升压芯片之RT9212
CMT2119B 高功率 Sub-1GHz 射频发射器说明书
+20 dBm 大功率Sub-1GHz 射频发射器特性 ⏹ ⏹ ⏹ ⏹ ⏹ ⏹ ⏹ ⏹ ⏹ ⏹ ⏹ ⏹ ⏹ 应用于QFN16 (3X 3)17GNDCSB FCSB X IX OG P I O 2G P I O 1NC NC 13141516121112目录1.电气特性 (4)1.1推荐运行条件 (4)1.2绝对最大额定值 (4)1.3功耗 (5)1.4发射机 (5)1.5稳定时间 (6)1.6频率综合器 (6)1.7低电压检测 (6)1.8晶体 (7)1.9低频振荡器 (7)1.10数字接口 (7)1.11典型参数图表 (8)2.管脚描述 (10)3.典型应用原理图 (11)4.功能描述 (12)4.1发射器 (12)4.2辅助模块 (12)4.2.1晶体振荡器 (12)4.2.2睡眠计时器 (13)4.2.3低电压检测 (13)4.2.4快速手动跳频 (13)5.芯片运行 (14)5.1SPI接口 (14)5.2FIFO (14)5.2.1FIFO 读操作 (14)5.2.2FIFO 写操作 (15)5.2.3FIFO 相关中断 (15)5.3工作状态,时序及功耗 (16)5.3.1启动时序 (16)5.3.2工作状态 (16)5.4GPIO和中断 (18)6.数据包及包处理机 (20)6.1数据包格式 (20)6.2数据模式 (20)6.2.1直通模式 (21)6.2.2包模式 (21)7.自动运行模式 (22)8.用户寄存器 (23)8.1CMT区 (23)8.2系统区 (24)8.3频率区 (24)8.4数据率区 (24)8.5基带区 (25)8.6发射区 (25)8.7控制1区 (25)8.8控制2区 (26)9.订购信息 (27)10.封装信息 (28)11.顶部丝印 (29)11.1CMT2119B顶部丝印 (29)12.其它文档 (30)13.文档变更记录 (31)14.联系信息 (32)1. 电气特性V DD = 3.3 V,T OP = 25 °C,F RF = 433.92 MHz。
第二代超级芯片UOC-Ⅱ(S系列)电路分析与维修.doc
第二代超级芯片UOC-Ⅱ(S系列)电路分析与维修康佳第二代超级芯片电视机T2975S、T2976S、P2971S/P2960S、T2173S、P2171S/P2572S、T2576S、P2571S、P2571SR/P2971SN、T2975SR、P2961S、T3476S等“S”系列。
新的“S”系列较“K”系列又增加了一些功能,如“屏保”功能、“时钟”功能、“日历”功能、“色温”功能、“计算器”功能、“游戏”功能、“绿屏”功能等。
扫描速度调制功能的效果更为明显,“S”系列中的“P”(镜面管)机设有实时时钟IC(N105)和地磁校正电路。
与“K”系列相比主要区别在于超级芯片本身,K系列采用的是菲力浦公司的TDA9383,其供电则由N903(TDA8133)电压转换器,将输入的+12V转换成+5V和+8V,再将+5V通过V958、VD959等得到+3.3V供TDA9383内部的CPU电路。
而“S”系列采用的是美国MICRONAS(梦柯)公司的VCT3803A,内部电路(模拟部分为+5V);数字部分为+3.2V—3.4V所需供电电源由开关稳压电源输出的+12V经外部有关电路获得相应电压提供。
VCT3803A是超薄型的IC,很轻,一块29寸的T2975S机的机芯板几乎与普通的21寸机芯板大小相当。
一、应用的IC(一)、P2971S与P2960S ① N101(TDA4472)视频—中频和准伴音并行处理器② N103(VCT3803A) TV的微控器和视频处理器③ N104(24C16)存储器④ N105(RS5C372) I2C 总线串行实时时钟与CPU的相互连接⑤ N201(MSP3463G)多标准声音处理器(FM解调/NICAM解调与解码)⑥ N202(TDA2616)音频功放⑦ N401(TDA8177F)场驱动输出⑧N907(STR-G8656)开关稳压电源的振荡,调节与控制 (二)、T2975S与T2976S ① N101(STV8223B)多标准视频和声音的中频系统,用于视频和声音的接入开关② N102(TC4052)电子开关③ N103(VCT3803A) CPU与TV处理器合成IC ④ N104(24C06)存储器⑤ N202(TDA7056)音频功放⑥ N401(TDA8177F)场驱动输出⑦ N909(STR-5653)开关稳压电源需要指出的是:“S”系列各机型虽同用VCT3803A,但该IC所设的24个可编程输入/输出(I/O)端口,在具体应用上有所不同P2971S/P2960S所用VCT3803A的引脚功能说明表(1)脚号功能参考电压脚号功能参考电压1 制式选择(P制/N) 5V/0V 64 安全设置输出(正常为L)0V2 地0V 63 键控信号输入0V3 供电+5V 62 遥控信号输入 3.4V4 供电地0V 61 灯控入/出 4.8V5 地磁线圈信号输出 1.2V 60 I2C串行数据输入/输出 3.8V6 I束/灯丝保护 4.9V 59 I2C串行数据输出 3.6V7 电源开/关(遥控) 5V 58 复位输入/输出(低电平有效) 4.8V8 AFT输入 1.8V 57晶体输入/输出表笔接上即自动关机9 地0 5610 地0 55 地011 模拟视频输出 1.6V 54 供电电压 3.2V12 参考电压 2.6 53 接地013 信号地0 52 接地014 地0 51 接地015 供电电压5V 50 接地016 Cb分量输入1V 49 接地017 C(色度)(1)输入 1 48 RGB和DAC参考电压 2.6V18 C(2)/Cr分量输入 1.4V 47 DAC参考电压 2.4V19 模拟视频(1)输入1V 46 地0V20 模拟视频(2)输入1V 45 供电5V21 TV视频输入 1.2V 44 B输出 4.4V22 模拟视频(4)输入1V 43 G输出 4.3V23 测试脚(地) 0V 42 R输出 4.4V24 行激励输出0.36V 41 速度调制输出 4.57V25 数字电路供电 3.4V 40 ADC测量范围开关(2) 0V26 数字电路地0V 39 ADC测量范围开关(1) 0V27 接地0V 38 地0V28 接地0V 37 CRT检测输入0V29 接地0V 36 东/西枕校输出 3.0V30 接地0V 35 场”+”输出 1.25V31 场保护输入0V 34 场“-”输出 1.25V32 安全保护输入0V 33 行逆程输入0.3VV T2975S/T2976S所用VCT3803A的引脚功能说明表(1)脚号功能脚号功能1 B1(用于制式选择)64 安全信号输出(正常为低电平)2 B2(用于制式选择)63 键控信号输入3 供电(+5V)62 遥控信号输入4 地61 电源指示灯5 空60 串行数据输入/输出6 I束/灯丝过压保护输入59 串行时钟输出7 电源开/关58 复位输入/输出(低电平有效)8 AFT输入57 模拟晶体输出9 SYS1(AV开关)56 模拟晶体输入10 SYS2(静音)55 地11 视频输出54 供电(+3.2V)12 参考电压53 声音输出(2)(去N202)13 地(信号)52 声音输出(1)14 地51 模拟声音(3)输入15 供电(+5V)50 模拟声音(2)输入16 CB输入49 模拟声音(1)输入17 Cr输入48 RGB的参考电压输入18 C输入47 参考电压输入19 AV1输入46 地20 AV2输入45 供电(+5V)21 TV视频输入44 B(兰)输出22 AV4输入43 G(绿)输出23 地42 R(红)输出24 行激励输出41 接供电(+5V)25 行供电(3.4V)40 测量范围开关226 滤波39 测量范围开关127 地38 地28 地37 CRT检测输入29 地36 东/西枕校输出30 地35 场”+”输出31 场保护输入34 场“-”输出32 保险装置输入33 行逆程输入二、整机组成方块图(一)、P2971S与P2960S的整机组成图(1)给出了“S”系列中的P2971S与P2960S两机型的整机组成方块图。
TDC-GP22用户手册
模拟输入电路
斩波稳定低漂移比较器,可编程offset,±35 mV 第一个波检测: 在第一波检测后比较器自动调整
offset到0,可以选择相对于第一个波的测量回波 第一个波脉冲宽度测量用于信号质量检测以及气
泡的检测 用于输入选择的内部集成模拟开关 外部电路仅需要2个电阻和2个电容
acam-messelectronic gmbh - Friedrich-List-Str. 4 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de
2-1
时间数字转换器
TDC-GP22
2
特性和规格
2.1
电气特性
绝对最大额定值
供电电压
Vcc vs. GND
时间数字转换器
临时数据手册
TDC-GP22
超声波热表水表特定双通道时间数字转换器
2012年1月26日 版本号码.: DB_GP22_cn V0.1
时间数字转换器
Published by acam-messelectronic gmbh © acam-messelectronic gmbh 2011
2
acam-messelectronic gmbh - Friedrich-List-Str. 4 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de
TDC-GP22
目录
1 概述
2 特性和规格
3 配置 & 读寄存器
4 前端转换器
5 详细描述和特殊功能 6 应用 7 其它
- 0.3 到 4.0
V
Vio vs. GND
rt9202 rt9214
[维修经验]简析RT9202与RT9214[复制链接]本帖最后由孤帆远影于 2009-12-6 21:23 编辑关于RT9202和RT9214的代换问题,很多帖子都已讨论过。
今天细看了这两个芯片的PDF。
现就这两种芯片的异同,简析如下:一,供电电压不同.RT9202工作电压为5V ,RT9214工作电压为5V或12V二,第七脚不完全相同虽同为过电流设置端(OCSET)。
且该脚被拉低到地时,都会关闭芯片的输出。
但是接法不相同RT9202 是在上管漏极和第七脚OCSET 脚之间接一电阻,来设定过电流保护的动作点。
RT9214是在其PHAST端和第七脚OPS之间接一电阻,来设定过电流保护的动作点为什么有的朋友会说这两种芯片能相互代换;有的会说9214能代换9202,反之就不行呢? 其实都没有说错假如一些板子上用的是9214或9202,但是没有用到他的第七脚的过流保护功能。
只是随便将该脚经过一个电阻上拉,然后接一个三极管(场管)的C极(漏极)。
该三极管(场管)的基极(G极),基于上电时序的需要,受控于桥。
如果再恰巧是5V 的VCC。
在这样的设计里,9214和9202就可以互换。
如果板子上用的是9214,VCC采用的是12V。
那换9202上去肯定不行。
如果板子上用的是9202,且9202第七脚的过电流保护功能通过外部元件启用了,那么理论上是不能用9214来代换的。
[主板]简析RT9202与RT9214[复制链接]楼主发表于 2009-12-7 19:00 |只看该作者|倒序浏览|打印关于RT9202和RT9214的代换问题,很多帖子都已讨论过。
