八年级数学上册第二章实数2.1认识无理数学案

合集下载

北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例

北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
将学生分成小组,让学生根据讲授的新知,讨论无理数的性质和表示方法。
2.案例分析:让学生分析一些实际问题,如测量物体长度、计算圆的面积等,运用无理数解决实际问题。
3.小组分享:各小组向全班分享自己的讨论成果和案例分析,促进学生之间的交流和合作。
(四)总结归纳
1.无理数的定义和性质:引导学生总结无理数的定义和性质,加深学生对无理数概念的理解。
北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
一、案例背景
本节内容是北师大版八年级数学上册第二章实数的第一节——认识无理数。在学习了有理数的基础上,本节课引导学生认识无理数,理解无理数的概念和性质,体会数学的广泛应用。无理数是数学中的一个重要概念,它在生活中和学科领域中有着广泛的应用。如圆周率π就是一个无理数,它在几何学、物理学等领域有着重要应用。另外,无理数在数学分析、高等数学等领域也是基本概念。因此,本节课对于学生理解和掌握数学知识体系,培养学生的数学思维能力具有重要意义。
5.注重学生的反思与评价:在教学过程中,我注重学生的反思与评价,及时反馈,指导学生的改进方向。通过引导学生进行自我反思和相互评价,我帮助学生检查自己对无理数概念的理解和掌握程度,发现自己的不足,明确改进的方向。这种教学方式能够培养学生的评价能力和批判性思维,提高学生的自我认知和自我改进能力。
作为一名特级教师,我深知教学案例亮点的重要性。在教学过程中,我努力将教学内容与学生的生活实际和学科领域相结合,采用多种教学方法和手段,关注学生的个体差异,创设生动有趣的情境,引导学生在问题导向的过程中自主探究和合作交流,培养学生的数学思维能力和问题解决能力。同时,我注重学生的反思与评价,及时反馈,调整教学策略,以达到最佳教学效果。
(二)讲授新知
1.无理数的定义:详细讲解无理数的定义,并通过实例进行说明,让学生理解和掌握无理数的概念。

北师大版初中数学八年级上册第二章《2.1认识无理数》 教案

北师大版初中数学八年级上册第二章《2.1认识无理数》 教案

北师大版数学八年级上册《认识无理数(2)》教案一、学生起点分析学生在小学阶段已经学习了非负数,七年级又学习了有理数.本章第一课时的学习,学生感受到了生活中确实存在着不是有理数的数,让学生认识到所学的数又不够用了,从而激发他们学习的好奇心,能积极主动地参与到学习中,充分认识到学习无理数引入的必要性,发展学生的合情推理能力.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节,第一课时让学生感受数的发展,感知生活中确实存在着不同于有理数的数. 本课时为第二课时,内容是建立无理数的基本概念,借助计算器,感受无理数是无限不循环小数,会判断一个数是无理数,并能结合实际判别有理数和无理数.在活动中进一步发展学生独立思考的意识和合作交流的能力,在学习中领悟数学知识来源于生活,体会数学知识与现实世界的联系,而且对今后学习数学也有着重要意义.为此,本节课的教学目标是: 1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.三、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:新课引入内容:想一想:1. 有理数是如何分类的?整数(如1-,0,2,3,…) 有理数 分数(如31,52-,119,0.5,… ) 2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”. 第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.边长a 面积s 1<a <21<s<4 1.4<a <1.5[来源:学+科+1.96<s<2.25 1.41<a <1.42 1.9881<s<2.0164 1.414<a <1.415 1.999396<s<2.002225 1.4142<a <1.41431.99996164<s<2.00024449归纳总结:a 是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b 的值.目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础. 2. 探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况? 探究结论:分数只能化成有限小数或无限循环小数. 即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).[来源:学.科.网Z.X.X.K]目的:通过学生的活动与探究,得出无理数的概念.效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念. 第三个环节:知识分类整理内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力. 第四个环节:知识运用与巩固内容:认识一个数是无理数还是有理数.有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数例1填空: 0.351, 4.96••-,32-, 3.14159, 6, -5.2323332…,3π,1234567891011…(由相继的正整数组成).例2 判断下列说法是否正确(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( ) (3)无理数都是无限小数; ( ) (4)有理数是有限数. ( )例3以下各正方形的边长是无理数的是( ) (A )面积为25的正方形; (B ) 面积为254的正方形; (C ) 面积为8的正方形; (D ) 面积为1.44的正方形. [来源:Z 。

八年级数学上册2.1认识无理数教学设计 (新版北师大版)

八年级数学上册2.1认识无理数教学设计 (新版北师大版)

八年级数学上册2.1认识无理数教学设计(新版北师大版)一. 教材分析《八年级数学上册2.1认识无理数》这一节,主要让学生了解无理数的概念,掌握无理数的性质,以及学会用有理数和无理数表示实数。

教材通过生活中的实例引入无理数的概念,接着引导学生通过观察、思考、探究,掌握无理数的性质。

在这一过程中,学生需要理解无理数与有理数的区别,以及无理数在实际生活中的应用。

二. 学情分析八年级的学生已经学习了有理数的概念和性质,具备一定的数学基础。

但是,对于无理数这一概念,学生可能较为陌生,难以理解。

因此,在教学过程中,教师需要结合学生的实际情况,从生活实例出发,引导学生逐步理解无理数的概念,并掌握无理数的性质。

三. 教学目标1.让学生了解无理数的概念,知道无理数是一种实数。

2.让学生掌握无理数的性质,能够辨别一个数是有理数还是无理数。

3.让学生理解无理数在实际生活中的应用,提高学生运用数学知识解决问题的能力。

四. 教学重难点1.重难点:无理数的概念和性质。

2.难点:理解无理数在实际生活中的应用。

五. 教学方法1.情境教学法:通过生活实例引入无理数的概念,让学生在实际情境中感受无理数。

2.启发式教学法:引导学生观察、思考、探究,从而掌握无理数的性质。

3.小组合作学习:让学生在小组讨论中,共同解决问题,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示无理数的定义、性质和实际应用。

2.教学素材:准备一些生活中的实例,用于引入无理数的概念。

3.练习题:准备一些有关无理数的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如圆的周长、声音的频率等,引导学生思考这些实例与数学的关系。

