金融计量经济第五讲虚拟变量模型和Probit、Logit模型
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Chow检验有二个内容,断点检验和预测检 验。和虚拟变量模型作用有相近之处的是 断点检验(Chow Breakpoint Test)。
• 步骤:在回归分析结果窗口,点 View\Stabiliti Test\Chow Breakpoint Test
• 注:邹氏应是邹至庄。
.
例1:储蓄余额与国民收入的关系
量为: 1,
D 0,
Βιβλιοθήκη Baidu
t T0 tT 0
• b. 用虚拟变量表示某个特殊时期的影响;
1, D0,
tT1,T2 tT1,T2
• 模型中虚拟变量可放在截距项或斜率处。
.
• 5、分阶段计酬问题。
• 若工作报酬与业务量挂钩,且不同业务量提成比例 不一样(递增),设S1、S2为二个指标临界点
•
D 1 1 0 ,,S S 1 S S 1, S S 2S 2, D 2 1 0 ,, S S S S 2 2
• 工资模型为:
• Ii01 [S 1 (1 D 1 i D 2 i)S ( i S 1 )] 2 [D 2 i(S 2 S 1 ) D 1 i(S i S 1 ) ]3 D 2 i(S i S 2 ) u i (5.7
.
D2=1
S0
D1=1
S1
S2
.
• 作OLS得到参数估计值后,三个阶段的 报酬回归模型为: Iˆi ˆ0ˆ1Si, Si S1 Iˆi ˆ0ˆ1S1ˆ2(Si S1), S2Si S1 Iˆi ˆ0ˆ1S1ˆ2(S2S1)ˆ3(Si S2), Si S2
.
例题:美国制造业的利润—销售额行为
• 模型:利 t 1 润 2 D 2 t 3 D 3 t 4 D 4 t ( 销 ) t u t售
• 利用1965—1970年六年的季度数据,得结果:
利 t 6 润 6 .3 8 1 88 3 .8D 2 2 9 t 2 2.8 1 D 3 t 7 1.8 8D 4 6 3 t 0 .03 (销 8 )t 3 售 (3.9 (2 ) .0(7 -0 ) .(4 04 .2 5 (8 3 )).33
y ˆi ˆ0ˆˆ1x1iˆkxk i D1 y ˆi ˆ0ˆ1x1iˆkxk i D0
.
.
• 2、在斜率处引入虚拟变量,改变斜率。
y i0 (D 1 )x 1 i k x k iu i (5.3)
• 作OLS后得到参数估计值,回归模型为:
y ˆiˆ0 (ˆD ˆ1 )x 1 i ˆkx ki(5.4)
.
虚拟变量用于斜率
• CXYE = -1217.425 + 5.209*GMSR + 1.13*(D1*GMSR)
• 1952—1977: • CXYE = -1217.425 + 6.339*GMSR • 1978—1990: • CXYE = -1217.425 + 5.209*GMSR
.
CXYE
1, 三季度
D3
0,
其它季度
• 小心“虚拟变量陷阱”!
.
三、虚拟变量的应用
• 1、在常数项引入虚拟变量,改变截距。
y i0D 1 x 1 i kx k iu i (5.1)
• 对上式作OLS,得到参数估计值和回归模型:
y ˆiˆ0ˆD ˆ1 x 1 i ˆkx ki(5.2)
• (5.2)相当于两个回归模型:
• 括号内为t统计值。 • 显然,三季度和四季度与一季度差异并不明显,重
新回归,仅考虑二季度,有结果:
利t 润 65.6 4 6 113.4 1D 21 t0.03(销 93)t售 (4.01()2.7)(3.717)
.
• 4、引用虚拟变量处理“时间拐点”问题。
• 常见的情况:
• a. 若T0为两个时间段之间的某个拐点,虚拟变
.
例子:佣金与销售额的关系:
• 模型:
Yi 11xi 2(xi x*)Di ui
其中 :Yi是销售佣 ,Xi是 金销售 ,X额 *是销售额基 . 数值 若Xi X*,则Di 1
• 样本回归函数:
Yˆi
ˆ1 ˆ1xi ˆ1ˆ2x*(ˆ1ˆ2)xi
xi x* xi x*
.