今天细看了这两个芯片的PDF。
现就这两种芯片的异同,简析如下:一,供电电压不同.RT9202工作电压为5V ,RT9214工作电压为5V或12V二,第七脚不完全相同虽同为过电流设置端(OCSET)。
且该脚被拉低到地时,都会关闭芯片的输出。
但是接法不相同RT9202 是在上管漏极和第七脚OCSET 脚之间接一电阻,来设定过电流保护的动作点。
DVD机电源IC_DL321_及相关资料
电源IC DL321 代换:维修中九电源,我觉得以下配件必备:1:16V1000UF 电容。
很多机器发现不开机,或电源输出低、开机正常,接75 欧线反复启动、或收台少等疑难故障,换掉它,可以起到事功半倍的效果。
2:IN4007 二极管。
3:TL431.4:光耦。
5:10UF400V 电容。
6:FR309 二极管。
7:2.2 欧功率电阻。
8:各种8 脚电源IC。
或DVB 万能电源板。
9:10D 471K 压敏电阻。
(厂家太缺德,如在整流前加一个压敏电阻,可省去我们维修人员多少劳累和钱财呀!我发现,电源只要有压敏电阻,很少坏整流后的原件.电源IC 代换资料,如有差错,请斧正。
1:THX203RM6203、1803、1203、TFC718S、JH82032:VIP22P=8022、T0165、sd4841p(两IC 的3 和4 脚要对调)3:DH321=DL0165、Q100、DM0265R、4:TM0165暂时没有找到资料。
注意:它绝对不能与321、DL0165R直接代换。
2:VIP22P=8022、T0165、SD4148P楼主及各位朋友请注意了,是SD4841 不是SD4148,楼主型号也写错了,技术这活要认真(不知楼主有否自己试过?这样会对待才行。
VIP22 和SD4841 是不同的不能直接代换的,,经过本人试验,SD4841 用原装型号,较好,实在要换的话,经过本人成功代换,误人的)用VIP22A 改变脚接线,再换可行。
,两IC (具体是两IC 的 3 和 4 脚要对调,否则烧IC)功能对比如下:SD4841:1,控制电路地;2,MOSFET 接地;3,电源,4,反馈输入。
5,空;6-8,漏极。
VIPER22:1-2,源极接地;3,反馈输入。
4,电源;5-8,漏极。
不知道的话,不要误导人,好不好。
另外0165 和VIP22 那就更不能换了,请看我附上0165 的资料:引用第19 楼李章元于2011-06-06 11:37 发表的:2:VIP22P=8022、T0165、SD4148P楼主及各位朋友请注意了,VIP22 和SD4841 是不同的不能直接代换的,(不知楼主有否自己试过?这样会误人的),经过本人试验,SD4841 用原装型号,较好,实在要换的话,用(具体是两IC 的 3 和 4 脚要对调,否则烧IC)VIP22A 改变脚接线,再换。
【VIP专享】~$RT9271中文版
ir2102工作原理
ir2102工作原理IR2102是一款常用的高低电平转换芯片,广泛应用于电路设计中。
它的工作原理是什么呢?本文将为大家详细介绍IR2102的工作原理及其在电路中的应用。
我们需要了解IR2102的基本结构。
IR2102由一个低侧驱动器和一个高侧驱动器组成,其内部包含逻辑控制电路、驱动电路和保护电路等。
它的主要功能是将输入信号转换为相应的高低电平输出信号,从而控制功率器件的开关状态。
IR2102的工作原理可以分为两个阶段:输入信号处理和输出信号控制。
首先,当输入信号到达IR2102时,经过内部的逻辑控制电路进行处理,判断输入信号的逻辑状态。
然后,根据逻辑判断结果,驱动对应的驱动电路产生相应的高低电平输出信号。
在输入信号处理阶段,IR2102通过内部的逻辑控制电路对输入信号进行处理。
当输入信号为高电平时,逻辑控制电路将输出一个高电平信号;当输入信号为低电平时,逻辑控制电路将输出一个低电平信号。
这样就完成了输入信号的判断和处理。
在输出信号控制阶段,IR2102根据输入信号的处理结果控制输出信号的产生。
当逻辑控制电路输出高电平信号时,高侧驱动器将输出一个高电平信号,从而控制功率器件的开关状态;当逻辑控制电路输出低电平信号时,低侧驱动器将输出一个低电平信号,从而控制功率器件的开关状态。
这样就实现了对功率器件开关状态的控制。
IR2102在电路设计中具有广泛的应用。
它可以用于单相和三相逆变器、直流电机驱动器、电源开关和电流测量等领域。
在单相逆变器中,IR2102可以控制功率管的开关状态,实现交流电的转换;在直流电机驱动器中,IR2102可以控制电机的正反转和速度调节;在电源开关中,IR2102可以实现电源的开关控制;在电流测量中,IR2102可以实现对电流的测量和控制。
总结一下,IR2102是一款常用的高低电平转换芯片,其工作原理是通过逻辑控制电路将输入信号转换为相应的高低电平输出信号,从而控制功率器件的开关状态。
电脑板供电芯片图解常用电源芯片:RT9214 9202 9218,ISL6537, NCP5220,
稳压1117,RT9173、RT9199、W83310、RT9181、UP6103•1.三端稳压器117降压1117,3.3代表类型(3.3V输出)ADJ,可调节•开关电源工作原理:PWM 芯片控制 MOS 的高速开关来调节电压,当开关打开时电压上升,而关闭时则电压下降,电感电容组成 LC 储能电路。
通过高速切换 MOS 的开和关,控制 MOS 导通时间来控制电压的准位。
如图 T代表一个周期,T1 为开启状态,T2 为关闭状态,只要控制 T1 和 T2 的时间就可以控制电压的高低。
通过给负载馈电的时间改变供电电压当K闭合,则小灯泡获得12V电压;当K断开,小灯泡获得0V电压。
若K闭合1秒,断开一秒,重复动作1分钟,则在1分钟内小灯泡获得的平均电压:1分钟/(1开+1关)*12V=6.0V。
改变导通和截止的时间比例(占空比)就可以改变小灯泡获得的平均电压。
但这个电压不连续。
为了获得一个持续的电压。
电路加入滤波器件。
通常由窜连电感和并联的滤波电路来实现。
即上管导通下管闭合。
电感及电容端电压不能突变的特性使得上下管的导通给电感及电容提供了源源不断的电压经由电路构成回路,提供稳定的电流。
• 478主板平台内存供电一般比较器+场效应管的方式。
775以上的内存供电采用PWM方式供电。
供电芯片通常有RT9202、RT9214、RT9218等•RT9202引脚定义采用 12V 和 5V 供电的 RT9202 工作流程:1:5V 给 5 脚供电,5V 给上管供电,12V 经过 R4 给 1 脚供电,5V 经过 R1 给 7 脚供电;2:2 脚 UGATE 驱动上管导通;3:上管给电感 L2 和电容 C3 充电;4:当 L2 和 C3 成的储能电路电压经过 R2 和 R3 分压反馈给 FB 脚电压超过 0.8V 时,RT9202 关闭上管打开下管5:下管导通构成储能电路的放电回路,当电路经过分压后反馈给 FB 的电压低于 0.8V 时,RT9202 控制关闭下管打开上管,继续充电;6:2-5 循环。
RT8272资料
2
VIN
3 4, 9 (Exposed Pad) 5
SW GND FB
6
COMP
7
EN
8
SS
wBiblioteka 2
DS8272-00 March 2009
RT8272
Function Block Diagram
VIN VCC 1uA EN 10k 1V 3V VA VCC + Shutdown Comparator 0.5V Foldback Control + + Current Comparator Logic Internal Regulator Oscillator 1.2MHz/440kHz Current Sense Slope Comp Amplifier + BOOT SW
RT8272
3A, 24V, 1.2MHz Step-Down Converter
General Description
The RT8272 is a high voltage buck converter that can support the input voltage range from 4.75V to 24V and the output current can be up to 3A. Current Mode operation prov ides fast transient response and eases loop stabilization. The chip provides protection functions such as cycle-bycycle current limiting and thermal shutdown protection. In shutdown mode, the regulator draws 25uA of supply current. The RT8272 is available in a SOP-8 (Exposed Pad) surface mount package.
BD9211
STRUCTURE Silicon Monolithic Integrated CircuitNAME OF PRODUCT LED Driver control ICTYPE BD9211FFEATURE ・ Using 20V high-voltage-withstand process・1Channel Push-Pull control・Current and voltage feedback is controlledby drive frequency modulation・Built-in soft start circuit・Built-in timer latch circuit・Built-in shut down protection・Built-in UVLO detection circuit・Output Over Voltage Protection・Built-in error signal output function・Switching to current consumption save mode through STB pin・Possible to control the burst by external PWM○Absolute Maximum Ratings (Ta=25℃)UnitvoltageItem SymbolRatedPower supply voltage VCC 20 VDriver Output N1,N2 20 VOperating temperature Topr -40~+85 ℃Storage temperature range Tstg -55~+150 ℃Maximum Junction Temperature Tjmax +150 ℃Power Dissipation Pd 687* mW* It reduces gradually by 5.5 mW/℃ if above Ta= 25℃ (when mounting the board of 70.0mm×70.0mm×1.6mm)〇Recommended Operation RangesRangeUnitItem SymbolPower Supply VCC 8.0~18.0 VPWMIN input frequency range F_PWMIN60~500 HzOutput frequency FOUT 25~200 kHz○Electrical Characteristics(VCC=12V, Ta=25℃)Parameter SymbolLimitsUnit Conditions MIN.TYP.MAX.