平行线的性质--教案(1)

合集下载

相交线与平行线教案

相交线与平行线教案

5.3.1 平行线的性质(第1课时)平行线的性质(一)一.教学目标1.知识与技能:经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2.过程与方法:经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

3.情感态度与价值观:培养学生合作交流意识和探索精神。

二.重点、难点重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.三.教学过程(一)、引导学生逆向思维现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?(二)、实践探究1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).2.3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?c b a4321平行线具有性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定. 平行线的性质平行线的判定因为a∥b, 因为∠1=∠2,所以∠1=∠2 所以a∥b.因为a∥b, 因为∠2=∠3,所以∠2=∠3, 所以a∥b.因为a ∥b, 因为∠2+∠4=180°, 所以∠2+∠4=180°, 所以a ∥b.6.教师引导学生理清平行线的性质与平行线判定的区别. 学生交流后,师生归纳:两者的条件和结论正好相反:由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论. 7.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗?结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程. 因为a ∥b,所以∠1=∠2(两直线平行,同位角相等); 又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由. 学生仿照以下说理,说出如何根据性质1得到性质3的道理. 8.平行线性质应用.例 (课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A 与∠D 、∠B 与∠C 的位置关系如何,数量关系呢?为什么? 讲解按课本.(三)、巩固练习 1.课本练习(P22). (四)课堂小结: 经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算 (五)课堂作业:练习卷 (六)课堂反馈 一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.( )2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( ) 二、填空题.1.如图(1),若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.87654321DCBAFEDC B A(1) (2) (3) 2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.D C BA3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:因为∠ECD=∠E,所以CD∥EF( )又AB∥EF,所以CD∥AB( ).平行线的性质(第2课时)平行线的性质(二) 教学目标知识与技能:能够综合运用平行线性质和判定解题过程与方法.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论. 情感态度与价值观:推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用.教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么? 二、进行新课已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗? 让学生写出说理过程,师生共同评价三种不同的说理.(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F 的度数并填入表格.通过上述实践,FECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: ①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD. ③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.E D CB AFEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行). 所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离. 教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设,“结果仍是等式”是结论。

七年级数学上册《平行线的性质》教案、教学设计

七年级数学上册《平行线的性质》教案、教学设计
4.教师引导学生总结平行线性质的应用规律,提高学生的几何推理能力。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组选择一个具有挑战性的问题进行讨论,如:如何利用平行线性质求解角度或线段长度。
2.学生在小组内展开讨论,互相交流想法,共同解决问题。
3.教师巡回指导,参与学生讨论,引导学生深入思考,拓展思维。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结平行线的定义、性质和应用规律。
2.学生分享学习心得,交流学习方法,提高学习效率。
3.教师强调平行线在几何学习中的重要性,激发学生学习几何的兴趣。
4.布置课后作业,要求学生在课后对所学知识进行巩固和拓展,为下一节课的学习做好准备。
五、作业布置
3.结合平行线的性质,让学生尝试证明以下几何问题:在三角形中,若两边平行,则这两边所对的角相等。
4.完成一份关于平行线性质的思维导图,要求涵盖平行线的定义、判定方法、性质及应用等方面,培养学生系统梳理知识的能力。
5.针对本节课的学习内容,写一篇学习心得体会,要求学生从知识掌握、能力提升、情感态度等方面进行反思,以提高学生的学习自我监控能力。
为了巩固本节课所学的平行线性质,提升学生的几何素养,特布置以下作业:
1.完成课本第chapter页的练习题,包括选择题、填空题和解答题,要求学生在理解平行线性质的基础上,熟练运用相关知识解决问题。
2.设计一道实际生活中的问题,让学生运用平行线的性质进行求解。例如:在学校的操场上,有一条跑道和两条平行的跳远沙坑,如果已知跑道的宽度为w米,求跳远沙坑的宽度。
6.预习下一节课内容,了解平行线与相交线之间的关系,为后续学习奠定基础。
请同学们认真完成作业,及时发现问题,通过自主学习、合作交流等方式解决疑惑,不断提升自己的几何素养。教师将根据作业完成情况,给予针对性的指导和评价,助力学生成长。

平行线的性质教案

平行线的性质教案

平行线的性质教案课题:平行线的性质一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点:平行线的性质公理及平行线性质定理的推导.(二)难点:平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排:1课时五、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.六、教学过程(一)创设情境,复习导入1.如图1,(1)∵ (已知),∴ ().(2)∵ (已知),∴ ().(3)∵ (已知),∴ ().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:[板书]平行线的性质【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.(二)探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线AB 的平行线CD ,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》优秀教案一、教学目标1. 知识与技能:使学生掌握平行线的性质,能够运用平行线的性质解决实际问题。

2. 过程与方法:通过观察、操作、推理等过程,培养学生的空间观念和逻辑思维能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线上的对应角相等。

(2)平行线之间的夹角相等。

(3)平行线与截线所形成的内错角相等。

(4)平行线与截线所形成的同位角相等。

三、教学重点与难点1. 教学重点:平行线的性质及其应用。

2. 教学难点:平行线性质的推理和证明。

四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。

2. 利用几何画板等软件,直观展示平行线的性质。

3. 组织小组讨论,培养学生的合作能力。

五、教学过程1. 导入新课:通过生活中的实例,引出平行线的概念。

2. 自主探究:学生独立观察、操作,发现平行线的性质。

3. 小组交流:学生之间分享探究成果,讨论平行线性质的应用。

4. 教师讲解:总结平行线的性质,并进行推理和证明。

5. 练习巩固:设计相关练习题,让学生运用平行线的性质解决问题。

6. 课堂小结:回顾本节课所学内容,总结平行线的性质及应用。

7. 作业布置:布置适量作业,巩固所学知识。

六、教学策略1. 实践操作:提供实物模型和几何画板,让学生动手操作,加深对平行线性质的理解。

2. 案例分析:通过分析实际问题,让学生学会将平行线的性质应用于解决生活中的问题。

3. 思维训练:设计富有挑战性的思考题,培养学生的逻辑思维和解决问题的能力。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的完成质量,评估学生对平行线性质的掌握程度。

3. 单元测试:进行单元测试,全面评估学生对平行线性质的理解和应用能力。

平行线的性质初中数学教案

平行线的性质初中数学教案

平行线的性质初中数学教案一、教学目标1. 知识与技能:(1)能够识别同位角、内错角和同旁内角;(2)理解平行线的性质,包括同位角相等、内错角相等和同旁内角互补;(3)学会使用量角器测量角度。