进而提出问题:“你知道无理数吗?无理数是什么?”让学生分享自己对无理数的理解。

2.呈现(15分钟)教师利用课件,详细讲解无理数的定义、性质和特点。

同时,通过展示一些实际应用的例子,让学生了解无理数在生活中的重要作用。

北师大版八年级上册第二章实数第一节认识无理数教案

北师大版八年级上册第二章实数第一节认识无理数教案

第二章实数第一节认识无理数教案一、教学目标1. 理解无理数的概念,掌握实数的概念及其性质。

2. 能够正确地进行无理数的运算,掌握实数大小的比较方法。

3. 培养学生对数学的兴趣和探究精神,提高逻辑思维能力。

二、教学重点和难点教学重点:1. 无理数的概念和实数的性质。

2. 无理数的运算和大小比较。

教学难点:1. 如何理解无理数的概念。

2. 如何正确进行无理数的运算。

三、教学过程1. 引入新知:通过问题导入,引导学生思考有理数无法表示的数,进而引出无理数的概念。

2. 概念讲解:详细讲解无理数的概念和实数的性质,让学生理解无理数的含义和特点。

3. 例题讲解:选取具有代表性的例题,引导学生进行无理数的运算和大小比较,掌握无理数的运算法则和实数大小的比较方法。

4. 练习与检测:让学生进行课堂练习和自我检测,加深对无理数的理解和掌握。

5. 巩固知识:通过提问、小组讨论等方式,让学生回顾所学知识,巩固记忆。

6. 拓展延伸:介绍无理数在其他数学领域的应用,引导学生了解数学的实际应用价值。

四、教学方法和手段1. 讲解与演示:教师通过讲解和演示,让学生理解无理数的概念和性质。

2. 练习与讨论:学生进行课堂练习和小组讨论,加深对无理数的理解和掌握。

3. 多媒体辅助:使用多媒体设备展示无理数和实数的图形关系,帮助学生更好地理解概念。

五、课堂练习、作业与评价方式1. 课堂练习:选取适当的练习题,让学生在课堂上进行无理数的运算和大小比较,检验学习效果。

2. 课后作业:布置适量的作业题,让学生在家中继续巩固无理数的知识和技能。

3. 互动评价:学生之间互相评价课堂练习和作业,互相学习和帮助,共同提高。

六、辅助教学资源与工具1. PPT讲解:提供详细的PPT讲解,帮助学生更好地理解无理数的概念和性质。

2. 数学软件:使用数学软件展示无理数和实数的图形关系,帮助学生更好地理解概念。

3. 参考资料:提供相关的数学参考资料,供学生自主学习和研究。

北师大版八年级上册 第二章 2.1 认识无理数第二课时 教案

北师大版八年级上册 第二章 2.1  认识无理数第二课时 教案

2.1认识无理数〔第二课时〕一、教学目的叙写1.学生通过预习教材22-23页,初步感知无理数的估算过程.2.学生通过合作探究“活动1〞局部,让学生有充分的时间进展考虑和交流,逐渐地缩小范围,借助计算器探究出a …,b …,是无限不循环小数的过程,体会无限逼近的思想,通过学生的活动2并探究得出无理数的概念.3.学生通过交流知识点、易错点和思想方法,培养学生归纳才能和有条理的表达才能. 4.学生通过完成“五、当堂评价〞,能正确地对给出的数进展分类,加深对有理数和无理数的理解.二、教学重难点1.重点:理解无理数与有理数的区别并能正确判断.2.难点:无理数概念的建立及估算,会判断一个数是无理数还是有理数.三、教学过程〔一〕、复习引入1. 有理数是如何分类的?整数〔如1-,0,2,3,…)有理数分数(如31,52-,119,0.5,… )2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π…上节课又理解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们终究是什么数呢?本节课我们就来提醒它们的真面目.〔二〕、自主探究1.探究无理数的小数表示请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.(归纳总结:a 是介于1和2之间的一个数,既不是整数,也不是分数,那么a 一定不是有理数.假如写成小数形式,它们是无限不循环小数).[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a 的大致范围呢?[生]因为a 2大于1且a 2小于4,所以a 大致为1点几.[师]很好.a 肯定比1大而比2小,可以表示为1<aa 22222=2.25,而a 2=2,故a 应比1.4大且比1.5小,可以写成1.4<a <1.5,所以a 是1点4几,即非常位上是4,请大家用同样的方法确定百分位、千分位上的数字.22=2.0164,所以a 应比1.41大且比1.42小,所以百分位上数字为1.22222=2.002225,所以a 应比1.414大而比1.415小,即千分位上的数字为4.22=2.00024449,所以a 应比1.4142大且比1.4143小,即万分位上的数字为2.[师]大家非常聪明,请一位同学把自己的探究过程整理一下,用表格的形式反映出来.[师]还可以继续下去吗? [生]可以.[师]请大家继续探究,并判断a 是有限小数吗?[生]a …,还可以再继续进展,且a 是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长bb 会不会算到某一位时,它的平方恰好等于5?请大家分组合作后答复.(约4分钟)[生]b …,还可以再继续进展,b 也是一个无限不循环小数.[生]边长b 不会算到某一位时,它的平方恰好等于5,但我不知道为什么.b 算到某一位时,它的平方恰好等于5,即b 是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b 不可能是有限小数.2.探究有理数的小数表示,明确无理数的概念考虑:分数化成小数,最终此小数的形式有哪几种情况?——分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.3,112,458,95,54,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.[生]3=3.0,54=0.8,95=•5.0, [生]3,54是有限小数,112,458,95是无限循环小数. [师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像上面研究过的a 2=2,b 2=5中的a ,b 是无限不循环小数.无限不循环小数叫无理数(irrational number).除上面的a ,b 外,圆周率π……(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数那么不能.〔三〕、合学应用例1:填空:, 4.96••-,0.4583,•7.3,-π,-71,18.3.14159, 6, -5.2323332…,(由相继的正整数组成).例2 :判断以下说法是否正确:(1)有限小数是有理数; 〔 〕(2)无限小数都是无理数; 〔 〕(3)无理数都是无限小数; 〔 〕(4)有理数是有限数. 〔 〕〔四〕、整理反思1.无理数的定义.2.你是怎样判断一个数是无理数还是有理数的?3.请把已学过的数怎样分类?易错点: .〔五〕、当堂评价1、以下各正方形的边长是无理数的是〔 〕(A)面积为25的正方形;(B)面积为254 的正方形; (C)面积为8的正方形;(D)面积为的正方形. 2.:在下数中254 ,5, 1.42••-,π,3.1416,32,0,24,2n (1)- ,…, 〔1〕写出所有有理数;〔2〕写出所有无理数;〔3〕把这些数按由小到大的顺序排列起来,并用符号“<〞连接.〔六〕、变练拓展1. 设面积为5π的圆的半径为a .(1)a 是有理数吗?说说你的理由.(2)估计a 的值(准确到非常位,并利用计算器验证你的估计).(3)假如准确到百分位呢?解:∵πa 2=5π∴a 2=5(1)a 不是有理数,因为a 既不是整数,也不是分数,而是无限不循环小数.(2)估计a ≈2.2.(3)a ≈2.24.有理数集合 无理数集合。

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例
在教学过程中,我注重启发式教学,引导学生主动探究、积极思考,培养他们的创新精神。同时,关注学生的个体差异,实施差异化教学,使每个学生都能在课堂上得到有效的锻炼。
二、教学目标
(一)知识与技能
1.让学生理解无理数的概念,知道无理数的特点,能够识别生活中的无理数实例。
2.使学生掌握无理数的性质,了解无理数与有理数的区别,能够运用性质进行简单的论证和判断。
2.教师对学生的学习情况进行评价,关注他们的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。
3.总结本节课的主要内容,强调无理数的概念、性质和运算方法。
(五)作业小结
1.布置课后作业,让学生运用所学知识解决实际问题,提高他们的实践能力。
2.通过作业的完成情况,了解学生对课堂所学知识的掌握程度,为今后的教学提供参考。
五、案例亮点
(二)讲授新知
1.引导学生提出问题:“无理数有什么特点?”,“无理数与有理数有什么区别?”等,激发他们的思考。
2.组织学生进行小组讨论,鼓励他们发表自己的观点和看法,培养他们的团队合作精神。
3.教师通过讲解,引导学生自主探究无理数的性质,如不能表示为两个整数的比值,不能精确表示等。
4.利用多媒体课件展示无理数的性质,让学生直观地感受无理数的特点。
3.鼓励学生在课后进行深入研究,拓展知识面,提高他们的创新能力。
五、教学反思
本节课通过生活实例引入无理数的概念,引导学生探究无理数的性质和运算方法,注重培养学生的实践能力和创新能力。在教学过程中,关注学生的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。同时,注重启发式教学,培养学生主动探究、积极思考的能力。但在时间安排上,可以更加合理,确保学生有足够的时间进行小组讨论和作业练习。

