简谐运动的描述

合集下载

2.1-2.2简谐运动简谐运动的描述

2.1-2.2简谐运动简谐运动的描述

简谐运动简谐运动的描述1通过实验观察,认识机械振动。

会运用理想化方法建构弹簧振子模型。

2.通过观察、分析和推理,证明弹簧振子的位移一时间图像是正弦曲线,会用图像描述简谐运动。

3经历探究简谐运动规律的过程,能分析数据、发现特点,形成结论。

4.理解振幅、周期、频率的概念,能用这些概念描述、解释简谐运动。

5.经历测量小球振动周期的实验过程,能分折数据、发现特点、形成结论。

6.了解相位、初相位。

7.会用数学表达式描述简谐运动。

考点一、弹簧振子1.机械振动:物体或物体的一部分在一个位置附近的往复运动,简称振动.2.弹簧振子:小球和弹簧组成的系统.考点二、弹簧振子的位移—时间图像(x-t图像)1.用横坐标表示振子运动的时间(t),纵坐标表示振子离开平衡位置的位移(x),描绘出的图像就是位移随时间变化的图像,即x-t图像,如图所示.2.振子的位移:振子相对平衡位置的位移.3.图像的物理意义:反映了振子位置随时间变化的规律,它不是(选填“是”或“不是”)振子的运动轨迹.考点三、简谐运动1.简谐运动:质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x -t 图像)是一条正弦曲线.2.特点:简谐运动是最简单、最基本的振动,弹簧振子的运动就是简谐运动. 3.简谐运动的图像(1)描述振动物体的位移随时间的变化规律.(2)简谐运动的图像是正弦曲线,从图像上可直接看出不同时刻振动质点的位移大小和方向、速度方向以及速度大小的变化趋势.考点四、振幅1.概念:振动物体离开平衡位置的最大距离.A=OM’=OM .2.意义:振幅是表示物体振动幅度大小的物理量,振动物体运动的范围是振幅的两倍.考点五、周期和频率1.全振动:一个完整的振动过程称为一次全振动,弹簧振子完成一次全振动的时间总是相同的. 2.周期:做简谐运动的物体完成一次全振动所需要的时间,叫作振动的周期,用T 表示.在国际单位制中,周期的单位是秒(s).3.频率:周期的倒数叫作振动的频率,数值等于单位时间内完成全振动的次数,用f 表示.在国际单位制中,频率的单位是赫兹,简称赫,符号是Hz .4.周期和频率的关系:f =1T .周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,表示振动越快.5.圆频率ω:表示简谐运动的快慢,其与周期T 、频率f 间的关系式为ω=2πT,ω=2πf .考点六、相位1.概念:描述周期性运动在一个运动周期中的状态.2.表示:相位的大小为ωt +φ,其中φ是t =0时的相位,叫初相位,或初相. 3.相位差:两个相同频率的简谐运动的相位的差值,Δφ=φ1-φ2.考点七、简谐运动的表达式x =A sin (ωt +φ0)=A sin (2πTt +φ0),其中:A 为振幅,ω为圆频率,T 为简谐运动的周期,φ0为初相。