附录:Chow检验(邹氏检验)
• 原模型若为 yt xt ut
• 则引入虚拟变量后的模型为:
y tx t2 D 2 t3 D 3 t4 D 4 t u t (5.6)
• 回归模型可视为: yˆt ˆ ˆxt
一季度
yˆt ˆ ˆxt ˆ2 二季度
yˆt ˆ ˆxt ˆ3 三季度
yˆt ˆ ˆxt ˆ4 四季度
GMSR
.
应用例题1:Hedonic住宅价格模型
• 也称特征价格模型。其核心认为住宅价格由若干 hedonic(可享受的)特征构成,包括房屋建筑 特征、区位特征、社区特征等。
• 同样可以写成二个模型:
y ˆi ˆ0(ˆˆ1)x1iˆkxki D1
y ˆi ˆ0ˆ1x1iˆkxki
D0
• 可考虑同时在截距和斜率引入虚拟变量:
y i 0 0 D i (1 D i 1 ) x 1 i k x k iu i (5.
.
.
• 3、虚拟变量用于季节性因素分析。
•取
1, 当样本 i季为 度第 的数据 Di 0,其它季度的, i数 2,3据 ,4
.
二、虚拟变量的设置原则
• 引入虚拟变量一般取0和1。
• 对定性因素一般取级别数减1个虚拟变量。例 子1:性别因素,二个级别(男、女)取一个 虚拟变量,D=1表示男(女),D=0表示女 (男)。
• 例子2:季度因素,四个季度取3个变量。
1, 一季度 D1 0, 其它季度
1, 二季度
D2
0,
其它季度
• CXYE = -1878.817965 + 5.965038605*GMSR + 812.1046287*D1
• 1952—1977: • CXYE = -1066.71 + 5.965*GMSR • 1978—1990: • CXYE = -1878.82 + 5.965*GMSR
.
GMSR
金融计量经济第五讲
虚拟变量模型和Probit、Logit模型
.
第一节 虚拟变量的一般应用
一、虚拟变量及其作用 1.定义:取值为0和1的人工变量,表示非量化
(定性)因素对模型的影响,一般用符号D表 示。例如:政策因素、地区因素、心理因素、 季节因素等。 2.作用: ⑴描述和测量定性因素的影响; ⑵正确反映经济变量之间的相互关系,提高模型 的精度; ⑶便于处理异常数据。
• 步骤:在回归分析结果窗口,点 View\Stabiliti Test\Chow Breakpoint Test
• 注:邹氏应是邹至庄。
.
例1:储蓄余额与国民收入的关系
量为: 1,
D 0,
Βιβλιοθήκη Baidu
t T0 tT 0
• b. 用虚拟变量表示某个特殊时期的影响;
1, D0,
tT1,T2 tT1,T2
• 模型中虚拟变量可放在截距项或斜率处。
.
• 5、分阶段计酬问题。
• 若工作报酬与业务量挂钩,且不同业务量提成比例 不一样(递增),设S1、S2为二个指标临界点
•
D 1 1 0 ,,S S 1 S S 1, S S 2S 2, D 2 1 0 ,, S S S S 2 2
• 工资模型为:
• Ii01 [S 1 (1 D 1 i D 2 i)S ( i S 1 )] 2 [D 2 i(S 2 S 1 ) D 1 i(S i S 1 ) ]3 D 2 i(S i S 2 ) u i (5.7
.
D2=1
S0
D1=1
S1
S2
.
• 作OLS得到参数估计值后,三个阶段的 报酬回归模型为: Iˆi ˆ0ˆ1Si, Si S1 Iˆi ˆ0ˆ1S1ˆ2(Si S1), S2Si S1 Iˆi ˆ0ˆ1S1ˆ2(S2S1)ˆ3(Si S2), Si S2
.
例题:美国制造业的利润—销售额行为
• 模型:利 t 1 润 2 D 2 t 3 D 3 t 4 D 4 t ( 销 ) t u t售
• 利用1965—1970年六年的季度数据,得结果:
利 t 6 润 6 .3 8 1 88 3 .8D 2 2 9 t 2 2.8 1 D 3 t 7 1.8 8D 4 6 3 t 0 .03 (销 8 )t 3 售 (3.9 (2 ) .0(7 -0 ) .(4 04 .2 5 (8 3 )).33
y ˆi ˆ0ˆˆ1x1iˆkxk i D1 y ˆi ˆ0ˆ1x1iˆkxk i D0
.