((WHOLE DEVICE))Circuit current during operation Icc1 - 2.3 5.0mAFOUT=60kHz,PWMCMP=GND Circuit current during stand by operation Icc2 - 0 20μA VSTB=0V ((STAND BY CONTROL))Stand-by voltage H VstbH 2.0 - VCC VSystemONStand-by voltage L VstbL -0.3 - 0.8 VSystemOFF((VCC UVLO BLOCK))Operating voltage (VCC) V_VCCUVP 6.17 6.50 6.83 VHesteresis width (VCC UVLO) ⊿V_VCCUVP 0.37 0.50 0.63 V ((OSC BLOCK))RT Output Voltage VRT 1.05 1.50 1.95 V RT=79 kΩ((PWMIN BLOCK))PWMIN pin H level input voltage range VPWMINH 2.0 - 5.0VPWMIN pin L level input voltage range VPWMINL -0.3 - 0.8V((SOFT START BLOCK))Set up current for soft start ISS 1.52.02.5uA Soft start end voltage VSS_END 2.8 3.0 3.2V ((FEED BACK BLOCK))IS threshold voltage VIS 1.225 1.250 1.275 VVS threshold voltage VVS 1.212 1.250 1.288 VIS source current 1 IIS1 -- 0.9μA PWMIN=2.5V IS source current 2 IIS2 40 50 60 μA PWMIN=0V,IS=1.0V VS source current IVS -- 0.9μAIS COMP detect voltage VISCOMP 0.606 0.625 0.644 V((OUTPUT BLOCK))N1 output sink resistance Rsink_N1 1.5 3.0 6.0 ΩN1 output source resistance Rsource_N1 4.5 9.0 18.0 ΩN2 output sink resistance Rsink_N2 1.5 3.0 6.0 ΩN2 output source resistance Rsource_N2 4.5 9.0 18.0 ΩMAX DUTY MAX DUTY 43.0 45.0 47.0 % FOUT=60kHzN1-N2, N2-N1 OFF period TOFF 100 200 400 nsDrive output frequency FOUT 57.9 60.0 62.1 kHz RT=79 kΩ((TIMER LATCH BLOCK)CP timer latch detect voltage VCP 1.90 2.00 2.10 VCP timer latch charge current ICP 0.85 1.00 1.15 μASDON latch detect voltage VSDON 1.90 2.00 2.10 VSDON latch charge current ISDON 0.85 1.00 1.15 μA((COMP BLOCK))COMP over voltage detect voltage VCOMP 3.88 4.00 4.12 VHysteresis width (COMP)⊿VCOMP 0.150.200.25V COMPSD over voltage detect voltage VCOMPSD 3.88 4.00 4.12 V((FAIL BLOCK))FAIL ON Resistor value RFAILL - 100 200 Ω(This product is not designed to be radiation-resistant.)〇External Dimensions, Marking〇Block Diagram○Pin Number, Pin Name, Pin FunctionPinNoPinnameFunctionsPinNoPinnameFunctions1 VCC Power supply pin for IC(built-in UVLO function)10 PWMIN PWM signal input pin for burst bright adjustmentcontrol2 STB Power ON/OFF control pin for IC 11 SDON Enable pin of COMPSD inputs over voltagedetection3 GND Signal/ground pin for internal IC 12 SS Soft-start set up pin4 RT Drive frequency set up terminal. 13 FAIL Error Indication signal Output Normal : L, Error :OPEN5 FB Lamp current, lamp voltage, error amp outputs 14 COMPSD Detection pin for over voltage shut down6 IS Error amp input pin for lamp current feedback 15 COMP Detection pin for over voltage and shut-down delay7 VS Error amp input pin for lamp voltage feedback atthe opening time.16 PGND Power Ground for external MOSFET drive8 PWMCMP PWM comparator input pin which controls PWMoperation during brightness adjustment.17 N2 Output pin for external FET drive circuit (Ch. N2)9 CP Timer latch-setting pin 18 N1 Output pin for external FET drive circuit (Ch. N1)BD9211FLot No.Dvice MarkSOP18 (Unit:mm)〇NOTE FOR USE1. When designing the external circuit, including adequate margins for variation between external devices and IC. Use adequate marginsfor steady state and transient characteristics.2. The circuit functionality is guaranteed within of ambient temperature operation range as long as it is within recommended operatingrange. The standard electrical characteristic values cannot be guaranteed at other voltages in the operating ranges, however the variation will be small.3. Mounting failures, such as misdirection or miscounts, may harm the device. 4. A strong electromagnetic field may cause the IC to malfunction.5. The GND pin should be the location within ±0.3V compared with the PGND pin.6. If the voltage between VCC and I/O pins or GND and I/O pins is in opposite from the normal potential difference, unusual current flowinto pins may occur which can destroy the IC. To avoid such occurrence it is recommended to place protection diodes for prevention against backward current flow.7. BD9211F incorporate a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only toshut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation of the thermal shutdown circuit is assumed.8. Absolute maximum ratings are those values that, if exceeded, may cause the life of a device to become significantly shortened.Moreover, the exact failure mode caused by short or open is not defined. Physical countermeasures, such as a fuse, need to be considered when using a device beyond its maximum ratings.9. About the external FET, the parasitic Capacitor may cause the gate voltage to change, when the drain voltage is switching. Make sureto leave adequate margin for this IC variation.10. By STB voltage, BD9211F are changed to 2 states. Therefore, do not input STB pin voltage between one state and the other state(0.8~2.0V).11. The pin connected a connector need to connect to the resistor for electrical surge destruction.12.This IC is a monolithic IC which (as shown is Fig.4)has P +substrate and between the various pins. A P-N junction is formed fromthis P layer of each pin. For example, the relation between each potential is as follows,○(When GND > PinB and GND > PinA, the P-N junction operates as a parasitic diode.) ○(When PinB > GND > PinA, the P-N junction operates as a parasitic transistor.) Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits as well as operation faults and physical damage. Accordingly you must not use methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pinFig.4. Simplified structure of a Bipolar ICParasitic diodeResistance(PinA)Transistor (NPN)(PinB)NoticeN o t e sNo copying or reprod uction of this d ocument, in part or in whole, is permitted without theconsent of ROHM Co.,Ltd.The content specified herein is subject to change for improvement without notice.The content specified herein is for the purpose of introd ucing ROHM's prod ucts (hereinafter"Products"). If you wish to use any such Product, please be sure to refer to the specifications,which can be obtained from ROHM upon request.Examples of application circuits, circuit constants and any other information contained hereinillustrate the standard usage and operations of the Products. The peripheral conditions mustbe taken into account when designing circuits for mass production.Great care was taken in ensuring the accuracy of the information specified in this document.However, should you incur any d amage arising from any inaccuracy or misprint of suchinformation, ROHM shall bear no responsibility for such damage.The technical information specified herein is intended only to show the typical functions of andexamples of application circuits for the Prod ucts. ROHM d oes not grant you, explicitly orimplicitly, any license to use or exercise intellectual property or other rights held by ROHM andother parties. ROHM shall bear no responsibility whatsoever for any dispute arising from theuse of such technical information.The Products specified in this document are intended to be used with general-use electronicequipment or devices (such as audio visual equipment, office-automation equipment, commu-nication devices, electronic appliances and amusement devices).The Products specified in this document are not designed to be radiation tolerant.While ROHM always makes efforts to enhance the quality and reliability of its Prod ucts, aProduct may fail or malfunction for a variety of reasons.Please be sure to implement in your equipment using the Products safety measures to guardagainst the possibility of physical injury, fire or any other damage caused in the event of thefailure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHMshall bear no responsibility whatsoever for your use of any Product outside of the prescribedscope or not in accordance with the instruction manual.The Prod ucts are not d esigned or manufactured to be used with any equipment, d evice orsystem which requires an extremely high level of reliability the failure or malfunction of whichmay result in a direct threat to human life or create a risk of human injury (such as a medicalinstrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of anyof the Prod ucts for the above special purposes. If a Prod uct is intend ed to be used for anysuch special purpose, please contact a ROHM sales representative before purchasing.If you intend to export or ship overseas any Product or technology specified herein that maybe controlled under the Foreign Exchange and the Foreign Trade Law, you will be required toobtain a license or permit under the Law.Thank you for your accessing to ROHM product informations.More detail product informations and catalogs are available, please contact us.ROHM Customer Support System/contact/。
ROHM芯片BD9211F的中文应用文档
ROHM芯片BD9211F的应用文档一、芯片各引脚基本功能:本芯片包含18个引脚,各个引脚功能及说明如下:图一IC内部结构图1、VCC:芯片供电。
电压范围:8V-18V;Vcc max=20V。
VCC引脚对地电容必须大于0.1uF,用于滤除噪声干扰。
2、STB:此引脚用于设置ON/OFF信号,当芯片关断时需要将其进行复位。
STB信号电压幅度需小于VCC电压幅度,若STB电压提前于VCC电压供给芯片,需要保证STB电压幅度小于4V。
原因如下图二所示:当VCC未建立,且STB电压建立时,若电压太大,会导致STB 与VCC间二极管导通,此时STB 电压会串到VCC电压上,导致芯片误动作。
图二STB引脚内部结构图STB引脚电压在0.8V和2V之间的状态为不定态,此电压有可能会使芯片误动作,因此要避免STB电压在这个区域间的状态。
3、GND:小信号地,尽可能的与PGND分开走。
这样可以保证在短的GND和PGND回路上有更少的干扰信号,GND信号尽量靠近连接插座。
4、RT:设定IC内部的充放电电流从而决定工作频率;改变RT引脚与地之间电阻的阻值,可以通过下图三公式设置基本驱动频率:图三基本驱动频率理论计算公式如:(①RT对地电阻33KΩ,基本频率为:178KHz;②RT对地电阻47KΩ,基本频率为:126KHz;③RT对地电阻51KΩ,基本频率为:116KHz;④RT对地电阻56KΩ,基本频率为:106KHz;)基本频率意思为N1、N2输出的频率仅由RT与GND之间的电阻决定。
频率会因为RT与FB之间的电阻Radj而改变。
下图四、图五中可以看出,改变FB与RT之间电阻RADJ的阻值可以调整频率范围。
当RADJ=100KΩ,∆Fout=84.46kHz.图四电阻Radj的取值与频率范围关系(Radj=100KΩ)图五FB电压范围与频率范围关系(Radj=100KΩ)RT与GND之间的电阻RRT决定基本频率。
基本频率是当FB=1.5V,在这个条件下运算频率调制范围且由RADJ决定。
电子元件兼容或替代列表
双路输出电压,每路输出电压从1.3V至6.0V(每隔0.05V都有一型号),每路输出电流最大至300mA,每路均带使能端控制.