简谐运动的描述(高中物理教学课件)完整版

简谐运动的描述(高中物理教学课件)完整版

四.简谐运动的表达式
简谐运动的表达式:x=Asin(ωt+φ)
位移 振幅
时刻 初相位
圆频率 ω=2π/T=2πf
也可以写成:x Asin(2 t )
T
相位
根据一个简谐运动的振幅、周期、初相位,可以知道做 简谐运动的物体在任意时刻的位移,故振幅、周期、初 相位是描述简谐运动特征的物理量。
三角变换
因为 2 , T 2 2 m
T
k
振动系统本身性质决 定的。
同时放开的两个小球振动步调总是 一致,我们说它们的相位是相同的;
而对于不同时放开的两个小球,我 们说第二个小球的相位落后于第一个 小球的相位。
如何定量的表示相位呢?
三.相位
1.相位:物理学中把(ωt+φ)叫作相位,其中φ 叫初相位,也叫初相。 由简谐运动的表达式x=Asin(ωt+φ)可以知道, 一旦相位确定,简谐运动的状态也就确定了。 2.相位差:两个具有相同频率的简谐运动的相位 的差值。 如果两个简谐运动的频率相同,其初相分别是φ1 和φ2,当φ1>φ2时,它们的相位差是Δφ=(ωt+φ1) -(ωt+φ2)=φ1-φ2此时我们常说1的相位比2超前 Δφ,或者说2的相位比1落后Δφ。
x甲 0.5sin(5t )cm 或者x甲 0.5sin 5tcm
x乙
0.2 sin(2.5t
2
)cm
或者x乙 0.2 cos 2.5tcm
注意: 振动物体运动的范围是振幅的两倍。
二.周期和频率
做简谐振动的振子,如果从A点开始运动,经过O点运动到Aˊ点再 经过O点回到A点,这样的过程物体的振动就完成了一次全振动。 如果从B点向左运动算起,经过O点运动到Aˊ点,再经过O点回到 B点,再经A点返回到B点时,这样的过程也是一种全振动。

简谐运动的描述

简谐运动的描述


2
)( cm )
x 10sin(2t )(cm)
x 10 sin( 2t

2
)( cm )
相位差:
第一个运动落后第二个运动
固有周期和固有频率
周期和频率都反映振动快慢,那么它们与哪 些因素有关呢?
①与振幅无关。
①与振幅无关。
②与弹簧有关,劲度系数越大, 周期越小。
①与振幅无关。 ②与弹簧有关,劲度系数越大,周期越小。 ③与振子质量有关,质量越大,周期越大。
5)弹簧振子的周期由振动系统本身的质量 和劲度系数决定,而与振幅无关,所以常 把周期和频率叫做固有周期和固有频率。
4、相位
表示物体的振动步调,描述简谐运动在 一次全振动中所处的阶段。
二、简谐运动的表达式
相位
x A sin(t )
振幅
2 0时的相位
2、两个相同频率的简谐运动的相位差, 简称相差
t 1 t 2 1 2
2、全振动
(1)定义:振动物体连续两次以相同速度通过 同一位置所经历的过程。
A/
O
B
A
从O→A→O→A/→O也是一次全振动 从B→A→O→A/→O→B也是一次全振动 (2)一次全振动的特点:振动路程为振幅的4倍
3、周期和频率
1)、描述振动快慢的物理量 2)、周期T:做简谐运动的物体完成一次 全振动所需的时间,单位:s。 3)、频率f:单位时间内完成的全振动 的次数,单位:Hz。 4)、周期和频率之间的关系: f=1/T
同相:频率相同、初相相同(即相差为0)的 两个振子振动步调完全相同
反相:频率相同、相差为π 的两个振子振动 步调完全相反
A与B同相 A与C反相

大一简谐运动知识点归纳

大一简谐运动知识点归纳

大一简谐运动知识点归纳简谐运动是物理学中一个重要的概念,它是指物体在受到一个恢复力(即与偏离平衡位置成正比的力)作用下以一定频率做往复振动的运动。

简谐运动具有许多特点和规律,本文将对大一学生需要掌握的简谐运动知识点进行归纳和总结。

一、简谐运动的基本特点简谐运动的基本特点包括:振动物体的周期、频率、振幅和相位。

周期指的是一个完整振动所需要的时间,通常用T表示,单位是秒。

频率指的是单位时间内完成的振动次数,通常用f表示,单位是赫兹(Hz)。

振幅表示振动物体偏离平衡位置的最大距离。

相位表示振动物体当前所处的状态。

二、简谐运动的描述简谐运动可以通过各种方式进行描述。

其中,最常用的是通过位移-时间图、速度-时间图和加速度-时间图。

位移-时间图是一条曲线,横轴表示时间,纵轴表示位移,它能够直观地展示振动物体的运动情况。

速度-时间图和加速度-时间图同样是使用时间作为横轴,但纵轴分别表示速度和加速度。

三、简谐运动的数学表示简谐运动可以通过使用正弦函数或余弦函数进行数学表示。

设物体的位移为x,时间为t,角频率为ω,初相位为φ,则简谐运动的数学表示可以写为:x = A * sin(ωt + φ)或x = A * cos(ωt + φ)其中,A表示振幅,ω表示角频率,φ表示相位。