北师大版初中数学八年级(上)2-1 认识无理数(第1课时)(学案+练习)

北师大版初中数学八年级(上)2-1 认识无理数(第1课时)(学案+练习)

第二章 实 数1 认识无理数(第1课时)学习目标1.通过拼图活动,感受客观世界中无理数的存在.(难点)2.能判断三角形的某边长是否为有理数.3.会判断一个数是否为有理数.(重点)自主学习学习任务一 认识无理数的存在1.如图1所示,边长为1的两个正方形M ,N 可以分割成四个全等的等腰直角三角形,它们又可以拼凑成一个更大的正方形ABCD .(还有其他方法,鼓励学生探究)图1(1)大正方形的面积是 .(2)设大正方形的边长是x ,则x 2= ,x 在 和 之间(填整数). 结论:a 既 整数,也 分数,即a 有理数. 学习任务二 判断一个数是否为有理数 思考:如图2,(1)以直角三角形的斜边为边的正方形的面积是 . (2)设该正方形的边长为b ,b 满足 . (3)b 是有理数吗?图2合作探究例1 在△ABC 中,AB =AC ,AD 是底边上的高,如图3,若AC =10,BC =8. (1)求以AD 的长为边长的正方形的面积; (2)判断AD 是否为有理数,并说明理由.例2你会在如图4所示的正方形网格中画出面积为10的正方形吗?试一试.图4当堂达标1.在直角三角形中两条直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.为42.下列面积的正方形,边长不是有理数的是()A.16B.25C.8D.43.如图5,在5×5的正方形网格中,以AB为边画直角三角形ABC,使点C在格点上,且另外两条边长均不是有理数,满足这样条件的点C4.在如图6(1)长度是有理数的线段l1;(2)长度不是有理数的线段l2.课后提升Array在如图7所示的正方形网格中画出四个三角形.(1)三边长都是有理数.(2)只有两边长是有理数.(3)只有一边长是有理数.(4)三边长都不是有理数.反思感悟我的收获:我的易错点:参考答案当堂达标1.B2.C3.解:如图8,共4个.4.解:如图9(答案不唯一).课后提升解:如图10(答案不唯一).。

