 73762*81+3*80+7*8-1+6*8-2+2*8-38=7*8+=(1)A(B?C)?AB?AC左式=右式,得证。
习题答案(数电)
总结:本题考察 了触发器的功能 和应用需要根据 题目要求选择合 适的触发器并理 解其工作原理。
第4题答案解析
答案:
解析:根据题目要求我们需要找到一个函数该函数在输入为0时输出为1在输入为1时 输出也为1。选项的函数f(x)=x恰好满足这一条件。
题目1内容
题目1:简述 二进制数的特
点
题目2:二进 制数的运算规
汇报人:
添加标题
答案:Y = 'BC + B'C + BC' + BC
添加标题
添加标题
注意事项:在化简过程中需要注意 避免出现多余的项和不必要的计算。
第3题答案
答案:
解析:根据题目要求需要选择一个能够实现异或逻辑功能的电路。选项中只有选项符合异或逻辑功能因此正确答 案为。
解题思路:首先分析题目要求然后根据逻辑功能选择合适的电路。在本题中需要选择一个能够实现异或逻辑功能 的电路因此应选择选项。
,
汇报人:
目录
第1题答案
题目:化简逻辑表 达式F=(+B)(C+D)
答案: F=C+D+BC+BD
解析:根据逻辑运 算的基本规则将表 达式展开即可得到 答案。
备注:注意区分逻 辑加和逻辑乘的优 先级。
题目:化简逻辑表达式
第2题答案
解析:利用逻辑代数的基本定律将 表达式化简为最简形式。
添加标题
总结:本题考查了异或逻辑功能和电路的选择要求考生掌握相关知识能够根据题目要求选择合适的电路。
题目:化简逻辑表达式 F='BC+B'C'+BC
第4题答案
答案: F=('+(B+C))(+(B'+C'))(+B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题1.1 完成下面的数值转换:(1)将二进制数转换成等效的十进制数、八进制数、十六进制数。
①(0011101)2②(11011.110)2③()2解:①(0011101)2 =1×24+ 1×23+ 1×22+ 1×20=(29)10(0011101)2 =(0 011 101)2= (35)8(0011101)2 =(0001 1101)2= (1D)16②(27.75)10,(33.6)8,(1B.C)16;③(439)10,(667)8,(1B7)16;(2)将十进制数转换成等效的二进制数(小数点后取4位)、八进制数及十六进制数。
①(89)10②(1800)③(23.45)1010解得到:①(1011001)2,(131)8,(59)16;②) 2,(3410) 8,(708) 16③(10111.0111) 2,(27.31) 8,(17.7) 16;(3)求出下列各式的值。
①(54.2)16?=()10 ②(127)8?=()16 ③(3AB6)16?=()4解①(84.125)10;②(57)16;③(3222312)4;题1.2 写出5位自然二进制码和格雷码。
题1.3 用余3码表示下列各数①(8)10 ②(7)10 ③(3)10解(1)1011;(2)1010;(3)0110题1.4 直接写出下面函数的对偶函数和反函数。
解题1.5 证明下面的恒等式相等1、(AB+C)B=AB+BC=AB ( C+C')+ ( A+A')BC=ABC+ABC'+ABC+ A'BC= ABC+ABC'+ A'BC2、AB'+B+A'B=A+B+A'B=A+B+B=A+B3、左=BC+AD,对偶式为(B+C)(A+D)=AB+AC+BD+CD右=(A+B)(B+D) (A+C)(C+D),对偶式为:AB+AC+BD+CD对偶式相等,推得左=右。
4、(A+C')(B+D)(B+D')= (A+C')(B+BD+BD')= (A+C')B=AB+BC'题1.7 在下列各个逻辑函数中,当变量A、B、C为哪些取值组合时,函数Y的值为1。
Y=AB+BC+A'C= AB(C+C')+BC (A+A')+A'C(B+B')=m7+m6+m1+m3使以上四个最小项为1时,Y为1.即:111;110;011;001(2)000,001,011,100(3)100,101,000,011,010,111(4)110,111,010题1.8 列出下面各函数的真值表题 1.9 在举重比赛中,有甲、乙、丙三名裁判,其中甲为主裁判,乙、丙为副裁判,当主裁判和一名以上(包括一名)副裁判认为运动员上举合格后,才可发出合格信号。
列出该函数的真值表。
设A为主裁判,真值表如下表所示。
题1.10 一个对4逻辑变量进行判断的逻辑电路。
当4变量中有奇数个1出现时,输出为1;其他情况,输出为0。
列出该电路的真值表,写出函数式。
题1.11 已知逻辑函数真值表如右表所示,写出对应的函数表达式。
将Y为1对应的最小项相加,就可以得到函数式。
Y=m1+m2+m4+m5+m7=A'B'C+ A'BC'+ AB'C'+ AB'C+ ABC同理可以得到题1.12的函数式:Y= A'B'C'D+A'B'CD'+A'BC'D'+A'BCD+AB'C'D'+AB'CD+ABC'D+ABCD'题1.13 写出如下图所示的各逻辑图对应的逻辑函数式。
题1.14 写出如下图所示的各逻辑图对应的逻辑函数式。
Y1=((A+B) 'C) ' +(C'D) ' Y2=((AB')E+(B'CD)E) '题1.15 利用公式法将下列各函数化为最简与或式。