.
• 2、在斜率处引入虚拟变量,改变斜率。
y i0 (D 1 )x 1 i k x k iu i (5.3)
• 作OLS后得到参数估计值,回归模型为:
y ˆiˆ0 (ˆD ˆ1 )x 1 i ˆkx ki(5.4)
.
虚拟变量用于斜率
• CXYE = -1217.425 + 5.209*GMSR + 1.13*(D1*GMSR)
• 1952—1977: • CXYE = -1217.425 + 6.339*GMSR • 1978—1990: • CXYE = -1217.425 + 5.209*GMSR
.
CXYE
1, 三季度
D3
0,
其它季度
• 小心“虚拟变量陷阱”!
.
三、虚拟变量的应用
• 1、在常数项引入虚拟变量,改变截距。
y i0D 1 x 1 i kx k iu i (5.1)
• 对上式作OLS,得到参数估计值和回归模型:
y ˆiˆ0ˆD ˆ1 x 1 i ˆkx ki(5.2)
• (5.2)相当于两个回归模型:
• 括号内为t统计值。 • 显然,三季度和四季度与一季度差异并不明显,重
新回归,仅考虑二季度,有结果:
利t 润 65.6 4 6 113.4 1D 21 t0.03(销 93)t售 (4.01()2.7)(3.717)
.
• 4、引用虚拟变量处理“时间拐点”问题。
• 常见的情况:
• a. 若T0为两个时间段之间的某个拐点,虚拟变
.
例子:佣金与销售额的关系:
• 模型:
Yi 11xi 2(xi x*)Di ui
其中 :Yi是销售佣 ,Xi是 金销售 ,X额 *是销售额基 . 数值 若Xi X*,则Di 1
• 样本回归函数:
Yˆi
ˆ1 ˆ1xi ˆ1ˆ2x*(ˆ1ˆ2)xi
xi x* xi x*
.
附录:Chow检验(邹氏检验)
• 原模型若为 yt xt ut
• 则引入虚拟变量后的模型为:
y tx t2 D 2 t3 D 3 t4 D 4 t u t (5.6)
• 回归模型可视为: yˆt ˆ ˆxt
一季度
yˆt ˆ ˆxt ˆ2 二季度
yˆt ˆ ˆxt ˆ3 三季度
yˆt ˆ ˆxt ˆ4 四季度
GMSR
.
应用例题1:Hedonic住宅价格模型
• 也称特征价格模型。其核心认为住宅价格由若干 hedonic(可享受的)特征构成,包括房屋建筑 特征、区位特征、社区特征等。
• 同样可以写成二个模型:
y ˆi ˆ0(ˆˆ1)x1iˆkxki D1
y ˆi ˆ0ˆ1x1iˆkxki
D0
• 可考虑同时在截距和斜率引入虚拟变量:
y i 0 0 D i (1 D i 1 ) x 1 i k x k iu i (5.
.
.
• 3、虚拟变量用于季节性因素分析。
•取
1, 当样本 i季为 度第 的数据 Di 0,其它季度的, i数 2,3据 ,4
.
二、虚拟变量的设置原则
• 引入虚拟变量一般取0和1。
• 对定性因素一般取级别数减1个虚拟变量。例 子1:性别因素,二个级别(男、女)取一个 虚拟变量,D=1表示男(女),D=0表示女 (男)。
• 例子2:季度因素,四个季度取3个变量。
1, 一季度 D1 0, 其它季度
1, 二季度
D2
0,
其它季度
• CXYE = -1878.817965 + 5.965038605*GMSR + 812.1046287*D1
• 1952—1977: • CXYE = -1066.71 + 5.965*GMSR • 1978—1990: • CXYE = -1878.82 + 5.965*GMSR
.
GMSR
金融计量经济第五讲
虚拟变量模型和Probit、Logit模型
.
第一节 虚拟变量的一般应用
一、虚拟变量及其作用 1.定义:取值为0和1的人工变量,表示非量化
(定性)因素对模型的影响,一般用符号D表 示。例如:政策因素、地区因素、心理因素、 季节因素等。 2.作用: ⑴描述和测量定性因素的影响; ⑵正确反映经济变量之间的相互关系,提高模型 的精度; ⑶便于处理异常数据。