新版北师大八年级上册第二章 《实数》教案

新版北师大八年级上册第二章 《实数》教案

第二章实数2.1.1 认识无理数(第1课时)一、教学目标:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;二、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】a ,请问:①a可能是整数吗?②a可能是分数吗?【议一议】:已知22【释一释】:释1.满足22a =的a 为什么不是整数? 释2.满足22a =的a 为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然a 不是整数也不是分数,那么a 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段: 1.长度是有理数的线段 2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形 (右1)2.三边长都是有理数 2.只有两边长是有理数3.只有一边长是有理数 4.三边长都不是有理数 【仿一仿】:例:在数轴上表示满足()220x x =>的x解: (右2)仿:在数轴上表示满足()250x x =>的x【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.本节课的教学目标是:1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.2.1.2 认识无理数(第2课时)三 、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:新课引入内容:想一想:1. 有理数是如何分类的?1-,0,2,3,…) 有理数(如31,52-,119,0.5,… )2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”.第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b的值.目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础.2. 探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况?探究结论:分数只能化成有限小数或无限循环小数.即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).目的:通过学生的活动与探究,得出无理数的概念.效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.第三个环节:知识分类整理内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力.第四个环节:知识运用与巩固内容:认识一个数是无理数还是有理数. 例1填空:0.351,4.96∙∙-,32-, 3.14159, 6, -5.2323332…,3π,1234567891011…(由相继的正整数组成).例2 判断下列说法是否正确(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( )有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数无理数集合…(3)无理数都是无限小数; ( ) (4)有理数是有限数. ( )例3以下各正方形的边长是无理数的是( ) (A )面积为25的正方形; (B ) 面积为254的正方形; (C ) 面积为8的正方形;(D ) 面积为1.44的正方形.例4一个直角三角形两条直角边的长分别是3和5,则斜边a 是有理数吗?解:由勾股定理得: 22235a =+,即2=34a .因为34不是完全平方数,所以a 不是有理数.强调:1. 无理数是无限不循环小数,有理数是有限小数或无限循环小数.2. 任何一个有理数都可以化成分数qp形式(q ≠0, p ,q 为整数且互质),而无理数则不能.练一练:1.课本P 23 随堂练习.2.已知:在数43-,5, 1.42∙∙-,π,3.1416,32,0,24,2n (1)- ,-1.424224222…中, (1)写出所有有理数; (2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.目的:通过例题的讲解、练习,让学生充分理解无理数、有理数的概念、区别,感受数的分类.效果:通过学生练习,更加明确了有理数、无理数的概念,及它们之间的区别与联系,激发学生学习兴趣,巩固了对概念的理解.第五个环节:课堂小结内容:本节课你有哪些收获?51.无理数的定义.2.你是怎样判断一个数是无理数还是有理数的?3.请把已学过的数怎样分类?目的:让学生学会及时对知识点、数学方法进行总结,并整理成经验,形成知识体系,培养学生良好的学习习惯,提高其归纳总结能力.效果:师生共同总结补充,形成完整的知识体系.第六个环节:布置作业习题2.2 1.2.3.2.2.1 平方根(第1课时)一、教学目标:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.二、教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;(2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒).即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的.内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ;2.9的算术平方根是 ;3.2)32(的算术平方根是 ; 4.若22=+m ,则=+2)2(m .二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1.三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3、2.2.2 平方根(第2课时)一、教学目标①了解平方根、 开平方的概念,明确算术平方根与平方根的区别和联系.②进一步明确平方与开平方是互逆的运算关系.③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力.教学重点是①了解平方根、开平方的概念.②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.③了解平方根与算术平方根的区别与联系.教学难点是①平方根与算术平方根的区别和联系.②负数没有平方根,即负数不能进行开平方的运算.二、教学过程设计:本节课采用引导、探究、类比相结合的教学方法,设计了六个教学环节 第一环节 复习旧知 引入新知;第二环节 形成概念,辨析概念;第三环节 例题和巩固练习;第四环节 课堂小结;第五环节 思维拓展;第六环节 布置作业. 第一环节 复习旧知 引入新知内容:方法一 复习引入1.什么叫算术平方根?3的平方等于9,那么9的算术平方根就是 3 . 52的平方等于 254 ,那么254 的算术平方根就是_____52_________. 展厅的地面为正方形,其面积49平方米,则边长_ 7_米.2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何?乘方有没有逆运算?平方与算术平方根之间的关系?已知折叠着的正方形ABCD 面积为1,则边长为__1___.将它扩展,若面积变为原来的2倍,那么它的边长为___2___;若面积变为原来的3倍,则边长为____3_____;若面积变为原来的n 倍,则边长为____n ____.方法二 复习引入问题 平方等于9,254,49的数还有吗?目的: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成Flash 情景引入,增加动画效果.效果 借助多媒体吸引学生的注意力,激发学生的学习兴趣.说明 数学知识源于生活,并服务于我们的生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望.第二环节 : 新课学习内容 (一)探究新知填空32=(9 ) (-3)2=(9 ) ( )2=9 02=0(12)2=(14))214= (不存在)2=-4 (12-)2=((二)形成概念(1)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.而把正的平方根叫做a 的算术平方根.表达式为:若x 2=a ,那么x 叫做a 的平方根. 记作 a ±.例如:(±4)2=16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根.(三)探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系.(四)概念辨析平方根与算术平方根的联系与区别联系 1.包含关系 平方根包含算术平方根,算术平方根是平方根的一种.2.只有非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a .目的 形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上一节课紧密联系.效果 由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠.说明 平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方.对这两个概念加以比较与区别有利于学生的理解与掌握.第三环节 例题和新知巩固(一)例题示范求下列各数的平方根:(1)64;(2)49121;(3) 0.0004;(4)()225-;(5) 11解 (1)()2648=±,648∴±的平方根是,8=±即;(2)()24949771211211111,=∴±±的平方根为,711±=±即;(3)()20.0004,0.00040.020.02=∴±±的平方根是,0.02=±即;(4)()()()22,25252525=∴±±--2的平方根是, 25±=±即;(5)11的平方根是目的 这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达.能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数.效果 通过对例题的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.(二)思考提升1.()25-的平方根是 ,的算术平方根是_____,49的平方根是_____;2.2= ,= ,= ,=_______;3= ,20a≥=当 .(三)巩固练习1 .下列说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.下列说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大于这个数的相反数3.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是( ).(A) a +1(C) 2a +1(D)4.x为何值,有意义? 答 因为02x -≥,所以0x ≤ 目的 围绕本节课的重点知识 (平方根)作适当的练习,在不同的变式练习中加深对平方根意义的理解.效果 学生基本能顺利解决这些问题,并利用探索的规律进行规范的表达. 第四环节 课堂小结内容 引导学生总结本课时的知识、方法.目的 让学生对所学的知识进行梳理,使之思路清晰,既巩固了有关知识,又培养了学生良好的学习习惯.效果 在老师的引导下学生自己总结本节课的知识、方法,如平方根的概念 若2x a =,则x 叫a的平方根,x =平方根的个数 正数有2个平方根,0的平方根是0,负数没有平方根.平方与开方之间的关系;求平方根的方法 求一个数的平方根就是转化寻找哪个数平方等于这个数.第五环节 提高训练内容1.5的小数部分为a,5b ,求a b +的值.2.已知实数a ,b满足296b b =①若a ,b 为ABC ∆的两边,求第三边c 的取值范围;②若a ,b 为ABC ∆的两边,第三边c 等于5,求ABC ∆的面积.目的 安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题.可供老师根据教学的实际情况灵活处理.第六环节 作业布置 习题2.42.3.立方根一 、教学目标①了解立方根的概念,会用根号表示一个数的立方根;会用立方运算求一个数的立方根,了解开立方与立方互为逆运算,了解立方根的性质;区分立方根与平方根的不同;②经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略,培养逆向思维能力和分类讨论的意识.学生在经历用类比的方法学习立方根的有关知识过程中,领会类比思想;③立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;二、教学过程设计本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:创设问题情境内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢? (球的体积公式为334R =v ,R 为球的半径) 提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识 .目的:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,又很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课.第二环节:复习引入、类比学习内容:提问:(1)什么叫一个数a 的平方根?如何用符号表示数a (a ≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别与联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了解决前面情景中的问题,需要引入一个新的运算,你将如何定义这个新运算?1.一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根).2.一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:2是8的立方根,的立方根是--273,0是0的立方根.目的:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.效果:复习引入既复习了平方根的知识,又利于学生用类比学习法学习立方根知识.第三环节:初步探究内容:1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?(1)001.0 3=)( ; (2)6427 3=-)( ; (3)0 3=)(.。

北师大版初中数学八年级上册第二章《 2.1认识无理数》教案

北师大版初中数学八年级上册第二章《 2.1认识无理数》教案

北师大版数学八年级上册第二章《认识无理数》教案2.1 认识无理数(一)教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一、创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二、讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a ,则a 应满足什么条件呢? [生甲]a 是正方形的边长,所以a 肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a 2=2.[生丙]由a 2=2可判断a 应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a 是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a 不可能是整数. [生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个相同因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了. 2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b ,则b 应满足什么条件?b 是有理数吗? [师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a ,b ,斜边为c ,则有a 2+b 2=c 2.[师]在这题中,两条直角边分别为1和2,斜边为b ,根据勾股定理得b 2=12+22,即b 2=5,则b 是有理数吗?请举手回答.[生甲]因为22=4,32=9,4<5<9,所以b 不可能是整数. [生乙]没有两个相同的分数相乘得5,故b 不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a ,b 都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三、课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四、课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五、课后作业:见作业本。

2.1认识无理数(教案)

2.1认识无理数(教案)
3.培养学生的数学运算素养:使学生掌握无理数的基本性质,为后续学习无理数的运算打下坚实基础,提高学生的数学运算能力。
4.培养学生的数学探究精神:鼓励学生主动探索无理数的发现过程,激发学生对数学知识的探究欲望,培养学生的创新意识和实践能力。
三、教学难点与重点
1.教学重点
-理解无理数的定义:无理数是不能表示为两个整数比的数,如π、√2等。讲解时要强调这一概念,并举例说明。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“无理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
2.1认识无理数(教案)
一、教学内容
本节课选自八年级数学上册第二章“数的开方”的第一节“2.1认识无理数”。教学内容主要包括以下两个方面:
1.了解无理数的概念,通过实例使学生理解无理数的含义,并掌握无理数与有理数的区别。
-实例:π、√2、0.1010010001…(每两个1之间依次多一个0)等。
2.学会使用数ห้องสมุดไป่ตู้比较无理数的大小,并掌握一些常见的无理数的性质。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了无理数的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对无理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对无理数的概念接受程度各有不同。有些学生能够迅速理解无理数的定义,但也有一些学生对这个新概念感到困惑。我意识到,让学生从有理数的框架中跳出来,接受一个完全不同的数的类型,确实是一个挑战。

