高中数学基础知识大全(全国新课标版)

合集下载

新课标高中数学知识点总结汇总表

新课标高中数学知识点总结汇总表

新课标高中数学知识点总结汇总表一、函数与导数1. 函数基础- 函数的概念与表示法- 函数的性质:定义域、值域、单调性、奇偶性、周期性- 函数的运算:四则运算、复合函数、反函数、基本初等函数(幂函数、指数函数、对数函数、三角函数)2. 极限与连续- 极限的定义与性质- 无穷小与无穷大- 极限的运算法则- 函数的连续性与间断点3. 导数与微分- 导数的定义与几何意义- 导数的运算法则- 高阶导数- 隐函数与参数方程的导数- 微分的概念与应用4. 导数的应用- 函数的极值与最值问题- 曲线的切线与法线- 罗尔定理、拉格朗日中值定理、柯西中值定理- 泰勒公式与麦克劳林公式5. 不定积分- 积分的概念与性质- 基本积分表- 积分的运算法则- 特殊积分技巧:换元法、分部积分法二、平面向量与立体几何1. 平面向量- 向量的基本概念与运算- 向量的几何意义与线性运算- 向量的数量积与向量积- 平面向量的坐标表示与运算2. 立体几何- 空间几何体的性质与计算- 直线与平面的方程- 空间向量及其运算- 立体图形的表面积与体积三、解析几何1. 圆锥曲线- 圆的方程- 椭圆、双曲线、抛物线的方程与性质 - 圆锥曲线的切线与法线- 圆锥曲线的应用问题2. 参数方程与极坐标- 参数方程的概念与应用- 极坐标系与直角坐标系的转换- 简单曲线的极坐标方程四、概率与统计1. 概率论基础- 随机事件与概率的定义- 条件概率与独立事件- 全概率公式与贝叶斯公式- 随机变量与分布函数2. 统计学基础- 统计量的概念:均值、方差、标准差、中位数、众数 - 抽样与估计- 假设检验- 线性回归分析五、数学分析进阶1. 定积分- 定积分的概念与性质- 微积分基本定理- 定积分的计算方法- 定积分的应用:面积、体积、弧长、工作量2. 级数- 数项级数的概念与性质- 正项级数与收敛性判别法- 交错级数与绝对收敛- 幂级数与泰勒级数3. 多元函数微分学- 多元函数的偏导数与全微分- 多元函数的极值与最优化问题- 多重积分的概念与计算4. 常微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 二阶常系数线性微分方程以上是新课标高中数学的主要知识点汇总,涵盖了函数、几何、概率统计以及数学分析等领域的核心内容。

新高考数学基础知识点汇总

新高考数学基础知识点汇总

新高考数学基础知识点汇总随着新高考改革的推进,数学作为一门重要的科目,对学生的考试成绩和升学路径都产生着深远的影响。

为了帮助广大学生更好地备考数学,下面将对新高考数学的基础知识点进行汇总,供学生参考。

一、数与式的基本概念1. 数的基本概念数的分类、数的读法、数的性质等。

2. 数的四则运算加法、减法、乘法、除法的定义和性质。

3. 算式的基本概念算术表达式、算术表达式的概念和性质。

4. 计算顺序与计算规则加减乘除的计算顺序和计算规则。

二、代数式及其基本性质1. 代数式的概念代数式的定义和构成要素。

2. 代数式的运算代数式的加减乘除运算法则。

3. 同类项与合并同类项同类项的定义和合并同类项的方法。

4. 二项式的乘法展开二项式乘法的展开法则和运算规律。

三、方程与不等式1. 方程的基本概念方程的定义和解的概念。

2. 一元一次方程一元一次方程的解法和性质。

3. 一元二次方程一元二次方程的解法和性质。

4. 不等式的基本概念不等式的定义和解的概念。

5. 一元一次不等式一元一次不等式的解法和性质。

四、三角学1. 角的概念角的定义、角的度量、角的性质等。

2. 三角函数的基本概念正弦函数、余弦函数、正切函数的定义和性质。

3. 角的变化关系三角函数之间的关系和性质。

4. 三角函数的应用三角函数在实际问题中的应用。

五、平面向量1. 向量的基本概念向量的定义、向量的表示和性质。

2. 向量的运算向量的加法、减法和数量乘法运算。

3. 向量的坐标表示在直角坐标系下向量的坐标表示方法。

4. 向量的应用向量在几何和物理问题中的应用。

六、几何图形与变换1. 几何图形的基本属性点、线段、角、面的定义和性质。

2. 三角形的性质三角形的内角和、外角和、角平分线等性质。

3. 平面几何的基本定理中线定理、高线定理、正弦定理、余弦定理等。

4. 平移、旋转、镜像和缩放平面几何变换的基本性质和规律。

通过对以上知识点的系统学习和掌握,相信广大学生能在新高考中取得优异的数学成绩。

新高考数学基础知识点归纳

新高考数学基础知识点归纳

新高考数学基础知识点归纳新高考数学作为高中数学教学的重要组成部分,其基础知识点的归纳对于学生掌握数学知识至关重要。

以下是新高考数学的一些基础知识点归纳:一、集合与函数- 集合的基本概念:元素、集合、子集、并集、交集、补集等。

- 函数的概念:定义域、值域、单调性、奇偶性、周期性等。

- 函数的基本性质:有界性、连续性、可导性等。

二、数列- 数列的基本概念:通项公式、前n项和等。

- 等差数列与等比数列:通项公式、求和公式。

- 数列的极限:极限的定义、性质、极限存在的条件。

三、不等式与方程- 不等式的基本性质:可加性、可乘性、传递性等。

- 解不等式的基本方法:直接比较法、综合法、分析法等。

- 方程的解法:一元一次方程、一元二次方程、高次方程等。

四、三角函数与三角恒等变换- 三角函数的定义:正弦、余弦、正切等。

- 三角函数的基本性质:周期性、奇偶性、单调性等。

- 三角恒等变换:和差化积、积化和差、倍角公式、半角公式等。

五、解析几何- 直线与圆的方程:直线的斜率、截距、圆的标准方程、一般方程等。

- 椭圆、双曲线、抛物线:定义、标准方程、性质。

- 曲线的参数方程与极坐标方程。

六、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。

- 多面体与旋转体:棱柱、棱锥、圆柱、圆锥、球等的体积与表面积。

七、概率与统计初步- 随机事件的概率:概率的定义、性质、加法公式、乘法公式等。

- 统计初步:数据的收集、整理、描述,包括均值、方差、标准差等。

八、导数与微分- 导数的概念:导数的定义、几何意义、物理意义。

- 导数的基本运算:四则运算、链式法则、幂函数、三角函数、对数函数、指数函数的导数。

- 微分的概念:微分的定义、微分的几何意义。

九、积分与微积分基本定理- 不定积分:原函数、换元积分法、分部积分法。

- 定积分:定积分的定义、几何意义、积分中值定理。

- 微积分基本定理:牛顿-莱布尼茨公式。

结束语以上是对新高考数学基础知识点的简要归纳,掌握这些基础知识点是解决数学问题的基础。

新课程高中数学知识点归纳(完整版)