2. 过程与方法:(1)通过观察实际情境,培养学生的观察能力和思维能力;(2)通过画图和实验,培养学生的动手操作能力;(3)通过小组讨论,培养学生的合作能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生合作、交流的良好习惯。

二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

2. 同位角:两条平行线被第三条直线所截,截得的同侧内角叫做同位角。

3. 内错角:两条平行线被第三条直线所截,截得的同侧外角叫做内错角。

4. 同旁内角:两条平行线被第三条直线所截,截得的非同侧内角叫做同旁内角。

5. 平行线的性质:同位角相等、内错角相等、同旁内角互补。

三、教学重点与难点1. 教学重点:平行线的性质,包括同位角相等、内错角相等和同旁内角互补。

2. 教学难点:如何理解和证明同位角相等、内错角相等和同旁内角互补的性质。

四、教学方法1. 观察法:通过观察实际情境,引导学生发现平行线的性质。

2. 画图法:通过画图和实验,让学生直观地理解平行线的性质。

3. 小组讨论法:通过小组讨论,培养学生的合作能力和口头表达能力。

五、教学过程1. 导入新课:通过展示实际情境,引导学生发现平行线的性质。

2. 讲解与演示:讲解平行线的定义,并通过画图和实验演示同位角、内错角和同旁内角的含义。

3. 练习与巩固:让学生进行课堂练习,巩固所学知识。

4. 小组讨论:让学生分组讨论,探索平行线的性质。

5. 总结与拓展:总结本节课所学内容,并引导学生思考如何应用平行线的性质解决实际问题。

6. 布置作业:布置适量作业,让学生巩固所学知识。

六、教学评价1. 课堂讲解:评价学生在课堂上的参与程度、理解程度和回答问题的准确性。

《平行线的性质》数学教案

《平行线的性质》数学教案

《平行线的性质》数学教案
标题:《平行线的性质》
一、教学目标
1. 让学生理解并掌握平行线的基本概念。

2. 通过实例让学生熟练掌握平行线的性质。

3. 培养学生的空间观念和逻辑思维能力。

二、教学重点与难点
1. 教学重点:平行线的基本概念及性质。

2. 教学难点:如何理解和应用平行线的性质。

三、教学过程
1. 导入新课:
- 创设情境,引发学生对平行线的好奇心。

- 提出问题,引导学生思考平行线的相关知识。

2. 新知探索:
- 平行线的基本概念:在同一平面上,不相交的两条直线叫做平行线。

- 平行线的性质:
- 同位角相等
- 内错角相等
- 同旁内角互补
3. 实例解析:
- 通过具体实例,让学生直观感受平行线的性质。

- 鼓励学生动手操作,亲自验证平行线的性质。

4. 练习巩固:
- 设计一些题目,让学生运用所学知识解决实际问题。

- 对学生的解答进行点评,帮助他们改正错误,加深理解。

5. 小结与反思:
- 引导学生总结本节课的学习内容。

- 鼓励学生分享自己的学习心得,提出疑问或困惑。

四、作业布置
- 安排一些练习题,让学生在课后进一步巩固所学知识。

五、教学反思
- 反思本节课的教学效果,评估学生的学习情况。

- 思考如何改进教学方法,提高教学质量。

《平行线的性质》教案

《平行线的性质》教案

一、教学目标:知识与技能:1. 理解平行线的概念,能够识别和判断平行线;2. 掌握平行线的性质,能够运用平行线的性质解决实际问题。

过程与方法:1. 通过观察、操作、思考等活动,培养学生的观察能力和思维能力;2. 学会用画图工具绘制平行线,提高学生的动手操作能力。

情感态度价值观:1. 培养学生对数学的兴趣,激发学生学习数学的积极性;2. 培养学生的团队合作精神,学会与他人交流和分享。

二、教学重点与难点:重点:1. 平行线的概念及性质;2. 运用平行线的性质解决实际问题。

难点:1. 平行线的判断;2. 运用平行线的性质解决复杂问题。

三、教学准备:教师准备:1. 平行线的图片或实物;2. 画图工具(如直尺、三角板等);3. 教学课件或黑板。

学生准备:1. 课本及相关学习资料;2. 画图工具。

四、教学过程:1. 导入:1.1 教师出示平行线的图片或实物,引导学生观察并说出平行线的特点;2. 探究平行线的性质:2.1 教师引导学生通过观察、操作、思考等活动,发现平行线的性质;3. 应用平行线的性质:3.1 教师出示实际问题,引导学生运用平行线的性质解决问题;3.2 学生独立思考,小组交流,展示解题过程,教师进行点评和指导。