PJ9182 series/RT9182 series
SOT26
输出电压2.8V+1.8V,输出电流最大至300mA.
PJ9182P2818MR/ RT9182-2818MR
直接替换G5121/XC9116/RT9271/RT9284A
SOT-26
兼容MP3204/CP2126/LT1937/MP1516/
MP1518/AN1588/AIC1896/LM2703/AT1308/TPS61041/LT1615
并联式白光LED背光驱动IC
输入电压2.7V-6.0V,输出3路,并联3个白光LED,恒流输出电流可达20mA,无须外围元件.输出短路/开路保护
SOT25
双路带使能端LDO电压稳压IC
双路输出电压,每路输出电压从1.3V至6.0V(每隔0.05V都有一型号),每路输出电流最大至300mA,每路均带使能端控制.
PJ6401 series/XC6401 series
SOT26
输出电压2.5V+2.8V,输出电流最大至300mA.
PJ6401P2528MR/Torex XC6401P2528MR
PJ3200/LTC3200/AAT3110/RT9361/AIC1848
SOT-26
输入电压2.7V-5.5V,驱动电流最大可达120mA.并联恒流输出,最大可并联4个LED.
PJ9362/RT9362
QFN16(3X3)
输入电压2.7V-5.5V,驱动电流最大可达120mA.并联恒流输出,最大可并联4个LED.
912咪头芯片 原理
912咪头芯片的工作原理可以分为两个方面:输入和控制信号的处理,以及输出信号的生成。
对于输入和控制信号的处理,912咪头芯片会接收来自外部设备的数字信号,并根据预先设计的逻辑功能单元对这些信号进行处理。
这些逻辑功能单元可以实现布尔逻辑运算、时序逻辑控制等。
具体来说,当一个输入信号被应用到逻辑功能单元上时,芯片内部的逻辑门会根据输入信号的逻辑状态,根据逻辑运算规则进行运算,并将运算结果输出到下一级逻辑单元。
对于输出信号的生成,912咪头芯片包含了许多输出引脚,用于连接到其他电子器件。
当经过一系列逻辑功能单元处理后,芯片将根据设计好的逻辑规则,产生相应的输出信号。
这些输出信号可以用来控制其他电子器件的工作状态,或者作为数据传输的载体等。
此外,912咪头芯片是一种数字信号处理器(DSP)芯片,由Texas Instruments(德州仪器)公司开发。
它采用高性能的VLIW(Very Long Instruction Word)架构,可以实现高速运算和并行处理。
其核心是一组多功能执行单元(EMU),每个EMU包含一个算术逻辑单元(ALU)和一个乘法累加器(MAC)。
这些EMU可以并行工作,实现高效的信号处理。
以上内容仅供参考,建议咨询电子行业专业人士获取更准确的信息。
p9242-r原理
p9242-r原理P9242-R是一款无线充电芯片,它采用先进的谐振技术,为手机、平板电脑等电子设备提供便捷的无线充电解决方案。
本文将从几个方面介绍P9242-R的原理和特点。
P9242-R采用的谐振技术可以实现高效能量传输。
与传统的电磁感应充电方式相比,谐振技术能够在更大的距离范围内实现高效的能量传输,同时还能减少能量损耗,提高充电效率。
这意味着用户可以更加方便地将手机或其他电子设备放置在充电器上进行充电,而无需担心位置不准确导致充电效果不佳的问题。
P9242-R具备高度的安全性。
该芯片内置了多种保护机制,可以有效防止过电流、过热和短路等安全问题的发生。
此外,P9242-R还支持外部温度传感器,可以实时监测温度变化,并根据实际情况进行温控调节,以保证充电过程的安全性和稳定性。
P9242-R还具备较高的兼容性。
该芯片支持多种无线充电标准,如Qi标准和PMA标准,可以与各种品牌的无线充电设备兼容。
无论是使用苹果、三星还是其他品牌的手机,用户都可以通过P9242-R 轻松实现无线充电。
另外一个值得一提的特点是P9242-R的智能识别功能。
该芯片能够智能识别设备的充电需求,并根据需求自动调节功率输出,以实现最佳的充电效果。
无论是手机、平板电脑还是其他设备,都能够得到最合适的充电功率,提高充电效率,缩短充电时间。
P9242-R作为一款先进的无线充电芯片,以其高效能量传输、高度安全性、较高的兼容性和智能识别功能,为用户提供了便捷、安全、高效的无线充电解决方案。
无论是在家庭、办公室还是公共场所,用户都可以享受到无线充电带来的便利和舒适。
通过P9242-R的应用,我们可以更加方便地应对电子设备充电的需求,为生活带来更多便利和舒适。
上海海栎创微电子有限公司 HAA2820 数据手册说明书
上海海栎创微电子有限公司HAA2820数据手册5W单声道、带有AGC防破音功能、AB/D切换、自适应电荷泵升压、自适应MUTE功能的音频功率放大器Rev:V1.02018/03/01HAA2820数据手册1.概述HAA2820是一款内置电荷泵升压的D类音频功率放大器,在4.2V电源电压的情况下,可以为4Ω负载送出5W(THD+N=10%)的输出功率。
HAA2820内置AGC模式,当输入信号较高的时候,可以自动降低内部增益,防止输出发生截顶失真,提升大音量播放音乐时的音质。
HAA2820带有OT,OC,OVP,UVLO等保护功能,有效保护芯片。
2.芯片特点◆最大输出功率: 5.06W (4.2V,4Ω,10%THD+N);4.2W (4.2V,4Ω,1%THD+N)◆AGC Function◆AB、D function◆底噪:47uVrms(Gain=16V/V, Class D);30uVrms(Gain=12V/V, Class AB)◆THD+N:0.005%◆效率: 71%(3.6V, 4Ω,2W)◆自适应MUTE功能◆自适应电荷泵升压功能◆UVLO,OTP,OCP◆eTSSOP-163.引脚分布/说明4.功能描述4.1 Ctrl<2:1> ControlHAA2820有四种工作状态,通过Ctrl<2:1>两个控制管脚进行控制,如下图所示。
00时芯片关断,关断电流小于1uA。
01的时候为D类工作模式,同时AGC功能开启,当输出将要出现截顶失真的时候,主动降低内部增益,使输出保持非截顶失真的状态,提高音质,有效保护喇叭。
10的时候为D类工作模式,AGC功能关闭。
11的时候为AB类工作模式,同时电荷泵不升压,处于直通模式,消除芯片对FM信号的EMI影响。
模式切换的时候需要先将Ctrl<1:0>置为00,将芯片关闭复位,再进入需要的工作模式,以防止出现异常的切换杂音。
SC3120完美兼容IRS2092,500W大功率带保护D类音频功放芯片
SC3120完美兼容IRS2092,500W⼤功率带保护D类⾳频功放芯⽚SC3120 电路是⼀款⾼耐压、⾼速的MOSFET栅极驱动器,专为超⼤输出功率的D类⾳频功率放⼤器应⽤⽽设计。
采⽤灵活的开放式拓扑结构实现PWM调制。
该产品具有双向过流检测与保护功能。
该保护在没有任何外部采样电阻的情况下,感应负载正、负电流的过电流情况,并提供合适的过电流保护和可编程的复位定时。
该产品内置死区时间控制模块,精确设置MOSFET栅极开关的死区时间,以获得极低的THD和更⼩的⾳频输出背景噪声。
主要特点:集成模拟输⼊D类⾳频放⼤驱动器,可编程负载双向过流保护,具有⾃复位功能,可编程预设死区时间,提⾼THD性能,具有防开启期间和关闭期间的“咔哒”声,较好的背景噪声抑制,额定电压±100V,输出功率超过500W,⼯作频率最⾼可达 800 kHz,驱动级输出电流能⼒Io+/- =1.0A/1.5A,双列 16 脚塑料封装(SOP16),符合 RoHS。
ClassD⾳频功放:CS8126S,CS8126T,CS8138,CS8302,CS8122,CS8305,CS8121,CS8563,CS8528,CS8631,CS8618,CS8673,CS8623,CS8655,CS8611,CS8626,CS8676,CS86552,CS81 ClassR⾳频功放(内置升压):CS8323,CS8326,CS8330,CS8359,CS83601,CS83501,CS83702,CS83705,CS8389,CS8390,CS8316,CS8623,CS8318,CS83785,CS83711,CS8353,CS86552,CS8332,C ClassAB/D⾳频功放:CS8139,CS8508,CS8508,CS8532,CS8571,CS8573,CS8575,CS8511,CS8576.ClassGF⾳频功放(内置升压):CS5250,CS5230,CS5260,CS5266,CS4230.⽿机功放芯⽚:CS4410,CS4420,CS4418.ClassAB⾳频功放:CS8591。
电源管理芯片xc9221的工作原理
电源管理芯片xc9221的工作原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!电源管理芯片XC9221的工作原理电源管理芯片在现代电子设备中扮演着至关重要的角色,能够有效管理电力供应并提高设备的能效。
cr5212芯片工作原理
cr5212芯片工作原理
CR5212芯片是一款集成式深度学习处理器,主要用于领域的应用。
该芯片采用先进的硬件架构和专门优化的算法,能够实现高效的深度学习计算和推理,广泛应用于图像识别、语音识别、自然语言处理等领域。
CR5212芯片的工作原理主要包括以下几个部分:
1. 硬件架构:CR5212芯片采用了高度并行的硬件架构,包括多个计算核心、存储单元和通信模块。
这些硬件模块可以同时处理大规模的深度学习计算任务,提高了计算效率和速度。
2. 神经网络模型:CR5212芯片内置了多种深度学习模型,如卷积神经网络、循环神经网络等,可以实现图像分类、目标检测、语音识别等各种任务。
用户可以根据具体的应用需求选择合适的模型进行计算。
3. 数据流处理:CR5212芯片通过数据流的方式进行深度学习计算,即将输入数据通过各个计算单元逐步处理,最终得到输出结果。
这种数据流的方式可以实现高效的并行计算,提高了计算速度和效率。
4. 算法优化:CR5212芯片内置了多种优化算法,如稀疏矩阵乘法、卷积加速等,可以有效减少计算量,提高计算效率。
此外,芯片还支持硬件加速和动态调度等功能,可以根据任务需求自动调整计算资源。
总的来说,CR5212芯片采用了先进的硬件架构和优化算法,能够实现高效的深度学习计算和推理。
它在领域有着广泛的应用前景,可以帮助用户快速高效地实现各种复杂的深度学习任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DS9212-05 March 2007Dual 5V Synchronous Buck PWM DC-DC and Linear Power ControllerFeaturesz Operating with Single 5V Supply Voltage z Drives All Low Cost N-MOSFETs z Voltage Mode PWM Controlz 300kHz Fixed Frequency Oscillator zFast Transient Response :Full 0% to 100% Duty Ratio z Internal Soft-Startz Adaptive Non-Overlapping Gate DriverzOver-Current Fault Monitor on V CC , No Current Sense Resistor RequiredzRoHS Compliant and 100% Lead (Pb)-FreeApplicationsz Graph Cardz Motherboard, Desktop Servers z IA Equipmentsz Telecomm EquipmentszHigh Power DC-DC RegulatorsPin ConfigurationsOrdering InformationGeneral DescriptionThe RT9212 is a 3-in-one power controller delivers high efficiency and tight regulation from two voltage regulating synchronous buck PWM DC-DC and one linear power controllers.The RT9212 can control two independent output voltages adjustment in range of 0.8V to 4.0V with 180 degrees channel to channel phase operation to reduce input ripple.In dual power supply application the RT9212 monitors the output voltage of both Channel 1 and Channel 2. An independent PGOOD (power good) signal is asserted for each channel after the soft-start sequence has completed,and the output voltage is within ±15% of the set point. The linear controller drives an external transistor to provide an adjustable output voltage.Built-in over-voltage protection prevents the output from going above 137.5% of the set point by holding the lower MOSFET on and the upper MOSFET off. Adjustable over-current protection (OCP) monitors the voltage drop across the R DS(ON) of the upper MOSFET for each synchronous buck PWM DC-DC controller individually.(TOP VIEW)UGATE1BOOT1PHASE1NC OCSET2/SD OCSET1/SD PVCC1PGND1FB1COMP1FB2PGOOD NC LGATE1FBL NC GNDA VCC DRVPHASE2BOOT2PGND2LGATE2UGATE2TSSOP-24Note :RichTek Pb-free and Green products are :`RoHS compliant and compatible with the current require- ments of IPC/JEDEC J-STD-020.`Suitable for use in SnPb or Pb-free soldering processes.