新课程高中数学知识点归纳(完整版)

新课程高中数学必备知识点归纳 ----必须理解、记忆和应用第一册第一章 集合与常用逻辑用语一、集合的定义与表示1.集合的定义:把研究对象统称为元素,把一些元素组成的总体叫做集合2.集合的表示:常用大写拉丁字母 ,,,C B A 表示,集合中的元素一般用小写拉丁字母 ,,,c b a 表示3.集合的性质:确定性、互异性、无序性(集合中元素的性质)4.元素与集合的关系:属于(A a ∈) , 不属于(A a ∉)5.常用数集:R Q,Z,,N N N,*+或 6.集合的表示:列举法:把集合中的所有元素一一列举出来,并用“{ }”括起来表示集合的方法叫做列举法。

描述法:设A 是一个集合,把集合A 中所具有共同特征)(x P 的元素x 所组成的集合表示为)}(|{x P A x ∈,这种表示集合的方法称为描述法。

二、集合间的基本关系(从文字语言、图形语言、符号语言等方面理解) 1.子集:一般地,对于两个集合,A B ,如果集合A 中任意一个元素都是集合B 中的元素,称集合A 是集合B 的子集,记作B A ⊆(读作A 包含于B )或A B ⊇(读作B 包含A )。

韦恩表示图略 2.集合相等:如果集合A 中的任何一个元素都是集合B 的元素,同时集合B 中的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等。

记作A B =。

若B A ⊆且A B ⊆,则A B =。

韦恩表示图略 3.真子集:如果集合B A ⊆,但存在元素,x B ∈且,x A ∉称集合A 是集合B 的真子集,记作B A ≠⊂(读作A真含于B )或A B ≠⊃(读作B 真包含A )。

韦恩表示图略4.空集:不含任何元素的集合叫做空集。

空集是任何集合的子集,空集是任何非空集合的真子集 拓展:集合的子集个数含有n 个元素的集合的子集个数为n2,真子集个数为12-n,非空真子集个数为22-n三、集合的基本运算(从文字语言、图形语言、符号语言等方面理解) 1.并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与集合B 的并集,记作A B(读作:“A 并B ”),即{},A B x x A x B =∈∈或,韦恩表示图略,数轴表示略。

新课标人教版高中数学全册考点及题型归纳总结

新课标人教版高中数学全册考点及题型归纳总结

新课标人教版高中数学全册考点及题型归纳总结新课标人教版高中数学全册的考点及题型如下:一、函数与方程1.函数的基本概念和性质:定义域、值域、图像、增减性、奇偶性等。

2.一次函数:函数的表示方式及性质、函数的图像与应用、函数的图像性质与参数关系。

3.二次函数:函数的表示方式及性质、函数的图像与应用、函数的图像性质与参数关系。

4.指数函数:函数的表示方式及性质、函数的图像与应用、指数函数的性质与指数关系。

5.对数函数:函数的表示方式及性质、函数的图像与应用、对数函数的性质与底数关系。

6.三角函数:函数的表示方式及性质、函数的图像与应用、三角函数的性质与周期关系。

二、数列与数学归纳法1.数列的基本概念与表示:公式、通项、前n项和、数列的性质等。

2.等差数列:公差、前n项和、等差数列的性质及应用。

3.等比数列:公比、前n项和、等比数列的性质及应用。

4.通项公式及求和公式的推导与应用。

5.数学归纳法的基本概念和使用。

三、三角函数基本关系式与证明1.正弦函数与余弦函数的关系。

2.正切函数与余切函数的关系。

3.正割函数与余割函数的关系。

4.辅助角公式及证明。

5.万能角公式及证明。

6.统一化问题的求解及应用。

四、解析几何基本定理与推理1.重矢量的定义与性质。

2.数量积的基本性质与运算规则。

3.向量的线性相关性与线性独立性。

4.解析几何定理的证明与推理。

五、概率与统计1.基本概念与方法:样本空间、随机事件、概率、频率、统计量等。

2.概率的基本性质:加法原理、乘法原理、条件概率等。

3.随机变量和概率分布的基本概念与性质。

4.离散型随机变量与连续型随机变量的概率分布。

5.正态分布的基本性质和应用。

以上是新课标人教版高中数学全册的考点及题型的总结,希望对你有帮助。

高中数学新课标知识点基础

高中数学新课标知识点基础

高中数学新课标知识点基础高中数学新课标知识点基础涵盖了高中数学教学的核心内容,旨在培养学生的数学思维和解决问题的能力。

以下是高中数学新课标知识点的基础内容:1. 数与式- 有理数、无理数、实数的概念及其性质- 指数与对数的运算法则- 多项式、分式、根式的基本运算和性质- 复数的定义、表示法及基本运算2. 函数- 函数的概念、定义域、值域、单调性、奇偶性- 一次函数、二次函数、指数函数、对数函数、三角函数的图像和性质- 函数的复合、反函数、函数的极值和最值问题3. 解析几何- 直角坐标系、极坐标系、参数方程的概念和应用- 直线、圆、椭圆、双曲线、抛物线的标准方程和性质- 曲线的交点、切线、极值问题4. 立体几何- 空间直线、平面的位置关系- 多面体、旋转体的结构特征和面积、体积计算- 空间向量及其在立体几何中的应用5. 概率与统计- 随机事件、概率的定义和计算- 离散型随机变量、连续型随机变量的概率分布- 统计数据的收集、整理、描述和分析6. 微积分- 极限的概念、性质和运算- 导数的定义、几何意义和基本运算法则- 积分的概念、性质和基本运算法则- 微分方程的基本概念和求解方法7. 数列与级数- 数列的概念、通项公式、求和公式- 等差数列、等比数列的性质和应用- 无穷级数的概念、收敛性判断和求和8. 算法初步- 算法的概念、特点和设计原则- 基本算法语句、循环结构、条件结构- 算法的应用实例和问题分析这些知识点构成了高中数学教学的基础框架,通过系统学习,学生能够掌握数学的基本概念、原理和方法,为进一步的数学学习和实际应用打下坚实的基础。

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)1. 实数和复数:实数是数轴上的所有数,包括有理数和无理数;复数由实部和虚部组成,可以表示为a+bi的形式,其中a和b 为实数。