八年级数学上册第二章实数:认识无理数第2课时认识无理数教案新版北师大版

八年级数学上册第二章实数:认识无理数第2课时认识无理数教案新版北师大版

八年级数学上册教案新版北师大版:2.1认识无理数第2课时教学目标【知识与能力】掌握无理数的概念;能用所学定义正确判断所给数的属性.【过程与方法】借助计算器探索无理数是无限不循环小数,从中体会无限逼近的思想.【情感态度价值观】在掌握估算方法的过程中,发展学生的数感和估算能力.教学重难点【教学重点】能用所学定义正确判断所给数的属性.【教学难点】无理数概念的建立.教学准备计算器、立方体、多媒体课件.教学过程第一环节:情境引入导入:前面我们学习了有理数,有理数是如何分类的呢?1.有理数是如何分类的?【问题解决】有理数{整数(如−1,0,2,3,…)分数(如13,−25,911,0.5,…)2.除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如a 2=2,b 2=5中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.[设计意图] 通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它们的真面目.第二环节:新知构建1.数的小数表示面积为2的正方形的边长a 究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a 的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)【思考】 a ,哪个更接近正方形的实际边长?【归纳总结】 a 是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a =1.41421356…,它是一个无限不循环小数.【做一做】 (1)请大家用上面的方法估计面积为5的正方形的边长b 的值(结果精确到0.1),并用计算器验证你的估计.(2)如果结果精确到0.01呢? (提示:精确到0.1,b ≈2.2,精确到0.01,b ≈2.24)同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c =1.25992105…,它也是一个无限不循环小数.[设计意图] 让学生有充分的时间进行思考和交流,逐渐缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,c =1.25992105…是无限不循环小数的过程,体会无限逼近的思想.2.有理数的小数表示,明确无理数的概念思路一:请同学们以学习小组的形式活动.【议一议】 把下列各数表示成小数,你发现了什么?3,45,59,-845,211. 【答案】 3=3.0,45=0.8,59=0.5·,-845=-0.17·,211=0.1·8·.分数化成小数,最终此小数的形式有哪几种情况?思路二:回忆小学我们学过的计算圆的周长和面积的时候,用到的π取多少?(3.14)它是确切的值吗?(不是,是近似值)那π是有理数吗?(不是)并且,我们还知道,利用计算机,现在π已经算到几亿分位,但是还是没有算出来.当然,π也不能化为分数的形式,所以π不是有理数,那π是什么数呢?【探究结论】 分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.【强调】 像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数)【想一想】 你能找到其他的无理数吗?[设计意图] 通过学生的活动与探究,得出无理数的概念,通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必要性,建立了无理数的概念.3.例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,-43, 0.5·7·,0.1010001000001…(相邻两个1之间0的个数逐次加2). 解:有理数有:3.14,-43,0.5·7·; 无理数有:0.1010001000001…(相邻两个1之间0的个数逐次加2).【强调】 1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数p q 的形式(q ≠0,p ,q 为整数且互质),而无理数不能. [设计意图] 通过例题的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类.[知识拓展] 确定x 2=a (a ≥0)中正数x 的近似值的方法:1.确定正数x 的整数部分.根据平方的定义,把x 夹在两个连续的正整数之间,确定其整数部分.例如:求x 2=5中的正数x 的整数部分,因为22<5<32,即22<x 2<32,所以2<x <3,因此x 的整数部分为2.2.确定x 的小数部分十分位上的数字.(1)将这两个整数平方和的平均数与a 比较,预测十分位上数字的取值范围,如两个整数2和3的平方和的平均数为22+322=6.5>5,所以x 的十分位上的数字一定比3小,不妨设x ≈2.2.(2)设误差为k (k 必为一个纯小数,且k 可能为负数),则x =2.2+k ,所以(2.2+k )2=5,所以4.84+4.4k +k 2=5,因为k 是小数,所以k 2很小,把它舍去,所以4.84+4.4k =5,所以k ≈0.036,所以x =2.2+k ≈2.2+0.036=2.236.实际估算中,整数部分的数字容易估计,十分位上的数字也可以采用试验的方法进行估计,即2.12=4.41,2.22=4.84,2.32=5.29,因为4.84<5<5.29,所以2.22<x 2<2.32,所以2.2<x <2.3,所以十分位上的数字为2.第三环节:课堂小结数{有理数:有限小数或无限循环小数{整数分数无理数:无限不循环小数第四环节:检测反馈1.下列说法中正确的是 ( )A .无限小数都是无理数B .有限小数是无理数C .无理数都是无限小数D .有理数是有限小数答案:C2.以下各正方形的边长是无理数的是 ( )A .面积为25的正方形B .面积为425的正方形C .面积为8的正方形D .面积为1.44的正方形解析:52=25,(25)2=425,(1.2)2=1.44.故选C . 3.一个直角三角形两条直角边的长分别是3和5,则斜边长a 是有理数吗?解:由勾股定理得: a 2=32+52,即a 2=34.因为不存在有理数的平方等于34,所以a 不是有理数.4.已知-34,5,-1.4·2·,π,3.1416,23,0,42,(-1)2n,-1.4242242224…(相邻两个4之间2的个数逐次加1).(1)写出所有有理数;(2)写出所有无理数.解:(1)有理数:-34,5,-1.4·2·,3.1416,23,0,42,(-1)2n. (2)无理数:π,-1.4242242224…(相邻两个4之间2的个数逐次加1).第五环节:布置作业1.教材作业【必做题】教材随堂练习.【选做题】教材习题2.2第2,4题.2.课后作业【基础巩固】1.面积为3的正方形的边长为x ,则x ( )A .1<x <2B .2<x <3C .3<x <4D .4<x <52.一个正三角形的边长是4,高为h ,则h 是 ( )A .整数B .分数C .有限小数D .无理数【能力提升】3.在直角三角形中,若两条直角边的长分别是2和3,则斜边长的平方是 ,则斜边长是 数.【拓展探究】4.设半径为a 的圆的面积为20 π.(1)a 是有理数吗?说说你的理由;(2)估计a 的值(精确到十分位,并利用计算器验证你的估计);(3)如果精确到百分位呢?5.在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?【答案与解析】1.A(解析:12=1,22=4.)2.D(解析:由勾股定理,得h2=42-22=12,没有整数或分数的平方等于12,所以h为无理数.)3.13无理(解析:由勾股定理,可得斜边的平方为13,没有整数或分数的平方为13,所以是无理数.)4.解:(1)∵πa2=20π,∴a2=20.a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数. (2)a≈4.5. (3)a≈4.47.5.解析:1.72=2.89,1.73=2.9929.解:(1)1.7米. (2)1.73米.板书设计2.1.2认识无理数1.数的小数表示.2.有理数的小数表示,明确无理数的概念.3.例题讲解.教学设计反思成功之处本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估算、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念.不足之处对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行.再教设计知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例题后再进行知识分类整理可能会更好.感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.。