`100% matte tin (Sn) plating.RT9212P : Pb Free with Commercial Standard G : Green (Halogen Free with Commer- cial Standard)Typical Application Circuit1.8V1.5VOUT1OUT2V OUT1 & V OUT2 )DS9212-05 March 2007Functional Pin DescriptionUGATE1 (Pin 1)Channel 1 upper gate driver output. Connect to gate of the high-side power N-MOSFET . This pin is monitored by the adaptive shoot-through protection circuitry to determine when the upper MOSFET has turned off.BOOT1 (Pin 2)Bootstrap supply pin for the upper gate driver. Connect the bootstrap capacitor between BOOT1 pin and the PHASE1 pin. The bootstrap capacitor provides the charge to turn on the upper MOSFET .PHASE1 (Pin 3)Connect this pin to the source of the upper MOSFET and the drain of the lower MOSFET. PHASE1 is used to monitor the Voltage drop across the upper MOSFET of the channel 1 regulator for over-current protection.NC (Pin 4, 7, 8)No connection. Don ’t connect any component to this pin.FB1 (Pin 5)Channel 1 feedback voltage. This pin is the inverting input of the error amplifier. FB1 senses the channel 1 through an external resistor divider P1 (Pin 6)Channel 1 external compensation. This pin internally connects to the output of the error amplifier and input of the PWM comparator. Use a RC + C network at this pin to compensate the feedback loop to provide optimum transient response.GNDA (Pin 9)Signal ground for the IC. All voltage levels are measured with respect to this pin. Ties the pin directly to ground plane with the lowest impedance.PHASE2 (Pin 10)Connect this pin to the source of the upper MOSFET and the drain of the lower MOSFET. PHASE2 is used to monitor the Voltage drop across the upper MOSFET of the channel 2 regulator for over-current protection.BOOT2 (Pin 11)Bootstrap supply pin for the upper gate driver. Connect the bootstrap capacitor between BOOT2 pin and the PHASE2pin. The bootstrap capacitor provides the charge to turn on the upper MOSFET .UGATE2 (Pin 12)Channel 2 upper gate driver output. Connect to gate of the high-side power N-MOSFET . This pin is monitored by the adaptive shoot-through protection circuitry to determine when the upper MOSFET has turned off.PGND2 (Pin 13)Return pin for high currents flowing in low-side power N-MOSFET . Ties the pin directly to the low-side MOSFET source and ground plane with the lowest impedance.LGATE2 (Pin 14)Channel 2 lower gate drive output. Connect to gate of the low-side power N-MOSFET . This pin is monitored by the adaptive shoot-through protection circuitry to determine when the lower MOSFET has turned off.VCC (Pin 15)Connect this pin to a well-decoupled 5V bias supply. It is also the positive supply for the lower gate driver, LGATE2.DRV (Pin 16)Connect this pin to the base of an external transistor. This pin provides the drive for the linear regulator's pass transistor.FBL (Pin 17)Linear regulator feedback voltage. This pin is the inverting input of the error amplifier and protection monitor. Connect this pin to the external resistor divider network of the linear regulator.FB2 (Pin 18)Channel 2 feedback voltage. This pin is the inverting input of the error amplifier. FB2 senses the channel 2 through an external resistor divider network.Function Block DiagramMOSFETupper the of R 40uA I DS(ON)OCSETOCSET R ×=GNDAPGOOD (Pin 19)PGOOD is an open-drain output used to indicate that both the channel 1 and channel 2 regulators are within normal operating voltage ranges.OCSET2/SD (Pin 20), OCSET1/SD (Pin 21)Connect a resistor (R OCSET ) from this pin to the drain of the upper MOSFET of the supply voltage sets the over-current trip point. R OCSET , an internal 40μA current source , and the upper MOSFET on-resistance, (R DS(ON), set the converter over-current trip point (I OCSET ) according to the following equation:An over-current trip cycles the soft-start function. Pulling the pin to ground resets the device and all external MOSFETs are turned off allowing the two output voltage power rails to float.PVCC1 (Pin 22)Connect this pin to a well-decoupled 5V supply. It is also the positive supply for the lower gate driver, LGATE1.LGATE1 (Pin 23)Channel 1 power gate drive output. Connect to gate of the low-side power N-Channel MOSFET . This pin is monitored by the adaptive shoot-through protection circuitry to determine when the lower MOSFET has turned off.PGND1 (Pin 24)Return pin for high currents flowing in low-side power N-MOSFET . Ties the pin directly to the low-side MOSFET source and ground plane with the lowest impedance.DS9212-05 March 2007Electrical Characteristics(V= 5V, T = 25°C, unless otherwise specified)To be continuedRecommended Operating Conditions (Note 3)z Supply Voltage, V CC -------------------------------------------------------------------------------------------------5V ± 5 %z Ambient T emperature Range ---------------------------------------------------------------------------------------0°C to 70°C zJunction T emperature Range ---------------------------------------------------------------------------------------0°C to 125°CAbsolute Maximum Ratings (Note 1)z Supply Voltage, V CC -------------------------------------------------------------------------------------------------7V z BOOT , V BOOT - V PHASE -----------------------------------------------------------------------------------------------7Vz Input, Output or I/O Voltage ----------------------------------------------------------------------------------------GND-0.3V to 7V zPackage Thermal ResistanceTSSOP-24, θJA --------------------------------------------------------------------------------------------------------100°C/W z Junction T emperature ------------------------------------------------------------------------------------------------150°C z Lead Temperature (Soldering, 10 sec.)