2. 幂和根:幂是指数运算,如a的n次幂表示为an;根是幂的逆运算,开x次方根表示为x√a。

3. 代数运算:加法、减法、乘法和除法是代数运算的基本运算,它们遵循相应的运算法则。

4. 贝叶斯定理:条件概率和全概率公式的应用,用于计算事件的概率。

5. 几何:包括平面几何和立体几何,涉及到图形的性质,如平行、垂直、相似、全等等。

6. 向量:具有大小和方向的量,在代数中用坐标表示,可以进行向量的加法、减法和数量乘法等运算。

7. 函数:函数是自变量与因变量之间的依赖关系,常见的函数有线性函数、二次函数、指数函数、对数函数等。

8. 三角函数:包括正弦、余弦、正切、余切等,广泛应用于几何、物理等领域。

9. 极限与连续性:极限是指当自变量趋近于某个特定值时,函数的变化趋势;连续性是指函数在其定义域上无断点。

10. 导数与微分:导数表示函数在某一点处的变化率,微分是导数的几何意义。

11. 积分与不定积分:积分表示函数在一定区间上的面积或曲线长度,不定积分是积分的逆运算。

12. 概率与统计:概率是描述随机事件发生的可能性,统计是收集、整理和分析数据的方法。

13. 矩阵与行列式:矩阵是一个按照一定规则排列的数的矩形阵列,行列式是矩阵的一种特殊表示形式。

14. 数列与数级数:数列是由一个或多个数按一定规律排列而成的序列,数级数是数列的无穷求和。

15. 数论:研究整数性质和整数之间的关系,包括质数、最大公约数、同余等。

16. 解析几何:利用坐标表示几何图形的性质和关系。

17. 空间几何:研究三维空间中图形的性质和关系。

18. 数学证明:用严密的推理和逻辑方法证明数学命题的正确性。

19. 数学建模:将实际问题转化为数学模型,利用数学方法进行求解和分析。

20. 科学计算:利用计算机和数值方法解决数学问题,如差值、插值、数值积分等。

高中数学基础知识汇总(详细版)

高中数学基础知识汇总(详细版)