北师大版八年级上册2.1认识无理数(第2课时)教学设计

北师大版八年级上册2.1认识无理数(第2课时)教学设计
(二)教学设想
1.针对无理数概念的教学,我设想通过以下步骤进行:
a.利用历史故事或实际情境引入无理数的概念,如通过讲述古希腊数学家希伯斯发现√2是无理数的故事,激发学生的好奇心。
b.通过数轴展示无理数和有理数的关系,让学生直观感受无理数的无限不循环性。
c.引导学生通过自我探索和小组讨论,总结无理数的特点,形成对无理数的深刻理解。
1.教学内容:设计具有代表性的练习题,涵盖无理数的概念、性质、运算等方面,让学生在实际操作中巩固所学知识。
2.教学方法:采用个别指导、集体讲解等方式,帮助学生解决练习中的问题。
3.教学实施:学生独立完成练习题,教师对学生的答题情况进行点评,指出错误原因,引导学生总结经验教训。
(五)总结归纳
1.教学内容:对本节课学习的无理数的概念、性质、运算和应用等方面进行总结。
b.教师对学生的作业进行及时批改和反馈,针对学生的个性化问题给予指导,帮助学生提高。
4.学生的学习兴趣:部分学生对数学学习可能存在恐惧心理,教师应通过生动的教学情境、有趣的教学活动,激发学生的学习兴趣,使他们愿意主动投入到无理数的学习中。
5.学生的合作交流能力:在教学过程中,教师应注重培养学生的合作交流能力,让他们在小组讨论、互帮互助中提高解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
b.通过数学建模的方式,让学生尝试将无理数应用于解决更复杂的数学问题,提高他们的问题解决能力。
4.为了突破教学难点,我设想采用以下策略:
a.利用多媒体教学资源,如动画、视频等,帮助学生形象理解无理数的性质和运算规则。
b.开展小组合作学习,让学生在交流讨论中互相启发,共同解决难题。
c.鼓励学生提出疑问,给予个别指导,针对学生的个性化问题进行针对性教学。

八年级数学上册2.1认识无理数教案 新版北师大版

八年级数学上册2.1认识无理数教案 新版北师大版

八年级数学上册2.1认识无理数教案新版北师大版一. 教材分析本节课的主题是“认识无理数”,是无理数概念的学习。

无理数是实数的重要组成部分,与有理数相对应。

学生在学习有理数的基础上,进一步认识无理数,理解无理数的性质和无理数在实际生活中的应用。

教材通过引入π、√2等具体例子,让学生感受无理数的存在,并通过观察、实验、推理等方法,引导学生认识无理数的概念。

二. 学情分析八年级的学生已经学习了有理数,对实数的概念有了一定的了解。

但无理数作为实数的一个分支,与有理数有很大的不同,学生可能难以理解。

因此,在教学过程中,需要结合学生的认知水平,采用生动形象的例子和直观的演示,引导学生理解和接受无理数的概念。

三. 教学目标1.让学生理解无理数的概念,认识无理数的存在。

2.让学生掌握无理数的性质,了解无理数在实际生活中的应用。

3.培养学生的观察能力、实验能力和推理能力。

四. 教学重难点1.教学重点:无理数的概念和性质。

2.教学难点:无理数的理解和应用。

五. 教学方法采用问题驱动法、情境教学法、观察实验法、小组合作法等教学方法。

通过生动形象的例子和直观的演示,引导学生观察、实验、推理,从而理解和掌握无理数的概念。

六. 教学准备1.准备相关例题和练习题。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备相关教学素材,如π、√2等。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念,进而引出无理数的概念。

提问:“同学们,我们已经学习了有理数,那么你们知道有理数有哪些特点吗?今天我们将要学习一种新的数——无理数,你们猜猜无理数有哪些特点呢?”2.呈现(10分钟)利用多媒体展示无理数的定义和性质,让学生直观地感受无理数的存在。

呈现无理数的定义:“无理数是不能表示为两个整数比的数。

”呈现无理数的性质:“无理数是实数的一部分,与有理数相对应。

无理数不能精确表示,它们的小数部分是无限不循环的。

”3.操练(15分钟)让学生通过观察、实验、推理等方法,加深对无理数概念的理解。

初中数学_第二章第1节第2课时 认识无理数教学设计学情分析教材分析课后反思

初中数学_第二章第1节第2课时  认识无理数教学设计学情分析教材分析课后反思

课时课题第二章第1节第2课时认识无理数课型新授课授课人授课时间星期三第4节教学目标1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.理解无理数的概念,会判断一个数是有理数还是无理数.3.让学生掌握估算的方法,发展学生的数感和估算能力.教法学法指导本节课是在上一节课知道存在无理数的基础上,借助于计算器,感知无理数的大小,从而发现无理数的无限不循环特征.在教学中要强调让学生探究概念形成的过程,鼓励学生自主探索与合作,以学生自主探索为主,自我归纳得出概念.课前准备计算器(每个学习小组3个)《认识无理数》教学过程一、创设情境,导入新课前面我们发现在勾股定理的运算中,出现了有理数无法表示的现象,因此出现了无理数.但无理数到底是什么样子,就让我们走进今天的旅程.(教师在黑板上画图)师:大家现在能计算一下面积为2的正方形的边长a究竟是多少吗?(不能)能不能估计大正方形的边长a在什么范围内呢?生:(观察后回答)通过图形可以看出1<a<2.因为112=,422=,而a的平方等于2,所以1<a<2.【设计意图】不经过研究的结论是缺少灵魂的,所以在此一定要让学生直观的感受到,面积为2的正方形边长是怎么样的,既使简单动脑的真实探究也会使学生有强烈的印象,又同时向学生传授了验证猜想的简单途径,体现教育的方法育人.二、探究研讨,质疑问难既然1<a<2,那么a是1点几呢?1、下面老师为大家提供了计算器,你们会怎样利用呢?(学生小组内思考,教师参与其中)生1:我们用计算器依次计算21.1、22.1……,通过比较,就能发现大约是1点几.生2:那样太慢,我发现面积2更接近1离4远,所以边长不会超过1.5,所以不要全验证.(教师竖起大拇指,学生给以掌声)2、应用计算器,探索小数位数.师:很棒,那我们就进行一场比赛,看哪一组精确的位数多,(学生跃跃欲试)开始.(学生活动,教师指导学生在活动中分工合作)师:时间到,哪一组说一说你们探索的结果?生:a在1.41与1.42之间.生:a在1.414与1.415之间.师:有算出具体是多少吗?生:没有.师:大家可以看一下小明同学的探索过程.(观看教材图表)师:如果继续探索下去,你会有什么发现?生:这个数不是循环小数.师:事实上,它是一个无限不循环小数.【设计意图】在探究研讨中,先以方法思考开始,是为了提高验证的效率,再有小数位数的探索,加快了课堂节奏.本环节主要意图让学生直观感受无理数的数的特性,打破学生思维中固化的有理数思维,将无理数真实的展现在学生面前.三、展示交流,建构知识那么,咱们给无理数来个描述吧.(学生思考,小组交流)1、概念描述交流生:无理数就是无限不循环小数.(学生都很同意)师:很棒,那么要是无理数,必须满足哪些条件?生:一是无限小数,二是不循环小数.(师板书)师:你们能举出几个实例吗?生:π,1.2578879…师:你们居然没忘了π这个老朋友,通过大家的举例,我忽然发现了“无理数”命名的原因.(师边指黑板上的数,边强调“无理”二字)生:奥,我知道了,无理数就是没有道理的数.(学生笑了)师:想到老师心里去了,你是老师的亲学生.(学生又笑了)2、例题强化理解例1:下列各数中,哪些是无理数?哪些是有理数?3.14,34-,••75.0, 0.1010010001…(相邻两个1之间0的个数逐次加1). 生:无理数有0.1010010001…(相邻两个1之间0的个数逐次加1).师:你们有没有不同意见?(没有)那0.1010010001…(相邻两个1之间0的个数逐次加1)中不也是有规律的吗?生:有规律也不是,它是无限不循环小数,所以是无理数.师:回答得很好,我明白了,无理数也不一定是没有道理啊.师:那你们判断无理数的时候,观察到什么特征就可以判断了呢?生:只要你抓住了无理数的两个特征,就能把它识别出来.(师在黑板上圈画重点) 那么,这个无理数是谁先发现的呢?3、无理数的理论论证.借助“读一读”,让学生了解数学史,认识严密的数学论证.师:数学是严谨的,但也是发展的,我们一定要有一个科学的头脑,实事求是的态度.【设计意图】教学中我有意弱化有理数的数类的区分,而一味强化无理数,因为过多的信息量必将影响数类的区分,当学生接受了无理数概念后,有理数的辨别就水到渠成了.在了解数学史的问题上,我认为是必不可少的,虽然学生会存在不理解,但学生会存下一个严谨论证意义的认识,会更加认识到无理数的存在. 四、运用拓展,收获讲评实事求是的说:了解什么是无理数了吗?(知道了)那我们实战一下.1、处理24页的随堂练习(要求学生思考后小组交流,由小组中的后进生发言)2、抢答训练:25页知识技能第1题3、师:通过本节课的学习你有哪些收获呢?你还存在疑问吗?生:我的主要收获是认识了无理数,并且能把无理数与有理数区别开.有理数包括整数和分数(有限小数和无限循环小数),而无理数是无限不循环小数.4、达标检测1.数学理解第3题,班内交流论坛判断下列说法是否正确:(1) 所有无限小数都是无理数; ()(2)所有无理数都是无限小数; ()(3)有理数都是有限小数; ()(4)不是有限小数的不是有理数. ()让学生充分交流个人想法,互相质疑,在争论中,辨明原因,以便观察学生的知识掌握情况.2. 填空:0.351,.68.4,-32, 3.14159, -5.2323332…,3π,0.1234567891011…(由相继的正整数组成).有理数有:无理数有:板书设计:§2.1(2)认识无理数看出1<a<2.因为112=,422=,而a 的平方等于2,所以1<a <2. 无限不循环小数称为无理数一是无限小数,二是不循环小数.边长a面积S1<a<2 1<S<4例讲你本节课的学习收获是什么?学情分析八年级学生已经在学习《有理数》的过程中体会到数不够用了,本章第一课时的学习,学生感受到了生活中确实存在着不是有理数的数,让学生认识到所学的数又不够用了,从而激发他们学习的好奇心,在此基础上,学生能在“需要—探究—发现—论证”式的课堂中积极参与讨论问题,大胆发表自己的见解和看法,从非常直观的操作中发现问题,实现数的发展,发展学生的合情推理能力。