五、作业布置:1. 练习课本上的相关题目;2. 运用平行线的性质解决实际问题,并将解题过程和答案写在作业本上。

教学反思:本节课通过观察、操作、思考等活动,让学生掌握了平行线的性质,并能运用平行线的性质解决实际问题。

在教学过程中,注意引导学生主动参与,培养学生的观察能力、思维能力和动手操作能力。

通过小组合作,培养学生的团队合作精神。

但在教学过程中,也发现部分学生对平行线的判断仍存在困难,需要在今后的教学中加强练习和指导。

六、教学拓展:1. 引导学生思考:还有哪些几何图形的性质可以运用到实际问题中?2. 学生举例说明,教师进行点评和指导。

七、课堂小结:八、课后反思:1. 教师对本节课的教学效果进行反思,分析学生的掌握情况;2. 针对学生的薄弱环节,制定相应的教学措施。

平行线与垂直线的性质教案

平行线与垂直线的性质教案

平行线与垂直线的性质教案一、引入在几何学中,平行线和垂直线是基本的概念。

理解和应用平行线和垂直线的性质对于解决几何问题非常重要。

本教案将介绍平行线与垂直线的性质以及它们之间的关系,帮助学生更好地理解和应用这些概念。

二、平行线的性质1. 平行线定义平行线是指在同一个平面上永远不会相交的直线。

2. 平行线的符号表示平行线用符号 "||" 表示。

例如,线段AB || 线段CD,表示线段AB与线段CD是平行的。

3. 平行线的性质(1) 平行线具有传递性如果线段AB || 线段CD,线段CD || 线段EF,则线段AB || 线段EF。

(2) 平行线具有对应角相等性质当线段AB || 线段CD时,线段AB上的任意角α与线段CD上的对应角β相等。

(3) 平行线具有同位角相等性质当线段AB || 线段CD时,线段AB与线段CD之间的同位角α、β、γ、δ相等。

4. 平行线的应用平行线的性质在几何证明和图形推理中经常被使用。

例如,在证明两个三角形全等时,常常利用平行线的性质来确定对应的角相等,从而得到所需的结论。

三、垂直线的性质1. 垂直线定义垂直线是指在同一个平面上形成直角的直线。

2. 垂直线的符号表示垂直线可以用符号 "⊥" 表示。

例如,线段AB ⊥线段CD,表示线段AB与线段CD是垂直的。

3. 垂直线的性质(1) 垂直线与平行线的关系如果线段AB ⊥线段CD,线段AB与线段CD所在平面上的任意一条平行线EF也与线段CD垂直。

(2) 垂直线的角度性质当线段AB ⊥线段CD时,线段AB与线段CD之间的角度为90度,即AB与CD所形成的角度为直角。

4. 垂直线的应用垂直线常常用来表示垂直关系,如建筑物的垂直立柱、电视机的垂直显示等。

在几何中,垂直线也是求解问题的关键要素,通过利用垂直线的性质,可以得到准确的解答。

四、平行线与垂直线的关系1. 平行线与垂直线的判定两条直线平行的条件是它们的斜率相等,斜率为k的直线与斜率为-1/k的直线垂直。

浙教版初中数学七年级下册【教案】1.4平行线的性质(1)

浙教版初中数学七年级下册【教案】1.4平行线的性质(1)
TB:小初高题库
浙教版初中数学
(然后师用几何验结论:
b
两条平行线被第三条直线所截,同位角相等。
简单地说:“两直线平行,同位角相等”(得到平行线的性质)
指 出 : 1)同 位 角 相 等 是 平 行 线 特 有 的 性 质 (以 消 除 ”凡 是 同 位 角 都 相
等”;”两直线被第三条直线所截,同位角相等”的错误判断)
2)它与前面学过的“同位角相等,两直线平行”之间的区别(通
过形象板书示范予以直观说明). 3)数学表达式:
∵ a//b (已知)
1a
∴ ∠1=∠2 (两直线平行,同位角相等)
2
b
c
三) 综合应用,巩固新知 1.引例:
如图所示,AB∥CD,AC∥BD,请找出与∠1 相等的角。
(让学生通过讨论交流找到所有的答案, 并标注在图中)
TB:小初高题库
浙教版初中数学
可以让他们更理性地看待人生
TB:小初高题库
试一试:课本课内练习 1(是为巩固例 1 的思想方法,总结中间量可为邻补角 或对顶角)
TB:小初高题库
浙教版初中数学
(思考:能否把练习 1 的所求改为求其余 7 个角的度数?你有何发现?)
课本课内练习 2(是让大家能识别当直线位置特殊时,性质照样适用, 体现特殊性寓于一般性之中)
3.例 2 分析:
1、复述平行线的性质; 2、平行线的性质与平行线的判定的区别:
判定:角的关系
平行关系
性质:平行关系
角的关系
3、证平行,用判定;知平行,用性质。
五) 布置作业:
1)复习 1.4(1) 2)课后作业题 1.2.3 必做;4 选做 3)预习 1.4(2) 教学反思

北师大版八年级上册7.4《平行线的性质》教案

北师大版八年级上册7.4《平行线的性质》教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行线的基本概念。平行线是在同一平面内,永不相交的两条直线。它们在几何图形中有着重要的地位,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过观察教室内的墙壁和地板,我们可以发现平行线的应用,以及它们如何帮助我们理解和构造空间。
关于学生小组讨论的部分,我觉得整体效果还是不错的。学生们能够积极参与,提出自己的观点,也能在讨论中互相学习。但我也注意到,有些学生在讨论中比较沉默,可能是因为性格原因或者是缺乏自信。在今后的教学中,我要关注这些学生,鼓励他们大胆发表自己的看法,增强他们的自信心。
最后,总结回顾环节,我觉得可以进一步优化。在今后的课堂中,我可以尝试让学生来总结今天学到的知识点,这样既能检验他们对知识的掌握程度,也能提高他们的表达能力。同时,我要提醒自己在这个环节中加强对学生的反馈,了解他们在学习过程中的困惑和问题,并及时给予解答。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如铁轨、黑板的边缘等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
-举例:给定两条平行线和一条横截线,运用性质计算未知角度或线段长度。
2.教学难点
-理解平行线性质的推理过程:学生需要通过观察和操作,理解并掌握平行线性质的推理过程,这需要较强的逻辑思维能力。
-难点解析:如何引导学生从特殊实例中发现规律,进而推广到一般情况,并用严谨的几何语言表达出来。
-识别和应用平行线的条件:在实际问题中,学生需要能够识别哪些线段或角度与平行线有关,并运用性质来解决问题。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质。

2. 培养学生观察、思考、推理的能力。

3. 培养学生运用几何知识解决实际问题的能力。

二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的性质:a. 平行线上的任意一对对应角相等。

b. 平行线之间的任意一对内错角相等。

c. 平行线之间的任意一对同位角相等。

三、教学重点与难点1. 教学重点:平行线的性质及应用。

2. 教学难点:平行线性质的证明及运用。

四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。

2. 运用几何画板软件,直观展示平行线的性质。

3. 小组讨论法,培养学生合作学习的能力。

五、教学步骤1. 导入新课:通过生活实例引入平行线的概念,引导学生思考平行线的特点。

2. 探究平行线的性质:让学生自主尝试证明平行线性质,教师给予引导和指导。

4. 练习巩固:布置适量练习题,让学生运用平行线性质解决问题。

5. 拓展延伸:引导学生思考平行线在实际生活中的应用,如交通标志、建筑设计等。

六、教学评估1. 课堂问答:通过提问方式检查学生对平行线概念和性质的理解。

2. 练习批改:对学生的练习题进行批改,了解学生对平行线性质的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,评估他们的合作学习和解决问题的能力。