高中数学基础知识汇总(详细版)一、集合:(1)集合:由一组具有特定关系的元素构成的对象,如{a,b,c}由3个元素a,b,c构成。

(2)定义域(Domain):集合中的所有元素组成的定义域,如定义域 {a,b,c}中包含元素a,b和c。

(3)基数:一个集合中元素的数目叫做其基数,基数等于集合中定义域的数目。

(4)子集:一个集合是另一个集合的子集,如果它包含另一个集合中的所有元素,叫做子集。

(5)相等集:两个集合满足基数相等以及所有定义域相等时,两个集合叫做相等集。

二、函数:(1)函数(Function):将每个元素映射为另一个元素的规则的关系,如f(x)=2x+1。

(2)可逆性:如果f是可逆的,则f(x)和f在对应位置上有一个可逆的函数(f-1)(x)。

(3)偶函数:任何一个f(x)都可以写成两个函数f1(x)和f2(-x),如果f1(x)=f2(-x),则称f(x)为偶函数。

(4)函数的图形表示:用函数的定义域和它的值域的点的集合表示函数的图形。

三、统计:(1)分类数据:以某种类别划分的一组数据。

(2)频率:一个类别出现的次数,频率可以用于判断一类数据的分布。

(3)分布规律:一种数据的出现频率在一段时间内的变化规律,常用折线图表示。

(4)算术平均数:研究序列某个变量在一段时间内全体数据的平均值。

(5)众数:一组数据中出现次数最多的数。

四、代数:(1)多项式:由常系数乘常数的多项式,可以表示为axn+bxn-1+……+c的形式,其中a,b,c都是常数,n是正整数且大于0,x是变量。

(2)一次项:只有一个未知量的多项式,如1x+2、a-3x。

(4)根式:当n为偶数时,其中一项是常数,就是根式,如4x2+3x+1,根式是4x2+1。

(5)代数和式:当两个或多个未知量相加时,叫做代数和式,如2x+3y+4z。

(6)乘法:两个多项式及其系数相乘时,称为乘法,如(2x+3)·(x-1)=2x2-x-3。

高中数学知识点总结(新高考地区)精选全文完整版

高中数学知识点总结(新高考地区)精选全文完整版

一:集合与简易逻辑1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集集合A中任意一个元素均为集合B中的元素A⊆B 真子集集合A中任意一个元素均为集合B中的元素,且集合B中至少有一个元素不是集合A中的元素BA⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A 图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A} 4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[方法技巧](1).若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).15q pqq6、全称量词与存在量词(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.7、全称命题和存在性命题(命题p的否定记为⌝p,读作“非p”)[方法技巧]1.区别A是B的充分不必要条件(A⇒B且B⇏A),与A的充分不必要条件是B(B⇒A且A⇏B)两者的不同.2.A是B的充分不必要条件⇔⌝B是⌝A的充分不必要条件.3.含有一个量词的命题的否定规律是“改量词,否结论”.2二:函数基本知识(1)1、函数三要素32、函数性质43、指数和对数运算4、函数图象变换55、一元二次方程根的分布⎧Δ=067三:函数基本知识(2)1、一次函数2、反比例函数o yxyxo4、指数函数和对数函数(0∞)8点,且在第一象限是减函数.,1)点).“指大图低”).910四:三角函数1、任意角的三角函数(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式 |α|=lr (弧长用l 表示)角度与弧度的换算1°=π180rad ;1 rad =⎝⎛⎭⎫180π° 弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.[提醒](1)若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. (2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.114.象限角的集合5.轴线角的集合6.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2k πα+ α− πα− πα+ 2πα− 2πα−2πα+2πα−sinsin αsin α−sin αsin α−sin α−cos αcos αcos α−coscos αcos αcos α−cos α−cos αsin α sin α− sin αtan tan α tan α− tan α− tan α tan α− cot α cot α− cot α−8.两角和与差的三角函数:S αβ+:sin()sin cos cos sin αβαβαβ+=⋅+⋅ S αβ−:sin()sin cos cos sin αβαβαβ−=⋅−⋅ C αβ+:cos()cos cos sin sin αβαβαβ+=⋅−⋅ C αβ−:cos()cos cos sin sin αβαβαβ−=⋅+⋅ T αβ+: βαβαβαtan tan 1tan tan )tan(−+=+T αβ−: βαβαβαtan tan 1tan tan )tan(+−=−129.二倍角公式:2S α:sin 22sin cos ααα= 2T α:22tan tan 21tan ααα=− 2C α2222cos 2cos sin 2cos 112sin ααααα=−=−=−10.降幂公式:1sin cos sin 22ααα= 21cos 2sin 2αα−= 21cos 2cos 2αα+=11.半角公式:12.合一变形 22sin cos )a x b x a b x ϕ+=++, 其中 tan b aϕ=1313.三角函数的图像与性质 sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域 []1,1−[]1,1−R最值 当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=− ()k ∈Z 时,min 1y =−.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =−.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤−+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ−∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫−+⎪⎝⎭()k ∈Z 上是增函数.对称中心 ()(),0k k π∈Z(),02k k ππ⎛⎫+∈Z⎪⎝⎭ (),02k k π⎛⎫∈Z ⎪⎝⎭对称轴()2x k k ππ=+∈Z()x k k π=∈Z无对称轴函 数性 质四:平面向量“三角形法则”λ(μa)=(λμ)aλ+μ)a=λa+μa14五:解三角形1、正弦定理和余弦定理2、解三角形的四种模型153、解三角形的多解分析已知两边和其中一边的对角解三角形时,应分析解的情况:如已知a,b,A,则当A为锐角时当A为钝角或直角时图示关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的情况无解一解两解一解一解无解16六:数列1、数列基本性质172、求数列通项公式(1).前n项和型(2)递推公式型183、数列求和19七:圆锥曲线1、椭圆a b-a≤x≤a,-b≤y≤b≤x≤b,-a≤y≤对称轴:对称中心:原点F1(-c,0),F2(c,0)(0,-c),F2(0,2、双曲线≤-a或x≥a;y∈∈R;y≤-a或y对称中心:原点203、抛物线x≥0;y∈R x≤0;y∈R x∈R;y≥0x∈R;y≤0对称轴:轴轴214、圆锥曲线的常用性质2223八:直线方程与圆的方程【公式】1.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.几种距离公式(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离:d =|C 1-C 2|A 2+B 2.4.圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径.5.圆的一般方程:x 2+y 2+Dx +Ey +F =0该方程表示圆的充要条件是D 2+E 2-4F >0其中圆心为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.6.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:利用判别式Δ=b 2-4ac 进行判断:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.247.圆与圆的位置关系:设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).则:d >r 1+r 2⇔外离; d =r 1+r 2⇔外切; |r 1-r 2|<d <r 1+r 2⇔相交;d =|r 1-r 2|⇔内切; 0≤d <|r 1-r 2|⇔内含【必备结论】1.斜率与倾斜角的关系:由正切图象可以看出:①当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞)且随着α增大而增大; ②当α=π2时,斜率不存在,但直线存在;③当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0)且随着α增大而增大.2.两条直线的位置关系(1)斜截式判断法:①两条直线平行:对于两条不重合的直线l 1、l 2:(ⅰ)若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)一般式判断法:设两直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0,则有:①l 1∥l 2⇔A 1 B 2=A 2B 1且A 1 C 2≠A 2 C 1; ②l 1⊥l 2⇔A 1A 2+B 1B 2=0.3.直线系方程:(1)平行线系:与直线Ax +By +C =0平行的直线方程可设为:Ax +By +m =0(m ≠C );(2)垂直线系:与直线Ax +By +C =0垂直的直线方程可设为:Bx -Ay +n =0;(3)交点线系:过A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线可设:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0.4.点与圆的位置关系圆方程(x-a)2+(y-b)2=r2,一般方程x2+y2+Dx+Ey+F=0,点M(x0,y0),则有:(1)点在圆上:(x0-a)2+(y0-b)2=r2,x02+y02+Dx0+E y0+F=0;(2)点在圆外:(x0-a)2+(y0-b)2>r2,x02+y02+Dx0+E y0+F>0;(3)点在圆内:(x0-a)2+(y0-b)2<r2,x02+y02+Dx0+E y0+F<0.5.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为:x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆C:x2+y2+Dx+Ey+F=0外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程的求法:①以M为圆心,切线长为半径求圆M的方程;②用圆M的方程减去圆C的方程即得;6.圆与圆的位置关系的常用结论(1)两圆的位置与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)公共弦直线:当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.7.常用口诀:①直线带参,必过定点;②弦长问题,用勾股.【方法】1.直线的对称问题:(1)点关于线对称:方程组法,设对称后点的坐标为(x,y),根据中点坐标及垂直斜率列方程组;(2)线关于线对称:①求交点;②已知直线上取一个特殊点,并求其关于直线的对称点;③两点定线即可.(3)圆关于线对称:圆心对称,半径不变.25262.直线与圆的相关问题:(1)切线问题:一般设直线点斜式(讨论斜率存在),然后依据d =r 列方程求解;(2)弦长问题:用勾股,即圆的半径为r ,弦心距为d ,弦长为l ,则根据勾股得⎝⎛⎭⎫l 22=r 2-d 2;3.轨迹求法:①直译法:直接根据题目提供的动点条件,直接列出方程,化简可得;②几何法:根据动点满足的几何特征,判断其轨迹类型,然后根据轨迹定义直接写出方程.③代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.27九:立体几何与空间向量【公式】1.空间几何体的表面积与体积公式:(1)基本公式:①圆:面积S 圆=πr 2, 周长C 圆=2πr ;②扇形:弧长l 扇形=αR , 面积S 扇形=12lR =12αR 2,周长C 扇形=l +2R .S 圆柱侧=2πrl S 圆锥侧=πrl 圆台侧=π(r 1+(3)柱、锥、台和球的体积公式①柱体(棱柱和圆柱):S 表面积=S 侧+2S 底,V 柱=Sh ;②锥体(棱锥和圆锥) :S 表面积=S 侧+S 底,V 锥=13Sh ;③台体(棱台和圆台) : S 表面积=S 侧+S 上+S 下,V 台=13(S 上+S 下+S 上S 下)h ;④球:S 球=4πR 2 ,V 球=43πR 3;2.平行关系的判定及性质定理:283.垂直关系的判定及性质定理:图形语言4.空间向量与立体几何的求解公式:(1)异面直线成角:设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θ满足:cos θ=|a ·b ||a ||b |;(2)线面成角:设直线l 的方向向量为a ,平面α的法向量为n ,a 与n 的夹角为β,则直线l 与平面α所成的角为θ满足:sin θ=|cos β|=|a ·n ||a ||n |.(3)二面角:设n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则两面的成角θ满足:cos θ=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|;(4)点到平面的距离:如右图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为:|BO →|=|AB →·n ||n |,即向量在法向量n 的方向上的投影长.29【结论】1.直观图与原图的关系:(1)作图关系:①位置:平行性、相交性不变;②长度:平行x (z )轴的长度不变,平行y 轴的长度减半.(2)面积关系:S 直观图′=24×S 原图;2.几个与球有关的内切、外接常用结论:(1)正方体的棱长为a ,球的半径为R ,则: ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的长、宽、高分别为a ,b ,c ,则外接球直径=长方体对角线,即:2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为:3∶1.3.几种常见角的取值范围:①异面直线成角∈(0,π2]②二面角∈[0,π]③线面角∈[0,π2]④向量夹角∈[0,π] ⑤直线的倾斜角∈[0,π)【方法】1.三视图还原方法:提点连线法,具体步骤:①根据三视图轮廓画长方体或正方体; ②在底面画俯视图;③综合正视图和左视图进行提点连线; ④验证与完善.2.平行构造的常用方法:①三角形中位线法; ②平行四边形线法; ③比例线段法.3.垂直构造的常用方法:①等腰三角形三线合一法; ②勾股定理法; ③投影法.4.用向量证明空间中的平行关系(1)线线平行:设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)线面平行:设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.(3)面面平行:设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.5.用向量证明空间中的垂直关系(1)线线垂直:设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)线面垂直:设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.(3)面面垂直:设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.6.点面距常用方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法7.外接球常用方法:①将几何体补成长方体或正方体,则球直径=体对角线;②过两个三角形的外接圆圆心作圆面垂线,则垂线交点即为外接球球心,找到球心即可求半径.3031十:排列组合与二项式定理1、分类加法计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法……在第类办法中,有种不同的方法.那么完成这件事共有种不同的方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一个步骤有种不同的方法,做第一个步骤有种不同的方法……做第个步骤有种不同的方法.那么完成这件事共有种不同的方法.3、排列:(1)、排列:从个不同元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列(2)、排列数从个不同元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示:当时,为全排列.的阶乘:排列数公式可写成(规定)n 1m 2m n n m 12n N m m m =+++n 1m 2m n 12n N m m m =⨯⨯⨯n ()m m n ≤n m n ()m m n ≤n m mn A ()()()121mn A n n n n m =−−−+m n =()()12321nn A n n n =−−⨯⨯n ()()12321!nn A n n n n =−−⨯⨯=()!!mn n A n m =−0!1=324、组合 (1)组合:从n 个元素中取出m 个元素合成一组,叫做从n 个元素中取出m 个元素的一个组合。