--------------------------------------------------------------------------260°Cz Storage T emperature Range ---------------------------------------------------------------------------------------−65°C to 150°C zESD Susceptibility (Note 2)HBM (Human Body Mode)-----------------------------------------------------------------------------------------2kV MM (Machine Mode)-------------------------------------------------------------------------------------------------200VNote 1.Stresses listed as the above“Absolute Maximum Ratings”may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions forextended periods may remain possibility to affect device reliability.Note 2. Devices are ESD sensitive. Handling precaution recommended.Note 3. The device is not guaranteed to function outside its operating conditions.DS9212-05 March 2007Typical Operating CharacteristicsPower Good RisingV OUT2(2V/Div)PGOOD (5V/Div)Time (5ms/Div)V OUT1(2V/Div)V CC (5V/Div)UGATE Phase Shift UGATE2(5V/Div)Time (1us/Div)UGATE1(5V/Div)LGATE Phase ShiftLGATE2(5V/Div)Time (1us/Div)LGATE1(5V/Div)Power OnV OUT1(2V/Div)V OUT2(2V/Div)UGATE2(5V/Div)Time (5ms/Div)UGATE1(10V/Div)I OUT1 = I OUT2 = 5APower OffV OUT1(2/Div)V OUT2(2/Div)UGATE2(5V/Div)Time (500us/Div)UGATE1(10/Div)I OUT1 = I OUT2 = 5APower Good FallingV CC (5V/Div)Time (25ms/Div)V OUT1(2V/Div)V OUT2(2V/Div)PGOOD (5V/Div)V OUT2 TransientTime (250us/Div)V OUT2(10mV/Div)I OUT2(5A/Div)V OUT1 Transient Time (250us/Div)V OUT1(100mV/Div)I OUT1(5A/Div)BootstrapLGATE1(5V/Div)Time (1us/Div)UGATE1(5V/Div)BootstrapLGATE2(5V/Div)Time (1us/Div)UGATE2(5V/Div)V OUT2 ShortTime (5ms/Div)V OUT2(1V/Div)UGATE2(10V/Div)LGATE2(5V/Div)V OUT1 Short LGATE1(5V/Div)Time (5ms/Div)UGATE1(10V/Div)V OUT1(2V/Div) V IN = 5V, V OUT = 3.3V, C OUT = 3000μFV IN = 5V, V OUT = 2.5V, C OUT = 3000μFDS9212-05 March 2007Iocset & Temperature303540455055-40-2020406080100120140Temperature Io c s e t (μA )(°C)Reference vs. Temperature0.7880.790.7920.7940.7960.7980.80.8020.8040.8060.808-40-2020406080100120Temperature F Bv o l t a g e (V )(°C)POR (Start Up)V OUT1(2V/Div)V OUT2(2V/Div)V CC (5V/Div)Time (5ms/Div)V OUT3(200mV/Div)V OUT3 TransientTime (2.5ms/Div)I OUT3(2A/Div)V IN = 5V, V OUT= 1.8VFrequency vs. Temperature285290295300305310315-40-20020406080100120Temperature F r e q u e n c y (k H z ) (°C)POR (Rising/Falling) vs. Temperature3.93.9544.054.14.154.24.25-40-10205080110140Temperature P O R (V )(°C)Applications InformationInductorThe inductor is required to supply constant current to the output load. The inductor is selected to meet the output voltage ripple requirements and minimize the converter's response time to the load transient.A larger value of inductance reduces ripple current and voltage. However, the larger value of inductance has a larger physical size, lower output capacitor and slower transient response time.A good rule for determining the inductance is to allow the peak-to-peak ripple current in the inductor to be approximately 30% of the maximum output current. The inductance value can be calculated by the following equation :WhereV IN is the input voltage,V OUT is the output voltage,F S is the switching frequency,IOUT is the peak-to-peak inductor ripple current.The inductance value determines the converter's ripple current and the ripple voltage. The ripple current is calculated by the following equations :Increasing the value of inductance reduces the ripple current and voltage. However, the large inductance values raise the converter's response time to a load transient.One of the parameters limiting the converter's response to a load transient is the time required to change the inductor current. Given a sufficiently fast control loop design, the RT9212 will provide 0% to 100% duty cycle in response to a load transient.The response time is the time required to slew the inductor current from an initial current value to the transient current level. The inductor limit input current slew rate during the load transient. Minimizing the transient response time can minimize the output capacitance required. The response time is different for application of load and removal of load to a transient. The following equations give the approximate response time for application and removal of a transient load :WhereT Rise is the response time to the application of load,T Fall is the response time to the removal of load,IOUT is the transient load current step.Input CapacitorThe input capacitor is required to supply the AC current to the Buck converter while maintaining the DC input voltage.The capacitor should be chosen to provide acceptable ripple on the input supply lines. Use a mix of input bypass capacitors to control the voltage overshoot across the MOSFET s. Use small ceramic capacitors for high frequency decoupling and bulk capacitors to supply the current. Place the small ceramic capacitors close to the MOSFETs and between the drain of Q1/Q3 and the source of Q2/Q4.The key specifications for input capacitor are the voltage rating and the RMS current rating. For reliable operation,select the bulk capacitor with voltage and current ratings above the maximum input voltage and largest RMS current.The capacitor voltage rating should be at least 1.25 times greater than the maximum input voltage and voltage rating of 1.5 times is a conservative guideline. The RMS current rating for the input capacitor of a buck regulator should be greater than approximately 0.5 the DC load current.−×=××IN OUT OUTIN (V V )V ΔI V Fs LOUTIN OUT Rise V V ΔI L T −×=OUTOUT Fall V ΔI L T ×=−×=××IN OUT OUT IN S OUT(V V )V L V F ΔI ΔΔ,DS9212-05 March 2007Output CapacitorThe output capacitor is required to maintain the DC output voltage and supply the load transient current. The capacitor must be selected and placed carefully to yield optimal results and should be chosen to provide acceptable ripple on the output voltage.The key specification for output capacitor is its ESR. Low ESR capacitors are preferred to keep the output voltage ripple low. The bulk capacitor's ESR will determine the output ripple voltage and the initial voltage drop after a high slew-rate transient. For transient response, a combination of low value, high frequency and bulk capacitors placed close to the load will be required. High frequency decoupling capacitors should be placed as close to the power pins of the load as possible. In most cases, multiple electrolytic capacitors of small case size perform better than a single large case capacitor.The capacitor value must be high enough to absorb the inductor's ripple current. The output ripple is calculated as :Another concern is high ESR induced output voltage ripple may trigger UV or OV protections will cause IC shutdown.MOSFETThe MOSFET should be selected to meet power transfer requirements is based on maximum drain-source voltage (V DS ), gate-source drive voltage (V GS ), maximum output current, minimum on-resistance (R DS(ON)) and thermal management.In high-current applications, the MOSFET power dissipation, package selection and heatsink are the dominant design factors. The losses can be divided into conduction and switching losses.Conduction losses are related to the on resistance of MOSFET , and increase with the load current. Switching losses occur on each ON/OFF transition. The conduction losses are the largest component of power dissipation for both the upper and the lower MOSFETs.For the Buck converter the average inductor current is equal to the output load