七、课后作业1. 请学生绘制一组平行线,并标出相应的角度。

2. 选择一道与平行线性质相关的练习题,进行解答。

八、课程拓展1. 邀请建筑师或交通工程师,讲解平行线在实际工程中的应用。

2. 组织学生进行实地考察,观察生活中的平行线现象。

九、教学反思1. 反思本节课的教学效果,检查教学目标是否达成。

2. 分析学生的学习情况,调整教学方法,以提高学生的学习兴趣和效果。

十、课程资源1. 几何画板软件:用于展示平行线的性质。

2. 教学PPT:用于辅助教学,展示平行线的性质和实例。

3. 练习题库:用于课后作业和课堂练习。

(2024年)平行线的性质公开课教案

(2024年)平行线的性质公开课教案

通过平行线的性质,可以推导出 梯形的面积公式。
2024/3/26
17
其他几何图形中平行线应用
在三角形中,如果一条线段与三角形的两边平行,则这条线段与三角形的第三边成 比例。
在圆中,两条平行弦所夹的弧相等。
2024/3/26
在多边形中,如果一条线段与多边形的两边平行,则这条线段将多边形分成面积相 等的两部分。
3
课程背景与意义
2024/3/26
01
平行线是初中数学中的重要概念, 对于理解几何图形和解决实际问题 具有重要意义。
02
掌握平行线的性质有助于学生建立 空间观念,提高几何思维能力和解 决问题的能力。
4
教学目标与要求
01
02
03
知识目标
理解平行线的定义和性质, 掌握平行线的判定方法。
2024/3/26
2024/3/26
20
三角形高与平行线关系
2024/3/26
定义与性质
三角形的高是从一个顶点垂直到对边或对边的延长线的线段。高 与对应的底边垂直,因此与底边上的任何平行线也垂直。
判定方法
通过证明线段与三角形的一边垂直,并且经过三角形的另一个顶点。
应用举例
利用三角形高与平行线的关系解决角度、距离等问题。
何证明题中有着广泛的应用。
22
06
平行线在解决实际问 题中应用举例
2024/3/26
23
测量问题中平行线应用
利用平行线测量距离
在无法直接测量两点间距离的情况下,可以通过构造平行线,利用相似三角形的性 质来间接测量。
平行线在角度测量中的应用
通过构造平行线和利用同位角、内错角等性质,可以方便地测量某些难以直接测量 的角度。

教案平行线的性质与判定

教案平行线的性质与判定

经典教案平行线的性质与判定一、教学目标:1. 让学生理解平行线的概念,掌握平行线的性质和判定方法。

2. 培养学生运用平行线的性质和判定方法解决实际问题的能力。

3. 培养学生的观察能力、思维能力和动手能力。

二、教学内容:1. 平行线的概念:在同一平面内,不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线上的点到另一条平行线的距离相等。

(2)平行线之间的夹角相等。

(3)平行线与横截线(与平行线垂直的直线)之间的夹角相等。

3. 平行线的判定方法:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

三、教学重点与难点:1. 教学重点:平行线的性质和判定方法。

2. 教学难点:平行线的判定方法的应用。

四、教学方法:1. 采用直观演示法,让学生通过观察、操作,理解平行线的性质和判定方法。

3. 采用练习法,让学生通过练习巩固所学知识。

五、教学准备:1. 教具:直尺、三角板、多媒体课件。

2. 学具:练习本、直尺、三角板。

教案编辑专员:X日期:年月日六、教学过程:1. 导入:通过复习直线、射线、线段的概念,引入平行线的概念。

2. 新课讲解:(1)讲解平行线的概念,让学生明确平行线的定义。

(2)讲解平行线的性质,结合直观演示,让学生理解并掌握平行线的性质。

(3)讲解平行线的判定方法,结合实例,让学生理解并掌握平行线的判定方法。

3. 练习巩固:(1)让学生独立完成课后练习题,巩固所学知识。

(2)进行小组讨论,让学生互相交流、解答疑问。

七、课堂小结:2. 强调平行线在实际生活中的应用,激发学生的学习兴趣。

八、课后作业:1. 完成课后练习题,加深对平行线性质和判定方法的理解。

2. 结合生活实际,运用平行线的性质和判定方法解决问题。

九、教学反思:1. 教师在课后对自己的教学进行反思,分析教学过程中的优点和不足。

2. 根据学生的学习情况,调整教学策略,为下一步的教学做好准备。

十、教学评价:1. 学生对平行线的性质和判定方法的掌握程度。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》教案一、教学目标:知识与技能:1. 学生能够理解平行线的定义和性质;2. 学生能够运用平行线的性质解决实际问题。

过程与方法:1. 学生通过观察、实验和推理,探索平行线的性质;2. 学生能够运用归纳和演绎的方法,证明平行线的性质。

情感态度价值观:1. 学生培养对数学的兴趣和好奇心;2. 学生培养合作和交流的能力。

二、教学重点:平行线的性质三、教学难点:平行线的性质的证明和应用四、教学准备:课件、黑板、粉笔、直线模型、平行线模型五、教学过程:1. 导入:教师通过展示直线和平行线的模型,引导学生回顾直线的定义和平行线的定义。