这两种表示方式是等效的,可以根据需要选择其中一种进行使用。

四、简谐运动的能量简谐运动的能量由势能和动能组成。

势能是指振动物体由于位置发生变化而具有的能量,动能是指振动物体由于速度发生变化而具有的能量。

在简谐运动中,势能和动能之间相互转化,总能量不变。

五、简谐运动的共振共振是指在外力作用下,当物体的振动频率与外力频率接近或相等时,振幅达到最大的现象。

共振可以放大物体的振动,使其接收到更多的能量。

然而,如果超过物体的势能极限,共振可能会导致物体破坏。

六、简谐运动的应用简谐运动在生活和工程中有着广泛的应用。

例如,钟表的摆锤运动、弹簧振子的振动、音叉的振动等都是简谐运动的实例。

2.2 简谐运动的描述

2.2 简谐运动的描述
(1)明确表达式中各物理量的意义,可直接读出振幅、圆频率、初相。
(2)
2
=2πf 是解题时常涉及到的表达式。
T
像,会使解答过程简捷、明了。
(3)解题时画出其振动图
课堂评价
1.如图所示为A、B 两个简谐运动的位移—时间图像。试根据图像写出:
⑴A 的振幅、周期;B 的振幅、周期。
⑵试写出这两个简谐运动的位移随时间变化的衡位置为点O,在B、C之间做简谐运动。B、C相
距20cm。小球经过B点开始计时,经过0.5s首次到达C点。
⑴画出小球在第一个周期内的x-t图像。
⑵求5s内小球通过的路程及5s末小球的位移。
C
考虑:①对称性
②周期性
O
B
x
总结:用简谐运动位移表达式解答振动问题的方法
⑶在时间t =0.05s时两质点的位移分别是多少?
参考答案
(1)由题图知:A 的振幅是0.5 cm,周期是0.4 s;
B 的振幅是0.2 cm,周期是0.8 s。
(2) xA=0.5sin(5πt+π)cm

xB=0.2 sin(2.5πt+ ) cm
(3) xA=-
2
4
2
cm xB =
5
0.2sin π
1
T
f
2

2f
T
3.周期与振幅关系
探究:如图是竖直悬挂的弹簧振子,向下拉开一段距离A使其做简谐运动。
⑴是否振幅A越大,运动的周期T也越大?
⑵给你一个秒表,应该如何测量周期T?请验证你的猜想。
演示:测量小球振动的周期
结论:在简谐运动中,一个确定的振动系统的周期由振动系统本身的因素决定,
与振幅无关。

简谐运动的描述和回复力

简谐运动的描述和回复力

2 x A sin ( t 0) 初相 T
振幅
周期
回 复 力
能 量
第三节 简谐运动的
物体做简谐运动时,所受的合力有什么特点?
A X F A C X A C O
O
B X F
O
F
D
B
A
C
O F
D X D
B
D
B
A
C
O
B
A
C
O
F
D
B X
A
C X
O F
D
B
A
C
O
D
B
A
C
O
D
B
一、简谐运动的回复力
设时间从t1增加到t 2的过程中sin (t )循环一次,即周期为
代表简谐运动的频率
当(ωt+φ)确定时,sin (ωt+φ)的值也就确定 φ 了,所以(ωt+φ)代表了简谐运动的质点此时正处 于一个运动周期中的哪个状态,可见(ωt+φ)代表 简谐运动的相位。
φ是t=0时的相位,称做初相位,或初相。
第2节
简谐运动 的描述
第11章
机械振动
一、描述简谐运动的物理量
振动范围
振幅