current. The conduction loss is defined as :P CD (high side switch) = I O 2 * R DS(ON) * D P CD (low side switch) = I O 2 * R DS(ON) * (1-D)The switching loss is more difficult to calculate. The reason is the effect of the parasitic components and switching times during the switching procedures such as turn-on /turn-off delays and rise and fall times. With a linear approximation, the switching loss can be expressed as :P SW = 0.5 * V DS(OFF) * I O * (T Rise + T Fall ) * F WhereV DS(OFF) is drain to source voltage at off time,T Rise is rise time,T Fall is fall time,F is switching frequency.The total power dissipation in the switching MOSFET can be calculate as :P High Side Switch =I O 2 * R DS(ON)* D + 0.5 * V DS(OFF)* I O * (T Rise + T Fall )* F P Low Side Switch = I O 2 * R DS(ON) * (1-D)For input voltages of 3.3V and 5V, conduction losses often dominate switching losses. Therefore, lowering the R DS(ON)of the MOSFETs always improves efficiency.Feedback CompensationThe RT9212 is a voltage mode controller; the control loop is a single voltage feedback path including an error amplifier and PWM comparator as Figure 1 shows. In order to achieve fast transient response and accurate output regulation, a adequate compensator design is necessary. The goal of the compensation network is to provide adequate phase margin (greater than 45 degrees) and the highest 0dB crossing frequency. And to manipulate loop frequency response that its gain crosses over 0dB at a slope of -20dB/dec.ESR I V OUT OUT ×Δ=ΔModulator Frequency EquationsThe modulator transfer function is the small-signal transfer function of V OUT /V E/A . This transfer function is dominated by a DC gain and the output filter (L O and C O ), with a double pole frequency at F LC and a zero at F ESR . The DC gain of the modulator is the input voltage (V IN ) divided by the peak-to-peak oscillator voltage V RAMP .The first step is to calculate the complex conjugate poles contributed by the LC output filter.The output LC filter introduces a double pole,−40dB/decade gain slope above its corner resonant frequency, and a total phase lag of 180 degrees. The Resonant frequency of the LC filter expressed as follows :The next step of compensation design is to calculate the ESR zero. The ESR zero is contributed by the ESR associated with the output capacitance. Note that this requires that the output capacitor should have enough ESR to satisfy stability requirements. The ESR zero of the output capacitor expressed as follows :OO P(LC)C L 21F ××=πESRC 21F O Z(ESR)××=π)C // (C R 21F C R 21F 0F 2 1 2P122Z1P1×=××==ππFigure 2Figure 3 shows the DC-DC converter's gain vs. frequency.The compensation gain uses external impedance networks Z C and Z F to provide a stable, high bandwidth loop.High crossover frequency is desirable for fast transient response, but often jeopardize the system stability. In order to cancel one of the LC filter poles, place the zero before the LC filter resonant frequency. In the experience, place the zero at 75% LC filter resonant frequency.Crossover frequency should be higher than the ESR zero but less than 1/5 of the switching frequency.The second pole be place at half the switching frequency.PWM Figure 1Compensation Frequency EquationsThe compensation network consists of the error amplifier and the impedance networks Z C and Z F as Figure 2 shows.Figure 3DS9212-05 March 2007Layout ConsiderationThe layout is very important when designing high frequency switching converters. Layout will affect noise pickup and can cause a good design to perform with less than expected results.1. Even though double-sided PCB is usually sufficient for a good layout, four-layer PCB is the optimum approach to reducing the noise. Use the two internal layers as the power and GND planes, the top layer for power connections with wide, copper filled areas, and the bottom layer for the noise sensitive traces.2. There are two sets of critical components in a DC-DC converter. The switching components are the most critical because they switch large amounts of energy, and therefore tend to generate large amounts of noise. The others are the small signal components that connect to sensitive nodes or supply critical bypass current and signal coupling.Make all critical component ground connections with vias to GND plane.3. Use fewer, but larger output capacitors, keep the capacitors clustered, and use multiple layer traces with heavy copper to keep the parasitic resistance low. Place the output capacitors as close to the load as possible.4. The inductor, output capacitor and the MOSFET should be as close to each other as possible. This helps to reduce the EMI radiated.5. Place the switching MOSFET as close to the input capacitors as possible. The MOSFET gate traces to the IC must be as short, straight, and wide as possible. Use copper filled polygons on the top and bottom layers for the PHASE nodes.6. Place the C BOOT as close as possible to the BOOT and PHASE pins.7. The feedback part of the system should be kept away from the inductor and other noise sources, and be placed close to the IC. Connect to the GND pin with a single trace, and connect this local GND trace to the output capacitor GND.8. Minimize the leakage current paths on the OCSET/SD pin and locate the resistor as close to the OCSET/SD pin as possible because the internal current source is only 40μA.9. In multilayer PCB, use one layer as ground plane and have a control circuit ground (analog ground), to which all signals are referenced. The goal is to localize the high current path to a separate loop that does not interfere with the more sensitive analog control function. These two grounds must be connected together on the PC board layout at a single point.Reference VoltageBecause one of the RT9212 regulators uses a low 35dB gain error amplifier, shown in Figure 4. The voltage regulation is dependent on V IN & V OUT setting.The FB reference voltage of 0.8V is trimmed at V IN = 5V &V OUT = 2.5V condition. In a fixed V IN = 5V application, the FB reference voltage vs. V OUT voltage can be calculated as Figure 5.Figure 4Figure 50.7750.780.7850.790.7950.80.8050.810.81511.522.533.544.55V OUT (V)F B (V )FB1.9VR2Richtek Technology Corporation Headquarter5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C.Tel: (8863)5526789 Fax: (8863)5526611Richtek Technology Corporation Taipei Office (Marketing)8F, No. 137, Lane 235, Paochiao Road, Hsintien City Taipei County, Taiwan, R.O.C.Tel: (8862)89191466 Fax: (8862)89191465Email: marketing@L24-Lead TSSOP Plastic Package Outline Dimension。