2. 探索平行线的性质:教师引导学生观察平行线模型,让学生自己发现平行线的性质。

学生可以分组讨论,分享自己的发现。

3. 证明平行线的性质:教师引导学生运用归纳和演绎的方法,证明平行线的性质。

学生可以分组讨论,共同完成证明过程。

4. 应用平行线的性质:教师给出实际问题,让学生运用平行线的性质解决问题。

学生可以独立思考,也可以分组讨论。

5. 总结:教师引导学生总结平行线的性质,并强调其在几何学中的应用。

6. 作业布置:教师布置相关的练习题,让学生巩固所学知识。

7. 板书设计:平行线的性质同一平面内,不相交的两条直线叫做平行线。

平行线之间的距离相等。

平行线上的对应角相等。

平行线上的内错角相等。

平行线上的同位角相等。

六、教学反思:教师在课后进行教学反思,分析学生的学习情况,教学效果,以及可能需要改进的地方。

教师可以根据学生的作业完成情况和课堂表现来进行评估。

七、评价与反馈:教师对学生的学习情况进行评价,包括学生的理解程度、解决问题的能力、合作交流的能力等。

教师可以通过考试、作业、课堂表现等方式来进行评价。

教师需要给予学生及时的反馈,帮助学生提高。

八、拓展与延伸:教师可以给学生提供一些拓展和延伸的题目,帮助学生深入理解平行线的性质,并能够灵活运用。

这些题目可以包括证明题、应用题等,难度可以适当增加。

《5.3.1 平行线的性质》教案、导学案、同步练习

《5.3.1 平行线的性质》教案、导学案、同步练习

《5.3.1 平行线的性质》教案第1课时平行线的性质【教学目标】1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)【教学过程】一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.探究点二:平行线与角平分线的综合运用如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD 的度数.解析:先利用GF ∥CE ,易求∠CAG ,而∠PAG =12°,可求得∠PAC =48°.由AP 是∠BAC 的角平分线,可求得∠BAP =48°,从而可求得∠BAG =∠BAP +∠PAG =48°+12°=60°,即可求得∠ABD 的度数.解:∵FG ∥EC ,∴∠CAG =∠ACE =36°.∴∠PAC =∠CAG +∠PAG =36°+12°=48°.∵AP 平分∠BAC ,∴∠BAP =∠PAC =48°.∵DB ∥FG ,∴∠ABD =∠BAG =∠BAP +∠PAG =48°+12°=60°.方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.探究点三:平行线性质的探究应用如图,已知∠ABC .请你再画一个∠DEF ,使DE ∥AB ,EF ∥BC ,且DE 交BC 边与点P .探究:∠ABC 与∠DEF 有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC 与∠DEF 的数量关系是相等或互补.理由如下:如图①,因为DE ∥AB ,所以∠ABC =∠DPC .又因为EF ∥BC ,所以∠DEF =∠DPC ,所以∠ABC =∠DEF .如图②,因为DE ∥AB ,所以∠ABC +∠DPB =180°.又因为EF ∥BC ,所以∠DEF =∠DPB ,所以∠ABC +∠DEF =180°.故∠ABC 与∠DEF 的数量关系是相等或互补.方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.三、板书设计平行线的性质⎩⎨⎧⎭⎬⎫两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补求角的大小或说明角之间的数量关系【教学反思】平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学第2课时平行线的性质和判定及其综合运用【教学目标】1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.【教学过程】一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF ∥AB.(1)CE与DF平行吗?为什么?(2)若∠DCE=130°,求∠DEF的度数.解析:(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可证明CE∥DF;(2)由平行线的性质,可得∠CDF=50°.由DE平分∠CDF,可得∠CDE=1 2∠CDF=25°.最后根据“两直线平行,内错角相等”,可得到∠DEF的度数.解:(1)CE∥DF.理由如下:∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°-∠DCE=180°-130°=50°.∵DE平分∠CDF,∴∠CDE=12∠CDF=25°.∵EF∥AB,∴∠DEF=∠CDE=25°.方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?说明理由.解析:由图可知∠ABD和∠ACE是同位角,只要证得同位角相等,则CE∥BD.由平行线的性质结合已知条件,稍作转化即可得到∠ABD=∠C.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.探究点三:平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)∠AFD与∠AED之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE +∠CDE =32∠BAF +32∠CDF =32(∠BAF +∠CDF )=32∠AFD ,∴∠AED =32∠AFD .方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计⎭⎬⎫同位角相等内错角相等同旁内角互补判定性质两直线平行【教学反思】本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质《5.3.1 平行线的性质》导学案第1课时 平行线的性质【学习目标】:1.掌握两直线平行,同位角、内错角相等,同旁内角互补,并能熟练运用.2.通过独立思考,小组合作,运用猜想、推理的方法,提升自己利用图形分析问题的能力.3.激情投入,全力以赴,培养严谨细致的学习习惯.【重点】:平行线的性质.【难点】:根据平行线的性质进行推理.【自主学习】一、知识链接平行线的判定方法有哪几种?二、新知预习如图,直线a与直线b平行,直线c与它们相交.(1)量一量:用量角器量图中8个角的度数.(2)说一说:由测量的结果,你发现∠1与∠5、∠2与∠6、∠3与∠7、∠4与∠8、∠3与∠6、∠4与∠5、∠3与∠5、∠4与∠6的大小有什么关系?(3)想一想:(2)中的各对角分别是什么角?(4)议一议:两条平行直线被第三条直线所截,所得的同位角、内错角、同旁内角有什么关系?三、自学自测1.如图,直线a∥b,∠1=70°,那么∠2的度数是()A.50°B.60°C.70°D.80°2.下列说法中,(1)同位角相等,两直线平行;(2)两直线平行,同旁内角互补;(3)内错角相等,两直线平行;(4)同一平面内,垂直于同一直线的两条直线平行.其中是平行线的性质的是()A.(1)和(3)B.(2)C.(4)D.(2)和(4)【课堂探究】要点探究探究点:平行线的性质问题1:画两条平行线a//b,然后画一条截线c与a、b相交,标出如图所示的角. 度量所形成的8个角的度数,把结果填入下表:角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数观察:∠1~ ∠8中,哪些是同位角?它们的度数之间有什么关系?说出你的猜想.猜想:两条平行线被第三条直线所截,同位角 .思考:再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?问题2:如图,已知a//b,那么∠2与∠3相等吗?为什么?问题3:如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?例1.如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?例2:小明在纸上画了一个∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长DC、FE的话,你能帮他设计出多少种方法测出∠A的度数?【当堂检测】1.如图,已知平行线AB、CD被直线AE所截(1)从∠1=110°可以知道∠2 是多少度吗,为什么?(2)从∠1=110°可以知道∠3是多少度吗,为什么?(3)从∠1=110°可以知道∠4 是多少度吗,为什么?2.如图,一条公路两次拐弯的前后两条路互相平行.第一次拐弯时∠B是142°,第二次拐弯时∠C是多少度?为什么?3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a垂直于直线c吗?4.如果有两条直线被第三条直线所截,那么必定有()A.内错角相等B.同位角相等C.同旁内角互补D.以上都不对5.(1)如图1,若AB∥DE , AC∥DF,试说明∠A=∠D.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A=_______ ( )∵AC∥DF( )∴∠D=______ ( )∴∠A=∠D ( )(2)如图2,若AB∥DE , AC∥DF,试说明∠A+∠D=180o.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A= ______ ( )∵AC∥DF( )∴∠D+ _______=180° ( )∴∠A+∠D=180°()6.【拓展题】如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?5.3.1 平行线的性质第2课时平行线的性质和判定及其综合运用【学习目标】:1.进一步熟悉平行线的判定方法和性质.2.运用平行线的性质和判定进行简单的推理和计算.【重点】:平行线的判定方法和性质.【难点】:平行线的性质和判定的综合运用.【自主学习】一、知识链接1.平行线的判定方法有哪些?2.平行线的性质有哪些?二、新知预习1.两条直线被第三条直线所截,同位角、内错角相等,或者说同旁内角互补,这句话对吗?2.自主归纳:(1)两直线平行,同位角,内错角,同旁内角 .(2)不难发现,平行线的判定,反过来就是,注意它们之间的联系和区别.(3)运用平行线的性质时,不要忽略前提条件“”,不要一提同位角或内错角,就认为是相等的.【课堂探究】一、要点探究探究点:平行线的性质和判定及其综合应用例1.如图,三角形ABC中,D是AB上一点,E是AC上一点,∠ADE=60°,∠B = 60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?做一做:已知AB∥CD,∠1 = ∠2.试说明:BE∥CF.例2.如图,AB∥CD,猜想∠A、∠P 、∠PCD的数量关系,并说明理由.例3.如图,若AB//CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.【变式题1】如图,AB//CD ,探索∠B 、∠D 与∠DEB 的大小关系 .【变式题2】如图,AB ∥CD,则∠A ,∠C 与∠E 1,∠E 2,…,∠E n 有什么关系?【变式题3】如图,若AB ∥CD, 则∠A ,∠C 与各拐角之间有什么关系?EDC BA【当堂检测】1.填空:如图,(1)∠1= 时,AB∥CD.(2)∠3= 时,AD∥BC.2.直线a,b与直线c相交,给出下列条件:①∠1= ∠2;②∠3= ∠6;③∠4+∠7=180°;④∠3+ ∠5=180°,其中能判断a//b的是( )A. ①②③④ B .①③④ C. ①③ D. ④3. 有这样一道题:如图,AB//CD,∠A=100°, ∠C=110°,求∠AEC的度数. 请补全下列解答过程.解:过点E作EF//AB.∵AB//CD(已知),∴ // (平行于同一直线的两直线平行).∴∠A+∠ =180°,∠C+∠ =180°(两直线平行,同旁内角互补).又∵∠A=100°,∠C=110°(已知),∴∠ = °, ∠ = °.∴∠AEC=∠1+∠2= °+ ° = °.4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD的度数.第五章相交线与平行线5.3.1《平行线的性质》同步练习一、单选题(共15题;共30分)1、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( )A、30°B、25°C、20°D、15°2、如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A、60°B、33°C、30°D、23°3、两条平行直线被第三条直线所截,下列命题中正确的是()A、同位角相等,但内错角不相等B、同位角不相等,但同旁内角互补C、内错角相等,且同旁内角不互补D、同位角相等,且同旁内角互补4、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A、40°B、50°C、130°D、150°5、如图,下列说法正确的是()A、若AB//CD,则∠1=∠2B、若AD//BC,则∠B+∠BCD=180ºC、若∠1=∠2,则AD//BCD、若∠3=∠4,则AD//BC6、下列图形中,由AB//CD能得到∠1=∠2的是()A、 B、C、 D、7、下列语句:①两条不相交的直线叫做平行线;②过直线外一点有且只有一条直线与已知直线垂直;③若AB=BC,则点B是AC的中点;④若两角的两边互相平行,则这两个角一定相等;其中说法正确的个数是()A、1B、2C、3D、48、同一平面内,两条不重合的直线的位置关系是()A、平行或垂直B、平行或相交C、平行、相交或垂直D、相交9、下列生活实例中;①交通道口的斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车的平直铁轨线.其中属于平行线的有()A、1个B、2个C、3个D、4个10、如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为()A、19°B、29°C、63°D、73°11、如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=35°,∠2的度数为()A、95°B、65°C、85°D、35°12、如图,已知:AB∥CD,CE分别交AB、CD于点F、C,若∠E=20°,∠C=45°,则∠A的度数为()A、5°B、15°C、25°D、35°13、如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=()A、20°B、25°C、30°D、35°14、如图,若a∥b,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是()A、 B、C、 D、15、如图,如果AB∥CD,那么图中相等的内错角是()A、∠1与∠5,∠2与∠6B、∠3与∠7,∠4与∠8C、∠5与∠1,∠4与∠8D、∠2与∠6,∠7与∠3二、填空题(共5题;共10分)16、如图,已知:∠A=∠F,∠C=∠D,求证:BD∥EC,下面是不完整的说明过程,请将过程及其依据补充完整.证明:∵∠A=∠F(已知)∴AC∥________,________∴∠D=∠1________又∵∠C=∠D(已知)∴∠1=________________∴BD∥CE ________17、如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为________ 度(用关于α的代数式表示).18、如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为________ .19、如图,把含有60 º角的三角尺ABC的直角顶点C放在直线DE上,当AB∥DE。