振幅 :振动物体离开平衡位置的最大距离。
振幅的两倍表示的是振动的物体运动范围的大小。
一、描述简谐运动的物理量
周期和频率

振子从O→A→O→A′→O是一个完整的振动 过程,称为一次全振动。 做简谐运动的物体完成一次全振动所需要的时 间,叫做振动的周期,单位时间内完成全振动的次 数,叫做振动的频率。
方向总是背离平衡位置.
(2)方向:

简谐运动的描述

简谐运动的描述

简谐运动的描述引言简谐运动是物理学中一种重要的运动形式,它在自然界和工程领域中都有广泛的应用。

本文将对简谐运动进行详细描述,并深入探讨其特征、数学表达以及应用。

定义简谐运动是一种周期性运动,其特点是运动体沿着某个轴线上往复振动,并且振动的加速度与位移成正比,且恒定。

在简谐运动中,运动体会围绕平衡位置作周期性的振动,如弹簧振子、摆锤等。

特征简谐运动有以下几个主要特征:1.振幅(Amplitude):振幅是指运动体离开平衡位置的最大位移。

它决定了简谐运动的最大振幅。

2.周期(Period):周期是指运动体完成一次完整振动所需的时间。

它与频率的倒数成正比,可以用公式T = 1/f来表示,其中T代表周期,f代表频率。

3.频率(Frequency):频率是指运动体单位时间内振动的次数。

它与周期的倒数成正比,可以用公式f = 1/T来表示,其中f代表频率,T代表周期。

4.相位(Phase):相位是指简谐运动的偏移值,用角度来度量。

在简谐运动中,相位角随时间而变化,可以用公式θ = ωt来表示,其中θ代表相位角,ω代表角频率,t代表时间。

5.动能和势能:在简谐运动中,运动体会交替转化为动能和势能。

当运动体离开平衡位置时,具有最大位移和最大动能;当运动体接近平衡位置时,具有最小位移和最小动能,但具有最大势能。

数学表达简谐运动的数学表达可以通过以下公式得到:1.位移(Displacement):\[x(t) = A \cos(\omega t + \phi)\] 其中,x代表位移,A代表振幅,ω代表角频率(ω = 2πf),t代表时间,φ代表相位角。

2.速度(Velocity):\[v(t) = -A \omega \sin(\omega t + \phi)\] 其中,v代表速度,A代表振幅,ω代表角频率(ω = 2πf),t代表时间,φ代表相位角。

3.加速度(Acceleration):\[a(t) = -A \omega^2 \cos(\omega t + \phi)\] 其中,a代表加速度,A代表振幅,ω代表角频率(ω = 2πf),t代表时间,φ代表相位角。

简谐运动的描述ppt课件

简谐运动的描述ppt课件
2.2
简谐运动的描述
目录
CONTENTS
1
简谐运动的表达式
2
描述简谐运动的物理量
3
简谐运动的周期性和对称性
4
简谐运动振幅与路程的关系
有些物体的振动可以近似为简谐运
动,做简谐运动的物体在一个位置附近
不断地重复同样的运动。如何描述简谐
运动的这种独特性呢?
知识回顾:
简谐运动的位移图像是一条正弦曲线。
全振动的特点:①位移和速度都会到初状态 ②路程等于4A
②周期:做简谐运动的物体完成一次全振动所需要的时间,用T表示,
单位:s.
③ 频率:单位时间内完成全振动的次数,用f表示,单位:Hz.
周期T与频率f的关系是T=
知道即可:弹簧振子的周期由哪些因素决定?
周期公式: T 2
m
k
弹簧振子周期(固有周期)和频率由振动系统本身的因素决定(振子的质量m和弹
②若△ = 2 − 1<0,振动2的相位比1落后△ 。
4.同相与反相:
(1)同相:相位差为零



△ = 2( = 0,1,2, … )


(2)反相:相位差为
△ = (2 + 1)( = 0,1,2, … )