高中数学知识点总结全2024

高中数学知识点总结全2024

高中数学知识点总结全2024一、集合与函数概念1. 集合的基本概念集合的定义:集合是某些确定的、互不相同的对象的全体。

集合的表示方法:列举法、描述法、图示法。

集合间的关系:子集、真子集、相等。

集合的运算:并集、交集、补集。

2. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

函数的三要素:定义域、对应关系、值域。

函数的性质:单调性、奇偶性、周期性、最值。

3. 函数的表示方法解析法:用数学式子表示函数关系。

表格法:用表格形式表示函数关系。

图象法:用图象表示函数关系。

二、基本初等函数1. 一次函数定义:形如y=kx+b(k≠0)的函数。

性质:图象是一条直线,k为斜率,b为截距。

2. 二次函数定义:形如y=ax²+bx+c(a≠0)的函数。

性质:图象是一条抛物线,a决定开口方向和大小,顶点坐标为(b/2a, cb²/4a)。

3. 指数函数定义:形如y=a^x(a>0且a≠1)的函数。

性质:图象过点(0,1),a>1时单调递增,0<a<1时单调递减。

4. 对数函数定义:形如y=log_a(x)(a>0且a≠1)的函数。

性质:图象过点(1,0),a>1时单调递增,0<a<1时单调递减。

5. 三角函数正弦函数:y=sin(x),周期为2π,图象为波形曲线。

余弦函数:y=cos(x),周期为2π,图象为波形曲线。

正切函数:y=tan(x),周期为π,图象为渐近线间的曲线。

三、立体几何1. 空间几何体的结构多面体:由若干个多边形围成的几何体,如棱柱、棱锥。

旋转体:由平面图形绕某条直线旋转形成的几何体,如圆柱、圆锥、球。

2. 空间几何体的三视图主视图:从正面看到的图形。

俯视图:从上面看到的图形。

左视图:从左面看到的图形。

最新高中数学知识点总结(最全版)

最新高中数学知识点总结(最全版)

高中数学 必修1知识点1 第一章 函数概念2 (1)函数的概念3 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在4 集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对5 应法则f )叫做集合A 到B 的一个函数,记作:f A B →.6 ②函数的三要素:定义域、值域和对应法则.7 ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 8 (2)区间的概念及表示法9 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足10 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合11 叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记12 做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.13注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须14 a b <,(前者可以不成立,为空集;而后者必须成立). 15 (3)求函数的定义域时,一般遵循以下原则:16 ①()f x 是整式时,定义域是全体实数.17②()f x 是分式函数时,定义域是使分母不为零的一切实数.18 ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.19 ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. 20 ⑤tan y x =中,()π⑥零(负)指数幂的底数不能为零.22 ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初23 等函数的定义域的交集.24 ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数25 [()]f g x 的定义域应由不等式()a g x b ≤≤解出.26 ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. 27 ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 28 (4)求函数的值域或最值29 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中30 存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质31 是相同的,只是提问的角度不同.求函数值域与最值的常用方法:32 ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.33 ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围34 确定函数的值域或最值.35 ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程36 2()()()0a y x b y x c y ++=37则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值38 域或最值.39 ④不等式法:利用基本不等式确定函数的值域或最值.40 ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问41 题转化为三角函数的最值问题.42 ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. 43 ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. 44 ⑧函数的单调性法.45(5)函数的表示方法4647表示函数的方法,常用的有解析法、列表法、图象法三种.48解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两49个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.50(6)映射的概念51①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B52中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫53做集合A到B的映射,记作:f A B→.54②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我们把a Ab B55元素b叫做元素a的象,元素a叫做元素b的原象.56(6)函数的单调性57①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一58 个减函数为增函数,减函数减去一个增函数为减函数.59 ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =60 为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,61则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.62 (7)打“√”函数()(0)af xx a x=+>的图象与性质63()f x 分别在(,]a -∞-、[,)a +∞上为增函数,64 分别在[,0)a -、(0,]a 上为减函数. 65 (8)最大(小)值定义66 ①一般地,设函数()y f x =的定义域为I ,如果存67在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;68 (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.69②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都70 有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作71 max ()f x m =.72 (9)函数的奇偶性73 ①定义及判定方法74函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇.函数...(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=f(x).......,那么函数f(x)叫做偶函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.75 ③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相76 反.77 ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个78 偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 79 第二章 基本初等函数(Ⅰ) 80 〖2.1〗指数函数81 【2.1.1】指数与指数幂的运算 82 (1)根式的概念83 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次84 n a n 是偶数时,正数a 的正的n n a 负的n 次方根用符85号0的n 次方根是0;负数a 没有n 次方根.86 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;87 当n 为偶数时,0a ≥.88 ③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,89 (0)|| (0) a a a a a ≥⎧==⎨-<⎩. 90(2)分数指数幂的概念91 ①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于92 0.93②正数的负分数指数幂的意义是: 1()0,,,mm n n aa m n N a -+==>∈且1)n >.0的负分数94 指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 95 (3)分数指数幂的运算性质96 ①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ 97③()(0,0,)r r r ab a b a b r R =>>∈ 98 【2.1.2】指数函数及其性质 99 (4)指数函数100101 〖2.2〗对数函数102 【2.2.1】对数与对数运算 103 (1)对数的定义104 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N105叫做真数. 106 ②负数和零没有对数.107 ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 108 (2)几个重要的对数恒等式109 log 10a =,log 1a a =,log b a a b =.110 (3)常用对数与自然对数111 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 112(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么113①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= 114③数乘:log log ()n a a n M M n R =∈ ④log a N a N =115⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且 116【2.2.2】对数函数及其性质 117 (5)对数函数118(6)反函数的概念119 设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果120 对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式121 子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯122 上改写成1()y f x -=. 123 (7)反函数的求法124 ①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; 125③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. 126 (8)反函数的性质127 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.128②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. 129③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. 130 ④一般地,函数()y f x =要有反函数则它必须为单调函数. 131 〖2.3〗幂函数 132 (1)幂函数的定义133一般地,函数y xα134=叫做幂函数,其中x为自变量,α是常数.135136137138139140141142143144145146147148149150151152153154155156(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象157 分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点158 对称);是非奇非偶函数时,图象只分布在第一象限.159 ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).160③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函161 数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.162④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中163 ,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则164 qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.165 ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,166 其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直167 线y x =下方.168 〖补充知识〗二次函数 169 (1)二次函数解析式的三种形式170 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:171 12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法172 ①已知三个点坐标时,宜用一般式.173 ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. 174 ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. 175 (3)二次函数图象的性质176①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是177 24(,)24b ac b a a--. 178②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,179 2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,180当2bx a=-时,2max 4()4ac b f x a -=.181③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点182 ********(,0),(,0),||||||M x M x M M x x a =-=. 183(4)一元二次方程20(0)ax bx c a ++=≠根的分布184 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但185 尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)186 的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.187 设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从188以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函189 数值符号. 190 ①k <x 1≤x 2 ⇔191192 ②x 1≤x 2<k ⇔193194 ③x 1<k <x 2 ⇔ af (k )<0195196 ④k 1<x 1≤x 2<k 2 ⇔ 197198199 ⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑200 f (k 1)=0或f (k 2)=0这两种情况是否也符合201202203⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 204 此结论可直接由⑤推出.205 (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值206 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.207 (Ⅰ)当0a >时(开口向上) 208 ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q = 209210 211 212 213 214 215 216 217 ①若02b x a -≤,则()M f q =b ()f p 218 219 220 221 2222230x 0x225226 (Ⅱ)当0a <时(开口向下) 227 ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->,则()M f q = 228229 230 231 232 233 234235 236 237 ①若02b x a -≤,则()m f q = ②02b xa->,则()m f p =.238 239 240 241 242 243244ff fx246 第三章 函数的应用247 一、方程的根与函数的零点248 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数249 ))((D x x f y ∈=的零点。