人教版七年级数学下册教案 平行线的性质(一)

人教版七年级数学下册教案 平行线的性质(一)

5. 3平行线的性质(一)教学目标1.使学生理解平行线的性质和判定的区别.2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.重点难点重点:平行线的三个性质.难点:平行线的三个性质和怎样区分性质和判定.关键:能结合图形用符号语言表示平行线的三条性质.教学过程一、复习1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?二、新授1.实验观察,发现平行线第一个性质请学生画出下图进行实验观察.设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?平行线性质1(公理):两直线平行,同位角相等.2.演绎推理,发现平行线的其它性质(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.求证:∠1= ∠2.(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.求证:∠1+∠2=180°.在此基础上指出:“平行线的性质 2 (定理)”和“平行线的性质 3 (定理)”.3.平行线判定与性质的区别与联系投影:将判定与性质各三条全部打出.(1)性质:根据两条直线平行,去证角的相等或互补.(2)判定:根据两角相等或互补,去证两条直线平行.联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.三、例题例2如图所示,AB ∥CD ,AC ∥BD .找出图中相等的角与互补的角.87654132此题一定要强调,哪两条直线被哪一条直线所截.答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC +∠ACD =180°,∠ABD +∠CDB =180°,∠CAB +∠DBA =180°,∠ACD +∠BDC =180°.相等的角还有:∠ACD =∠ABD ,∠BAC =∠BDC .(同角的补角相等) 例3如图所示.已知:AD ∥BC ,∠AEF =∠B ,求证:AD ∥EF . 分析:(执果索因)从图直观分析,欲证AD ∥EF ,只需∠A +∠AEF =180°,(由因求果)因为AD ∥BC ,所以∠A +∠B =180°,又∠B =∠AEF ,所以∠A +∠AEF =180°成立.于是得证.证明:因为 AD ∥BC ,(已知)所以 ∠A +∠B =180°.(两直线平行,同旁内角互补)FED CB A A B CD因为 ∠AEF =∠B ,(已知)所以 ∠A +∠AEF =180°,(等量代换)所以 AD ∥EF .(同旁内角互补,两条直线平行) 四、练习:1.如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD . 求证:∠1+∠2=90°. 证明:因为 AB ∥CD , 所以 ∠BAC +∠ACD =180°,又因为 AE 平分∠BAC ,CE 平分∠ACD , 所以112BAC ∠=∠,122ACD ∠=∠,故001112()1809022BAC ACD ∠+∠=∠+∠=⨯=.即 ∠1+∠2=90°. (理由略)2.如图所示,已知:∠1=∠2, 求证:∠3+∠4=180°. 分析:(让学生自己分析) 证明:(学生板书) 小结我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系.作业:1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C 各是多少度,为什么?3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.。