(1)Y=AB'C+A'+B+C'=B'C+A'+B+C'= C+A'+B+C‘=1(2)Y=(A'BC) '+(AB') '=A+B'+C'+A'+B=1(3)Y=AB'CD+ABD+AC'D=AD(B'C+B+C')=AD(4)Y=AB' (A'CD+(AD+B'C') ') '(A'+B)= AB' (A'CD+(AD+B'C') ') '(AB') '=0(5)Y=AC (C'D+A'B) +BC((B'+AD) '+CE) '= BC(B'+AD) (CE) '=ABCDE(6)Y=AC +AC'D+AB'E'F' +B(D+E)+BC'DE'+BC'D'E+ABE'F= AC +AD+AB'E'F' +B(D+E)+BC' (D+E)+ABE'F= AC+AD+B(D+E) +AE' (B⊙F)题1.16 写出下图中各逻辑图的逻辑函数式,并化简为最简与或式。
(a)Y=((AB'C) '(BC') ') '=AB'C+BC'(b)Y=((A'+B)'+(A+B')' +(B+C') ') '= (A'+B)(A+B')(B+C')=(AB+A'B') (B+C')=AB+A'B'C'(c)Y1=((AB') '(AD'C) ') '=AB'+ AD'CY2=((AB') '(AD'C') '(A'C'D)(ACD))'=AB'+ AD'C'+A'C'D+ACD= AB'+ AD'C'+A'C'D+ACD(d)Y1=(((AB) +(A+B)C) ') '=AB+ +(A+B)C=AB+BC+AC Y2=(A+B)+C =BC+AC题1.17 将下列各函数式化为最小项之和的形式。
Y=A'BC+AC+B'C=A'BC+A(B+B')C+(A+A')B'C = A'BC+ABC+AB'C+ A'B'C Y=AB+((BC)'(C'+D') ') ' =AB+B+C'+D' =B+C'+D'=∑m(0,1,2,4,5,6,7,8,9,10,12,13,14,15) Y=AB'C'D+BCD+A'D = ∑m(1,3,5,7,9,15) Y=((A+B)(C+D)) ' =A ⊙B+C ⊙D=∑m(0,1,2,3,4,7,8,11,12,13,14,15)题2-1 三极管的开关特性指的是什么?什么是三极管的开通时间和关断时间?若希望提高三极管的开关速度,应采取哪些措施?解:三极管在快速变化的脉冲信号的作用下,其状态在截止与饱和导通之间转换,三极管输出信号随输入信号变化的动态过程称开关特性。
开通时间是指三极管由反向截止转为正向导通所需时间,即开启时间 (是三极管发射结由宽变窄及基区建立电荷所需时间)关断时间是指三极管由正向导通转为反向截止所需的时间,即关闭时间 (主要是清除三极管内存储电荷的时间)三级管的开启时间和关闭时间总称为三极管的开关时间,提高开关速度就是减小开关时间。
因为有 的大小是决定三极管开关时间的主要参数。
所以为提高开关速度通常要减轻三极管饱和深度题2-2 试写出三极管的饱和条件,并说明对于题图2-62的电路,下列方法中,哪些能使未达到饱和的三极管饱和.解:三极管的饱和判断条件为所以,能使未达到饱和的三极管饱和的方法:题2-3 电路如图2-63所示,其三极管为硅管,=20,试求 小于何值时,三极管T 截止;大于何值时,三极管T 饱和;题2-5 为什么说TTL 反相器的输入端在以下4种接法下都属于逻辑0? (1)输入端接地。
(2)输入端接低于0.8V 的电源。
(3)输入端接同类门的输出低电压0.2V 。
(4)输入端接200 解:(2)因为TTL 反相器V IL(max)=0.8V,相当于输入低电平。
(4)因为TTL 反相器接的输入端负载题2-6 为什么说TTL 反相器的输入端在以下4种接法下都属于逻辑1? (1)输入端悬空。
(2)输入端接高于2V 的电源。
(3)输入端接同类门的输出高电压3.6V 。
(4)输入端接10k 的电阻到地。
(1) 如果输入端A 悬空,由下图TTL 反相器电路可见,反相器各点的电位将和A 端接高电平的情况相同,输off on t t >s ft t>B BSi I >b R ↓β↑出也为低电平。
所以说TTL 反相器的输入端悬空相当于接高电平。
(2)因为TTL 反相器 输入端接高于2V 的电源相当于输入高电平。
(此时反相器输出低电平) (4)因为TTL 反相器接的输入端负载 ,则TTL 反相器输出低电平。
所以输入端接的 电阻到地相当于接高电平。
题2-7 指出图2-65中各门电路的输出是什么状态(高电平、低电平或高阻态)。
已知这些门电路都是74系列的TTL 电路。
解:根据TTL 反相器电路输入端负载特性:关门电阻 开门电阻同时考虑图中各逻辑门的功能特点: 题2-8 说明图2-66中各门电路的输出是高电平还是低电平。
已知它们都是74HC 系列的CMOS 电路。
解:根据CMOS 门在输入正常工作电压0~V DD 时,输入端的电流为“0”的特点,则接输入端电阻时,电阻两端几乎没有压降值。
答案如下: 题2-9 用OC 门实现逻辑函数 画出逻辑电路图。
题2-10 分析题图2-67所示电路,求输入S1 、S0各种取值下的输出Y ,填入2.11 在题图2-68所示的TTL 门电路中,要实现下列规定的逻辑功能时,其连接有无错误?如有错误请改正。