高中数学新课标考试内容

高中数学新课标考试内容

高中数学新课标考试内容高中数学新课标考试内容涵盖了数学基础知识、基本技能、数学思想方法以及数学应用等多个方面。

考试旨在全面考查学生对数学知识的掌握程度和运用能力。

以下是高中数学新课标考试内容的详细说明:1. 数学基础知识- 数与式:包括实数、复数、指数、对数、多项式、分式等。

- 方程与不等式:涉及一元二次方程、不等式、方程组等。

- 函数:包括函数的概念、性质、图象、反函数、三角函数等。

- 几何:包括平面几何、立体几何、解析几何等。

- 概率与统计:涉及随机事件的概率、统计图表、概率分布等。

2. 数学基本技能- 运算能力:包括基本的加减乘除运算、方程求解、函数求解等。

- 逻辑推理:能够运用逻辑推理解决数学问题。

- 空间想象:能够对几何图形进行空间想象和分析。

- 数据处理:能够运用统计方法对数据进行收集、整理和分析。

3. 数学思想方法- 数形结合:能够将数学问题与图形相结合,进行直观分析。

- 转化与化归:能够将复杂问题转化为简单问题,或者将问题化归为已知问题。

- 类比与归纳:能够通过类比和归纳发现数学规律。

- 抽象与概括:能够从具体问题中抽象出数学概念,并进行概括。

4. 数学应用- 实际问题解决:能够将数学知识应用于解决实际问题。

- 跨学科应用:能够将数学与其他学科知识相结合,进行综合应用。

- 创新思维:能够运用数学知识进行创新性思考和问题解决。

5. 考试形式与题型- 选择题:考查学生对基础知识点的掌握。

- 填空题:考查学生对概念、公式、定理的理解和应用。

- 解答题:考查学生的综合分析能力和问题解决能力。

- 证明题:考查学生的逻辑推理和证明能力。

- 应用题:考查学生将数学知识应用于实际问题的能力。

高中数学新课标考试内容的设计旨在培养学生的数学素养,提高学生的数学思维能力,以及增强学生解决实际问题的能力。

通过这些内容的学习,学生不仅能够掌握数学知识,还能够培养良好的学习习惯和创新精神。

新高考数学基础知识点总结

新高考数学基础知识点总结

新高考数学基础知识点总结一、函数与方程1. 函数的概念函数指的是一种特殊的关系,它将一个或多个自变量的取值映射到一个因变量的取值上。

函数通常用f(x)或者y来表示。

2. 常见的函数类型常见的函数类型包括线性函数、二次函数、指数函数、对数函数、正弦函数、余弦函数等。

3. 函数的图像特征不同类型的函数有着不同的图像特征,例如线性函数的图像是一条直线,二次函数的图像是一个抛物线等。

4. 方程与不等式方程是两个表达式的相等关系,不等式指的是两个表达式的大小关系。

解方程和不等式是数学中的基础操作。

二、平面几何1. 平面几何基本概念平面几何主要包括点、线、面等基本概念,以及直线、角、三角形、四边形等基本图形的性质。

2. 平行线与垂直线平行线指的是在同一平面内不相交的两条直线,垂直线指的是两条直线相交时互相垂直的关系。

3. 三角形的性质三角形是平面几何中的重要图形,它有着各种独特的性质,如角的和为180度、三边关系、三角形的内切圆和外接圆等。

4. 四边形的性质四边形是指有四个边的封闭图形,有着各种特殊的性质,如平行四边形的性质、直角梯形的性质等。

三、立体几何1. 立体几何基本概念立体几何是研究三维空间中的图形和物体的几何学分支,包括球体、圆柱体、圆锥体、棱柱体、棱锥体等基本图形。

2. 球面与球体球面是以一条直线为轴旋转一周所得到的曲面,球体则是球面所包围的立体。

3. 圆柱体与圆锥体圆柱体是由一个矩形绕其一条边旋转一周所得到的立体,圆锥体则是圆锥所包围的立体。

4. 棱柱体与棱锥体棱柱体是由多边形绕其一条边旋转一周所得到的立体,棱锥体则是多边形所包围的立体。

四、解析几何1. 坐标系与坐标解析几何是利用代数方法研究几何问题的方法,它主要依赖于坐标系和坐标的概念。

2. 直线的方程在坐标系中,直线可以用点斜式、截距式、一般式等不同的方程形式来表示。

3. 圆的方程圆可以用标准方程或一般方程来表示,在坐标系中可以通过方程的形式来描述圆的位置和大小。

高中数学知识点汇总(2021全国卷新课标)

高中数学知识点汇总(2021全国卷新课标)
若 ,则 为减函数.
以下是几个特殊情况的奇偶性,除此以外就要判断
函数形式
f(x)单调性
g(x)单调性
总的单调性
f(x) +g(x)





减பைடு நூலகம்
f(x) -g(x)






结论:①f(x)≤f(x0) f(x0)为f(x)最大值
②f(x)≤M M为f(x)最大值(除非M在f(x)上)
2.定义域(常错点):一般地,设 的定义域为 ,如果存在 使得对于任意的 ,都有 ,那么称 为 的最大值,记为 ;如果存在 使得对于任意的 ,都有 ,那么称 为 的最小值,记为 .
高中数学知识点汇总(新课标)
引言:
1.课程内容:
必修课程由5个模块组成:
必修1:集合、函数概念与基本初等函数(指、对、幂函数)
必修2:立体几何初步、平面解析几何初步。
必修3:统计、概率。
必修4:三角函数、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
选修课程有3个模块:
选修2—1:常用逻辑用语、圆锥曲线与方程、
②单调性
③配凑
④分离常数
⑤基本不等式
⑥导数法确定单调性
3.对含参函数f(x)在某一范围的值域为A,要求参数范围
让f(x)在定义域内值域为B,求满足B A的参数范围即可
4.f[g(x)]=N,求f(x)
设g(x)为参数t,用t表示g(x),代入N,化简并把t换成x即可。(注意x范围即为g(x)的值域)
1、函数的三种表示方法:解析法、图象法、列表法.
2、判断两个函数是否相同:看定义域和对应法则