10.3平行线的性质数学教案

10.3平行线的性质数学教案

10.3平行线的性质数学教案
标题:第十章第三节平行线的性质
I. 教学目标
A. 学生能够理解并掌握平行线的定义及其基本性质。

B. 学生能够运用所学知识解决实际问题。

C. 通过实践操作,培养学生的空间想象能力和逻辑思维能力。

II. 教学内容
A. 平行线的定义
B. 平行线的基本性质
1. 同位角相等
2. 内错角相等
3. 同旁内角互补
C. 平行线的判定方法
III. 教学过程
A. 导入新课(5分钟)
1. 回顾上一节课的内容,引入平行线的概念。

B. 新课讲解(25分钟)
1. 讲解平行线的定义,让学生理解什么是平行线。

2. 通过实例和动画展示,讲解平行线的三个基本性质。

3. 引导学生归纳总结出平行线的判定方法。

C. 实践操作(15分钟)
1. 设计一些实际问题,让学生自己动手画图,运用所学知识解决问题。

D. 小结与作业(5分钟)
1. 对本节课的内容进行小结,强调重点和难点。

2. 布置作业,巩固所学知识。

IV. 教学评估
A. 观察学生在课堂上的表现,了解他们对知识的理解程度。

B. 分析学生的作业,检查他们是否掌握了平行线的性质和判定方法。

V. 教学反思
A. 反思教学过程中的成功之处和不足之处。

B. 思考如何改进教学方法,提高教学效果。

北师大版数学八年级上册3《平行线的判定》教案1

北师大版数学八年级上册3《平行线的判定》教案1

北师大版数学八年级上册3《平行线的判定》教案1一. 教材分析《平行线的判定》是北师大版数学八年级上册第三章的内容。

本节课主要让学生掌握平行线的判定方法,理解平行线的性质,并能运用这些方法解决实际问题。

教材通过丰富的图片和实例,引导学生探索和发现平行线的判定规律,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段的基本概念,并了解了直线的性质。

但是,对于平行线的判定,学生可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生通过观察、操作、思考、交流等活动,逐步掌握平行线的判定方法。

三. 教学目标1.知识与技能:让学生掌握平行线的判定方法,能运用平行线的性质解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:平行线的判定方法。

2.难点:平行线性质的理解和运用。

五. 教学方法1.情境教学法:通过丰富的图片和实例,引导学生观察、思考,激发学生的学习兴趣。

2.启发式教学法:教师提出问题,引导学生独立思考,培养学生解决问题的能力。

3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队合作精神。

六. 教学准备1.教学课件:制作课件,展示平行线的判定方法和实例。

2.教学素材:准备一些图片和实例,用于引导学生观察和思考。

3.学具:为学生准备一些直线、射线、线段等模型,便于学生操作和理解。

七. 教学过程1.导入(5分钟)教师通过展示一些图片,如铁路、操场等,引导学生观察平行线的实例,激发学生的学习兴趣。

同时,教师提出问题:“你们认为平行线有哪些特点?”让学生思考。

2.呈现(10分钟)教师通过课件展示平行线的判定方法,并结合实例进行讲解。

同时,教师引导学生观察和思考,让学生初步理解平行线的判定规律。

《平行线的性质》word教案 (公开课获奖)2022华师大版 (1)

《平行线的性质》word教案 (公开课获奖)2022华师大版 (1)

平行线的性质课型:新授课一、学习目标确定的依据1、课程标准在学生会画平行线的基础上,会用平行线的基本性质做题。

2、教材分析本节课是初中数学华东师大版七年级上册第5章相交线与平行线5.2的第三课时,在前面的学习中,学生已认识了角、相交线及相交线所成的角、垂直,积累了初步的数学活动经验,按照先“认识平行线,再探索平行线的条件,最后探索平行线的特征”的顺序呈现。

利用平行线的识别方法进行计算或说明。

3、中招考点平行线的性质近七年中招考试中考查5次,4次在填空题中出现,1次在选择题中出现。

题目较简单,分值均为3分。

4、学情分析学生在做题时对平行线的判定和性质容易混淆,二、学习目标1、能说出平行线的性质。

四、教学过程2、能应用平行线的性质进行简单的计算和推理。

三、评价任务1、向同桌说出平行线的性质的概念,2、能运用平行线的性质进行简单的计算和推理。

有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。

2、通过实例,探究出有理数除法法则。

会把有理数除法转化为有理数乘法,培养学生的化归思想。

重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。

教学过程:一、创设情景,导入新课 1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

有一个因数是0,积就为0. 2、有理数乘法运算律:a ×b = b ×a (a ×b )×c = a ×(b ×c ). a ×(b+c )=a × b + a ×c 3、计算(分组练习,然后交流)(见ppt ) 二、合作交流,解读探究 1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3) 学生:独立思考后,再将结果与同桌交流。

7.4平行线的性质(教案)

7.4平行线的性质(教案)
本节课旨在培养学生的以下核心素养:
1.空间观念:通过探究平行线的性质,培养学生对图形的空间感知能力,提高对平面图形的理解和应用。
2.逻辑推理:学会运用逻辑推理的方法,从平行线的定义和性质出发,推导出相关角的关系,提高推理能力。
3.数学建模:将平行线的性质应用于解决实际问题,培养学生建立数学模型、解决问题的能力。
实践活动环节,学生们在分组讨论和实验操作中表现出了较高的积极性,但我也观察到有些小组在讨论时偏离了主题,可能是因为我对讨论主题的设定不够明确。在未来的教学中,我需要提供更具体的讨论指南,确保学生们能够在有限的时间内聚焦于关键知识点。
小组讨论部分,虽然学生们能够积极参与,但我感觉他们在分享成果时,表达不够清晰,逻辑性不强。我意识到,我应该在平时的教学中更多地培养学生的表达能力和逻辑思维,比如通过组织更多的课堂讨论和演讲活动。
3.重点难点解析:在讲授过程中,我会特别强调平行线的判定方法和性质,如同位角相等、内错角相等。对于难点部分,我会通过图示和实际例题来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题,如找出生活中的平行线实例。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,使用直尺和量角器来验证平行线的性质。
总的来说,今天的课堂让我认识到,作为教师,我需要不断调整和优化教学方法,以提高学生的学习效果。我将继续探索更多有效的教学策略,确保学生们能够真正理解并掌握平行线的性质,同时也能够激发他们对数学学习的兴趣。此外,我也将注重培养学生的表达能力和逻辑思维,使他们能够在未来的学习和生活中更加自信和成功。
五、教学反思
在今天的教学过程中,我发现学生们对平行线的概念和性质的理解存在一些挑战。在引入新课的时候,我通过提问的方式试图激发学生的好奇心,但感觉部分同学的参与度并不高,可能是我课内容时,我发现学生们对同位角、内错角这些概念的理解较为困难。我尝试通过图示和实际例题来解释,但感觉效果并不理想。可能我需要寻找更直观的教学工具,比如动画或者实物模型,来帮助学生更好地理解和记忆这些几何概念。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的性质教案
一、教学目标
1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质。