北师大版 初中数学八年级上册第二章《2.1认识无理数》教案

北师大版 初中数学八年级上册第二章《2.1认识无理数》教案

北师大版数学八年级上册《认识无理数》教案教学目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.探索无理数与有理数的区别,并能辨别出一个数是无理数还是有理数.2.通过学生活动准确认识到有理数都可以划成有限小数和无限循环小数,发展学生的抽象概括能力. 3.让学生理解估算的意义,掌握估算的方法,同时发展学生的估算能力,在数学活动发挥学生的积极作调学生参与数学问题的积极性,培养学生的合作精神. 教学重点与难点:重点:无理数概念的建立过程;了解无理数与有理数的区别,并能正确判断.难点:无理数概念的建立及估算;会判断一个数是无理数还是有理数,有理数与无理数的区别.教法与学法指导:本节课是在上一节课对无理数定性分析的基础上,借助于计算器,采用估算等方法,对无理数的产生进行定性的研究.在教学中要强调让学生探究概念形成的过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调小组之间的合作与交流,强化应用意识,培养学生多方面的能力.学生要借助工具多动手、动口、动脑,自主探究,提高学习的兴趣,进一步体会数学的地位和作用. 课前准备:多媒体课件、计算器. 教学过程:一、创设情境,导入新课教师:同学们还记得有理数是如何分类的吗?教师:很好!上节课我们了解到一些数,如a 2=2,b 2=5中的a ,b 既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来探究这些数的真面目.设计意图:通过这些问题让学生发现有理数不够用了,这些数既不是整数,也不是分数,激发学生的求知欲,去揭示它的真面目.实际效果:激发学生的好奇心和求知欲,吸引学生注意力,引出本节课题“数怎么又不够用了”. 二、合作探究,发现新知探究一:计算器探索面积为2的正方形的边长a .(课件展示) 教师:大家还记的我们上节课是怎样得到面积为2的正方形的吗?学生:有理数 整数(如-1,0,2,3,…):都可看成有限小数.分数 (如-13,25,911,… ):可不可能都化成有限小数或无限小数?学生:把两个边长为1的小正方形,通过剪切、拼图拼成一个大的正方形,它的面积就是2.教师:面积为2的正方形的边长a究竟是多少呢?你能不能估计大正方形的边长a在什么范围内?学生:(观察课件后回答)通过图形可以看出1<a<2.因为12=1,22=4,而a的平方等于2,所以1<a<2.教师:非常好!既然1<a<2,那么a是1点几呢?为什么?学生:(探究后回答)1.4<a<1.5.因为1.42=1.96,1.52=2.25,而a的平方等于2,所以1.4<a<1.5.教师:你能精确到它的百分位吗?千分位呢?万分位呢?下面给大家几分钟的时间,借助计算器进行探索.(学生小组合作,探索交流)教师:谁能说一下小组探索的结果?学生:a=1.4142.教师:恰好是1.4142吗?学生:约等于1.4142,在1.4142与1.4143之间.教师:还有几位小数?学生:无数位.它是一个无限小数.教师:对,大家可以看一下小明同学的探索过程.(展示课件)边长a面积S1<a<2 1<S<41.4< a<1.5 1.96<S<2.251.41< a<1.42 1.9881<S<2.01641.414< a<1.415 1.999396<S<2.0022251.4142<a<1.4143 1.99996164<S<2.00024449教师:如果继续探索下去,你会有什么发现?学生:这个数是无限小数而且不循环.教师:对,事实上,它是一个无限不循环小数.探究二:计算器探索面积为5的正方形的边长b(课件展示)教师:模仿上一个探索过程,你能探索面积为5的正方形的边长b吗?如果能,把探究的结果填入下表.边长b面积S保留整数<b <<S <保留十分位< b <<S <学生:(小组合作,交流探索)把探究结果填入表格. 教师:谁能说一下你能得到什么结论?学生:b =2.23606…,它也是一个无限不循环小数.教师:同学们探索的非常好. 模仿刚才的探索方法,我们也可以探索体积为2的正方体的棱长.借助计算器,可以得到它的棱长为1.25992105…,它也是一个无限不循环小数.设计意图:借助计算器探索出a =1.41421356…,b =2.2360679…,是一个无限不循环小数,并从中感受无限逼近的数学思想.实际效果:通过探究让学生真切感受到无理数确实是无限不循环的,为无理数概念打下基础. 议一议(课件展示):把下列有理数表示成小数,你发现了什么? 3,45,59,845,211. 学生1:3=3.0,54=0.8,95=•5.0,•=71.0458,••=818.1112.学生2:我发现3,54是有限小数,112,458,95是无限循环小数.教师:好!上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像1.41421356…,2.2360679…等这些数的小数位数都是无限的,但是又不是循环的,是无限不循环小数.你能给这类数取个名字吗?生:无理数.教师:很好,哪位同学给无理数下个定义? 学生:无理数就是无限不循环小数.教师:好,圆周率π=3,14159265…也是一个无限不循环小数,目前π值已精确计算到了将近65亿位,但是仍然不是一个精确的数值.故π是无理数.像上面研究过的a 2=2,b 2=5中的a ,b 是无限不循环小数都是无理数.教师:理解无理数的概念一定要抓住哪两方面? 学生:一是无限小数;二是不循环小数.教师:同学们一定要抓住这两点,只要有一点不符合,它就不是无理数.你能举出其他的无理数例子吗?保留百分位 < b < < S < 保留千分位 < b < < S < 保留万分位< b << S <学生:(学生踊跃的)1.2345678987…,2π等等. 教师:无理数多不多? 学生:多.教师:在我们生活中除了π以外,还有非常多的无理数.下面我们看例1,你能分清有理数和无理数吗? 设计意图:通过学生的活动与探究,得出无理数的概念.教学效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.三、例题示范,应用概念 (课件展示)例1 下列各数中,哪些是有理数?哪些是无理数?3.14,34-,••75.0,0.1010010001…(相邻两个1之间0的个数逐次加1),-π.学生:有理数有3.14,34-,••75.0;无理数有0.1010010001…(相邻两个1之间0的个数逐次加1), -π.教师:回答得很好,大家鼓励一下.只要你抓住了无理数的两个特征,你就能把它识别出来. 跟踪练习: 1.填空:0.351,π+1,.68.4,23-, 3.14159, -5.2323332…, -3π ,1.234567891011…(由相继的正整数组成).有理数有: ; 无理数有: . 2.判断下列说法是否正确:(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( ) (3)无理数都是无限小数; ( ) (4)有理数是有限小数. ( ) 教师强调:1.无理数是无限不循环小数,有理数是有限小数或无限循环小数. 2.任何一个有理数都可以化成分数形式,而无理数则不能.例2 (1)设面积为10的正方形的边长为x ,x 是有理数吗?说说你的理由. (2)估计x 的值(结果精确到0.1),并用计算器验证你的估计. (3)如果结果精确到百分位呢?解:(1)由题意得x2=10,因为32=9,42=16,而 32 <x2<42.故3<x<4,所以x不是整数,没有一个分数的平方等于10,所以x不是分数.因为x即不是整数也不是分数,故x不是有理数.(2) 估计x≈3.2.(3) x≈3.16.设计意图:通过例1及练习的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类,培养学生总结归纳的能力.而例2属于数的估算.,进一步发展学生的思维判断能力.实际效果:通过师生的共同探究,形成对中学阶段数的系统认识,提高了总结归纳能力.四、课堂总结,盘点收获教师:通过本节课的学习你有哪些收获呢?你还存在疑问吗?学生:我的主要收获是认识了无理数,并且能把无理数与有理数区别开.有理数包括整数和分数,能够化成有限小数或者是无限循环小数,而无理数是无限不循环小数.教师:还有要补充的吗?学生:我还学会了π是无理数以及利用估算的方法探索无理数的范围.教师:大家总结的很全面.以后我们还会学到很多关于无理数的知识,希望同学们继续努力.设计意图:让学生学会及时对知识点、数学方法进行总结,并整理成经验,形成良好的学习习惯,提高学生的归纳总结能力,进一步发展学生的思维判断能力。