高中数学基础知识大全

高中数学基础知识大全

高中数学基础知识大全(新课标版)第一部分 集合1、理解集合中元素的意义.....就是解决集合问题的关键:元素就是函数关系中自变量的取值?还就是因变量的取值?还就是曲线上的点?…2 、数形结合....就是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决 3、(1) 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉、 (2)德摩根公式: ();()U U U U U U C A B C A C B C A B C A C B ==I U U I 、(3)A B A A B B =⇔=I U U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦI U C A B R ⇔=U注意:讨论的时候不要遗忘了φ=A 的情况、(4)集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空真子集有2n–2个、4.φ就是任何集合的子集,就是任何非空集合的真子集、第二部分 函数1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一、2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 2222b a ba ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、 绝对值的意义等);⑧利用函数有界性(xa 、x sin 、x cos 等);⑨平方法;⑩ 导数法 3.复合函数的有关问题: (1)复合函数定义域求法:① 若f(x)的定义域为[a,b ],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域、 (2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y = ②分别研究内、外函数在各自定义域内的单调性③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性、 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

(word完整版)高中数学基础知识大全(全国新课标版),推荐文档

(word完整版)高中数学基础知识大全(全国新课标版),推荐文档

高中数学基础知识大全(新课标版)第一部分 集合1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?…2 .数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决 3.(1) 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. (2)德摩根公式: ();()U U U U U U C A B C A C B C A B C A C B ==I U U I .(3)A B A A B B =⇔=I U U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦI U C A B R ⇔=U注意:讨论的时候不要遗忘了φ=A 的情况.(4)集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空真子集有2n–2个.4.φ是任何集合的子集,是任何非空集合的真子集.第二部分 函数1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一.2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 2222b a ba ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、 绝对值的意义等);⑧利用函数有界性(xa 、x sin 、x cos 等);⑨平方法;⑩ 导数法 3.复合函数的有关问题: (1)复合函数定义域求法:① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域. (2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y = ②分别研究内、外函数在各自定义域内的单调性③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性. 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