2. 进一步掌握数学的符号语言。

3.会用平行线的性质或判定进行推理和计算。

4.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力。

二、重点和难点
(一)重点:平行线的性质定理及平行线性质定理的推导。

(二)难点:正确区分平行线的性质和判定是本节课的难点。

三、教学方法:直观教学法、发现教学法、师生互动法。

四、教学手段:计算机辅助教学。

五、教学过程:
(一)、复习提问:(1)平行线的判定定理有哪些?
(2)平行线的性质定理有哪些?
提问意图:了解学生的认知基础,让全体学生对前一节内容进行回顾,并为新课的学习作准备。

由学生作答,教师指出其中不足或者错误之处并板书:(大屏幕显示)
判定定理:同位角相等,两直线平行。

内错角相等,两直线平行。

同旁内角互补,两直线平行。

教师与学生一致发现性质定理就是把判定定理反过来说,所以不板书。

教师作图如右:
提问:能否用数学的符号语言表 示判定定理1呢?
教师结合左边的判定定理一步一步 讲解板书:∵∠1=∠2
∴ a ∥b (同位角相等,两直线平行) 同样的将性质定理3用符号语言表示 ∵ a ∥b
∴∠3+∠4=180o (两直线平行,同旁内角互补)
评析:复习巩固平行线性质、判定定理,逐步锻炼学生的推理能力,并进一步巩固对定理的理解及数学语言的规范。

教师提问:平行线的判定定理与性质定理到底存在哪些区别呢?什么时候用判定定理,什么时候用性质定理呢?
学生自主思考,允许讨论,最后请学生回答,教师负责肯定学生的回答中正确的地方并指出回答中错误的地方,最后总结出两者之间的最大区别:(板书)
判定定理:角的关系→直线平行
其中角的关系是已知的,平行是不知道的,是要被说明的。

性质定理:直线平行→角的关系
其中平行是已知的,角之间的关系是要被说明的。

教师在此的讲解一定要突出重点,讲出其中的区别,突破本节课的难点避免出现概念的混淆,突破本课的难点。

课堂练习:
1、请在括号中填写理由:
c
4 3 2
1
b
a
①∵∠B=∠3 ∴AB ∥CE ( ) ②∵AB ∥CE ∴ ∠A=∠2 ( ) ③∵AB ∥CE ∴∠B+∠BCE= 180o ( )
④∵∠A=∠2 ∴AB ∥CE ( )
此题主要考查学生观察图形的的能力,还有对于判定定理和性质定理的理解,能区别其中的不同。

2、如图,填空: ①∵ED ∥AC (已知)
∴ ∠1=∠C ( ) ②∵DF ∥ (已知)
∴∠2=∠BED ( ) ③∵AB ∥DF (已知)
∴ ∠3=∠ ( ) ④∵AC ∥ED (已知)
∴∠ =∠ (两直线平行,内错角相等)
此题主要考查学生的逻辑思维,从结论入手去追溯问题的根源,进而找到能使结论成立的原因,进一步锻炼学生的逻辑思维能力。

(二)、新课讲解
例:如图,已知∠1=∠2,AC ∥BD ,试说明AE ∥BD 。

1 2 3
A
B C D
E
1 2 3
A
E
B
F C
D 1 2
A B
C
D
E
思路点拨:“由因导果”。

从要说明的问题入手分析,要得到AE ∥BD ,只需∠2=∠AEB ,而要∠2=∠AEB,又需要∠1=∠AEB ,而这个条件我们恰恰可以从已知条件AC ∥BD 推断出,所以问题迎刃而解。

教师板书解题过程:
解:∵AC ∥BD (已知)
∴∠1=∠AEB (两直线平行,内错角相等) 又∵∠1=∠2 (已知) ∴∠2=∠AEB (等量代换)
∴AE ∥BD (内错角相等,两直线平行)
此题中既有性质定理的运用,又有判定定理的穿插,很好的考查了学生对这两种定理的运用能力,从而达到区别两者的效果。

课堂练习 (开放性试题,答案不唯一)
3、请结合图形,根据所给定的平行线填入所需的角,并说明理由。

(能否找出所有的情况) • ① ∵AB ∥CD
• ∴∠____=∠_____( ) • ② ∵AD ∥BC
• ∴∠____=∠_____( ) • ③ ∵AE ∥CF
• ∴∠____=∠_____( )
此题主要考查学生对于图形的观察能力,能深层次的挖掘出图形中包含的信息。

同时也巩固学生对于“三线八角”的认知。

4、趣味练习:一辆汽车在笔直的公路上行驶,在两次转弯后,仍在原来的方向上平行前进,那么这两次转弯的角度可以是( )
B
C
D
E
F
A 、先右转80o ,再左转100 o
B 、先左转80 o ,再右转80 o
C 、先左转80 o ,再左转100 o
D 、先右转80 o ,再右转80 o
此题跟现实生活联系紧密,说明了生活中处处有数学的影子,同时也说明,生活中的一些事我们可以用数学方法解答。

要解决此题,必须知道“转弯”到底是个什么样的数学概念,了解了这个信息后那解决类似问题就容易多了。

因此教师要详细的讲解此处“转弯”的意思。

5、探究题:
如图甲:已知AB ∥DE,那么∠1+∠2+∠3等于多少度?试加以说明。

当已知条件不变,而图形变为如图乙时,结论改变了吗?图丙中的∠1+∠2+∠3+∠4是多少度呢?如果如丁图所示,∠1+∠2+∠3+…+∠n 的和又为多少度?你找到了什么规律吗?
A
E
D
C
B
1
2
3 (图甲)
(图乙)
A
B
D
1
C
E
2
3
E
D
B
A
4 3 2
1
(图丙)
E
D
B
A
(图丁)
1 2
n
4
3
(三)、小结
本节课主要学习了平行线判定定理和性质定理的区别,掌握好这个知识点后对提高解题速度有很大的帮助。

同时进一步掌握从结论入手,去追溯能是结论成立的原因的解题方法。

(四)、作业布置:
课本“习题5.3”7,8,9,10。

相关文档
最新文档