A与B同相
A与C反相
A与D异相
相位差90°
=( + )
一、简谐运动的表达式
相位
x A sin(t )
振幅
圆频率
初相位
二、描述简谐运动的物理量
=( + )
1.振幅:(1)定义:振动物体离开平衡位置的最大距离。
振幅
O
振幅
(2)物理意义:振幅是描述振动强弱的物理量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
想一想: 1.2若.从弹振簧子振经子过完C成向一右次起全,振经动过的怎路
样程的与运振动幅才之叫间完存成在一怎次样全的振关动系??
精品课件
二、周期和频率
①周期:做简谐运动的物体完成一次全振动所 需要的时间,叫做振动的周期,单位:s。
②频率:单位时间内完成的全振动的次数,叫 频率,单位:Hz,1Hz=1s-1。
练习2:
写出振动方程 _X_=_1_0_s_i_n_(_2_π___t_).cm
精品课件
作业:
1.阅读:科学漫步“月相” 2.课本P10 T1,T3,T4
精品课件
2.简谐运动的表达式为:x=Asin(ωt+φ )
精品课件
练习1:
一个质点作简谐运动的振动图像如图5-15所 示周△0..期t1=从T0图=.0_5.中_s5_内m可s质以,点看频的0出率.位4,f移=该__质___H点_z_,的,从振路t2幅=程.05A=开=_0_始.__1__在m_.m,
精品课件
第十一章:机械振动
第2节:简谐运动的描述
精品课件
一、振幅:
1.定义:振动物体离开平衡位置的最大距离, 叫做振动的振幅。 2.物理意义:振幅是描述振动强弱的物理量。 3.单位:在国际单位制中,振幅的单位是米 (m)。
精品课件
一、振幅:
1.定义:振动物体离开平衡位置的最大距离, 叫做振动的振幅。 2.物理意义:振幅是描述振动强弱的物理量。 3.单位:在国际单位制中,振幅的单位是米 (m)。
③周期和频率之间的关系:T=1/f。
精品课件
探究:
弹簧振子的周期与哪些因素有关?
猜想:弹簧振子的振动周期可能由哪些因素 决定?
设计实验:
精品课件
实验二:
思考:
①实验过程中,我们应该选择哪个位置作为计 时的开始时刻? ②一次全振动的时间非常短,我们应该怎样测 量弹簧振子的周期?
精品课件
进行实验:
实验1:探究弹簧振子的T与k的关系. 实验2:探究弹簧振子的T与m的关系. 实验3:探究弹簧振子的T与A的关系.
结论:弹簧振子的周期由振动系统本身的质量 和劲度系数决定,而与其他因素无关。
精品课件
… …Βιβλιοθήκη 三、相位相位是表示物体振动步调的物理量,用相 位来描述简谐运动在一个全振动中所处的阶段。
精品课件
四、简谐运动的表达式
简谐运动的位移和时间的关系可以用图 象来表示为正弦或余弦曲线,如将这一关系 表示为数学函数关系式应为:
xAsi nt ()
精品课件
简谐运动的表达式 xAsin(t)
振动方程中各变量的含义:
1.A 代表物体振动的振幅.
2. 叫做圆频率,表示简谐运动的快慢。它
与频率之间的关系为: =2f
3.“ t+” 这个量就是简谐运动的相位, 它是随时间t不断变化的物理量,表示振动 所处的状态. 叫初相位,简称初相,即 t=0时的相位。
精品课件
小结:
1.描述简谐运动的物理量——振幅、周期、 频率和相位。 振幅是描述振动强弱的物理量; 周期和频率都是用来表示振动快慢的物理量; 相位是表示振动步调的物理量。
精品课件
一、振幅:
思考与讨论:振幅和位移的区别?
(1)振幅等于最大位移的数值。 (2)对于一个给定的振动,振子的位移是时
刻变化的,但振幅是不变的。 (3)位移是矢量,振幅是标量。
精品课件
实验一:
精品课件
全振动:一个完整的振动过程称为一次 全振动 一次全振动是简谐运动的最小单元,振 子的运动过程就是这一单元运动的不断 重复。
相关文档
最新文档