高中数学新课标背诵内容

高中数学新课标背诵内容

高中数学新课标背诵内容高中数学新课标背诵内容涵盖了高中阶段数学学习的核心知识点,包括但不限于数与代数、几何、概率与统计、函数与方程、向量与空间几何等多个领域。

以下是一些重点背诵内容的概述:1. 数与代数- 掌握有理数、无理数、实数的概念及其性质。

- 熟练运用指数和对数的运算法则。

- 理解并记忆多项式的基本性质,包括因式分解、多项式的乘法和除法。

- 掌握方程和不等式的解法,包括一元一次、一元二次、二元一次方程组等。

2. 几何- 理解平面几何中的基本图形,如三角形、四边形、圆的性质和定理。

- 掌握立体几何中的基本体,如柱体、锥体、球体的体积和表面积计算方法。

- 学习并记忆空间几何中直线与平面、平面与平面的位置关系及其判定定理。

3. 概率与统计- 理解随机事件、概率、条件概率的概念。

- 掌握概率的加法、乘法规则。

- 学习统计学中的基本概念,如总体、样本、样本容量、均值、方差、标准差等。

- 掌握数据的收集、整理、描述和分析的基本方法。

4. 函数与方程- 理解函数的概念,包括函数的定义域、值域、单调性、奇偶性等。

- 掌握函数的图像绘制,包括线性函数、二次函数、指数函数、对数函数等。

- 学习函数的变换,如平移、伸缩、对称等。

- 掌握方程的根与函数的零点之间的关系。

5. 向量与空间几何- 掌握向量的概念,包括向量的加减、数乘、点积、叉积等运算。

- 理解向量在几何中的应用,如向量的投影、向量的方向角等。

- 学习空间几何中的基本定理,如向量积定理、余弦定理等。

6. 微积分初步- 理解极限的概念,包括数列极限和函数极限。

- 掌握导数的定义和计算方法,包括基本初等函数的导数。

- 学习积分的初步知识,包括不定积分和定积分的概念和计算。

7. 数学思想与方法- 理解归纳法、演绎法、反证法等数学证明方法。

- 掌握数学建模的基本步骤和方法。

- 学习数学中的逻辑推理和证明技巧。

这些内容是高中数学新课标中要求学生掌握和背诵的基础知识,对于提高数学思维能力和解决实际问题的能力具有重要意义。

新高考数学常用知识点

新高考数学常用知识点

新高考数学常用知识点一、函数及其性质函数的概念:函数是一种描述两个变量之间关系的规律或规则。

函数的表示方法:函数可以用方程、图表或者词语描述。

函数的性质:单调性、奇偶性、周期性、对称性等。

二、集合与运算集合的概念:集合是由一些确定的元素组成的整体。

集合的表示方法:列举法、描述法、区间法等。

集合运算:并集、交集、差集、补集等。

三、数与代数实数与有理数:实数是指全部的数,有理数是可写成两个整数之比的数。

绝对值:一个实数的绝对值是它到原点的距离,用|a|表示。

代数式:用字母表示数的式子,包括多项式、分式等。

四、平面几何和空间几何几何图形:点、线、面等几何基本元素构成的图形。

平面几何:研究点、线、面在平面上的性质和关系。

空间几何:研究点、线、面在空间中的性质和关系。

五、概率与统计概率的概念:事件发生的可能性大小,范围从0到1。

概率的计算:基本事件的概率计算、事件关系的概率计算等。

统计学:对数据进行收集、整理、分析和解释的学科。

六、数列与数学归纳法数列:按一定规则排列的数的序列。

等差数列:相邻两项之差相等的数列。

等比数列:相邻两项之比相等的数列。

数学归纳法:证明数学命题在自然数上成立的方法。

七、导数与微分导数的概念:描述函数变化率的指标,表示函数在某一点上的瞬时变化率。

导数的计算:使用导数的定义或一些基本公式进行计算。

八、不等式与不等式的应用不等式的概念:关于未知数的相对大小的数学陈述。

解不等式:求出使不等式成立的未知数范围。

不等式的应用:在实际问题中,利用不等式来求解和判断。

九、数理逻辑与证明数理逻辑:研究正确推理的规律、方法和规则。

命题与命题连接词:由语句构成的有确定真假的陈述称为命题。

十、立体几何多面体:具有三维形状的几何体,如正方体、长方体等。

圆锥、圆柱和圆台:具有特定形状的立体几何体。

体积与表面积:立体几何体的容积和表面积的计算。

以上是新高考数学常用知识点的概要介绍,希望能对你的学习有所帮助。

请根据个人实际情况进行详细学习和深入理解,并结合具体问题进行练习和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学基础知识大全(新课标版)第一部分 集合1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?…2 .数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决 3.(1) 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. (2)德摩根公式: ();()U U U U U U C A B C A C B C A B C A C B ==.(3)AB A A B B =⇔=U U A BC B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=注意:讨论的时候不要遗忘了φ=A 的情况. (4)集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空真子集有2n–2个.4.φ是任何集合的子集,是任何非空集合的真子集.第二部分 函数1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一.2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ; ⑥利用均值不等式2222b a ba ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、 绝对值的意义等);⑧利用函数有界性(xa 、x sin 、x cos 等);⑨平方法;⑩ 导数法 3.复合函数的有关问题: (1)复合函数定义域求法:① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b ]时,求g(x)的值域. (2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:函数)(x g u =与外函数)(u f y = ②分别研究、外函数在各自定义域的单调性③根据“同性则增,异性则减”来判断原函数在其定义域的单调性. 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性:⑴函数的定义域关于原点对称是函数具有奇偶性的前提条件....⑵)(x f 是奇函数)()(x f x f -=-⇔;)(x f 是偶函数)()(x f x f =-⇔.⑶奇函数)(x f 在0处有定义,则0)0(=f⑷在关于原点对称的单调区间:奇函数有相同的单调性,偶函数有相反的单调性 ⑸若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性 6.函数的单调性: ⑴单调性的定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x <; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x >;⑵单调性的判定:①定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号;②复合函数法③图像法注:证明单调性主要用定义法。

7.函数的周期性:(1)周期性的定义:对定义域的任意x ,若有)()(x f T x f =+ (其中T 为非零常数),则称函数)(x f 为周期函数,T 为它的一个周期。

所有正周期中最小的称为函数的最小正周期。

如没有特别说明,遇到的周期都指最小正周期。

(2)三角函数的周期:①π2:sin ==T x y ;②π2:cos ==T x y ;③π==T x y :tan ; ④||2:)cos(),sin(ωπϕωϕω=+=+=T x A y x A y ;⑤||:tan ωπω==T x y(3)与周期有关的结论:)()(a x f a x f -=+或)0)(()2(>=-a x f a x f ⇒)(x f 的周期为a 28.基本初等函数的图像与性质:㈠.⑴指数函数:)1,0(≠>=a a a y x;⑵对数函数:)1,0(log ≠>=a a x y a ;⑶幂函数:αx y = ()R ∈α ;⑷正弦函数:x y sin =;⑸余弦函数:x y cos = ; (6)正切函数:x y tan =;⑺一元二次函数:02=++c bx ax (a ≠0);⑻其它常用函数:① 正比例函数:)0(≠=k kx y ;②反比例函数:)0(≠=k x k y ;③函数)0(>+=a xax y ㈡.⑴分数指数幂:mna =1mnm naa-=(以上0,,a m n N *>∈,且1n >).⑵.①b N N a a b=⇔=log ; ②()N M MN a a a log log log +=;③N M N M a a alog log log -=; ④log log m n a a nb b m=. ⑶.对数的换底公式:log log log m a m N N a=.对数恒等式:log a Na N =.9.二次函数:⑴解析式:①一般式:c bx ax x f ++=2)(;②顶点式:k h x a x f +-=2)()(,),(k h 为顶点;③零点式:))(()(21x x x x a x f --= (a ≠0).⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

二次函数c bx ax y ++=2的图象的对称轴方程是a bx 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,。

10.函数图象:⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法 ③导数法 ⑵图象变换:① 平移变换:ⅰ))()(a x f y x f y ±=→=,)0(>a ———左“+”右“-”; ⅱ))0(,)()(>±=→=k k x f y x f y ———上“+”下“-”; ② 对称变换:ⅰ))(x f y =−−→−)0,0()(x f y --=;ⅱ))(x f y =−→−=0y )(x f y -=;ⅲ) )(x f y =−→−=0x )(x f y -=; ⅳ))(x f y =−−→−=xy ()x f y =;③ 翻折变换:ⅰ)|)(|)(x f y x f y =→=———(去左翻右)y 轴右不动,右向左翻()(x f 在y 左侧图象去掉); ⅱ)|)(|)(x f y x f y =→=———(留上翻下)x 轴上不动,下向上翻(|)(x f |在x 下面无图象); 12.函数零点的求法:⑴直接法(求0)(=x f 的根);⑵图象法;⑶二分法.(4)零点定理:若y=f(x)在[a,b]上满足f(a)·f(b)<0 , 则y=f(x)在(a,b)至少有一个零点。

第三部分 三角函数、三角恒等变换与解三角形1.⑴角度制与弧度制的互化:π弧度180=,1801π=弧度,1弧度 )180(π='1857 ≈⑵弧长公式:R l θ=;扇形面积公式:22121R lR S θ==。

2.三角函数定义:角α终边上任一点(非原点)P ),(y x ,设r OP =|| 则:,cos ,sin r x r y ==ααx y =αtan3.三角函数符号规律:一全正,二正弦,三正切,四余弦;(简记为“全s t c ”) 4.诱导公式记忆规律:“奇变偶不变,符号看象限” 5.⑴)sin(ϕω+=x A y 对称轴:令2x k πωϕπ+=+,得; =x 对称中心:))(0,(Z k k ∈-ωϕπ; ⑵)cos(ϕω+=x A y 对称轴:令πϕωk x =+,得ωϕπ-=k x ;对称中心:))(0,2(Z k k ∈-+ωϕππ;⑶周期公式:①函数sin()y A x ωϕ=+及cos()y A x ωϕ=+的周期ωπ2=T (A 、ω、ϕ为常数,且A ≠0).②函数()φω+=x A y tan 的周期ωπ=T (A 、ω、ϕ为常数,且A ≠0). 6.同角三角函数的基本关系:x xxx x tan cos sin ;1cos sin 22==+ 7.三角函数的单调区间及对称性: ⑴sin y x =的单调递增区间为2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,单调递减区间为32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴为()2x k k Z ππ=+∈,对称中心为(),0k π()k Z ∈. ⑵cos y x =的单调递增区间为[]2,2k k k Z πππ-∈,单调递减区间为[]2,2k k k Z πππ+∈, 对称轴为()x k k Z π=∈,对称中心为,02k ππ⎛⎫+ ⎪⎝⎭()k Z ∈. ⑶tan y x =的单调递增区间为,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对称中心为⎪⎭⎫⎝⎛0,2πk ()Z k ∈. 8.两角和与差的正弦、余弦、正切公式:①sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.②22sin()sin()sin sin αβαβαβ+-=-;22cos()cos()cos sin αβαβαβ+-=-.③sin cos a b αα+)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限 决定,tan b aϕ=). 9.二倍角公式:①αααcos sin 22sin =.2(sin cos )12sin cos 1sin 2ααααα±=±=±②2222cos 2cos sin 2cos 112sin ααααα=-=-=-(升幂公式).221cos 21cos 2cos ,sin 22αααα+-==(降幂公式). 10.正、余弦定理: ⑴正弦定理:R CcB b A a 2sin sin sin === (R 2是ABC ∆外接圆直径 ) 注:①C B A c b a sin :sin :sin ::=;②C R c B R b A R a sin 2,sin 2,sin 2===;③CB A cb a Cc B b A a sin sin sin sin sin sin ++++===。

⑵余弦定理:A bc c b a cos 2222-+=等三个;bc a c b A 2cos 222-+=等三个。

相关文档
最新文档