《2.1认识无理数》学案

《2.1认识无理数》学案

第二章 实数2.1认识无理数一、问题引入: 数和无限 (填循环或不循环)小数。

面积是多少?(2)设该正方形的边长为b ,则b 应满足什么条件?(3)b 是有理数吗?3、请你举出一个无限不循环小数的例子,并说出它的整数部分是 ,小数部分是 ,请指出它的十分位、 百分位、千分位……..。

4、 称为无理数,请举两个例子 。

二、基础训练:1、x 2=8,则x ______分数,______整数,______有理数.(填“是”或“不是”)2、在0.351,-32,4.969696…,0,-5.2333,5.411010010001…,6.751755175551…中, 不是有理数的数有_____ 。

3、长、宽分别是3、2的长方形,它的对角线的长可能是整数吗?可能是分数吗?4、在-227,2,33,0,π,0.6,0、1010010001中,无理数共有_______ 个.下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.四、课堂检测:1、在下列实数-12,π,4,13,5中,无理数有( )A .1个B .2个C .3个D .4个2、下列说法正确的是( )A .有理数只是有限小数B .无理数是无限不循环小数C .无限小数都是无理数D .3 是分数 3、实数:3.14,π,0.315315315…,722,0.3030030003…中,无理数有 _________ 个. 4、下列各数中,哪些是有理数?哪些是无理数?Π、0.351,-••69.4,32,3.14159,-5.2323332…,0、0.1234567891011112131…(小数部分由相继的正整数组成)在下列每一个圈里,至少填入三个适当的数.5、(1)设面积为10的正方形的边长为x,x是有理数吗?说说你的理由。

(2)估计x的值(结果精确到十分位),用计算器验证你的估计如果精确到百分位呢?6、如图,是面积分别为1,2,3,4,5,6,7,8,9的正方形[来源:学.科.网Z.X.X.K]边长是无理数的正方形有________个7、如图,在△ABC中,CD⊥AB,垂足为D,AC=6,AD=5,问:CD可能是整数吗?可能是分数吗?可能是有理数吗?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章实数
2.1 认识无理数
第一环节:质疑
【想一想】
⑴一个整数的平方一定是整数吗?
⑵一个分数的平方一定是分数吗?
第二环节:课题引入
【算一算】
已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,问题:x是整数(或分数)吗?
【剪剪拼拼】
把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?
第三环节:获取新知
a=,请问:①a可能是整数吗?②a可能是分数吗?
【议一议】:已知22
a=的a为什么不是整数?
【释一释】:释1.满足22
释2.满足2
2a =的a 为什么不是分数?
【忆一忆】:回顾“有理数”概念,既然a 不是整数也不是分数,那么a 一定不是有
理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了
基础
【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段
第四环节:应用与巩固
【画一画1】:在右1的正方形网格中,画出两条线段:
1.长度是有理数的线段
2.长度不是有理数的线段 (右1)
【画一画2】:在右2的正方形网格中画出四个三角形
2.三边长都是有理数 2.只有两边长是有理数
3.只有一边长是有理数 4.三边长都不是有理数
【仿一仿】:例:在数轴上表示满足()220x x =>的x
解: (右2)
仿:在数轴上表示满足()250x x =>的x
【赛一赛】:右3是由五个单位正方形组成的纸片,请你把
它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)
第五环节:课堂小结
内容:
1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会? 2.
2.客观世界中,的确存在不是有理数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数以外,你还能找到吗?。

相关文档
最新文档